
An Overview of the Mimesis Architecture: Integrating Intelligent

Narrative Control into an Existing Gaming Environment

R. Michael Young

Liquid Narrative Research Group
Department of Computer Science

NC State University
Raleigh, NC 27695

young@csc.ncsu.edu

Introduction

The Liquid Narrative research group at North Carolina
State University, a multidisciplinary group of faculty and
students seeking to create interactive narrative
environments. To do this, we are designing and building
intelligent systems capable of creating structured
interaction within virtual worlds that achieves the same
kind of cognitive and affective responses to interactive
stories as that seen in the participants of conventional
narrative media such as the film or the novel. Our
approach exploits a well-founded, declarative model of
action and intention (Young, Pollack and Moore 1994,
Young, Moore and Pollack, 1994) applied to virtual world
contexts, in combination with new computational models
of narrative structure. The intended result is the production
of engaging, story-based interactive applications for
education, training and entertainment.

The LN group's current focus is the Mimesis (mim-Ε-sis)
system, an implementation of an intelligent controller for
virtual worlds that generates and maintains a coherent,
narrative-based storyline. The system combines current
research work in AI planning and natural language
discourse generation with the real-time control of an
existing commercial game system, Epic Games’ Unreal
Tournament (Epic Games, 1999). The remainder of the
paper gives a short overview of the Mimesis system
components. Many of the components of Mimesis have
already been completed, and we anticipate end-to-end
system integration shortly.

Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

Background: Unreal Tournament

Epic Games' Unreal Tournament (UT) is currently one of
the most popular titles in the first-person gaming genre.
The game's architecture is a client-server design (with
single-user mode simply running both client and server on
the same machine). UT client processes are responsible for
user-side input and output (e.g., keyboard and/or joystick
for input, graphics rendering and audio generation as
output); the UT server maintains a consistent world model
across all users by acting as the centralized controller
where the execution of all functions that change the state of
the world are coordinated.

The functionality provided by the UT server executes in
one of two forms, one modifiable by game licensees (i.e.,
anyone that purchases a copy of the game CD), the other
available only to developer licensees (e.g., those who enter
into special contractual agreements with the game
developer). Execution of the later, called native code
execution, involves running compiled C++ executables.
The former involves running functions written in
UnrealScript, a specialized object-oriented scripting
language developed by Epic Games and used to define UT
object classes and control the behavior of their instances
within a UT game world. UnrealScript compiles into byte
code and so is platform independent, allowing the same
compiled UnrealScript modules to execute on any
hardware and OS combination for which UT runs
(currently this includes Macintosh, Windows and Linux
systems). The UnrealScript process model simulates its
own thread-based architecture, providing the Mimesis
developer with the abstraction that each UnrealScript
object runs its own code within its own thread.
Fortunately, game licensees have access to the complete
UnrealScript SDK as well as a class browser, a script editor
and a level editor (i.e., a 3D world modeler). Built-in
support for third-party development of add-on software

(via linking DLLs on Windows platforms)1 is provided as
well, making UT one of the gaming environments more
accessible to AI researchers seeking to integrate their work
into game environments.

Mimesis Architectural Overview

The Mimesis system integrates AI control with off-the-
shelf commercial games. The benefit of this approach for
AI researchers is immediate; use of systems like UT
provide readily accessible, stable and high-quality
graphics, networking, database and process execution
support for virtual environments, eliminating the need for
time consuming development of these components in a
research project.

As I describe below, Mimesis is composed of a number of
distinct modules -- some which are integrated directly into
the UT clients and servers, others that reside on remote
machines and communicate with the UT server via socket-
based connections. The UT server, extended to include
Mimesis software components, is called a Mimesis Unreal
Tournament Server (MUTS) and the intelligent controller
operating on a remote machine is called the Mimesis
Controller (MC). The role of the MUTS is to provide low-
level access to the UT environment (process invocation,
monitoring and control) while the role of the MC is to
serve as a centralized intelligent source for the design and
(high-level) control of coherent, compelling narrative-
based interaction over time.

The principal factor that allows the integration of AI
research tools and technology with the existing UT server
engine is the sharing between the two of a declarative
representation of action and of the conditions within the
UT server’s virtual world. On the MC side, an HTN
planner-style action representation (Erol, Hendler and Nau,
1994, Young, Pollack and Moore, 1994) encodes all
actions that can be taken by characters in the virtual
environment. On the MUTS side, each of the primitive
actions in this representation is mirrored by a procedural
definition of UnrealScript code that directly implements
the action it mirrors. Currently, the mirroring of
functionality between the MUTS and the MC action
representations is achieved manually by system designers,
although, as I describe in the final section of this paper,
much of the process of creating procedural definitions of
declarative plan operators is performed automatically.

1 For example, we have implemented a Windows DLL that links
Microsofts Text-to-Speech Libraries with the UT client. The
DLL is described in more detail below.

Mimesis Components
In addition to the standard UnrealScript and native code
objects provided in the UT server, the MUTS consists of
four main Mimesis components, implemented as instances
of UnrealScript classes that are integrated directly into the
UT run-time environment, running essentially as
independent threads within the standard UT server
configuration. In contrast, the MC uses one central
process, spawning special-purpose intelligent modules as
independent threads when needed to respond to specific
conditions arising in the virtual world. The various
Mimesis components, shown in the diagram in Figure 1,
are described below.

Mimesis Controllers are currently implemented in Lisp and
run on dedicated high-end machines distinct from the
system on which a MUTS executes. Each MC is
composed of its own socket-based communications module
(for connection to remote MUTSes), a central controller
process and a number of individual intelligent support
modules, spawned as needed by the MC during the creation
and monitoring of an unfolding Mimesis storyline.
Additional modules include, for instance, the narrative
planner, a variant of the Longbow planner (Young, Moore
and Pollack, 1994, Young and Moore, 1994) originally
developed for natural language discourse generation.
Further, the controller creates a world map of the game
environment's virtual space, a knowledge base of
information about the current state of the environment, etc.
The modular design of the controller allows the
straightforward integration of new modules as the system’s
functional requirements are expanded.

When a MUTS server is started, it contacts an MC via a
socket connection, and a handshaking protocol ensues in
which the MUTS describes the current (pre-game) state of
its virtual world. At this time The MC generates a plan-
based storyline for the action sequnce that it intends to play
out during the user’s session within the game environment.
As gameplay begins on the MUTS, the MC sends
commands to the MUTS environment to drive the state
changes dictated by the storyline actions present in the
plan. These commands may include directives to control
character action and communication, commands that
manipulate the state of the virtual world directly (i.e.,
without the use of characters to manipulate the world) or
meta-level messages that send information to one or more
of the MUTS modules.

The first (and simplest) MUTS-side Mimesis component is
the communications module, named the AILink. The
AILink module handles all communication with the MC,
routing messages to the MUTS through its socket-based
connection and distributing incoming messages from the
MC to the appropriate MUTS modules.

When the MC sends commands for action to the MUTS,
these commands are routed by the AILink to an execution
module called the Funcaller. The Funcaller is responsible
for parsing the commands --- arriving via the socket
connection as text strings --- and translating them into
UnrealScript function calls (i.e., determining the function
to call and invoking it using correct references to the data
objects named in the command string’s parameters). To
manage this translation process, the Funcaller uses a pre-
defined hash table to link argument string names with
references to the appropriate run-time data objects. Once
all object references are resolved, an automatically
generated dispatcher function is called, the function
dispatches based on the action’s command name string and
calls the appropriate UnrealScript code with the correct
arguments to UT data objects.

One complication in the management of action execution
on the MUTS is the mismatch between the temporal
representation of primitive actions used by the MC and the
temporal extent of corresponding procedures executing on
the MUTS. The MC’s planning system represents primitive
actions as occurring instantaneously, while the procedural
nature of the code that runs on the MUTS to implement the
corresponding primitive actions requires that the actual
execution of an action may occur over a substantial peroid
of time. Because users may alter the state of the world
during the execution of a primitive action’s procedural

implementation, it is necessary to monitor each individual
system-driven action to make certain that user-initiated
state changes do not cause the system’s action to fail (e.g.,
the MUTS must detect when a user closes a door in the
face of a character that is executing a walk-through-
door procedure).

Because typical planning-based representations for action
assume that primitive actions happen instantaneously, the
semantics of their actions’ preconditions are intended to
describe the required state of the environment immediately
prior to the action’s successful execution. The
representation used by Mimesis distinguishes between
preconditions of this type and persistent preconditions,
conditions in the world that must hold from the beginning
of the action execution through to the point of its
completion.

The UnrealScript procedures that implement each primitive
action are responsible for spawning sentinel threads,
processes that monitor the action’s persistent preconditions
during the life span of the procedure’s execution. When a
sentinel thread detects a change in the state of a monitored
state variable, it reports the change to the MC, indicating
that the procedural implementation of the currently
executing action may have failed. Monitoring these
conditions via MUTS modules is necessary because many
conditions such as the collision between character and door
in the parenthetical example above is handled by UT at a
low level; when these events occur, the UT server does not
signal an exception that can readily be detected by Mimesis
UnrealScript code.

One central research question for the Liquid Narrative

group is how to detect and respond to situations where a
user performs an action that does not directly interfere with
currently executing procedures, but instead seriously
conflicts with the storyline that the MC narrative planner
has created. While the Mimesis system can create
compelling action sequences for a UT world and then issue

Mimesis Controller

Narrat ive
Pla n n er

Co n tr oller

Spec ia l
Spe c ia l
Purpose
Mo d u les

Spec ia l
Pur p os e
Mo d u les

Mimesis Unreal
Tournament Server

AILin kDi scr et e Eve n t
Gen erato r

Funcaller
Me diato r

UnrealScript Code

User

Figure 1. Mimesis Architecture

commands that drive the UT world according to the
intended storyline, users in the environment may attempt to
make changes to the world that can substantively affect the
executability of future actions in the plan that drives the
action sequence.

To address this issue, we exploit the structure inherent in
narrative plans that we create to mediate between the user’s
commands and the actual execution of those commands in
the virtual world. To manage potential conflicts between a
user’s actions and the MC’s storyline, we intervene
between the commands issued by the user and their
execution by the underlying UT environment. This
mediation involves a two-stage process. First, a Discrete
Event Generator maps relevant input from the user’s
continuous event stream (mouse motion and keyboard
events, for instance) into discrete action commands that
match up with the MC’s declarative representation of the
actions available in the world.
.
Next, we compare the action that the user is attempting to
execute with the plan structure of the storyline that the MC
has created, looking for possible conflicts. The plans we
create contain a rich causal structure: all causal
relationships between steps in the plans are specifically
marked by data structures called causal links. To ensure
that the plans are functionally correct, these links are
originally added to a plan at the time that the planning
system constructs it. In contrast, we put them to use at
execution time; in our system, when a user attempts to
perform an action, the declarative representation of that
action is checked against the causal links present in the
plan. Each action’s representation explicitly lists all of its
effects – the changes to the state of the world that will
occur whenever the action successfully executes. If the
successful completion of the user's action poses a threat to
any of the causal links (i.e., one of the action’s effects
conflicts with the condition associated with the causal
relationship indicated by the link), an exception is raised.

Exceptions are dealt with in one of two ways. The most
straightforward is via intervention. Because all of a user's
actions in the environment pass through the mediator prior
to execution, Mimesis itself can determine whether an
action succeeds or fails. Typically, the success or failure of
an action within a virtual environment is determined by
software that approximates the rules of the underlying
virtual world (e.g., setting a nuclear reactor’s control dial to
a particular setting may cause the reactor to overload).
However, when a user's action would violate one of the
narrative plan's constraints, Mimesis can intervene, causing
the action to fail even when its execution in the current
world state would normally succeed. In the nuclear reactor
example, this might be achieved by surreptitiously
substituting an alternate action for execution, one in which
the ``natural’’ outcome is consistent with the existing plan's
constraints. A control dial momentarily jamming, for
instance, will preserve the apparent consistency of the

user's interaction while also maintaining safe energy levels
in the storyworld’s reactor system.

The second response to an exception is to adjust the
narrative structure of the plan to accommodate the new
activity of the user. When accomodating an exception, the
system allows the user’s command to execute in the virtual
world, then reconsiders the narrative context to look for
changes that can be made “behind the scenes” to avoid the
original exception’s conflict. It may be possible that the
conflict caused by the exception can be eliminated by a
minor restructuring of the narrative plan, for instance,
selecting a different but compatible location for an event
when the user takes an unexpected turn down a new path.
Alternatively, this may involve more substantive changes
to the plan, for instance, should a user stumble upon the
key to a mystery early in a narrative or unintentionally
destroy a device required to rescue a narrative's central
character.

Clearly, the computational process of detecting exceptions
is a time-critical task, particularly when intervention is a
potential response. There are several techniques that we
employ in Mimesis to make exception detection more
straightforward. First, the Mediator holds a cache of causal
links that are currently relevant to the unfolding plan (i.e.,
all conditions in the current world state that future steps in
the plan are dependent upon). As the storyline unfolds,
the MC adds and deletes elements in this cache as
appropriate, so that exceptions can be quickly detected by
comparing the effects of a user’s current action to the
cache’s contents.

Second, responses to potential exceptions are pre-
computed as time permits, allowing the Mediator to select
from a list of responses to an exception without having to
wait for the MC to generate an appropriate response.
Responses are pre-computed based on a dynamically
updated list of actions that a user can potentially carry out
at the current moment. At any given time, the game’s
world state will be such that a subset of all possible actions
will have all their preconditions satisfied; these actions are
precisely the set of actions that are currently available to
the user for immediate execution. At times when the MC’s
processing load is low, it considers each of the actions in
this list in turn, determining the appropriate response to
potential exceptions raised by the action’s execution.

Current Implementation Status and Near-
Term Extensions

The Mimesis system is still under development, however,
substantial parts of the implementation have been
completed. We are currently able to develop plans for
interaction using the MC, to send commands for activity
based on those plans to the Funcaller and to have the
appropriate UnrealScript procedure calls executed.
However, the implementation of execution-monitoring is

not yet complete, and the Mediator’s functionality is still
only partially implemented.

Currently, our group is also working on additional MUTS
and MC modules. For example, we have completed a
translator module that takes as input primitive action
operators and generates UnrealScript class files containing
procedure stubs for each action procedure that will need to
be implemented for a given domain. The module, named
LBUS (LongBow-UnrealScript) is used to generate a first-
pass automatic class definition; designers are then
responsible for filling out the stub functions to implement
the low-level behaviors for the various actions in a given
world.

Mimesis project members are also implementing a virtual
camera controller that will integrate pre-designed idioms
for shot composition taken from film with discourse-level
direction included in the storyline plans generated by the
MC. This work is described in more detail in a separate
submission to this symposium (Amerson and Kime, 2001).

Much of the Mimesis design has intentionally been limited
to either the MC or the server-side Unreal Tournament
environment. In this manner, no specialized UT client
modifications are necessary to connect to and participate in
a Mimesis world. However, client-side extensions (called
mods by the gaming community) are also easily created for
UT, and we have experimented with the addition of text-to-
speech capability in UT clients by creating a mod that
makes system-level calls to Microsoft’s test-to-speech API.
The mod allows our system to generate custom text to
communicate with each user, then to speak the text as a
character or narrator within the Mimesis storyline.

Acknowledgements

The work of the Liquid Narrative group has been supported
by a number of sources, including a Faculty Research and
Development grant from the NC State Office of the
Provost, and equipment grants and gifts from the NC State
Department of Computer Science and Microsoft Research's
University Grants Program. The Mimesis system could not
have been designed or constructed without the constant
help of the students that have contributed many hours
learning by doing. These include Daniel Amerson,
D’arcey Carrol, Shannon Garlick, Shaun Kime, Brian
McLaughlin, and C.J. Saretto.

References

Amerson, D. and Kime, S., 2001. Real-time Cinematic
Camera Control for Interactive Narratives. In Working
Notes of the AAAI Spring Symposium on Artificial
Intelligence and Interactive Entertainment, Stanford, CA.

Erol, K., Hendler, J. and Nau, D., 1994. UMCP: A Sound
and Complete Procedure for Hierarchical Task-Network
Planning. In Proceedings of the Second International
Conference on Artificial Intelligence and Planning
Systems, 556-560. Chicago, IL.

Epic Games, 1999. Unreal Tournament [Computer
Software].

Young, R. M., Pollack, M. and Moore, J. D., 1994.
Decomposition and Causality in Partial-Order Planning. In
Proceedings of the Second International Conference on
Artificial Intelligence and Planning Systems, 556-560.
Chicago, IL.

Young, R. M., Moore, J. D., and Pollack, M. E., 1994.
Towards a Principled Representation of Discourse Plans. In
Proceedings of the Sixteenth Annual Meeting of the
Cognitive Science Society, 946-951, Atlanta, GA.

Young, R. M. and Moore, J. D., 1994. DPOCL: A
Principled Approach to Discourse Planning, in Proceedings
of the Seventh International Workshop on Natural
Language Generation, 13-20, Kennebunkport, ME.

