
A Blackboard System for Interpreting Agent Messages

Marc Cavazza (1), Steven J. Mead (1), Alexander I. Strachan (1) and Alex Whittakeri (2)
(1) University of Teesside, TS1 3BA, Middlesbrough, UK.

{m.o.cavazza, steven.j.mead, a.i.strachan}@tees.ac.uk
(2) Sony Computer Entertainment Europe, 37, Kentish Town Road, NW1 8NX, UK.

Alex_Whittaker@scee.net

Abstract
We describe a prototype blackboard system for
coordinating multiple agents in a real-time strategy game.
Agents have limited cognitive abilities and communicate
with the blackboard through structured messages. Agents
sense their local environment at regular intervals and send
perceptual information to the blackboard working space
in the form of structured messages. The blackboard
system performs high-level interpretation of these low-
level percepts to generate high-level tactical and strategic
information. In this paper, we describe the design of the
various components of the blackboard. The system has
been fully implemented and experiments have been
performed with data from the DropshipTM game.

Introduction
Simulating large numbers of agents using limited
resources is a recurring challenge in computer games.
Real-time strategy (RTS) games typically involve the
simulation of large numbers of Non-Player Characters
(NPCs) whose behaviours must be coordinated, whether
to cooperate with, or oppose, the player.
In real-time strategy games, where the focus is typically
on the behaviours of groups of agents rather than each
agent’s individual characteristics, one approach to the
agent-coordination problem is to centralise system
control. This reduces overall complexity by allowing the
internal structure of agents to remain simple, while the
complexity resides within the centralised control system.
Although this approach is not appropriate for games in
which importance is placed on the uniqueness of
individual agents (e.g. character-based adventure
games), it is well-suited to the real-time strategy genre.

Another important aspect of agent- coordination is
agent communication. Research in the field of multi-
agent systems has developed the concept of an agent
communication language (ACL), in which agents
exchange information using structured messages. One
area in which this method has been employed is in the
field of military simulation (for instance the Control and
Command Simulation Interface Language (CCSIL)
(Salisbury et al., 1995)).

In this paper, we describe the use of a blackboard
system to address the problem of agent-coordination
using centralised control and communication through

structured messages. The blackboard is used as a generic
approach to processing agent communications centrally.
Agents generate messages containing information about
their internal states and surroundings, which are sent to
the blackboard working space. These low-level messages
provide the initial data for the system, and are interpreted
by the system in terms of tactical concepts. This
approach enables us to keep individual agent design
simple and efficient without having to embed complex
message-parsing procedures in the agents themselves.

The framework for our experiments is a computer
game currently under development at Sony Computer
Entertainment Europe (Camden studio), Dropship™.
Dropship (Figure 1) is a battlefield simulation game in
which the human player is confronted to enemy troops on
the ground, at sea and in the air, according to various
missions assigned to him to complete a game level.
Unlike most RTS games, the human player in DropshipTM
does not directly control an entire army, but controls a
single unit which forms part of a larger computer-
controlled force. Rather than playing the part of a
commander-in-chief, the player is one pilot on the
battlefield. This introduces the requirement that the game
implement allied NPCs as well as enemy NPCs. Agent
co-ordination can be implemented through various
techniques, however, one major constraint is that the
Dropship game should comprise a large number of agents:
up to 400 units simultaneously populating a given level.
In addition, agents have limited decision-making

Figure 1: The DropshipTM Game
(Copyright SCEE 2000)

processes and are essentially reactive to their local
environment which they perceive through a small set of
primitives (unlike, e.g. SOAR agents (Laird et al., 1987)).

Due to the limited intelligence of individual agents,
there is a need to perform situation assessment and make
tactical decisions at a global level. One possibility is to
follow a traditional distributed AI approach in which
tactical decisions emerge from the exchange of
information between agents. There are, however,
limitations and potential problems with that approach.
Firstly, the flow of messages may become intractable: it is
not always possible to limit exchanges to neighbouring
agents (e.g. in the case of ground units requesting air
cover, medical evacuation, etc.). Secondly, this emergent
behaviour is not always accessible to the user. This is not
only a problem when implementing and debugging the
system, but also becomes a gameplay problem. It is a
requirement that the behaviour of agents makes sense to
the user, not only for enemy agents, but especially for
allied troops whose immediate goals should be visible to
the user with whom they are supposed to co-operate.
Thirdly, there is an interest in making the messages
themselves meaningful to the user if necessary. This
would enable, for instance, the creation of a
communications background (using sound generation or
text messages on a dedicated “console” portion of the
screen that could contribute to the game realism by re-
creating an atmosphere). The fact that messages are
directly manipulating an ontology which is related to the
scenario also facilitates the knowledge-acquisition
process by which the content of the blackboard’s
knowledge sources is acquired. One major difference of
this compared to the CCSIL approach is, of course, that
these messages are sent to and processed by a central
structure, the blackboard. This provides a unifying
principle which lends itself to future modifications and
experiments, such as the use of distributed games over
several platforms .

In the following sections, we describe the message-
format and how messages are generated in response to
game events. We then present the blackboard architecture
and describe the constraints for attaining real-time
performance. After discussing the issue of blackboard
control and describing the knowledge sources, we give a
detailed example of actual behaviour of the implemented
system.

Message Structure
The structure of an agent communication language (ACL)
is largely constrained by the agents’ “cognitive” abilities.
In our experiments agents have elementary perceptive
abilities from which they can generate messages. These
perceptive abilities are illustrated in the figures in the
Example section, which show the development interface
for the system.

Agents can also generate messages about their
position (e.g. Alive_At_Pos), internal states (Health_Low,
Ammo_Low), the actions they undertake
(SAM_Deployed_At_Pos), actions they want other agents
to undertake (Request_Support, Request_Repair) and their
current goal(s).

Because our agents have limited cognitive abilities,
there is no match, in the general case, between the
message structure and the high-level event structure. This
reflects that a single agent (e.g. a single tank) within a
large-scale simulation has only a limited viewpoint of the
global set of events. For instance, agents would perceive
elements of their environment (Forest_In_View,
River_In_View). This allows the derivation of local
information1 but does not provide global knowledge
which could be used to formulate a course of action. This
limited viewpoint also applies to tactical concepts: for
instance, in the case of an air-strike an agent would only
perceive its effects in terms of damage to units within the
agent’s local environment (i.e. not in terms of overall
strategy). These agents are thus limited to sending
various types of messages: they broadcast information on
their immediate physical environment, inform about their
status or the status of neighbouring units, and can send
requests for assistance (covering fire, repair, refuelling,
engineering work, etc.). Several message-formats have
already been defined as part of agent communication
languages such as KQML (Finin, 1995), FIPA’s ACL
(FIPA, 2000), and CCSIL (Salisbury, 1995). As a general
rule, ACLs fall into two categories: those which aim
primarily for flexibility and expressivity, and those which
sacrifice these in favour of computational efficiency. The
former category is often based on linguistic theory and
includes KQML and FIPA’s ACL. The latter category
includes CCSIL, which is designed to reflect the structure
of specific events, so as to optimise processing. Our own
approach clearly falls into the second category, and has,
unsurprisingly, been inspired in part by CCSIL.

 Our primary aim in designing the message-format
was efficiency, which is important if the system is to
achieve real-time performance. The message-parsing
procedure, performed each time-step, constitutes a large
part of the computational cost of the overall system, so it
was important to consider a message-structure which led
to optimised performance.

1 Not unlike CCSIL’s Obstacle_Geometry_type or
Trafficability.

A principal factor which affects the efficiency of the
message-parsing procedure is the level of complexity of
the message-structure; a complex message-structure
requires a complex parsing algorithm. The most common
source of structural complexity in parsing is the use of
recursively embedded structures, so for this reason we
designed a flat message structure which does not permit
recursive embedding. The reduction in expressivity
resulting from this decision is more than compensated for
by the gains in efficiency.
 An example of a message generated by the system is
shown in Figure 2. The example message translates as
“Allied assault-dropship has enemy mobile-SAM unit
within visual range” and includes position and weapon
information for both entities. The remainder of this
section describes our final message-structure.

A message’s sequence number is a unique integer-
identifier assigned chronologically by the system when
the message is created, which is equivalent to a time
stamp.

The header contains mostly content-independent
information such as the time at which the message was
posted to the working space, the message-type (e.g.
Percept, Threat, Situation_Assessment), and two flags
indicating, respectively, the number of times the system
has parsed the message, and whether the message is to be
deleted at the next time -step.

The message code (e.g. Enemy_in_visual_range,
Alive_at_position) is equivalent in semantic terms to an
action predicate, however the predicative structure for that
action might not be reflected within a single message due
to the partial knowledge an agent has of its environment.
The action structure will be reconstructed on the
blackboard from the incoming flow of messages.

The agent, objects, and parameters are arguments of
the message code, providing further information
regarding entities involved in the action (e.g. unit-types
and locations). A message has one agent, but can have
any number of objects or parameters. Parameters are
intended to provide numerical information such as

number of enemy units in a given area, or strength of
enemy air-defences.

The Blackboard System

A blackboard (Engelmore and Morgan, 1988; Nii, 1986)
is a specific architecture for knowledge-based systems
which integrates various knowledge structures, called
knowledge sources (KSs), around a central data structure
known as the working space. Blackboards have been
designed specifically to cope with complex, ill-structured
problem domains, and to allow exploratory programming
of knowledge-based systems by integrating heterogeneous
knowledge sources. The main difficulties encountered
with blackboards are their control strategy and securing
real-time performance. We will see how these difficulties
can be partially overcome in the specific context of
computer games. The architecture of our blackboard
system is shown in Figure 3.

The working space is the centralised data-structure
used to store the messages generated by the agents and
the knowledge sources. Agents send messages to the
working space via the controller buffer, while messages
generated by knowledge sources are sent to it directly.
Agents send messages to the current time-slice of the
working space (see below).

The working space is a hash table implemented as a
sparse array, and uses direct-indexing and collision lists.
This significantly reduces the storage requirements. The
storage location of a message within the current working
space time slice is determined by the XZ-coordinates of
the sending agent, or the main agent of interest (in the
case of messages posted by knowledge sources).
Although in principle a situation could arise in which all
messages originated from the same zone (and therefore all
the messages would be stored in the same cell), this is
highly unlikely. This would cause the working space to
degrade to a single linked-list, but could be avoided by
considering the problem when deciding on the size of
game-zones.

Message Field Value
Sequence No. 432
Code MESSAGE_ENEMY_IN_VISUAL_RANGE
Header (Time: 234325)(Lifespan: 10000)(Type: PERCEPT)

(Delete: 0)(Viewed: 0)
Agent (ID: 3)(Align: ALLIED)

(U-type: ENTITY_DROPSHIP_ASSAULT)
(W-type: WEAPON_MISSILE_A2A) (Quadrant: (3,4)) (Location: (254,634))

Object (ID: 34)(Align: ENEMY)(U-type: ENTITY_SAM_MOBILE)
(W-type: WEAPON_MISSILE_G2A) (Quadrant: (3,4))
(Location: (200,640))

Figure 2: A Sample Message

Controller Buffer

Battle Script
Override

KS Controller

KS
1

KS
2

KS
3

KS Interface

A1 A2 A3

Agent
Notification
Controller

 Blackboard

SYSTEM
TIME

Pre-
Processing

KSn

An

KS
DB

Content-
based
Unification

Message

Control information

Knowledge Source

A Agent

At each time-step, a new time-slice is generated for
the working space, and the oldest is discarded. As a result
of structuring the working space according to time and the
positions of units, the blackboard is well-suited to spatial
and temporal reasoning.

Knowledge Sources & Blackboard Control
Each KS contains a set of production rules and an
inference engine which operates on those rules. The
choice and partitioning of KSs is determined by gameplay
concepts, but generally each KS is responsible for a
different aspect of the overall problem. In our case, KSs
are assigned for different aspects of situation-assessment
(e.g. Threat, Battle-damage Assessment, Mission-
objectives, Search-and-rescue, Unit-movement-planning,
Debriefing).

Rules are parsed at system start-up to produce an
internal representation. A rule has one or more
preconditions and a single postcondition. Preconditions
are conjoined and disjunction is obtained by producing
multiple rules with different preconditions but identical
postconditions. The format for conditions is based on the
message-format and includes additional information, such
as: a negation flag and a quantifier. This is not a
quantifier in the strict sense, but indicates the number of
matches required for the precondition to succeed (possible

usage: “If an allied unit has three enemy units in sight,
request backup”).

The Blackboard Cycle
Figure 4 shows the blackboard cycle. At each time-step,
agents sample their environment and generate low-level
messages, known as percepts. These percepts are sent to
a temporary buffer (the controller buffer) for pre-
processing, before being posted to the blackboard
working space. Due to the reactive nature of message
generation, identical messages about the same event can
in principle be generated by different agents, which would
differ only by their sender ID and time-stamp. The
purpose of pre-processing is therefore to remove near-
duplicate messages, so as to reduce redundant processing
at the pattern-matching stage, and also to check message
validity and obsolescence. Specific procedures exist for
referent-resolution, i.e. checking that various messages
refer, for instance, to the same object. Other than these
operations, most message-unification is content-specific.

After pre-processing has taken place, a new time-slice
is added to the working space. The pre-processed
messages are copied to the appropriate locations in the
new time-slice and deleted from the temporary buffer.

The next stage is pattern-matching, in which each KS
in turn scans the working space for matches between

Figure 3: The Blackboard Architecture

messages and rules. Pattern-matching can be
computationally expensive, especially when a large
number of messages are to be processed by knowledge
sources. Experiments to implement pattern-matching
algorithms such as RETE (Forgy, 1982) in the context of
computer games have not been fully conclusive (Wright,
2000). This is why we have taken a minimalist approach
to pattern-matching, specifying the message formats on a
type basis, which avoids having to recursively parse
message structures.

In a traditional blackboard, knowledge sources
exchange information through the blackboard’s working
space, progressively refining a solution to the problem
being solved. The data on the blackboard are
heterogeneous: initial problem data, partial solutions,
hypotheses to be examined by other knowledge sources,
or even control knowledge. The fact that data show
various level of abstraction is a factor of complexity. In
order to decrease the complexity of inferences, we
reduced the number of entities present on the blackboard
to only initial agent messages and instantiated templates,
which correspond to a unit of situation assessment.

In other words, we have essentially implemented a
monotonic, pipelined approach. We are not taking
advantage of the ability of blackboards to explore
hypotheses and alternatives (either by backtracking or
maintaining concurrent hypotheses). Rather, we are
essentially relying on i) their integration of various
knowledge sources and ii) a unified paradigm for message
processing provided by the blackboard working space.

Blackboard control is a difficult aspect of blackboard
implementation. The blackboard cycle implemented in
our system is represented in figure 5 and encompasses the
whole cycle of message production and interpretation.
The overall cycle depends simultaneously on agent
sampling their environment and on blackboard control.
The overall cycle is determined by i) message production
by the agents and the rate at which they sample their
environment ii) how the flow of messages is buffered and
processed iii) blackboard control and the selection of

activable knowledge sources to be fired and iv) how
actions decided on the blackboard are passed back to the
agents. Agents constantly sample their environments on a
time-scale corresponding to user actions (which are by
nature non-deterministic) and agent ongoing behaviour
(current motion, attacks, etc.). They encode relevant
information in messages that they post on the blackboard.
Some assumptions related to the closed world hypothesis
have to be made in order to limit the number of messages
posted. For instance, the message alive_at_position
combines information about the agent’s health status and
its position. The rationale for this combined message is
that it corresponds to the availability of a given unit for
tactical actions. While it is possible to determine the
sampling rate of position updating (on the basis of agents’
speed, for instance), a new message has to be generated
each time the health-value is modified, as this depends on
circumstances external to the agent. This can help in
making hypotheses on whether an agent is alive or dead,
based on a history of messages received.

The set of messages on the blackboard is matched to
the various KSs through the simplified pattern-matching
procedure that is tuned to message structure. The
activable knowledge sources constitute Knowledge
Source Instantiations (KSIs) that are waiting for the
controller to fire them. The control, in our case,
is under the dependence of simple domain heuristics. In
other words, we could describe our approach as
centralised decision-making for distributed agents, though
it retains some aspects of traditional blackboard control,
something which distinguishes our implementation from a
simple variant of distributed problem solving. Several
authors have discussed the relations between blackboard
architectures and distributed architectures for problem
solving: see for instance (Craig, 1989) and the comments
on his CASSANDRA system in (Carver and Lesser,
1994). In the next step, KSIs are fired, which results in
updating templates on the blackboards working space. At
this stage, messages which have been processed can be
discarded unless they contain information that might be

���� ��� ��	
��� ����
����� ����	���

�������� 	� �������
���
��

����	� ������ 	����
��
�� ����������	
��� ���� ���
��	�
	�
��	������ �����

����
���
������

���� �����

��	��	� 	�

������� ���
�

������� ���
�

��	��	� ���

��		������	
���
������	 ����

����	� ���	 ��
��	
���

�
��
	����� !"�

����	 #�	���
�	���
���	������ ������

����	 �
	���� �����
�� ������� ���
�

��	��	�

Figure 4: The Blackboard Cycle

used again (unlike hypotheses, which can be deleted once
examined). The new information posted by KSs on the
working space can further trigger the KSs, though this has
to be synchronised with the incoming flow of messages.
This is an illustration of the need for control: decisions
have to be taken, in some cases, to give priority to the
thorough processing of a set of data from one time-step
(to avoid saturation forward chaining of the KS) before
taking new messages on board. Specific KSs are in charge
of returning information orders to the agents. These can
be either fired opportunistically or wait for the completion
of situation assessment (as these actions are irreversible).

Example: Establishing Air-Defence Priorities

The system is able to perform non-trivial inferences from
agent messages, as the following example illustrates.

Figure 5: Establishing Priorities in Air Defence

At time-step 1 (Figure 5.1) allied dropship 0 has low
health and an enemy in visual range, while allied dropship
2 is idle. An enemy dropship (5) is approaching the allied
SAM launcher (3) but is currently beyond its visual range.
The situation at time-step 1 is represented in message
form by each unit posting a message with code
Alive_At_Pos, while in addition 0 posts Health_Low and
2 posts I_Am_Idle. These are the low-level percept

messages from which inferences will be made. At time-
step 1 the threat KS finds a full match for the
UnderThreat rule which is matched if a unit has posted
Health_low and Enemy_in_visual_range.

This rule is fired by the KS controller, causing the
message Under_Threat to be posted. The agent field of
the Under_Threat message contains the threatened
agent’s details, while the object field contains information
about the enemy agent, such as weapon, unit-type, and
location. At time-step 2 (Figure 5.2), the messages
Under_Threat (posted by unit 0) and Status_Idle (from
unit 2) provide a match for the rule
AttackEnemyThreateningAlly in the search_and_rescue
KS. The message is posted and at the end of the
blackboard cycle is detected by the agent notification
controller, which orders unit 2 to select 1 as its current
target and move to attack it. This is shown as a blue line
connecting the two units. At time-step 3, an enemy
dropship (5) moves into visual range of an allied SAM
launcher (3), prompting unit 3 to post the percept message
Sam_Detect_Airborne_Enemy. This is a message
specifically intended to detect air-attacks on SAM units.
This situation leaves unit 3 unsupported, putting allied
air-defences at risk. What must be decided is which allied
unit has the higher priority for support. An airborne unit
such as 0 is equally manoeuvrable as its attacker and is
equipped with counter-measures (e.g. chaff, flares, ECM)
and various weapons with which it can defend itself. A
ground-based unit such as 3, however, is more vulnerable
to air-attack because of lack of manoeuvrability. A
mobile SAM launcher is also of particular strategic
importance as part of allied air-defences, so it is in allied
interests to prevent the destruction of (3). At time-step 4
(Figure 5.3), the two messages Attack_Enemy and
SAM_Detect_Airborne_Enemy provide a match for the
rule PriorityAirAttack, causing the message
Priority_Air_Attack to be posted. This causes unit 2 to
change its current target to the enemy dropship (5), which
is attacking the mobile SAM launcher (3). This change
can be seen through the blue targeting line, which has
now moved to point to 5. The above scenario is an
example of how the blackboard system is used to
synthesise high-level knowledge from percept data.
Three non-trivial inferences (Under_Threat,
Attack_Enemy, and Priority_Air_Attack) have been
generated from percepts, and were used to drive the
actions of an agent.

Conclusion

The use of a blackboard for multi-agent co-ordination has
many advantages in terms of modularity, flexibility and
expressivity. The system has been fully implemented and
tested using actual data from Dropship™ levels. At this
stage, we mainly use our blackboard to support

exploratory programming. However, blackboard systems
have a real potential for the co-ordination of multiple
agents: a central controller helps keeping the agent
internal complexity tractable, while being compatible
with various paradigms for agent communication. The
fact that blackboards maintain explicit data
representations also offers perspectives for enhancing user
feedback, for instance by generating natural language
messages to the user.

Acknowledgements
The authors wish to thank Rob Parkin of SCEETM for
giving us access to the Dropship data.

References

Carver, N. and Lesser, V., 1994. “The Evolution of
Blackboard Control Architectures”. Expert Systems with
Applications, Special Issue on The Blackboard Paradigm
and Its Applications, vol. 7, no. 1, pp. 1-30.

Craig, I. (1989). The CASSANDRA Architecture:
Distributed Control in a Blackboard System . Ellis
Horwood.

Englemore, R. and Morgan, T., 1988. Blackboard
Systems. New York: Addison-Wesley.

Finin, T., Labrou, Y., and Mayfield , J. (1995). KQML
as an Agent Communication Language in Jeff Bradshaw
(Ed.), Software Agents, MIT Press, Cambridge, 1995.

FIPA. (2000). Foundation for Intelligent Physical Agents
Homepage: http://www.fipa.org

Forgy, C. (1982). Rete: A Fast Algorithm for the Many
Patterns/Many Objects Match Problem. Artificial
Intelligence 19 (1): 17-37.

Laird, J., Newell, A., and Rosenbloom P. S. (1987). Soar:
An architecture for general intelligence, Artificial
Intelligence 33:1-64.

Lakin, W.L., Miles, J.A.H. and Byrne, C.D., 1988.
“Intelligent Data Fusion for Naval Command and
Control”. In: R. Englemore and T. Morgan (Eds.),
Blackboard Systems, New York: Addison-Wesley.

Nii, H.P., 1986. “Blackboard Systems: The Blackboard
Model of Problem Solving and the Evolution of
Blackboard Architectures”. AI Magazine, 7 (2).

Salisbury, M. R., D. W. Seidel, L. B. Booker, December
(1995). A Brief Review of the Command Forces (CFOR)
Program. Proceedings of the Winter Simulation
Conference, Arlington, Virginia

Salisbury, M. R., March (1995). “Command and Control
Simulation Interface Language (CCSIL): Status Update”.
Proceedings of the Twelfth Workshop on Standards for
the Interoperability of Defense Simulations, 639-649,
Orlando, Florida.

Terry, A., 1988. Using Explicit Strategic Knowledge to
Control Expert Systems. In: R. Englemore and T. Morgan
(Eds.), Blackboard Systems, New York: Addison-Wesley.

Wright I. and Marshall, J. (2000). RC++: A Rule-Based
Language For Game AI. Proceedings GameOn 2000: 1st
International Conference on Intelligent Games &
Simulation, London, UK.

i Alex Whittaker's Current Address:
Elixir Studios Ltd., 93 Bayham St., Camden, London,
NW1 0AG.

Copyright 2001, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

