

A Test Bed for Developing
Intelligent Synthetic Characters

John E. Laird
Mazin Assanie, Benjamin Bachelor, Nathan Benninghoff, Syed Enam, Bradley Jones,

Alex Kerfoot, Colin Lauver, Brian Magerko, Jeff Sheiman, Devvan Stokes, Scott Wallace
University of Michigan

1101 Beal Ave.
Ann Arbor, MI 48109-2110

laird@umich.edu, www.soargames.org

Abstract

We are creating an environment in which to investigate the
role of advanced AI in computer games. This environment
is based on the Unreal Tournament (UT) game engine and
the Soar AI engine. Unreal provides a 3D virtual
environment, while Soar provides a flexible architecture for
developing complex AI characters. This paper describes our
progress to date, starting with our game, Haunt 2, which is
designed so that complex AI characters will be critical to
the success (or failure) of the game. We also describe the
extensions we have made to UT to support AI characters
with complex physiology so that the AI characters’ behavior
is driven by their interaction with their environment, their
internal long-term goals, and any story-based goals. Finally,
we describe the overall system design and interfaces
between Soar and UT to support flexible development as
well as efficient implementation.

Introduction

Over the last four years, we have been doing research on
incorporating advanced AI into computer games. We have
focused on developing enemies for actions games such as
Quake 2 that have many of the same capabilities as human
players, including the ability to use many tactics, create
internal maps of the level, and anticipate their enemy’s
behavior. Although action games such as Quake are one of
the most popular game genres, there are inherent limits in
the complexity of the behaviors required to create
compelling bots that are essentially computerized punching
bags. Furthermore, these types of games limit the human
gaming experience to violent interactions with other
humans and bots. Therefore, we are currently working to
develop non-violent plot-driven computer games where we
really need complex AI characters.

The type of characters we wish to investigate must have
complex behavior that cannot be determined by a simple
script. These characters must be able to be driven by the

 Copyright © 2000, American Association for Artificial Intelligence
 (www.aaai.org). All rights reserved.

interaction of their body with the environment, their goals,
their knowledge of the world they inhabit, their own
personal history, their interactions with human players, and
real-time advice from a director. Our hope is that complex
AI characters will lead to games where the human players
are faced with challenges and obstacles that require
meaningful interactions with the AI characters. We are
building on one of the oldest genres of computer games,
sometimes called interactive fiction or adventure games,
which involve having the human player overcome obstacles
and solve puzzles in pursuit of some goal – games such as
Adventure, Zork, Bladerunner, and the Monkey Island
series. One weakness of these games is that the behavior of
non-player AI characters is scripted; so that the interactions
with them are stilted and not compelling. Our challenge
will be to create AI characters whose behaviors are not
only human-like but also lead to engaging game play.

In this paper we describe our test bed for pursuing
research in developing human-level AI characters within
computer games. To date, every existing computer game is
an existence proof that you can create a game without
human-level AI. Our challenge is to demonstrate that for at
least one genre, human-level AI can make a difference so
that with human-level AI, the game play is qualitatively
different (and still entertaining). The paper covers the
following: our initial script/game scenario, the design of the
physiology and sensing of our characters which in turn
forces us to support a combination of goal-driven and
environmentally-driven behavior, and then the overall
software system design. Others papers presented at the
symposium cover two related projects that involve the
development of a director for the game (Magerko 2002),
and the development of synthetic characters that can accept
direction gracefully (Assanie 2002).

Our Story: Haunt 2
Using Unreal Tournament (UT), we are creating an
adventure game where the player takes on the persona of a
ghost-like energy creature trapped in a house. In our game,
the human player’s goal as the “ghost” is to escape the

house and return home to an underground cavern. The
ghost is severely limited in its ability to manipulate the
environment. It can move or pick up light objects, such as a
match or a piece of paper, but it can’t move or manipulate
heavy objects. Moreover, contact with metal drains the
ghost’s energy, so the ghost must avoid metal objects.
These constraints force the player to entice, cajole,
threaten, or frighten the AI characters into manipulating the
objects in the world, which in turn forces us to develop AI
characters that have enough “intelligence” to make these
social manipulations possible and realistic. Initially we are
avoiding issues with natural language understanding
because the player as a ghost is unable to generate human
language. The user must find ways of manipulating the
world to influence the behaviors of the AI characters. To
provide even more interaction, the ghost is able to
“possess” an AI character as long as the AI character isn’t
too scared. Possession allows the player, as the ghost, to
see some of the AI characters thought processes, and
influence decisions where the AI character does not have a
strong bias. However, whenever the ghost influences a
decision, it feels a bit weird to the AI character, raising the
possessed character’s level of anxiety. The ghost can
maintain possession of relatively calm characters, so too
much manipulation leads to the ghost being expelled from
the AI characters. In order to make the possession fun and
engaging, we will have to develop characters whose
internal processing appears human-like to a player
possessing them.

AI Character Physiology
With the AI characters playing such a central role, they
must be well grounded in their environment. For example,
there is an evil scientist who is immune to fear but is weak
and easily fatigued by exertion or cold and wants to capture
the ghost character, and there is also a lost hitchhiker (we
aren’t trying to have the most original story ever) who is
easily frightened by the ghost, but is physically strong and
driven by curiosity. The game will push our research to
integrate the knowledge-based, goal-oriented reasoning that
we have concentrated on in the past, with emotions,
personality, and physical drives that have been used in
simple, knowledge-lean agents in other systems (a la the Oz
project (Loyall & Bates 1997), Jon Gratch’s work at ICT
(Gratch & Marsella 2001), and the Sims (Macedonia
2000)).

To support the physical drives, we have extended Unreal
Tournament so that all of our characters have a model of
physiological responses to the environment and to their
internal processing. Moreover, the environment has
attributes that influence the physiology of the characters.
For example, just these games have a measure of ambient
light level, we have added ambient temperature. Different
regions of the game have different ambient temperatures;
outside it is very cold, inside it is moderately cold; when a
fire is lit in the fireplace, it is very warm near the fire. All

of the physiological properties serve as input into the AI
characters, that is, the character is aware of their values.
However, the character can only change them indirectly
change them by the actions it performs. For example, the
characters have a body temperature that can be raised by
exertion, by changing the clothes they wear, or by moving
to different regions of the level that have different
temperature levels, such as near the fire. Changes in one of
these attributes can affect others, so that a significant drop
in body temperature can make them more tired.

Physiological effects that we have implemented include:
temperature, exertion, fatigue, sleepiness, hunger, and
thirst. There are other attributes that impact the character’s
actions, such as it strength, speed and dexterity.
Commercial computer games have had complex
physiological effects for the human player’s character as
well as many character attributes (an important part of role-
playing games). For example, the Sims has a set of
attributes for the computer characters, which drive their
behavior. We are attempting to extend the set to be more
comprehensive and to explore the interplay between
physiological drives and goal-driven behavior, which The
Sims lacks.

Environmental Sensing and Action
As in our previous work with Quakebots (Laird 2001), we
are committed to giving our characters realistic sensing and
actions in their environments. However, this is challenging
because of the difficulty of sensing walls (and doors) in
these environments so to start with we are fudging a few
things. To start with, we are annotating the map with
regions that give the name of each room so that the
characters can thus directly sense which room they are in.
We are creating navigation nodes in the map that are
placed at important locations (doors, windows). The
characters will use these nodes for navigation between
rooms, but will move more freely within a room based on
their sensing of objects and other characters. The
characters will move using controls similar to those used by
a human player (turning left and right; thrusting forward,
backward, left, and right). This is more challenging just
moving to nodes or objects, but gives more flexibility in
controlling the character during the game and we have been
successful using such a scheme in the past.

System Software Design
To support the development, experimentation, and
evaluation of our AI characters, we need a game
environment with the following properties:

• Flexible and low-cost development:
We should use existing game software and
development tools (level and character editors)
whenever possible.

The underlying software should be easily modifiable
so that we can test out alternative designs.

• Debugging/development environment:
Our design should allow us to use all of our existing
debugging and development tools for creating AI
characters.

• High performance:
We should not sacrifice performance in the
underlying AI engine or in its interface to the game.
We should be able to support a large number of AI
characters in the game without sacrificing graphics
performance.
We should be able to run the game and the AI
engine on a single laptop.

In order to meet many aspects of the first goal, we have
followed in the footsteps of other projects (NCSU:
Mimesis (Young 2001), ESC Online, Deus Ex, Gamebots
(Kaminka et al. 2002)) by using the Unreal Tournament
(UT) engine. UT provides an off-the-self, high-quality 3D
game engine that can be easily extended (Deus Ex was
voted as best action game of 2000 by PC Gamer Magazine
and it is built on UT.) A copy Unreal Tournament costs
about ~$20. Moreover there are many free level editors
available for creating your own virtual environment and all
of the game physics and interface is coded in a powerful
internal scripting language (Unrealscript) that is completely
accessible.

Once the game engine/environment is selected, the next
critical design choice is how to interface the environment
to the AI engine. The final three goals are often
contradictory – having a very high performance interface
demands that the AI engine run as an embedded application
in the same process as the game environment. That forces

us to sacrifice our development environment. If we insist
on using our complete development environment, that
impacts computational performance and in some cases
makes it necessary to run the AI characters on separate
machines. In attempt to finesse these problems, we
developed a high-level interface that is really three low-
level interfaces. The high-level interface hides the
differences at the low-level so that and where the user can
select from among the three low-level interfaces at run time
without requiring any changes to the game engine and the
AI engine.

The overall interface is called the Soar General
Input/Output (SGIO) and is a domain independent interface
between Soar and an external environment – in our case the
two commercial computer games, Quake 2 and Unreal
Tournament.

The three low-level interfaces that SGIO supports are
shown in Figure 1 and are as follows:

• A socket-based interface across separate computers.
The AI system runs on one computer, while the
game engine runs on the other. One part of SGIO is
embedded in a dynamically linked library (DLL)
that communicates directly with the game and uses a
socket to communicate with the AI system on the
other machine. This arrangement makes it possible
to run the full Soar debugging environment on one
machine and the game in full-screen mode on the
other machine. There is some overhead in SGIO to
send information over the socket, and it does add
some network latency for the communication to the
AI engine, but it does not have a noticeable impact.

• A socket-based interface between multiple processes
on the same computer. In this case, both the game

Game
Environment
(UT/Quake2)

Soar SGIO SGIO
socket

Game
Environment
(UT/Quake2)

SGIO

multiple
machines

Soar SGIOsocket

Soar SGIO

Soar SGIO

socket

socket

1 machine
with sockets

Game
Environment
(UT/Quake2)

SGIO Soar

Soar
1 machine
1 process

Figure 1: Soar interface to game environment via SGIO.

1.7 GHz Pentium IV

Frames/second

Number of Soar Characters

10

20

30

40

50

60

10 20 4030

Different rooms
Same room

Figure 2: Game update rate as a function of number of Soar characters.

and the AI system are run in separate windows on
the same machine. This has the advantage of still
allowing the complete debugging and development
environment. The disadvantages relative to the first
option are that the game cannot run in full screen
and that the socket interface and the AI engine are
using up memory and processor resources. Neither
of these is a significant problem during
development.

• A C-based interface between code running in the
same process. In this configuration, Soar is
completely embedded within the UT process. There
is a low-level C interface that the DLL uses to call
Soar functions, and this is very efficient. The
disadvantage of this configuration relative to the
earlier one is that Soar cannot display any
information on the screen during runtime – it is
completely embedded. However, this approach
eliminates the overhead of the socket interface as
well as the overhead of the Soar debugging
environment. Figure 2 shows the performance of UT
with Soar using this approach as we spawn more
and more characters in a game. This was run on a
1.7MHz Pentium IV that had a GeForce 2 graphics
card. The y-axis is the frame rate of the game – that
is, it is the number of times a second that the game
loop is executed. This includes executing every AI
character and drawing the graphics. The graphics
system we were using had a maximum frame rate of
60 Hz, and this is maintained until a significant
number of AI characters are created. Each AI
character is a small Soar agent doing only a minimal
amount of processing. The left-most curve shows

the case where the characters are all in the same
room, while the right-most curve shows the case
where the characters are in different rooms. The
reason for the poorer performance in the left curve
is that the sensing calculations are being done for all
of the characters in view of each other.

Although SGIO was designed for Soar, many aspects of it,
including the communication language are independent of
Soar. SGIO supports the creation, deletion, and
modification of graph structures represented as attribute-
value triples as well as some simple meta-commands, such
as stopping and starting the simulation.

Conclusion
In this project, we are creating an environment in which we
can do research and development of new computer games
where human-level AI plays a critical role. To be
successful, we need not only develop human-level AI
characters, but also demonstrate that they are critical for
creating a compelling game. These intertwined goals make
the project both exciting and challenging. A critical part of
our success rests on developing the infrastructure to
support the research. Some of the infrastructure we
borrowed from our earlier work on Quake 2 and all of it is
informed by those experiences. One of the biggest lessons
we have learned is to create modules with well-defined
interfaces so that we can reuse our software. Quake 2 and
Unreal Tournament are themselves excellent examples of
this. We encourage our colleagues to work with us to
define additional modules that can be shared among our

community. For example, it may be possible to create a
generalized version of SGIO that can be used with non-
Soar architectures. Furthermore, we should consider
creating common models of physiology and sensing that we
can share among research groups. This will not only speed
our own research, but it will encourage others to participate
in research in AI and games.

References
Assanie, M. “Directable Synthetic Characters”, AAAI 2002
Spring Symposium Series: Artificial Intelligence and
Interactive Entertainment, March 2002.

Gratch, J. and Marsella, S., “Tears and Fears: Modeling
emotions and emotional behaviors in synthetic agents”, in
Proceedings of the 5th International Conference on
Autonomous Agents, Montreal, Canada, June 2001, pp.
278-285.

Kaminka, G. A., Schaffer, S.; Sollitto, C., Adobbati, R.,
Marshal, Andrew N., Scholer, Andrew, S., and Tejada, S.
“GameBots: the ever-challenging multi-agent research test-
bed”, In Communications of the ACM. Vol. 45, No. 1
January, 2002

Laird, J. E., “Using a Computer Game to Develop
Advanced AI”, Computer, July 2001, pp. 70-75.

Loyall, A. B. and Bates, J. “Personality-Rich Believable
Agents That Use Language” Proceedings of the First
International Conference on Autonomous Agents, February
1997, Marina del Rey, California, pp. 106-113.

Macedonia, M. “Using Technology and Innovation to
Simulate Daily Life,” Computer, Apr. 2000, pp. 110-112.

Magerko, B. “A Proposal for an Interactive Drama
Architecture”, AAAI 2002 Spring Symposium Series:
Artificial Intelligence and Interactive Entertainment, March
2002.

Young, R. M. “An Overview of the Mimesis Architecture:
Integrating Intelligent Narrative Control into an Existing
Gaming Environment” AAAI 2001 Spring Symposium
Series: Artificial Intelligence and Interactive
Entertainment, March 2001: AAAI Technical Report SS-
01-02, pp. 77-81.

	page1: 52
	page2: 53
	page3: 54
	page4: 55
	page5: 56

