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Abstract 
We describe a prototype blackboard system for 
coordinating multiple agents in a real-time strategy game.  
Agents have limited cognitive abilities and communicate 
with the blackboard through structured messages.  Agents 
sense their local environment at regular intervals and send 
perceptual information to the blackboard working space 
in the form of structured messages.  The blackboard 
system performs high-level interpretation of these low-
level percepts to generate high-level tactical and strategic 
information.   In this paper, we describe the design of the 
various components of the blackboard.  The system has 
been fully implemented and experiments have been 
performed with data from the DropshipTM game. 
 

Introduction  
Simulating large numbers of agents using limited 
resources is a recurring challenge in computer games.  
Real-time strategy (RTS) games typically involve the 
simulation of large numbers of Non-Player Characters 
(NPCs) whose behaviours must be coordinated, whether 
to cooperate with, or oppose, the player.   
In real-time strategy games, where the focus is typically 
on the behaviours of groups of agents rather than each 
agent’s individual characteristics, one approach to the 
agent-coordination problem is to centralise system 
control.  This reduces overall complexity by allowing the 
internal structure of agents to remain simple, while the 
complexity resides within the centralised control system.  
Although this approach is not appropriate for games in 
which importance is placed on the uniqueness of 
individual agents (e.g. character-based adventure  
games), it is well-suited to the real-time strategy genre. 

Another important aspect of agent- coordination is 
agent communication.  Research in the field of multi-
agent systems has developed the concept of an agent 
communication language (ACL), in which agents 
exchange information using structured messages.  One 
area in which this method has been employed is in the 
field of military simulation (for instance the Control and 
Command Simulation Interface Language  (CCSIL) 
(Salisbury et al., 1995)). 

In this paper, we describe the use of a blackboard 
system to address the problem of agent-coordination 
using centralised control and communication through 

structured messages.  The blackboard is used as a generic 
approach to processing agent communications centrally.  
Agents generate messages containing information about 
their internal states and surroundings, which are sent to 
the blackboard working space.  These low-level messages 
provide the initial data for the system, and are interpreted 
by the system in terms of tactical concepts.  This 
approach enables us to keep individual agent design 
simple and efficient without having to embed complex 
message-parsing procedures in the agents themselves. 

The framework for our experiments is a computer 
game currently under development at Sony Computer 
Entertainment Europe (Camden studio), Dropship™.  
Dropship (Figure 1) is a battlefield simulation game in 
which the human player is confronted to enemy troops on 
the ground, at sea and in the air, according to various 
missions assigned to him to complete a game level. 
Unlike most RTS games, the human player in DropshipTM 
does not directly control an entire army, but controls a 
single unit which forms part of a larger computer-
controlled force.   Rather than playing the part of a 
commander-in-chief, the player is one pilot on the 
battlefield. This introduces the requirement that the game 
implement allied NPCs as well as enemy NPCs. Agent 
co-ordination can be implemented through various 
techniques, however, one major constraint is that the 
Dropship game should comprise a large number of agents: 
up to 400 units simultaneously populating a given level. 
In addition, agents have limited decision-making 

Figure 1: The DropshipTM Game 
(Copyright   SCEE 2000) 



processes and are essentially reactive to their local 
environment which they perceive through a small set of 
primitives (unlike, e.g. SOAR agents (Laird et al., 1987)). 

Due to the limited intelligence of individual agents, 
there is a need to perform situation assessment and make 
tactical decisions at a global level. One possibility is to 
follow a traditional distributed AI approach in which 
tactical decisions emerge from the exchange of 
information between agents. There are, however, 
limitations and potential problems with that approach. 
Firstly, the flow of messages may become intractable: it is 
not always possible to limit exchanges to neighbouring 
agents (e.g. in the case of ground units requesting air 
cover, medical evacuation, etc.).  Secondly, this emergent 
behaviour is not always accessible to the user. This is not 
only a problem when implementing and debugging the 
system, but also becomes a gameplay problem.  It is a 
requirement that the behaviour of agents makes sense to 
the user, not only for enemy agents, but especially for 
allied troops whose immediate goals should be visible to 
the user with whom they are supposed to co-operate. 
Thirdly, there is an interest in making the messages 
themselves meaningful to the user if necessary. This 
would enable, for instance, the creation of a 
communications background (using sound generation or 
text messages on a dedicated “console” portion of the 
screen that could contribute to the game realism by re-
creating an atmosphere). The fact that messages are 
directly manipulating an ontology which is related to the 
scenario also facilitates the knowledge-acquisition 
process by which the content of the blackboard’s 
knowledge sources is acquired.  One major difference of 
this compared to the CCSIL approach is, of course, that 
these messages are sent to and processed by a central 
structure, the blackboard. This provides a unifying 
principle which lends itself to future modifications and 
experiments, such as the use of distributed games over 
several platforms . 

In the following sections, we describe the message-
format and how messages are generated in response to 
game events.  We then present the blackboard architecture 
and describe the constraints for attaining real-time 
performance.  After discussing the issue of blackboard 
control and describing the knowledge sources, we give a 
detailed example of actual behaviour of the implemented 
system. 
 

Message Structure 
The structure of an agent communication language (ACL) 
is largely constrained by the agents’ “cognitive” abilities. 
In our experiments agents have elementary perceptive 
abilities from which they can generate messages. These 
perceptive abilities are illustrated in the figures in the 
Example section, which show the development interface 
for the system.   

Agents can also generate messages about their 
position (e.g. Alive_At_Pos), internal states (Health_Low, 
Ammo_Low), the actions they undertake 
(SAM_Deployed_At_Pos), actions they want other agents 
to undertake (Request_Support, Request_Repair) and their 
current goal(s). 

Because our agents have limited cognitive abilities, 
there is no match, in the general case, between the 
message structure and the high-level event structure. This 
reflects that a single agent (e.g. a single tank) within a 
large-scale simulation has only a limited viewpoint of the 
global set of events. For instance, agents would perceive 
elements of their environment (Forest_In_View, 
River_In_View). This allows the derivation of local 
information1 but does not provide global knowledge 
which could be used to formulate a course of action. This 
limited viewpoint also applies to tactical concepts: for 
instance, in the case of an air-strike an agent would only 
perceive its effects in terms of damage to units within the 
agent’s local environment (i.e. not in terms of overall 
strategy).  These agents are thus limited to sending 
various types of messages: they broadcast information on 
their immediate physical environment, inform about their 
status or the status of neighbouring units, and can send 
requests for assistance (covering fire, repair, refuelling, 
engineering work, etc.). Several message-formats have 
already been  defined as part of agent communication 
languages such as KQML (Finin, 1995), FIPA’s ACL 
(FIPA, 2000), and CCSIL (Salisbury, 1995).  As a general 
rule, ACLs fall into two categories: those which aim 
primarily for flexibility and expressivity, and those which 
sacrifice these in favour of computational efficiency.  The 
former category is often based on linguistic theory and 
includes KQML and FIPA’s ACL. The latter category 
includes CCSIL, which is designed to reflect the structure 
of specific events, so as to optimise processing.  Our own 
approach clearly falls into the second category, and has, 
unsurprisingly, been inspired in part by CCSIL. 

 Our primary aim in designing the message-format 
was efficiency, which  is important if the system is to 
achieve real-time performance.  The message-parsing 
procedure, performed each time-step, constitutes a large 
part of the computational cost of the overall system, so it 
was important to consider a message-structure which led 
to optimised performance. 

                                                
1  Not unlike CCSIL’s Obstacle_Geometry_type or 
Trafficability. 



A principal factor which affects the efficiency of the 
message-parsing procedure is the level of complexity of 
the message-structure; a complex message-structure 
requires a complex parsing algorithm.  The most common 
source of structural complexity in parsing is the use of 
recursively embedded structures, so for this reason we 
designed a flat message structure which does not permit 
recursive embedding.  The reduction in expressivity 
resulting from this decision is more than compensated for 
by the gains in efficiency.  
 An example of a message generated by the system is 
shown in Figure 2.  The example message translates as 
“Allied assault-dropship has enemy mobile-SAM unit 
within visual range” and includes position and weapon 
information for both entities.  The remainder of this 
section describes our final message-structure. 

A message’s sequence number is a unique integer-
identifier assigned chronologically by the system when 
the message is created, which is equivalent to a time 
stamp. 

The header contains mostly content-independent 
information such as the time at which the message was 
posted to the working space, the message-type (e.g. 
Percept, Threat, Situation_Assessment), and two flags 
indicating, respectively, the number of times the system 
has parsed the message, and whether the message is to be 
deleted at the next time -step.   

The message code (e.g. Enemy_in_visual_range, 
Alive_at_position) is equivalent in semantic terms to an 
action predicate, however the predicative structure for that 
action might not be reflected within a single message due 
to the partial knowledge an agent has of its environment.  
The action structure will be reconstructed on the 
blackboard from the incoming flow of messages.   

The agent, objects, and parameters are arguments of 
the message code, providing further information 
regarding entities involved in the action (e.g. unit-types 
and locations).  A message has one agent, but can have 
any number of objects or parameters.  Parameters are 
intended to provide numerical information such as 

number of enemy units in a given area, or strength of 
enemy air-defences. 

 
The Blackboard System 

A blackboard (Engelmore and Morgan, 1988; Nii, 1986) 
is a specific architecture for knowledge-based systems 
which integrates various knowledge structures, called 
knowledge sources (KSs), around a central data structure 
known as the working space.  Blackboards have been 
designed specifically to cope with complex, ill-structured 
problem domains, and to allow exploratory programming 
of knowledge-based systems by integrating heterogeneous 
knowledge sources.  The main difficulties encountered 
with blackboards are their control strategy and securing 
real-time performance.  We will see how these difficulties 
can be partially overcome in the specific context of 
computer games.  The architecture of our blackboard 
system is shown in Figure 3.   

The working space is the centralised data-structure 
used to store  the messages generated by the agents and 
the knowledge sources.  Agents send messages  to the 
working space via the controller buffer, while messages 
generated by knowledge sources are sent to it directly.  
Agents send messages to the current time-slice of the 
working space (see below). 

The working space is a hash table implemented as a 
sparse array, and uses direct-indexing and collision lists. 
This significantly reduces the storage requirements.  The 
storage location of a message within the current working 
space time slice is determined by the XZ-coordinates of 
the sending agent, or the main agent of interest (in the 
case of messages posted by knowledge sources).  
Although in principle a situation could arise in which all 
messages originated from the same zone (and therefore all 
the messages would be stored in the same cell), this is 
highly unlikely.   This would cause the working space to 
degrade to a single linked-list, but could be avoided by 
considering the problem when deciding on the size of 
game-zones. 

Message Field Value 
Sequence No. 432 
Code MESSAGE_ENEMY_IN_VISUAL_RANGE 
Header (Time: 234325)(Lifespan: 10000)(Type: PERCEPT)  

(Delete: 0)(Viewed: 0) 
Agent (ID: 3)(Align: ALLIED) 

(U-type: ENTITY_DROPSHIP_ASSAULT) 
(W-type: WEAPON_MISSILE_A2A) (Quadrant: (3,4)) (Location: (254,634)) 

Object (ID: 34)(Align: ENEMY)(U-type: ENTITY_SAM_MOBILE)  
(W-type: WEAPON_MISSILE_G2A) (Quadrant: (3,4))  
(Location: (200,640)) 

 
Figure 2: A Sample Message 



  
 
 
 
 
 

Controller Buffer 

Battle Script  
Override 

KS Controller 

KS
1 

KS
2 

KS
3 

KS Interface 

A1 A2 A3 

Agent 
Notification 
Controller 

  Blackboard 

SYSTEM 
TIME 

Pre-
Processing 

KSn 

An 

KS 
DB 

Content-
based 
Unification 

Message 

Control information 

Knowledge Source 

A Agent 

At each time-step, a new time-slice is generated for 
the working space, and the oldest is discarded.  As a result 
of structuring the working space according to time and the 
positions of units,  the blackboard is well-suited to spatial 
and temporal reasoning. 
 

Knowledge Sources & Blackboard Control  
Each KS contains a set of production rules and an 
inference engine which operates on those rules.  The 
choice and partitioning of KSs is determined by gameplay 
concepts, but generally each KS is responsible for a 
different aspect of the overall problem.  In our case, KSs 
are assigned for different aspects of situation-assessment 
(e.g. Threat, Battle-damage Assessment, Mission-
objectives, Search-and-rescue, Unit-movement-planning, 
Debriefing).   

Rules are parsed at system start-up to produce an 
internal representation.  A rule has one or more 
preconditions and a single postcondition.  Preconditions 
are conjoined and disjunction is obtained by producing 
multiple rules with different preconditions but identical 
postconditions.  The format for conditions is based on the 
message-format and includes additional information, such 
as: a negation flag and a quantifier.  This is not a 
quantifier in the strict sense, but indicates the number of 
matches required for the precondition to succeed (possible 

usage: “If an allied unit has three enemy units in sight, 
request backup”).  
 

The Blackboard Cycle 
Figure 4 shows the blackboard cycle.  At each time-step, 
agents sample their environment and generate low-level 
messages, known as percepts.  These percepts are sent to 
a temporary buffer (the controller buffer) for pre-
processing, before being posted to the blackboard 
working space.  Due to the reactive nature of message 
generation, identical messages about the same event can 
in principle be generated by different agents, which would 
differ only by their sender ID and time-stamp. The 
purpose of pre-processing is therefore to remove near-
duplicate messages, so as to reduce redundant processing 
at the pattern-matching stage, and also to check message 
validity and obsolescence.  Specific procedures exist for 
referent-resolution, i.e. checking that various messages 
refer, for instance, to the same object.  Other than these 
operations, most message-unification is content-specific.   

After pre-processing has taken place, a new time-slice 
is added to the working space.  The pre-processed 
messages are copied to the appropriate locations in the 
new time-slice and deleted from the temporary buffer. 

The next stage is pattern-matching, in which each KS 
in turn scans the working space for matches between 

Figure 3: The Blackboard Architecture 



messages and rules. Pattern-matching can be 
computationally expensive, especially when a large 
number of messages are to be processed by knowledge 
sources. Experiments to implement pattern-matching 
algorithms such as RETE (Forgy, 1982) in the context of 
computer games have not been fully conclusive (Wright, 
2000).  This is why we have taken a minimalist approach 
to pattern-matching, specifying the message formats on a 
type basis, which avoids having to recursively parse 
message structures.  

In a traditional blackboard, knowledge sources 
exchange information through the blackboard’s working 
space, progressively refining a solution to the problem 
being solved. The data on the blackboard are 
heterogeneous: initial problem data, partial solutions, 
hypotheses to be examined by other knowledge sources, 
or even control knowledge. The fact that data show 
various level of abstraction is a factor of complexity. In 
order to decrease the complexity of inferences, we 
reduced the number of entities present on the blackboard 
to only initial agent messages and instantiated templates, 
which correspond to a unit of situation assessment.  

In other words, we have essentially implemented a 
monotonic, pipelined approach. We are not taking 
advantage of the ability of blackboards to explore 
hypotheses and alternatives (either by backtracking or 
maintaining concurrent hypotheses). Rather, we are 
essentially relying on i) their integration of various 
knowledge sources and ii) a unified paradigm for message 
processing provided by the blackboard working space.  

Blackboard control is a difficult aspect of blackboard 
implementation. The blackboard cycle implemented in 
our system is represented in figure 5 and encompasses the 
whole cycle of message production and interpretation. 
The overall cycle depends simultaneously on agent 
sampling their environment and on blackboard control. 
The overall cycle is determined by i) message production 
by the agents and the rate at which they sample their 
environment ii) how the flow of messages is buffered and 
processed iii) blackboard control and the selection of 

activable knowledge sources to be fired and iv) how 
actions decided on the blackboard are passed back to the 
agents. Agents constantly sample their environments on a 
time-scale corresponding to user actions (which are by 
nature non-deterministic) and agent ongoing behaviour 
(current motion, attacks, etc.). They encode relevant 
information in messages that they post on the blackboard. 
Some assumptions related to the closed world hypothesis 
have to be made in order to limit the number of messages 
posted. For instance, the message alive_at_position 
combines information about the agent’s health status and 
its position. The rationale for this combined message is 
that it corresponds to the availability of a given unit for 
tactical actions. While it is possible to determine the 
sampling rate of position updating (on the basis of agents’ 
speed, for instance), a new message has to be generated 
each time the health-value is modified, as this depends on 
circumstances external to the agent. This can help in 
making hypotheses on whether an agent is alive or dead, 
based on a history of messages received.  

The set of messages on the blackboard is matched to 
the various KSs through the simplified pattern-matching 
procedure that is tuned to message structure. The 
activable knowledge sources constitute Knowledge 
Source Instantiations (KSIs) that are waiting for the 
controller to fire them. The control, in our case,  
is under the dependence of simple domain heuristics. In 
other words, we could describe our approach as 
centralised decision-making for distributed agents, though 
it retains some aspects of traditional blackboard control, 
something which distinguishes our implementation from a 
simple variant of distributed problem solving. Several 
authors have discussed the relations between blackboard 
architectures and distributed architectures for problem 
solving: see for instance (Craig, 1989) and the comments 
on his CASSANDRA system in (Carver and Lesser, 
1994). In the next step, KSIs are fired, which results in 
updating templates on the blackboards working space. At 
this stage, messages which have been processed can be 
discarded unless they contain information that might be 

 

���� ��� ��	
��� ���� 
����� ����	��� 

�������� 	� ������� 
���
�� 

����	� ������ 	���� 
��
�� ����������	 
��� ����  ���
��	� 
	� 
��	������ ����� 

���� 
���
������ 

���� ����� 

��	��	� 	� 

������� ���
� 

������� ���
� 

��	��	� ��� 

��		������	
��� 
������	 ���� 

����	� ���	 �� 
��	
��� 

� 
�� 
	�����  !"� 

����	 #�	���
�	��� 
���	������ ������ 

����	 �
	���� ����� 
�� ������� ���
� 


��	��	� 

Figure 4: The Blackboard Cycle 



used again (unlike hypotheses, which can be deleted once 
examined). The new information posted by KSs on the 
working space can further trigger the KSs, though this has 
to be synchronised with the incoming flow of messages. 
This is an illustration of the need for control: decisions 
have to be taken, in some cases, to give priority to the 
thorough processing of a set of data from one time-step 
(to avoid saturation forward chaining of the KS) before 
taking new messages on board. Specific KSs are in charge 
of returning information orders to the agents. These can 
be either fired opportunistically or wait for the completion 
of situation assessment (as these actions are irreversible). 
 
Example: Establishing Air-Defence Priorities 

The system is able to perform non-trivial inferences from 
agent messages, as the following example illustrates.  

Figure 5: Establishing Priorities in Air Defence 

 

At time-step 1 (Figure 5.1) allied dropship 0 has low 
health and an enemy in visual range, while allied dropship 
2 is idle.  An enemy dropship (5) is approaching the allied 
SAM launcher (3) but is currently beyond its visual range.  
The situation at time-step 1 is represented in message 
form by each unit posting a message with code 
Alive_At_Pos, while in addition 0 posts Health_Low and 
2 posts I_Am_Idle. These are the low-level percept 

messages from which inferences will be made. At time-
step 1 the threat KS finds a full match for the 
UnderThreat rule which is matched if a unit has posted 
Health_low and Enemy_in_visual_range. 

This rule is fired by the KS controller, causing the 
message Under_Threat to be posted.  The agent field of 
the Under_Threat message contains the threatened 
agent’s details, while the object field contains information 
about the enemy agent, such as weapon, unit-type, and 
location. At time-step 2 (Figure 5.2), the messages 
Under_Threat (posted by unit 0) and Status_Idle (from 
unit 2) provide a match for the rule 
AttackEnemyThreateningAlly in the search_and_rescue 
KS.  The message  is posted and at the end of the 
blackboard cycle is detected by the agent notification 
controller, which orders unit 2 to select 1 as its current 
target and move to attack it.  This is shown as a blue line 
connecting the two units. At time-step 3, an enemy 
dropship (5) moves into visual range of an allied SAM 
launcher (3), prompting unit 3 to post the percept message 
Sam_Detect_Airborne_Enemy. This is a message 
specifically intended to detect air-attacks on SAM units. 
This situation leaves unit 3 unsupported, putting allied 
air-defences at risk.  What must be decided is which allied 
unit has the higher priority for support.  An airborne unit 
such as 0 is equally manoeuvrable as its attacker and is 
equipped with counter-measures (e.g. chaff, flares, ECM) 
and various weapons with which it can defend itself. A 
ground-based unit such as 3, however, is more vulnerable 
to air-attack because of lack of manoeuvrability.  A 
mobile SAM launcher is also of particular strategic 
importance as part of allied air-defences, so it is in allied 
interests to prevent the destruction of (3). At time-step 4 
(Figure 5.3), the two messages Attack_Enemy and 
SAM_Detect_Airborne_Enemy provide a match for the 
rule PriorityAirAttack, causing the message 
Priority_Air_Attack to be posted.  This causes unit 2 to 
change its current target to the enemy dropship (5), which 
is attacking the mobile SAM launcher (3).  This change 
can be seen through the blue targeting line, which has 
now moved to point to 5. The above scenario is an 
example of  how the blackboard system is used to 
synthesise high-level knowledge from percept data.  
Three non-trivial inferences (Under_Threat, 
Attack_Enemy, and Priority_Air_Attack) have been 
generated from percepts, and were used to drive the 
actions of an agent. 

 
Conclusion 

The use of a blackboard for multi-agent co-ordination has 
many advantages in terms of modularity, flexibility and 
expressivity. The system has been fully implemented and 
tested using actual data from Dropship™ levels. At this 
stage, we mainly use our blackboard to support 



exploratory programming. However, blackboard systems 
have a real potential for the co-ordination of multiple 
agents: a central controller helps keeping the agent 
internal complexity tractable, while being compatible 
with various paradigms for agent communication. The 
fact that blackboards maintain explicit data 
representations also offers perspectives for enhancing user 
feedback, for instance by generating natural language 
messages to the user. 
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