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Abstract
Developing believable and realistic characters for
interactive, computer-based forms of entertainment is a
hard work. To make them perform specific tasks or take
initiatives given a narrative is even more challenging. In
this paper we introduce a novel agent design approach that
reconciles autonomy with instructability and narrative in
one agent architecture. The approach is based on a highly
developed logical theory of action and a powerful high-
level behaviour specification language (BSL) that is
developed from the underlying logical formalism, i.e. the
event calculus. Using BSL, agents’ behaviours can be
specified and controlled more naturally and intuitively,
more succinctly and at a much higher level of abstraction
than would otherwise be possible. We also briefly discuss
the implementation issues relevant to this approach.

1. Introduction
Building animated human-like agents (also known as
autonomous actors, autonomous creatures, and synthetic
character) is an active research area and much progress has
been made towards character’s geometric and low-level
behavioural modelling. However, at present most
characters used for interactive, computer-based forms of
entertainment are self-interested autonomous agents.
Simply situating animated agents in simulated virtual
environments and letting them behave autonomously is not
what we expect for computer-based interactive
entertainment and the emerging Internet-based VR
applications such as virtual learning, conferencing. We
hope that users can control agents’ behaviour at different
level of abstraction. For example, users may prefer to
delegate tasks to an agent by issuing high-level commands
or let agents take initiative by giving the agent a narrative.
At the extreme end, users may have the capability of
controlling the agent at motivational level. They can have
the agent’s belief, desire and intention instantiated with
their motivation, preference and other personality traits,
and the agent will behave exactly like the users
themselves.
There are many research works on animated agent (Badler
et al. 1993)(Terzopoulos 1994) (Reynolds 1987). Most of
them are built based on a behavioural model with a
reactive agent architecture. Though robust and efficiency,
the disadvantage of the approach is that the behaviour
controllers are hardwired into code. Blumberg and Perlin
(Blumberg et al. 1995) (Perlin and Goldberg 1996) have
begun to address such concerns by introducing

mechanisms that give the animator greater control over
behaviour. While we share similar motivations, our
research takes a different route. We place the emphasis on
investigating important higher-level cognitive abilities,
such as knowledge representation, reasoning, and
planning, which are the domain of AI.
Funge and Lespérance (Funge et al. 1999) (Lespérance et
al. 1994) present a cognitive model for character animation
based on the Situation Calculus. Both of us try to define
and implement cognitive model for animated agents;
however, our work is different from Funge’s in that we
adopt a different logical formalism for reasoning action
and time, i. e. Event Calculus (EC) (Shanahan and
Witkowski 2000). Although the two formalism share the
basic ontology of atomic actions and fluents, event
calculus has the advantage of representing actual actions,
in particular, the actions with duration that is the most
common actions in character animation (Kowalski and
Sadri 1994).  Another salient feature of the EC is its ability
to assimilate a narrative, i.e. the description of a course of
events such as plot or story, adjust the effects of actions
and the time-line of the narrative as it become more and
more precise in an additive only fashion. These innate
features of the formalism ground our high-level control
specification language on a solid theoretical foundation
and make it more suitable for modelling and controlling
the behaviour of animated agents.
To help build cognitive models and facilitate users’ control
over the agent behaviour, a high-level behaviour
specification language (BSL) is developed. This high-level
language provides an intuitive way to specify agents’
knowledge about their domain in terms of actions, their
preconditions and their effects. We can also endow agents
with a certain amount of “common sense” within their
domain. Therefore, when we give an agent instructions or
narratives we can leave out tiresome details from the
commands. The missing details are automatically filled in
at run-time by the character’s reasoning engine that
decides what must be done to achieve the specified goal.
In this paper we introduce and develop cognitive
modelling methodology for high-level agent control.
Cognitive models go beyond current implementation of
behavioural models and reactive agent architecture in that
they govern what an agent knows, how that knowledge is
acquired, and how it can be used to plan actions.
Comparing to traditional AI style planning. The
distinguishing feature of our approach is the development



and exploitation of the high-level behaviour specification
language for domain specification, reasoning engine
design and controllers’ programming. This language forms
an important middle ground between regular logic
programming (as represented by Prolog) and traditional
imperative programming (as typified by C++). Moreover,
with this approach, the level of control, the power of the
reasoning engine and the run-time efficiency can be tuned
to achieve optimal performance in terms of the application
requirements. For example, if you give more domain
knowledge and increase the power of the reasoning engine,
then you can control the agent at a higher level. On
contrary, the system can also run with less domain
knowledge, a weak reasoning engine but detailed, lower
level of control.
The remainder of the paper is organised as follows.
Section 2 introduces the theoretical basics of the event
calculus and the planning mechanism in the EC. Section 3
presents the high-level behaviour specification language
(BSL) and the methodology for programming high-level
controllers. In section 4, we briefly describe an agent
architecture that facilitates the logical approach to
reconcile autonomy with instructability. Section 5 provides
a design example for virtual agents. Section 6 presents
conclusions and suggestions for future work.

2. Theoretical Foundations
Our approach to integrating autonomy and narratives into
one agent architecture is to use a logical formalism to
model virtual worlds from the animated agent’s point of
view. The formalism for reasoning about action is based
on many-sorted first-order predicate calculus augmented
with circumscription (Shanahan 1997). The advantage of
the event calculus over other logical formalisms such as
the situation calculus is that the time flow is represented
independently from the notion of an action and the actions
are embedded in this independent structure using an
explicit notion of an action occurrence. This feature makes
it ideal for reasoning narratives, that is, reasoning about
actions that actually occur at various times and reasoning
about the properties that hold or do not hold at different
times as a consequence of such occurrences. Below we
introduce the basics of the event calculus and the
semantics of compound actions that underpin the high-
level behaviour specification language.

2.1 The Basics of the Event Calculus
The event calculus is a logical programming formalism for
representing and reasoning about events and their effects.
The ontology of the event calculus comprises fluents,
events (or actions) and time points. Events are the
fundamental instrument that brings about changes to the
world. Any property of the world that can change over
time is known as a fluent. A fluent is a function of the time
point. The event calculus uses predicates to specify actions
and their effects. For example, predicate

Initiates( τβα ,, ) means that the fluent β starts to hold
after event α at time τ ; predicate Happens( 2,1, ττα )
means that event α starts at time 1τ  and ends at time 2τ .

The predicates of the event calculus are listed in Table 1.
Based on the causal relation of the predicates in the event
calculus we can derive a set of axioms. The conjunction of
the collection of the axioms is denoted the EC. Each axiom
states how and when a fact (or a proposition) will hold.
Here are two examples of these axioms.
HoldAt(f,t3)← Happens(a,t1,t2)∧ Initiates(a,f,t1) ¬∧
Cancelled(a,f,t1,t2) ∧ t2<t3   ¬∧  Clipped(t1,f,t3)
Clipped(t1,f,t4)↔ ∃ a,t2,t3[Happens(a,t2,t3)∧ t1<t3
∧ t2<t4∧ [Terminates(a,f,t2)∨ Releases(a,f,t2)]

¬∧ Cancelled(a,f,t2,t3)]
The latest version of the extended event calculus, i.e. the
predicates and axioms, is formally described in (Shanahan
1997). The frame problem of the formalism is overcome
through circumscription. This is similar to the closed world
assumption. The ramification problem is the frame
problem for actions with indirect effects. We introduce
state constraints to sort out this problem.

2.2 Planning in the Event Calculus
Planning in the event calculus is an abductive reasoning
process through resolution theorem prover. The logical
definition of EC-planning is as follows.

 Initiates( α, β, τ)
[Fluent β starts to hold after action  α at time  τ ]
Terminates(α, β, τ)
[Fluent β ceases to hold after action α at time τ ]
Releases(α, β, τ)
[Fluent β is not subject to inertia after α at time τ]
InitiallyP (β)
[Fluent β hold  from time 0]
InitiallyN (β)
[Fluent β does not hold  from time 0]
Happens( α, τ1, τ2)
[Action  α starts at time τ1 and ends at time τ2]
τ1<τ2
[Time point τ1 is before time point τ2]
HoldAt (β, τ)
[Fluent β holds at time τ ]
Clipped( τ1, β, τ2)
[Fluent β is terminated between times τ1 and τ2]
Declipped( τ1, β, τ2)
[Fluent β is initiated between times τ1 and τ2]
Cancels( α1, α2, β)
[The occurrence of α1 cancels the effect of a simultaneous
occurrence of  α2 on fluent β]
Cancelled( α, β, τ1, τ2)
[Other concurrent event occurs from time τ1 to time τ2 that
cancels the effect of action α on fluent β]
Trajectory (β1, τ, β2, δ)
[If fluent β1 is initiated at time τ  then fluent β2 becomes
true at time  τ +δ ]

Table 1. The language of the event Calculus



Given a conjunction Σ of Initiates, Terminates and
Realeases formulae describing the effects of actions (a
domain description), a conjunction ∆ 0  of InitiallyP and
InitiallyN describing the initial situation, a finite
conjunction ψ of state constraints describing actions’
indirect effects, and a conjunction Ω of uniqueness-of-
names axioms for actions and fluents.
We represent a goal Γ as a finite conjunction of formulae
of the form,
HoldAt( β, t)  or ¬ HoldAt(β, t)
Where β is a ground fluent and t is a ground time point.
Suppose we use a narrative of events to denote a finite
conjunction of Happens formulae and temporal ordering
among them.
Then a plan for Γ is a narrative ∆  such that,
CIRC[Σ; Initiates, Terminates, Releases] ∧
   CIRC[∆ 0 ∧ ∆; Happens] ∧ ψ ∧  EC ∧  Ω _  Γ
Where, CIRC means after circumscription.
This gives rise to the formal specification of planning
definition. The circumscriptive solution to the frame
problem adopted here accommodates the inclusion of state
constraints, so long as they are conjoined to the theory
outside the scope of any circumscription.

3.  Agent Control Mechanism
3.1 Compound Actions and the BSL
The previous sections outline the basics of the event
calculus and the related approach for representing and
reasoning about simple actions. It fails to address the
problem of expressing and reasoning about compound
actions such as “If action α is successful then do action β
else do action δ”, “ While there are friends do greetings
endwhile”. Our solution to this problem is to introduce
some additional extra-logical symbols such as |, ?, while,
if, etc., which act as abbreviations for logical expressions
in the event calculus. Then we represent compound actions
as a combination of primitive actions and other compound
actions in terms of these extra-logical symbols. For
convenience we denote compound actions as procedures.
They are actually macros of primitive actions and other
compound actions. During execution, compound actions
expand into genuine formulae of the event calculus.
Based on the EC formalism, the introduced extra-logical
symbols and the compound action semantics, we develop
the high-level behaviour specification language (BSL).
Table 2 lists the definition of the main extra-logical
symbols and the corresponding BSL syntax in square
brackets. The BSL can be used to specify an agent’s
behaviour by manipulating events with the assistance of
those logical symbols. A program in BSL can be viewed as
a top-level procedure that consists of combinations of
sequence and/or parallel of procedures and primitive
actions. All the procedures and actions within the program
are linked together through the extra-logical symbols.
Program execution is accomplished via macro-expansion
into sentences of the event calculus. Although the syntax
of BSL is similar to a conventional programming
language, BSL is a strict superset in terms of functionality.

The user can give agents a single command or a narrative
in terms of available behaviour controllers. In particular, a
behaviour controller can be nondeterministic so that one
instruction can covers multiple possibilities. Given a high-

level instruction, an agent can decide to fill in the
necessary missing details by itself according to its domain
knowledge and behave autonomously.

3.2 Control Programming
EC-based agent programming is to use the logic formalism
as a representation medium and theorem proving as a
means of computation. A high-level control program in
such system is a set of logical formulae describing actions
including compound actions, their effects and their
temporal relation. To program an agent, we need first
specify the domain in which the agent operates, so the
agent know what the domain is about, how to acquire
knowledge and how to use them to plan actions to achieve
goals. In the event calculus a complete domain description
usually comprises two sets of Initiates, Terminates and

 (Sequence)
α;β means do action α, followed by action β.
[take<ACTION α> then <ACTION β>]

(Nondeterministic choice of actions)
 α|β means do action α, or action β.
choose <ACTION α> or <ACTION β>]

(Test)

 p? means true if formula p holds, otherwise false.
[test <EXPRESSIONS p]

(Nondeterministic choice of arguments) (πx) α(x)
it means pick some argument x and perform the action α(x).
pick (<EXPRESSION x>) <ACTION>]

(Concurrency)

 αβ means actions  α and  β occurs concurrently.
[take<ACTION α> and <ACTION β>]

(Non-deterministic iteration)
 α*  means do  α zero or more times.
[iterate <ACTION α>]

  (Iteration)
while p do α means do α while p is true.
[while (<EXPRESSION p>) < ACTION α>]

(Conditionals)
 if p then α else β means do α if p is true, otherwise do β.
[if  (<EXPRESSION p>) then <ACTION α> else <ACTION β>]

(Concurrency with different priorities)
α >> β means that α has higher priority than β, and may only be
executed when α is done or blocked.
[take<ACTION α> then and <ACTION β>]
< x
U

 : φ  →  α > means if formulaφ  is true for binding of the
variable vectorsx

U
, then interrupt current action and execute the

action body  α
 [if  (<EXPRESSION φ ( x

U
)>) interrupt  <ACTION α> ]

(Procedures)
Proc P(λ1, λ2, ...λn ) α endproc declares a compound action
[void P(<ARGLIST λ1, λ2, ...λn >) <ACTION α>]

Table 2.  The Extra-logical Symbols and the SBL Syntax



                                                                                 Domain description
                                                                                           formaulae

Domain knowledge                    Knowledge update

                                                                                        H igh-level
                                                                                 Instruction in BSL

 Action commands                        Sensory information

             Actions                           Perception

Domain Specification (World model)

Primitive actions, fluents,
initial states, axioms

Reasoning Engine

High-level controller written in BSL

BSL interpreter

Reactive system

World interface

Animation engine, Perception

Users

 Figure 1. A Simplified Agent Architecture

Releases formulae describing the effects of the agent’s
primitive low-level actions and the compound high-level
actions respectively, a set of Happens formulae defining
high-level compound actions and a set of declarations
specifying state constraints.
To operate in a complex, dynamic and unpredictable
virtual world, agents should be able to perform perception
and update their knowledge when necessary. We introduce
a generic epistemic fluent Knows as discussed in [14] to
represent and reason about knowledge and the knowledge
producing actions. This fluent has exactly the same status
as other fluents and can be formalised in the same way as
other fluent’s formalisation. For example, the formula
HoldAt(Know(φ), τ) represents that the formula φ follows
from the agent’s knowledge or agent’s beliefs at time τ.
The agent executes a sense-plan-act cycle. Initially the
agent has an empty plan and is presented with a goal Γ in
the form of HoldAt formulae. Using resolution against
formulae in domain specification, the planning process
identifies a high-level compound action α that will achieve
Γ. The planning process then decomposes α using
resolution against formulae that define high-level
compound actions. If the decomposition produces
executable, primitive actions, then they are be added to the
plan. If the decomposition yield further sub-goals (HoldAt
formulae) or further compound sub-actions (Happens
formulae), then we will repeat the above process to
identify the compound actions corresponding to the sub-
goals or further decompose the compound sub-actions.
This process, i.e. the loop of goal, compound action and
decomposition, continues until a complete plan is arrived.
If there is no corresponding high-level compound action
available to a given goal in domain specification, the agent
will use the formulae describing primitive actions to make
plan from first principles as discussed in section 2.2.
This algorithm interweaves sensing, planning and acting

together. Sensor events or states serve as pre-conditions for
subsequent actions or conditionals for choice control. They
can also be used as conditions for terminating current
actions. Planning is a resolution-based abductive theorem
proving process working on a collection of event calculus
formulae. The most salient feature is the exploitation of
hierarchical planning via compound actions. This
facilitates planning in progression order, which promotes
the rapid generation of a first executable action. If a
sensing produces an unexpected event or state that fails to
satisfy the required conditions for subsequent actions, then
the agent will be required to re-plans from scratch.
The control programs, written in the event calculus and the
high-level behaviour specification language (BSL), have
both a declarative meaning, as a collection of sentences of
logic, and a procedural meaning, given by the control
algorithm through compound action.

4. Agent Architecture
We propose a layered hierarchical agent architecture for
cognitive modelling as shown in Figure 1 (Chen et al.
2000). The core framework of the architecture consists of
three levels of control module. At the lowest level, the
animation engine provides believable human appearance
and realistic motion. At the middle level, the reactive layer
is responsible for generating reactive responses for
unexpected events. At the highest level, the reasoning
engine implements the agent’s brain and is responsible for
motor, perception and low-level action control. The
reasoning engine provides agents with a cognitive model
that enable them to reason about their world based on
acquired knowledge, thus enabling them to interpret high-
level instructions from human users. One feature of the
layered agent control model is that it allows the agent to be
controlled at different levels of abstraction. Thus in the
reasoning engine we need only consider high-level actions
(or behaviour) such as “greeting friends”, “having drink”.
The reactive system and the animation engine translate
these commands down to detailed degree of freedom The
user supplies the primitive actions and their effects on the
world, the specification of the initial state, and the domain-
dependent controllers. The top-level controllers
programmed in BSL drive the agent behaviour. The BSL
interpreter executes these programs using the axioms and
domain knowledge to generate a complete plan for a given
goal. However, the high-level controller does not drive the
platform directly, but through a low-level reactive system
that perform some reactive actions to deal with unexpected
events such as collision avoidance. This frees the high-
level controller from having to respond to exceptional
conditions in real time. The reactive system can also act as
a fail-safer should the reasoning system temporarily fall
through. In the event that the agent can not decide upon an
intelligent course of action in a reasonable amount of time,
the reactive system will invoke an emergent behaviour just
to keep the agent ongoing.



5. An Example
We use the BSL and the event calculus to program an
agent to accomplish various activities in a virtual campus.
The agent can behave autonomously and/or take initiatives
through user’s instruction. The top-level controller is
showed below.
proc agentBehaviourController
kact_initializeAgent;
while fl_agentActivatedStates = active do
<  fl_userInstruction(p) →
comact_handleInstruction>
>>
< fl_generatedGoals(g) →
comact_handleGoal(g)>
>>
< fl_agentStates = Idle →
comact_selfAmusing>
endwhile
endProc

Where the variables with prefix kact_ are knowledge
producing actions; the variables with prefix_comact_ are
compound actions and the variable with prefix fl_ mean
fluents.
The top priority interrupt takes care of handling users’
instructions. This ensures the agent always responds to a
user interaction prior to reacting to the agent’s internal
intention. Each command can be a simple primitive action
or compound action representing a narrative. The agent
will follow the narratives given by the user to accomplish
delegated tasks. At the second level of priority, the
interrupt is responsible for agent’s internal reaction to
environmental changes. Without user’s interaction, the
agent will make decisions according to its environmental
changes and take actions autonomously. At the lowest
level, if the agent has nothing to do for a while, it will play
a self-amusing procedure to reduce boring or to attract
attention.
The compound actions contained in the controller are
developed in terms of the control programming
methodology discussed in section 3.2. The following
procedure is one of the high level controller for handling
user’s instructions.
Proc handleInstruction(p)
if (!fl_goalAchieved(fl_currCommand) ∧
(commandPrio(p) < commandPrio(fl_currCommand)) then
comact_achieve(fl_currCommand)
>>
comact_achieve(p)
else
comact_achieve(p)
endif
endproc

6. Conclusion
This paper introduces a logical approach to high-level
agent control, which uses logic as a medium of
representation and theorem proving as a means of

computation. By means of the developed behaviour
specification language, this approach can reconcile
autonomy with instructability and narratives in one agent
architecture. We believe that this novel modelling
methodology will greatly facilitate the animated agent
design for interactive entertainment and virtual
environment applications over the Internet.
Cognitive agent modelling is still at the early stage of
research. Here we only outline the theoretical background
and briefly discuss the implementation issues. The main
purpose is to share our ideas with other researchers and get
new inspiration from the feedback.
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