

1

A Brief Introduction to the OpenCyc Ontology
Kenneth D. Forbus, Northwestern University
Version of 1/7/19

The OpenCyc ontology is a very useful formalization of foundational aspects of knowledge
representation. Concepts from the OpenCyc ontology have found their way into other KRR systems, for
example, the SUMO upper ontology was inspired by Cyc. An understanding of this ontology is useful for
anyone who wants to understand knowledge representation more deeply, and because systems based
on it are out in the field, it is relatively easy to experiment with. Northwestern’s NextKB, for example,
which is used in the CogSketch sketch understanding system and the Case Mapper analogy tool,
incorporates the OpenCyc ontology.

Conventions about Assertions
We use Lisp-style syntax for assertions, for example, in
 (likes-Generic Forbus Lisp)

the predicate is likes-Generic, and the arguments are Forbus and Lisp. Case sensitivity is
assumed for both predicates and entities, with camel case commonly used (e.g.
relationAllExistsMany is one of the many higher-order predicates found in OpenCyc that make it
highly expressive).

Kinds of things in the Ontology
There are three basic concepts you need to understand to get started:

 Collections provide an engineering approximation to concepts. There are structural
relationships that provide inheritance relationships between concepts, and a rich vocabulary of
them to begin with.

 Predicates provide relations and functions to make statements with. There are structural
relationships that specify inheritance and type information that supports quick constraint
checking, and a rich vocabulary to draw upon.

 Microtheories provide a notion of context, enabling a knowledge base to embody multiple
mutually incompatible perspectives, alternate hypotheses, and fictional worlds, as well as
support fine-grained control over reasoning. All of the knowledge in the OpenCyc ontology is so
contextualized.

The next three sections expand on these basic concepts.

Collections
Roughly, a collection can be viewed as an intentionally specified set. That is, the collection Cat includes
all cats that ever have been, every will be, and ever could be. Almost no human concepts admit to a
precise, analytic definition (e.g. “A triangle is a 2D polygon that has exactly three straight sides.”). Like
words in human language, meanings are constrained by the set of statements that are made with them.
This can include references to percepts, e.g. an object ID in a vision system appearing in statements is a
means of perceptual grounding that is available for many kinds of everyday objects in today’s AI
systems.

2

To specify that something is an instance of a collection, the predicate isa is used, e.g.

(isa NeroTheCat Cat)

indicates that the entity referred to by NeroTheCat is an instance of the collection Cat. The second
argument to isa must always be a collection. Collections are also entities, which enables the meaning
of cat to be further constrained by statements like

(isa Cat BiologicalSpecies)
(isa Cat DomesticatedAnimalType)

The concept of collection is represented explicitly in the ontology by Collection, which is why
collections should not be viewed as sets, or Russell’s Paradox would become relevant.

Since the 1970s, inheritance has been viewed as a fundamental property of human conceptual
structure. It is convenient to store common properties like needing to eat or sleep under higher-level
concepts, like Animal, rather than doing so for each animal type. It also supports learning, since once
we hear about a new kind of animal, we may safely assume that instances of it, too, will need to eat and
sleep. Such inheritance is expressed in OpenCyc via the genls relation, e.g.

(genls Cat Animal)

Indicates that Cat inherits from Animal. Intuitively, one can think of genls as like subset, and isa as
like element of, in set theory terms. Inheritance in OpenCyc is monotonic, i.e. every statement true
about members of Animal must also hold for Cat. (This is a wise choice because making correct
inheritance algorithms that handle exceptions is much harder than it looks, and information about
defaults can instead be put into relationships that can be explicitly reasoned about.)

The most general collection is Thing. In addition to collections specified directly, there are a set of
logical functions in the ontology which enable the flexible specification of novel collections, by
combining other collections, e.g. the left elbows of organisms.

Predicates
There are two kinds of predicates.

 Relations are used to make statements. likes-Generic and isa are both examples of
relations. Statements can be true or false or unknown, and have various other epistemic
properties.

 Functions are used to denote entities, e.g. ArmyFn is a function that can be used to refer to
specific entities, e.g. (ArmyFn NewZealand) refers to the New Zealand Army. Non-atomic
terms (aka NATs) are not statements, but indirect ways of referring to entities, perhaps very
abstract entities.

All functions are instances of the collection Function-Denotational. All relations are an instance of
the collection Predicate1. Both Relations and Functions have a set of structural predicates that

1 In keeping with practice in mathematics, rather than logic, the collection Relation subsumes both Predicate
and Function-Denotational.

3

provide type information about them. The relation arity indicates the number of arguments that a
relation or function takes, i.e.

(arity likes-Generic 2)

There are multiple relations that provide type constraints on the arguments of a relation or function.
Continuing with likes-Generic,

(arg1Isa likes-Generic Agent-Generic)
(arg2Isa likes-Generic Thing)

These say that the first argument must be an instance of the collection Agent-Generic, and the
second argument must be an instance of the collection Thing. Agent-Generic is quite general,
including people, but also fictional characters and some kinds of computer software. Thing, of course, is
even more general. What about providing more specific relationships, when we know more about the
arguments? Just like for collections, there is a separate set of inheritance relations for predicates:

(genlPreds likesAsFriend likes-Generic)

Indicates that likesAsFriend is a more specific relationship than likes-Generic. This means that
if likesAsFriend holds between two entities, then likes-Generic does as well. The argument
constraints on likesAsFriend must be subsets of the constraints on likes-Generic, here both
arguments must be instances of PerceptualAgent-Embodied. The term specPred is used for the
inverse relationship.

There are additional relations that specify constraints on what is denoted by functions. For example,

(resultIsa ArmyFn Army-BranchOfService)

Indicates that the thing denoted by any non-atomic term with ArmyFn as its functor must be an instance
of Army-BranchOfService.

Microtheories
The world is a complicated place. It is useful to factor knowledge when reasoning. When playing a
strategy game with a type of unit called an explorer, when someone says “explorer”, they are more
likely to be referring to that than to a Ford Explorer automobile, for example. Being able to store
knowledge in partitions which can be flexibly assembled as needed can help speed up reasoning by
eliminating the need to search through irrelevant knowledge. Moreover, we often have to consider
hypothetical worlds, as when we read a story, or compare and contrast conflicting models, as when we
generate and compare alternatives during diagnosis and/or design. The OpenCyc ontology uses
microtheories provide an elegant mechanism for handling contexts.

A microtheory can be viewed as a container that holds facts. Microtheories are used to represent
specific concerns, e.g. HumanActivitiesMt contains over 2,000 facts about everyday human actions.
By convention, microtheory names are capitalized and end in Mt. Microtheories, like collections and
predicates, have an inheritance structure as well, specified by the relationship genlMt, e.g.

(genlMt FolkPsychologyMt HumanActivitiesMt)

Indicates that FolkPsychologyMt inherits from HumanActivitiesMt, i.e. every fact that holds in
HumanActivitesMt will also hold in FolkPsychologyMt.

4

There are four special microtheories defined in the ontology:

 BaseKB is the most general microtheory, and fact that are true in it are true in every context.
 UniversalVocabularyMt, like BaseKB, contains facts that are true in any context, but these

are structural facts, like arity and argument constraints.
 EverythingPSC is the union of all microtheory contents. It is of course strongly inconsistent,

but sometimes it is useful for retrieving facts to identify useful contexts for subsequent
reasoning.

 NothingPSC is the empty microtheory, which does not even include BaseKB or
UniversalVocabularyMt.

All reasoning in systems built on this ontology is performed with respect to some microtheory, so that
the facts in it, and all of the microtheories that it inherits from, are available for use, with conclusions
being drawn stored in the microtheory used to supply context for the reasoning. This is called the
logical environment for the computation. Reasoning systems will often construct temporary
microtheories to serve as scratchpads and add in additional microtheories that contain standard
assumptions for a type of analysis, background data, etc. to create an appropriate logical environment
for tackling a particular problem.

We note that microtheories are first-class entities in the ontology. For example, microtheories are used
as arguments in a number of predicates to express an agent’s beliefs (e.g. desires-Microtheory’s
second argument is a microtheory, which enables an arbitrarily complex set of statements to be used to
express a situation that an agent desires).

Most facts in the ontology can be restricted via microtheories, but not all. For example, genlMt
statements are held to be global, independent of any microtheory, since having them depend on what
microtheory they are in could easily lead to some terrible logical tangles. Similarly, arity statements
are also global. On the other hand, genls statements are contextualized by microtheory, e.g. a carbon
chauvinist might not grant personhood to an intelligent robot, whereas other more liberal souls might.

Some Useful Aspects of the OpenCyc Ontology
A whole book could (and should) be written about the OpenCyc ontology. But for this brief
introduction, we touch on only two interesting aspects.

Disjointness Reasoning
Mutual exclusivity is a powerful constraint for reasoning. OpenCyc has several relations that support
this. The simplest is disjointWith, which indicates that two collections are disjoint, i.e. an instance of
one cannot be an instance of the other. Another useful concept is the idea of
SiblingDisjointCollectionType, i.e. instances of this collection are themselves collections,
whose sibling subcollections must be disjoint. For example, using the OpenCyc ontology the disjointness
of dogs and cats can be inferred, rather than having to be stated, because those collections are
specializations of genus descriptions that are themselves an instance of BiologicalTaxonType, which
is a member of SiblingDisjointCollectionType.

5

Rule Macro Predicates
When building large-scale knowledge bases, it makes sense that there will be patterns that appear over
and over again, and that encapsulating these patterns, like macros in a programming language, can
support both more concise expression of knowledge and more efficient implementation. Consider the
idea that planets have atmospheres that completely cover them. In the OpenCyc ontology, this can be
concisely expressed as

(relationAllExists covers-Generic Atmosphere Planet)

Which, when expanded out into a more traditional axiomatic form would read

(forAll (?p) (implies (isa ?p Planet)
 (Exists (?a) (and (isa ?a Atmosphere)
 (covers-Generic ?a ?p)))))

Learning More
The OpenCyc ontology is one of the richest resources available in artificial intelligence, representing
decades of work on a wide range of knowledge representation and reasoning problems. While Cycorp
no longer supports OpenCyc, there are still multiple versions available on various web sites. Their
browser and reasoning engine are excellent. If you want to experiment with massive amounts of
knowledge and a very powerful reasoning engine, I recommend contacting Cycorp to get a ResearchCyc
or full Cyc license, depending on what you are doing.

If you are looking to build on open resources, and are using Northwestern’s NextKB, which incorporates
the OpenCyc ontology, there are two straightforward ways to be able to browse it and perform simple
queries:

 Download our CogSketch sketch understanding software (Windows only), which uses NextKB.
The browsing tools are documented in the user manual.

 Download our Case Mapper software, a tool aimed at helping cognitive scientists do simulation
experiments with analogical matching and retrieval (Windows, Linux, and Macs). Case Mapper
currently uses an older open-license KB, but you can download the NextKB FIRE build from our
web site and open it up from Case Mapper.

If you have questions, comments, or suggestions, please contact us at nextkb-
feedback@cs.northwestern.edu.

