
A Knowledge Acquisition Tool for Course of Action Analysis*

Ken Barker1, Jim Blythe2, Gary Borchardt3, Vinay K. Chaudhr i4, Peter E. Clark5, Paul Cohen6, Julie Fitzgerald9, Ken

Forbus7, Yolanda Gil 2, Bor is Katz3, Jihie K im2, Gary K ing6, Sunil M ishra4, Clayton Morr ison6, Ken Murr ay4, Char ley

Otstott 8, Bruce Por ter1, Robert C. Schrag9, Tomás Ur ibe4, Jeff Usher7, Peter Z. Yeh1

1. University of Texas at Austin 2. Information Sciences Institute at University of Southern California 3. Massachusetts Institute of
Technology 4. SRI International 5. The Boeing Company 6. University of Massachusetts at Amherst 7. Northwestern University

8. Retired Lieutenant General, U.S. Army 9. Information Extraction and Transport Corporation

* For more information about the SHAKEN system, contact Vinay Chaudhri at chaudhri@ai.sri.com
Copyright © 2003, American Association for Artificial Intell igence (www.aaai.org). All rights reserved.

Abstract
We present the novel application of a general-purpose
knowledge-based system, SHAKEN, to the specific task of
acquiring knowledge for milit ary Course of Action (COA)
analysis. We show how SHAKEN can capture and reuse
expert knowledge for COA critiquing, which can then be
used to produce high-level COA assessments through
declarative inference and simulation. The system has been
tested and evaluated by domain experts, and we report on the
results. The generality of the approach makes it applicable to
task analysis and knowledge capture in other domains. The
primary objective of this work is to demonstrate the
application of the knowledge acquisition technology to the
task of COA analysis. Developing a system deployable in an
operational environment is the subject of future work.

Introduction

The goal of the SHAKEN project is to let subject matter
experts (SMEs), unassisted by AI technologists, assemble
models of mechanisms and processes from components.
Questions about these models can be answered both by
conventional inference methods, such as theorem proving
and taxonomic inference, and by more task-specific
methods, such as simulation and analogical reasoning. We
believe that the assembly of components instantiated to a
domain is a natural way for SMEs to create knowledge
base content.

This paper describes the application of SHAKEN to the
acquisition and use of knowledge needed for milit ary
Course of Action (COA) analysis. We begin with a
technical overview of SHAKEN. We then describe the
COA application, and give an overview of its solution
using SHAKEN. For each aspect of the solution, we
describe the technical challenges faced, and how we
addressed them. We conclude with an evaluation of our
approach, and directions for future work.

Functional Design of SHAKEN
The SHAKEN system has the following functional units,
shown in Figure 1: a knowledge base (KB), an interface for
entering knowledge, a set of tools for verifying and using

knowledge, and a Web-based interaction manager. The
KB, also called the component library, or CLIB [3], is a
collection of components representing (a) general
knowledge about common physical objects and events,
states of existence, and core theories, including time, space,
and causality, and (b) more specialized knowledge about
particular domains, including micro-biology, chemistry,
milit ary units, milit ary equipment, and terrain.

By a component, we mean a coherent set of axioms that
describe some abstract phenomenon (e.g., the concept of
invade) and are packaged into a single representational
unit. Our claim is that a small number of predefined
components is suff icient to let SMEs assemble models of
virtually any mechanism or process. These components are
mostly domain independent, but their assembly and
specialization can create domain-specific representations.

The main task of the knowledge entry interface is to let
SMEs assemble the right KB components, by connecting
predefined elements of the component library. This is
performed through a graphical interface, where SMEs
assemble components by manipulating graphs. Axioms are
automatically derived from the graphical representation, so
the SMEs do not have to be trained in formal logic [8].

SHAKEN supports several different methods for using
knowledge. Declarative inference, performed using the
Knowledge Machine knowledge representation system
(KM) [7], is the most common approach for using
knowledge. Normative simulation is used to exercise the
process knowledge in the system [17]. It executes each step
in the process and analyzes interdependencies. Empirical
simulation exercises knowledge by running a detailed
simulation of a process using the Capture the Flag
simulation engine [1]. An analogical reasoner, based on the
Structure-Mapping engine [9], computes similarities and
differences given two concept representations [21]. These
methods can be invoked by a variety of means included in
the question-asking interface [6]. The answers to questions
are returned in an easily understood format, and the user
can control the level of detail i n an answer.

The interaction manager is aimed at making the
knowledge entry experience seem natural. It handles
limited forms of natural language input, and keeps track of

the history of a knowledge acquisition session. A
knowledge analysis module and an analogy module support
the interaction manager and let SHAKEN take the initiative
in helping an SME enter knowledge [17]. For example, the
knowledge analysis module helps users verify and validate
their process descriptions by analyzing the results from
normative simulation. The vision for the interaction
manager is to make the knowledge entry similar to a
student/teacher interaction, where both the user and the
system take the initiative at different times [19].

Figure 1: SHAKEN functional architecture

The KB server provides faciliti es for eff icient storage
and access of knowledge, based on KM [7]. It stores both
domain-independent and domain-specific knowledge.

Knowledge verification based on normative simulation
is used during knowledge entry by SMEs. KB clustering
and diagnostics are used off -line both to support the
development of domain-independent knowledge, and to do
a post-hoc analysis of the knowledge entered by the SME.

Task: Course of Action Analysis

A milit ary COA is a plan outline used by a commander to
communicate to his subordinates one way to accomplish a
mission. Normally, commanders consider several different
ways to accomplish a mission, that is, several different
COAs. They evaluate competing COAs using appropriate
comparison criteria and decide on one to build into a
complete action plan for the mission. In this paper, we
consider COAs for ground milit ary forces conducting
offensive (attack) operations. The detail captured in the
COA depends on the echelon. We consider here COAs at
the level of a milit ary division, a brigade, or a batalli on.
We consider only the COAs of friendly forces. Possible
COAs for the enemy forces are not considered.

A COA specification is formulated in response to a
specific situation between opposing forces and a mission
directive. For purposes of description, we organize a COA

specification into two parts: problem statement and solution
statement. A COA problem statement consists of the
following: (1) a situation sketch (on a map), indicating
terrain features such as roads, rivers, lakes, hill s, forests,
and current Blue and Red unit placement; (2) a scenario
narrative, including any details not easily captured on the
map (e.g., relevant recent history, current dynamics,
expected future evolution, unit status descriptions); (3) a
mission specification, indicating specific forces under
command, required objectives, and constraints (e.g.,
“Capture Objective JAYHAWK by 1400 hours tomorrow
with the following restrictions in place…”); and (4) the
commander’s estimate of the situation.

Faced with such a problem statement, a commander
must formulate a plan for his forces to accomplish the
mission. He considers one or more options, or COAs. A
COA solution consists of: (1) a COA sketch—an overlay
on the problem statement’s situation sketch, and (2) a COA
narrative—a structured description stating the mission,
commander’s intent, desired end state, and the concept of
operations, including main attack, supporting attack, fire
support, and reserve. Each task in the COA must indicate
what units perform what actions for what purposes.

Given enough time to consider alternatives, the
commander’s staff evaluates the candidate COAs in a
subjective critiquing process, usually resulting in a matrix
comparing the viable ones, and presents the results to the
commander for a decision on the preferred COA.
Commonly used COA-critiquing criteria include mission
accomplishment, reserve availabilit y, speed, simplicity,
terrain use, risk, and position for follow-up operations.
With help from domain experts, we created an extensive
taxonomy of critiquing criteria. The COA critiquing task is
to evaluate a formally represented COA with respect to key
critiquing criteria. The purpose of critiquing and comparing
different COAs is to help the commander decide how best
to accomplish the assigned mission.

Given this definition of the COA analysis problem, the
tasks to be performed were twofold: (1) given textual and
graphical COA problem statements, formally represent
selected elements of these in a knowledge base, and (2)
author (conceive of and formally represent) knowledge to
support effective COA critiques, which can then be applied
to any formally represented COA solution statement.

We now briefly consider the possible deployment of a
COA critiquing system. The critiquing knowledge will be
entered in an Army laboratory long before the system is
actually used in the field. The COA problem and solution
statements will be entered at the time of actual usage of the
system. Thus, when the critiquing task is performed in
response to an actual need, the relevant critiquing
knowledge will already be available. Given that we were
developing an initial prototype, the task of entering COA
problem and solution statements, and the task of authoring
critiquing knowledge, are interleaved much more than they
might in a situation when a COA critiquing system has
been built and deployed.

Solution: Using SHAKEN to Acquire and
Apply COA Critiquing Knowledge

As stated in the previous section, the overall task has two
main aspects: COA authoring, and COA critiquing. With
reference to the functional architecture of Figure 1, the
tasks of authoring the COA and the critiquing knowledge
are supported by the knowledge entry subsystem. COA
authoring relies on battlespace knowledge that is built into
the knowledge base. The SME enters the critiquing
knowledge during development, which is stored in the
knowledge base. The module focused on using knowledge
supports the critiquing task. The interaction manager and
the knowledge verification module play a supporting role
in the overall solution of the problem.

COA Authoring
To formally author a COA, we needed to solve two
problems: (1) provide a vocabulary of terms that can be
used in COA authoring, and (2) provide a natural user
interface for commanders.

Vocabulary for COA authoring: To support COA
authoring, we need to represent military units, terrain, and
military tasks. For military tasks, we developed two
different representations: one suitable for declarative
inference, and the other suitable for empirical simulation.
Let us consider these two in more detail.

To develop representations for knowledge analysis, we
leveraged the domain-independent representations in the
component library to provide military-specific terms. For
example, consider the military task Canalize. This is a
tactical mission task where a military unit restricts enemy
movement to a narrow zone. We represented this domain-
specific action by specializing the domain-independent
action Confine. The Canalize task differs from Confine in
that its agent and object are military units, and its base is a
piece of narrow terrain. It is similar to Confine in that its
base plays the role of a container, and the object is inside
the base after the action has been performed.

Empirical simulation requires a model of the domain
and a model of the processes that occur in that domain. Our
domain model is built on the University of Massachusetts
Abstract Force Simulator (AFS) [2]. Military engagements
are represented using circular agents moving on a coarse
representation of real terrain. The agents have many
properties, but most of the ones significant to military
modeling (training, weapons type, troop strength,
experience, and so on) are agglomerated into a single
property: mass. The process model represents actions as
lists of desired effects on key properties. Figure 2 shows
the action model for Defeat, which is broken into two
phases: one for the friendly forces to reach the enemy and
one for the engagement. Each phase has corresponding
goals for the action. The action models for the military

tasks in the field manual are represented within AFS using
Tapir, a general purpose, semi-declarative hierarchical
agent control language that can express goals, sensors and
actions using a unified syntax [18]. During each simulation
run, the action models control the military agents;
dynamically reacting to the changing properties of the
simulation in order to achieve their goals.

Figure 2: Action model for Defeat

User interface for COA authoring: We needed an
interface that was as familiar to commanders as possible.
Commanders work with maps and overlays to show the
geography, unit locations, and military tasks. The map is
usually accompanied by a textual description. The
nuSketch system is explicitly designed to support COA
authoring, and met this requirement very well [12], [13].

NuSketch provides a graphical interface where COA
terrain, units, avenues of approach, and tasks can be
described. The user can also specify the commander’s
intent for the overall COA and individual tasks. An
example COA sketch is shown in Figure 3.

Figure 3: nuSketch COA authoring interface

NuSketch elements have a precise declarative semantics

that is reflected in the SHAKEN component library
ontology. Once the COA is specified in nuSketch, it is
translated to a SHAKEN concept map (CMAP). The
translator maps terms in the nuSketch ontology to the

corresponding terms in the SHAKEN component library. In
some cases, the knowledge is processed to resolve
ontological mismatches; for instance, the task timing
information in nuSketch is based on the quantitative start
and end times, whereas SHAKEN relies on qualitative
ordering information among tasks; therefore, the translator
processes the quantitative information to derive the
necessary qualitative ordering.

As expected, the experts want the interface to be as easy
and quick to use as their regular pen-and-paper way of
doing things. The primary obstacle to achieving this was to
find a suitable combination of sketching gestures, and a
layout of windows that would enable rapid authoring of the
COA. Currently, it takes 1 to 2 hours to author a COA.
The SMEs would like to be able to do it within 15 minutes.

Critiquing Knowledge
Critiquing relies on both domain-independent and
specialized knowledge. Domain-independent knowledge is
leveraged as domain-specific terms are created, by
specializing domain-independent terms. We will primarily
discuss here the domain-specific critiquing knowledge.

Two kinds of domain-dependent critiquing knowledge
were needed: (1) necessary and sufficient slot values of
concepts, and (2) critiquing rules. We now consider in
more detail how each was entered.

Necessary properties of concepts: The SHAKEN
graphical interface is the primary means used to create the
domain-specific concepts from domain-independent ones.
For example, for each kind of terrain, we encoded its
trafficability for each kind of unit. For each unit, we
encoded the equipment it possesses, and its combat power.
For each military task, we encoded how much relative
combat power is generally thought to be sufficient to
effectively perform this task. The tasks are encoded using
a STRIPS-like language used by many AI planners [4].

As a concrete example, Figure 4 shows the
representation of the concept of Rolling-Hills. This
concept map indicates that rolling hills offer relatively
unrestricted movement for armor and infantry units. See
[8] for a description of how logical axioms are synthesized
from graphs such as this.

Figure 4: Trafficability definition for Rolling Hills

Sufficient properties of concepts: For many concepts, it is
possible to define both necessary and sufficient properties.
For example, if Blue-Military-Unit represents the class of
all friendly units, then any military unit whose allegiance is
Blue is a member of this class. A domain expert specifies
the sufficient properties of a concept by annotating the
graph representing the necessary properties.

The most common application of sufficient properties
was to create subclasses of actions representing a specific
situation, indicating a special case. For example, the
required relative combat power ratio for the most general
case of each military action is built into the system.
However, the actual relative combat power ratio depends
on the specifics of the situation. For instance, a ratio of 3 is
normally desired for a general attack, but when an aviation
unit attacks an armor unit, a combat power ratio of 0.5 is
adequate. When a commander authors a COA, he may use
the general attack action vocabulary. But, if the knowledge
base includes a subclass of the attack action whose
sufficient properties are that the agent is an aviation unit,
and the object is an armor unit, its lower relative combat
power ratio will be used whenever such a situation arises.
Figure 5 shows the concept map for such a class. See [16]
for more details on entering special cases of actions.

Figure 5: A special case of the Attack action. The nodes
grouped in a box indicate sufficient properties.

Critiquing rules: We devised a special kind of rule, called
a pattern, where the antecedent represents a collection of
assertions pertaining to the situation being critiqued, and
the consequent is a critiquing score on some critiquing
dimension. Figure 6 shows an example pattern that rates a
COA as good if some forces are kept in the reserve. The
portion of the graph linked to the root with the has-pattern
relation indicates an antecedent, and the portion linked
using critique-score indicates the consequent of the rule.

Critique scores can be positive or negative, and a single
pattern can apply to more than one critiquing dimension.
Critiquing dimensions for COA patterns include such
concepts as Risk, Casualties, Maneuver Effectiveness,
Command and Control, Terrain Use, Preparedness for
Enemy Response, Simplicity, Resource Use, and
Synchronization. Applying these rules, organized by the
critiquing dimensions, gives a direct rating of a COA.

Figure 6: A pattern indicating that allocating a reserve
is good for Blue-Reserve-Availability

Exercising Critiquing Knowledge

SHAKEN currently supports three different kinds of
critiquing: declarative inference, normative simulation, and
empirical simulation. (SHAKEN’s analogical reasoning
capabilities can also be used for critiquing [10], but this is
not covered in the present paper.)

Critiquing by declarative inference: COA critiquing by
declarative inference systematically finds and applies all
applicable COA patterns and assigns them a score. The key
technical challenge in matching patterns against a COA is
that matches may not be syntactically exact. Therefore, we
built a utility that can compute matches modulo a set of
transformations. For example, we may know from the COA
that a Blue force is in a city; we may also have a pattern
saying that if an armor unit is in a city, it is poor for
security of that unit (unless it is accompanied by infantry
that can protect tanks in narrow streets and alleys from
short-range antitank weapons). The pattern matcher will
match the COA and the pattern, noticing that the Blue force
has an armor unit that is in the same location. The pattern
matcher contains a few hundred such transformations.

Figure 7: A report from critiquing by patterns

Figure 7 shows an example report generated by matching
patterns, as presented by the SHAKEN interface. The top
of the report indicates the critiquing scores. The COA
being evaluated has a score of Very Good on the dimension
of deception. The table that follows indicates which nodes
in the pattern matched which nodes in the COA. For
example, B2ndTankBde conducts the main attack, and
B4thTankBde conducts the supporting attack.

Critiquing by normative simulation: Normative
simulation critiques a COA by executing each step. It relies
on the KM situation mechanism, and executes each step
based on its effects (add/delete lists). It analyzes
dependencies between conditions and effects, checking that
the required conditions for each step are met when the step
is supposed to take place, and that the expected effects of
the overall process are, in fact, obtained. It also checks
how different steps are related to each other, including their
temporal ordering and causal relationships. The simulation
reports possible errors and presents them as critiques. For
instance, for each step in the COA, normative simulation
computes the net relative combat power available, and
compares it against the required relative combat power
ratios already encoded in the system.

Figure 8 shows an example normative simulation
report. In this case, one of the preconditions of a military
action has failed: the given combat power ratio is not high
enough to perform the given task. The net relative combat
power of a military unit is computed based on the combat
power of its subunits. The explanation section of the report
shows in detail how the combat power was computed by
combining various pieces of information, including unit
equipment, default combat power, and remaining unit
strength, through multiple COA steps. The user can check
this explanation to see why the condition failed.

Figure 8: COA critiquing by normative simulation

The combat power numbers are dynamic, and take into
account how the various units undergo attrition over a
period of time. The action is flagged if the actual relative
combat power during an action is less than the required
relative combat power. Even when the combat power
exceeds what is required, the commander can use the report
information to check that all the decisive points have
overwhelming relative combat power ratios.

In this instance, an SME added a special case of the
Attack-by-Fire action to account for this kind of situation
(i.e., when an aviation battalion attacks an armored unit, a
combat power ratio of 0.5 is enough). Once this special
case was added, the precondition was satisfied.

Critiquing by empirical simulation: Empirical and
normative simulation complement each other in SHAKEN.
Simulation is used to capture complex dynamics in the
COA, and to explicitly model uncertainty. For empirical
simulation, SHAKEN uses the Capture the Flag (CtF) tool
[1], based on the AFS abstract physics-based model of
division-level engagements described earlier (see Figure 2).
Once a nuSketch COA is translated to CtF, Monte Carlo
simulation is performed, running the COA multiple times
until statistically significant results are obtained. The data
from these trials is summarized in HTML reports, showing
combat power ratios and graphical snapshots of critical
events (e.g., engagements) during the simulated runs.

Figure 9 shows the combat power ratio graph produced
for a particular engagement during a single simulation run.
The ratio increases as the Blue side gains dominance over
time, indicating a Blue army victory. A chief strength of
empirical simulation is unexpectedly simple: SMEs can
watch their COAs unfold visually, and can immediately see
flaws and strengths. The results are analyzed to construct a
qualitative representation of the space of outcomes,
explicitly identifying critical points.

Figure 9: Output from empirical CtF simulation

Evaluation

We evaluated the system with the help of two domain
experts, both of whom were retired Army officers. One
had served at the rank of lieutenant general, and the other
as an intelligence officer. The objective of the evaluation

was twofold: to assess how effectively the knowledge
acquisition capabilities of SHAKEN would work for
domain experts with no training in formal knowledge
representation, and to test the performance of the resulting
knowledge base on the COA critiquing task.

The evaluation was conducted over 15 days. During
the first 7 days, we provided hands-on training to the two
subject matter experts, using an example critiquing task.
The SMEs were then given a new task, in the form of a
COA problem statement and its solution, expressed in
textual form, and were asked to address it using the system.
The SMEs were asked to encode the textual description in
SHAKEN. They then authored critiquing knowledge,
independent of the COAs, and used it to critique them.

Before encoding a COA, the SMEs produced a manual
critique for it, to serve as a guideline for evaluating the
ultimate critique to be produced by the system. Authoring
the critiquing knowledge was an iterative task: the
knowledge was successively refined based on the system
critique, and how it differed from the manual critique.

Over the 15-day period, the SMEs authored three
different COAs and 60 pieces of critiquing knowledge.
The critiquing knowledge included patterns and special
cases of actions. Below, we present the textual description
of a few patterns authored by the SMEs during evaluation.
The critiquing dimensions are shown in bold font:

 If a COA secures a piece of terrain narrower than 50
meters, it makes good use of terrain.
 If the supporting attack occurs before the main attack, it
is good for COA effectiveness, mission accomplishment,
and synchronization.
 If an armored unit attacks a mechanized infantry unit
outside a city, it is good for enemy maneuver engagement.

The antecedent encodes the condition under which the

pattern applies, and often includes spatial information such
as terrain or unit location. In some cases, the antecedent
can include negation, for example, the location of a unit not
being in a city. Let us now consider two examples of
special cases of actions, where the bold text represents the
sufficient property of the special case:
 When an aviation unit attacks an artillery unit, it is
sufficient to have a combat power ratio of 0.3.
 While seizing a bridge, it is sufficient to have a combat
power ratio of 0.3.

These example patterns and special cases of actions
show that SMEs with very little training in knowledge
representation were able to author nontrivial pieces of
critiquing knowledge. In particular, the first-order logic
formalization of this knowledge, synthesized automatically
from the graphs by SHAKEN, includes quantified
variables, implications, negation, and, in the case of special
cases of actions, concept definitions (bi-directional
implications). These formal structures are clearly beyond
anything that the SMEs could encode directly. In addition,

through the constraints imposed by the graphical interface
(e.g., guiding the SME to select concepts from the existing
ontology, restricting the choices of relations to only
semantically valid ones), the SMEs formalized their
knowledge in conformance with SHAKEN’s underlying
ontology. This ill ustrates the key achievement of this work,
namely, a significant enhancement of the SME’s abilit y to
articulate formal knowledge, in a way consistent with, and
building upon, the preexisting knowledge in the system.

We tested the empirical simulation on the COAs
authored by the SMEs. Monte Carlo summaries of mass
lost and goals achieved over multiple simulations showed
clear differences between these COAs. In addition, the
COAs that we felt were most dangerous had the greatest
amount of variance in their outcome. This highlights one of
empirical simulation’s greatest strengths: the abilit y to go
beyond static analysis and focus instead on the dynamics of
multiple concurrent processes.

Despite these achievements, we encountered several
limitations. The most significant problem is to translate
natural but informal domain concepts (e.g., “suff icient
force”, “ flank” , “contour” , “overwhelm”) into a
computable form (e.g., in terms of coordinates and
distances), a prerequisite for machine reasoning about the
domain. While SHAKEN provides good support for
entering formal knowledge once that conceptual translation
is made, it provides littl e help with the translation in the
first place. This turned out to be the most notable challenge
for the SMEs. It is exacerbated in the COA domain, where
many important concepts are spatial in nature, but
particularly diff icult to pin down precisely in formal terms.

Second, although the interface helps SMEs enter
knowledge in terms of the existing ontology, there is still
potential for SMEs to make mistakes. For example, they
sometimes used negation in a way that differed from their
intent, without realizing that the semantics of what they
encoded was subtly different (e.g., one SME encoded “an
attack not on a city is good” , intending to encode “no attack
on a city is good”). More proactive checking and validation
of SME inputs would help identify and correct such errors.

As additional evaluation data, at the end of the 15-day
period we compared the SHAKEN critiques produced
using an SME’s formally encoded knowledge with the
manual critiques written by the same SME. Our goal was to
check that the SME’s encoded knowledge was to some
extent “ reasonable” compared with his ideal solution (the
manual critique), that is, to check that the SME’s rules
were not simply “ formal nonsense”. The SMEs were asked
to assign a correctness score on a five-point scale (-2 to +2)
to the results produced by SHAKEN using their encoded
knowledge. A score was given to each critiquing dimension
that the SME considered relevant to the particular COA.

Of the 16 relevant critiquing dimensions for one of the
representative COAs, the system critique received a score
of +2 for 8 of the dimensions; for 3, a score of +1; for 4, a
score of –1; and for 1, a score of -2. Although many other
factors influence these scores (e.g., the inherent knowledge

representation and reasoning capacity of SHAKEN itself),
the results indicate that the SME was able to enter at least
some of his knowledge with a reasonable degree of
accuracy and fidelity.

The SMEs’ overall assessment was that a COA analysis
capabilit y such as the one we tested could ultimately be
very useful in solving operational problems: The software
can work through tedious details and double-check all
potential COAs, especially when the commanders are tired,
under pressure, and under time constraints.

Although our goal is to break new ground in knowledge
acquisition technology, rather than to specifically critique
COAs, it is nevertheless interesting to consider what it
would take for the COA-critiquing application of
SHAKEN, using SME-entered knowledge, to reach a
suff iciently mature level for deployment. The technology
requires numerous enhancements before it comes close to
being deployable. For example, a library of a few hundred
patterns and special cases of action will have to be built
before the system starts producing non-obvious critiques
that add value to what a commander can quickly determine
with a visual inspection of a COA. One way to drive such a
knowledge base construction is to work with a sizable
collection of case studies [23] that will provide concrete
test cases, a well -defined scope for knowledge entry, and
clear performance criteria. The detail captured in the
normative simulation can also be improved, giving special
attention to simulating concurrent events.

Related Work
In previous work, we developed an extensive ontology

of plan evaluation and plan critiquing [5]. In another
previous study, we evaluated nuSketch as a COA authoring
tool, and demonstrated that COAs authored using nuSketch
were comparable in quality to ones authored with more
traditional methods [22].

In the present work, the main innovations are: (a) using
the plan critiquing ontology in conjunction with normative
simulation; (b) acquiring critiquing knowledge in the form
of patterns and necessary and suff icient conditions for
actions; and (c) showing that the system can exhibit some
level of COA critiquing competence, through declarative
inference, normative simulation, and empirical simulation.

There has been significant work in building interactive
plan authoring environments [20], but it has not addressed
the specific problem of COA critiquing. The use of patterns
for COA critiquing was demonstrated in [11], which let
experts select subsets of a COA sketch to generate critiques
that could be subsequently applied via analogy or as rules.
However, that system only used information explicitly
represented in the sketch, whereas a broader range of
knowledge can be used in SHAKEN patterns.

Future Work
Work is under way to address many of the limitations
identified in the previous section. For example, we are

making extensions to nuSketch to support richer COA
descriptions. Similarly, we are implementing the normative
simulation of concurrent events.

We are also developing a suite of capabilities that will
let SHAKEN users enter, organize, and retrieve knowledge
using English. These capabilities make use of the START
[14] and Omnibase [15] systems. To perform knowledge
entry, the user enters a sentence or phrase, which is parsed
into a concept map representation similar to that used
within SHAKEN. Through an interactive dialog between
the user and the system, this concept map is refined into a
SHAKEN concept map, which is added to SHAKEN' s
knowledge base. Using a similar approach, English
questions are translated into concept map patterns, which
are then used to identify matching concepts within
SHAKEN' s knowledge base.

Summary
We presented the application of a general-purpose
knowledge-based system, SHAKEN, to the specific task of
military Course of Action (COA) analysis. We showed how
SHAKEN can capture and reuse expert knowledge for
COA critiquing, and produce a high-level assessment of a
COA through declarative inference and simulation. The
system has been used and evaluated by domain experts.
The generality of the approach makes it applicable to
knowledge capture for task analysis in other domains.

Acknowledgments
We thank Commander Dennis Quinn and Lt. Gen. Len Wishart
for serving as the domain experts for the evaluation, and Murray
Burke for his encouragement and support for this work. This
research was supported by DARPA’s Rapid Knowledge
Formation project under contract N66001-00-C-8018.

References

1. Atkin, M., G.W. King, D. Westbrook, B. Heeringa, A.
Hannon, and P. Cohen. SPT: Hierarchical Agent Control: A
Framework for Defining Agent Behavior. In Fifth Intl. Conf.
on Autonomous Agents, p. 452-432, 2000.

2. Atkin, M.S., D.L. Westbrook, P.R. Cohen, and G.D. Jorstad.
AFS and HAC: Domain-General Agent Simulation and
Control. In Workshop on Software Tools for Developing
Agents, AAAI-98, p. 89-95, 1998.

3. Barker, K., B. Porter, and P. Clark. A Library of Generic
Components for Composing Knowledge Bases. In
International Conference of Knowledge Capture, 2002.

4. Blythe, J. SHAKEN Action Description Language. Technical
Report, Information Sciences Institute, University of Southern
California, 2002.

5. Blythe, J. and Y. Gil. A Problem-Solving Method for Plan
Evaluation and Critiquing. In Intl. Knowledge Acquisition
Workshop. Banff, 1999.

6. Clark, P., K. Barker, B. Porter, A. Souther, V. Chaudhri, S.
Mishra, J. Thomere, J. Blythe, J. Kim, P. Hayes, K. Forbus,
and S. Nicholson. A Modified Template-Based Approach to

Question-Answering from Knowledge Bases. Technical
Report, SRI International, Menlo Park, CA, 2002.

7. Clark, P. and B. Porter. KM -- The Knowledge Machine User
Manual. Technical Report, U. of Texas at Austin, 1999.

8. Clark, P., J. Thompson, K. Barker, B. Porter, V. Chaudhri, A.
Rodriguez, J. Thomere, S. Mishra, Y. Gil, P. Hayes, and T.
Reicherzer. Knowledge Entry as Graphical Assembly of
Components. In Intl. Conf. on Knowledge Capture, 2001.

9. Forbus, K., R. Ferguson, and D. Gentner. Incremental
Structure Mapping. In Proc. Cognitive Science Society, 1994.

10. Forbus, K., R. Ferguson, and J. Usher. Towards a
Computational Model of Sketching. In Intelligent User
Interfaces Conference. Santa Fe, New Mexico, 2001.

11. Forbus, K., T. Mostek, and R. Ferguson. An Analogy
Ontology for Integrating Analogical Processing and First-
Principles Reasoning. In IAAI-02, 2002.

12. Forbus, K. and J. Usher. Sketching for Knowledge Capture:
A Progress Report. In Intelligent User Interfaces. 2002.

13. Forbus, K., J. Usher, and V. Chapman. Sketching for
Military Courses of Action Diagrams. In Proceedings of
Intelligent User Interfaces Conference. Miami, FL, 2003.

14. Katz, B. Annotating the World-Wide Web using Natural
Language. In 5th RIAO Conference on Computer Assisted
Information Searching on the Internet, 1997.

15. Katz, B., S. Felshin, D. Yuret, A. Abrahim, J. Lin, G.
Marton, A.J. McFarland, and B. Temelkuran. Omnibase:
Uniform Access to Heterogeneous Data for Question
Answering. In 7th International Workshop on Applications of
Natural Language to Information Systems, 2002.

16. Kim, J. and J. Blythe. Supporting Plan Authoring and
Analysis. In Intelligent User Interfaces. Miami, FL, 2003.

17. Kim, J. and Y. Gil. Knowledge Analysis on Process Models.
In 17th Intl. Joint Conf. on Artificial Intelligence (IJCAI-
2001), p. 935-942, 2001.

18. King, G.W., M.S. Atkin, and D. Westbrook. Tapir: The
Evolution of an Agent Control Language. In First Conference
on Autonomous Agents and Multiagent Systems, 2002.

19. Mishra, S., A. Rodriguez, M. Eriksen, V. Chaudhri, J.
Lowrance, K. Murray, and J. Thomere. Lightweight solutions
for user interfaces over the WWW. In International Lisp
Conference. San Francisco, CA, 2002.

20. Myers, K. Strategic Advice for Hierarchical Planners. In
Intl. Conf. on Knowledge Representation and Reasoning, p.
112-123, 1996.

21. Nicholson, S. and K. Forbus. Answering Comparison
Questions in SHAKEN: A Progress Report. In Spring
Symposium on Mining Answers from Text and Knowledge
Bases. Stanford, CA, 2002: AAAI.

22. Rasch, R., A. Kott, and K.D. Forbus. AI on the Battlefield:
An Experimental Exploration. In Innovative Applications of
Artificial Intelligence. Edmonton, Canada, 2002.

23. Schmitt, M.J.F., USMCR, Mastering Tactics: A Tactical
Decision Games Workbook. Marine Corps Gazette. 1994,
Quantico, VA: Marine Corps Association.

