A Knowledge Acquisition Tool for Course of Action Analysis

K en Barker', Jim Blythe?, Gary Borchardt?, Vinay K. Chaudhri®, Peter E. Clark®, Paul Cohen®, Julie Fitzgerald®, Ken
Forbus’, Yolanda Gil?, BorisKatZ®, Jihie Kim?, Gary King®, Sunil Mishra®, Clayton Morr ison®, Ken Murr ay”, Charley
Otstott®, BrucePorter', Robert C. Schrag®, Tomas Uribe®, Jeff Usher’, Peter Z. Yeh*

1. University of Texasat Austin 2. Information Sciences Institute at University of Southern California 3. Massachusetts I nstitute of
Technology 4. SRI International 5. The Boeing Company 6. University of Massachusetts at Amherst 7. Northwestern University
8. Retired Lieutenant General, U.S. Army 9. Information Extraction and Transport Corporation

Abstract

We present the novel applicaion d a genera-purpose
knowledge-based system, SHAKEN, to the spedfic task of
aqquiring knowledge for military Course of Action (COA)
analysis. We show how SHAKEN can cgpture and reuse
expert knowledge for COA critiquing, which can then be
used to produce high-level COA asssaments through
dedarative inference and simulation. The system has been
tested and evaluated by domain experts, and we report on the
results. The generality of the gpproach makes it applicable to
task analysis and knowledge @pture in ather domains. The
primary objedive of this work is to demonstrate the
applicaion d the knowledge aquisition techndogy to the
task of COA analysis. Developing a system deployablein an
operational environment isthe subjed of future work.

Introduction

The goal of the SHAKEN projed is to let subjed matter
experts (SMEs), unasssted by Al technologists, assemble
models of mechanisms and processes from components.
Questions about these models can be aswered bah by
conventional inference methods, such as theorem proving
and taxonomic inference, and by more task-spedfic
methods, such as smulation and analogicd reasoning. We
believe that the assmbly of components instantiated to a
domain is a natural way for SMEs to creae knowledge
base mntent.

This paper describes the gplication of SHAKEN to the
aqquisition and use of knowledge needed for military
Course of Action (COA) anadysis. We begin with a
technicd overview of SHAKEN. We then describe the
COA applicaion, and give an overview of its slution
using SHAKEN. For ead asped of the solution, we
describe the tedhnicd challenges faced, and how we
addressd them. We @nclude with an evaluation of our
approach, and diredions for future work.

Functional Design of SHAKEN

The SHAKEN system has the following functional units,
shown in Figure 1: a knowledge base (KB), an interfacefor
entering krowledge, a set of tods for verifying and using

knowledge, and a Web-based interadion manager. The
KB, aso cdled the component library, or CLIB [3], is a
colledion of components representing (a) generd
knowledge &out common physicd objeds and events,
states of existence and core theories, including time, space
and causality, and (b) more spedalized knowledge aout
particular domains, including micro-biology, chemistry,
milit ary units, milit ary equipment, and terrain.

By a component, we mean a wherent set of axioms that
describe some astrad phenomenon (e.g., the @ncept of
invade) and are padcaged into a single representational
unit. Our claim is that a smal number of predefined
components is aufficient to let SMEs assemble models of
virtually any mechanism or process These mmponents are
mostly domain independent, but their assembly and
spedalizaion can crede domain-spedfic representations.

The main task of the knowledge entry interfaceisto let
SMEs asemble the right KB components, by conneding
predefined elements of the component library. This is
performed through a graphicd interface where SMEs
asemble mmponents by manipulating gaphs. Axioms are
automaticdly derived from the graphicd representation, so
the SMEs do not have to be trained in formal logic [8].

SHAKEN suppats svera different methods for using
knowledge. Dedarative inference performed using the
Knowledge Macdine knowledge representation system
(KM) [7], is the most common approach for using
knowledge. Normative simulation is used to exercise the
processknowledge in the system [17]. It exeautes ead step
in the process and analyzes interdependencies. Empiricd
simulation exercises knowledge by running a detaled
simulation of a process using the Capture the Flag
simulation engine [1]. An analogicd reasoner, based on the
Structure-Mapping engine [9], computes smilarities and
differences given two concept representations [21]. These
methods can be invoked by a variety of means included in
the question-asking interface[6]. The answers to questions
are returned in an easily understood format, and the user
can control the level of detail in an answer.

The interadion manager is aimed a making the
knowledge entry experience seem natural. It handles
limited forms of natural language input, and keeps tradk of

* For more information about the SHAKEN system, contad Vinay Chaudtri at chaudhri @ai.sri.com
Copyright © 2003 American Asciation for Artificial Intelligence (www.aaa.org). All rights reserved.

the history of a knowledge acquisition session. A
knowledge analysis module and an analogy module support
the interaction manager and let SHAKEN take the initiative
in helping an SME enter knowledge [17]. For example, the
knowledge analysis module helps users verify and validate
their process descriptions by analyzing the results from
normative simulation. The vision for the interaction
manager is to make the knowledge entry similar to a
student/teacher interaction, where both the user and the
system take the initiative at different times[19].

* Theorem Proving

* Analogical Reasoning
* Empirical Simulation
* Normative Simulation

et e S
VETIYInYyrmnowieuye:

* Knowledge Analysis
« KB Diagnostics
KB Clustering

Figure 1: SHAKEN functional architecture

The KB server provides fadliti es for efficient storage
and accessof knowledge, based on KM [7]. It stores both
domain-independent and damain-spedfic knowledge.

Knowledge verificaion based on normative simulation
is used during krowledge entry by SMEs. KB clustering
and dagnostics are used df-line both to suppat the
development of domain-independent knowledge, and to do
apost-hoc analysis of the knowledge entered by the SME.

Task: Courseof Action Analysis

A military COA is a plan outline used by a commander to
communicate to his subordinates one way to accomplish a
misson. Normally, commanders consider severa different
ways to acomplish a misson, that is, severa different
COAs. They evaluate cmpeting COAs using appropriate
comparison criteria and dedde on one to huild into a
complete adion plan for the misson. In this paper, we
consider COAs for ground military forces conducting
offensive (attadk) operations. The detail cgotured in the
COA depends on the edielon. We onsider here COAs at
the level of a military division, a brigade, or a batalli on.
We mnsider only the COAs of friendly forces. Possble
COAsfor the enemy forces are not considered.

A COA spedfication is formulated in response to a
spedfic situation between oppaing forces and a misson
diredive. For purposes of description, we organize aCOA

spedfication into two parts: problem statement and solution
statement. A COA problem statement consists of the
following: (1) a situation sketch (on a map), indicaing
terrain fedures guch as roads, rivers, lakes, hills, forests,
and current Blue and Red unit placement; (2) a scenario
narrative, including any details not easily ceptured on the
map (e.g., relevant recent history, current dynamics,
expeded future evolution, unit status descriptions); (3) a
misson spedfication, indicaing spedfic forces under
command, required oljedives, and constraints (e.g.,
“Capture Objedive JAYHAWK by 1400 hours tomorrow
with the following restrictions in place..”); and (4) the
commander’ s estimate of the situation.

Faced with such a problem statement, a cmmander
must formulate a plan for his forces to acomplish the
misson. He cnsiders one or more options, or COAs. A
COA solution consists of: (1) a COA sketch—an overlay
on the problem statement’s stuation sketch, and (2) a COA
narrative—a structured description stating the misson,
commander’s intent, desired end state, and the concept of
operations, including main attadk, supparting attad, fire
suppat, and reserve. Each task in the COA must indicate
what units perform what adions for what purposes.

Given enough time to consider alternatives, the
commander's gaff evaluates the candidate COAs in a
subjedive aitiquing process usualy resulting in a matrix
comparing the viable ones, and presents the results to the
commander for a dedsion on the preferred COA.
Commonly used COA-critiquing criteria include misson
acomplishment, reserve availability, speed, simplicity,
terrain use, risk, and pasition for follow-up operations.
With help from domain experts, we aeded an extensive
taxonomy of critiquing criteria. The COA critiquing task is
to evaluate aformally represented COA with resped to key
critiquing criteria. The purpose of critiquing and comparing
different COAs is to help the commander dedde how best
to acaomplish the asggned misson.

Given this definition of the COA analysis problem, the
tasks to be performed were twofold: (1) given textua and
graphicd COA problem statements, formally represent
seleded elements of these in a knowledge base, and (2)
author (conceive of and formally represent) knowledge to
suppat effedive COA criti ques, which can then be gplied
to any formally represented COA solution statement.

We now briefly consider the possble deployment of a
COA critiquing system. The aitiquing krowledge will be
entered in an Army laboratory long before the system is
adualy used in the field. The COA problem and solution
statements will be entered at the time of adua usage of the
system. Thus, when the aitiquing task is performed in
response to an adua neel, the relevant critiquing
knowledge will aready be available. Given that we were
developing an initial prototype, the task of entering COA
problem and solution statements, and the task of authoring
critiquing krowledge, are interleazed much more than they
might in a situation when a COA critiquing system has
been built and deployed.

Solution: Using SHAKEN to Acquire and
Apply COA Critiquing Knowledge

As stated in the previous section, the overall task has two
main aspects. COA authoring, and COA critiquing. With
reference to the functional architecture of Figure 1, the
tasks of authoring the COA and the critiquing knowledge
are supported by the knowledge entry subsystem. COA
authoring relies on battlespace knowledge that is built into
the knowledge base. The SME enters the critiquing
knowledge during development, which is stored in the
knowledge base. The module focused on using knowledge
supports the critiquing task. The interaction manager and
the knowledge verification module play a supporting role
in the overall solution of the problem.

COA Authoring

To formally author a COA, we needed to solve two
problems: (1) provide a vocabulary of terms that can be
used in COA authoring, and (2) provide a natural user
interface for commanders.

Vocabulary for COA authoring: To support COA
authoring, we need to represent military units, terrain, and
military tasks. For military tasks, we developed two
different representations: one suitable for declarative
inference, and the other suitable for empirical smulation.
Let us consider these two in more detail.

To develop representations for knowledge anaysis, we
leveraged the domain-independent representations in the
component library to provide military-specific terms. For
example, consider the military task Canalize. This is a
tactical mission task where a military unit restricts enemy
movement to a narrow zone. We represented this domain-
specific action by speciaizing the domain-independent
action Confine. The Canalize task differs from Confine in
that its agent and object are military units, and its baseis a
piece of narrow terrain. It is similar to Confine in that its
base plays the role of a container, and the object is inside
the base after the action has been performed.

Empirical simulation requires a model of the domain
and a model of the processes that occur in that domain. Our
domain model is built on the University of Massachusetts
Abstract Force Simulator (AFS) [2]. Military engagements
are represented using circular agents moving on a coarse
representation of real terrain. The agents have many
properties, but most of the ones significant to military
modeling (training, weapons type, troop strength,
experience, and so on) are agglomerated into a single
property: mass. The process model represents actions as
lists of desired effects on key properties. Figure 2 shows
the action model for Defeat, which is broken into two
phases: one for the friendly forces to reach the enemy and
one for the engagement. Each phase has corresponding
goas for the action. The action models for the military

tasks in the field manual are represented within AFS using
Tapir, a genera purpose, semi-declarative hierarchical
agent control language that can express goals, sensors and
actions using a unified syntax [18]. During each simulation
run, the action models control the military agents;
dynamically reacting to the changing properties of the
simulation in order to achieve their goals.

Maneuver Attack
A
-
Engage End
Time +
Full strength Effective strength
Unit Mass +
Full strength Defeated
Enemy Mass —_—
AP AP2 AP3

Figure 2: Action model for Defeat

User interface for COA authoring: We needed an
interface that was as familiar to commanders as possible.
Commanders work with maps and overlays to show the
geography, unit locations, and military tasks. The map is
usually accompanied by a textua description. The
nuSketch system is explicitly designed to support COA
authoring, and met this requirement very well [12], [13].

NuSketch provides a graphical interface where COA
terrain, units, avenues of approach, and tasks can be
described. The user can aso specify the commander’s
intent for the overall COA and individual tasks. An
example COA sketch is shown in Figure 3.

MEIES
w7+ aral | D
W7 [ElRetesh | & sketch | & Layer | [0[w]8
|
v P
3 ‘ ;H
[overalForces | Friendy intent | Friendy Tineine | EnemyIntent | Enemy Timeine |

Figure 3: nuSketch COA authoring interface

NuSketch elements have a precise declarative semantics
that is reflected in the SHAKEN component library
ontology. Once the COA is specified in nuSketch, it is
trandated to a SHAKEN concept map (CMAP). The
translator maps terms in the nuSketch ontology to the

corresponding termsin the SHAKEN component library. In
some cases, the knowledge is processed to resolve
ontological mismatches, for instance, the task timing
information in nuSketch is based on the quantitative start
and end times, whereas SHAKEN relies on qualitative
ordering information among tasks; therefore, the translator
processes the quantitative information to derive the
necessary qualitative ordering.

As expected, the experts want the interface to be as easy
and quick to use as their regular pen-and-paper way of
doing things. The primary obstacle to achieving this was to
find a suitable combination of sketching gestures, and a
layout of windows that would enable rapid authoring of the
COA. Currently, it takes 1 to 2 hours to author a COA.
The SMEswould like to be able to do it within 15 minutes.

Critiquing Knowledge
Critiquing relies on both domain-independent and
specialized knowledge. Domain-independent knowledge is
leveraged as domain-specific terms are created, by
specializing domain-independent terms. We will primarily
discuss here the domain-specific critiquing knowledge.
Two kinds of domain-dependent critiquing knowledge
were needed: (1) necessary and sufficient slot values of
concepts, and (2) critiquing rules. We now consider in
more detail how each was entered.

Necessary properties of conceptss The SHAKEN
graphical interface is the primary means used to creste the
domain-specific concepts from domain-independent ones.
For example, for each kind of terrain, we encoded its
trafficability for each kind of unit. For each unit, we
encoded the equipment it possesses, and its combat power.
For each military task, we encoded how much relative
combat power is generaly thought to be sufficient to
effectively perform this task. The tasks are encoded using
a STRIPS-like language used by many Al planners[4].

As a concrete example, Figure 4 shows the
representation of the concept of Rolling-Hills. This
concept map indicates that rolling hills offer relatively
unrestricted movement for armor and infantry units. See
[8] for a description of how logical axioms are synthesized
from graphs such as this.

Ralling-Hills

N\

trafficability ™

location ™

Figure 4: Trafficability definition for Rolling Hills

Sufficient properties of concepts: For many concepts, it is
possible to define both necessary and sufficient properties.
For example, if Blue-Military-Unit represents the class of
al friendly units, then any military unit whose alegianceis
Blue is a member of this class. A domain expert specifies
the sufficient properties of a concept by annotating the
graph representing the necessary properties.

The most common application of sufficient properties
was to create subclasses of actions representing a specific
situation, indicating a special case. For example, the
required relative combat power ratio for the most general
case of each military action is built into the system.
However, the actua relative combat power ratio depends
on the specifics of the situation. For instance, aratio of 3is
normally desired for a general attack, but when an aviation
unit attacks an armor unit, a combat power ratio of 0.5 is
adequate. When a commander authors a COA, he may use
the general attack action vocabulary. But, if the knowledge
base includes a subclass of the attack action whose
sufficient properties are that the agent is an aviation unit,
and the object is an armor unit, its lower relative combat
power ratio will be used whenever such a situation arises.
Figure 5 shows the concept map for such a class. See [16]
for more details on entering special cases of actions.

q__,_/_J Attack-by-Fire-Avn-Bri-on-Armaor |
reguired-force-ratio *

/AN

object* enemy*

agent*

RequiradFarce-RatioValue

05

|- 7 -
\Aviatinn-BattaIinnj iArmor—Unn}

Figure 5: A special case of the Attack action. The nodes
grouped in a box indicate sufficient properties.

Critiquing rules: We devised a special kind of rule, called
a pattern, where the antecedent represents a collection of
assertions pertaining to the situation being critiqued, and
the consequent is a critiquing score on some critiquing
dimension. Figure 6 shows an example pattern that rates a
COA as good if some forces are kept in the reserve. The
portion of the graph linked to the root with the has-pattern
relation indicates an antecedent, and the portion linked
using critique-score indicates the consequent of the rule.

Critique scores can be positive or negative, and asingle
pattern can apply to more than one critiquing dimension.
Critiquing dimensions for COA patterns include such
concepts as Risk, Casudlties, Maneuver Effectiveness,
Command and Control, Terrain Use, Preparedness for
Enemy Response, Simplicity, Resource Use, and
Synchronization. Applying these rules, organized by the
critiquing dimensions, gives adirect rating of a COA.

[Reserie Task J

has-pattemn <

Designate-a-Resane

v
o i
agent* critique-score

v
Military-Unit called Myr-Unit

allegiance *

Figure 6: A pattern indicating that allocating a reserve
isgood for Blue-Reserve-Availability

Exercising Critiquing Knowledge

SHAKEN currently supports three different kinds of
critiquing: declarative inference, normative simulation, and
empirical simulation. (SHAKEN’s analogical reasoning
capabilities can also be used for critiquing [10], but thisis
not covered in the present paper.)

Critiquing by declarative inference: COA critiquing by
declarative inference systematically finds and applies all
applicable COA patterns and assigns them a score. The key
technical challenge in matching patterns against a COA is
that matches may not be syntactically exact. Therefore, we
built a utility that can compute matches modulo a set of
transformations. For example, we may know from the COA
that a Blue force is in a city; we may also have a pattern
saying that if an armor unit is in a city, it is poor for
security of that unit (unless it is accompanied by infantry
that can protect tanks in narrow streets and alleys from
short-range antitank weapons). The pattern matcher will
match the COA and the pattern, noticing that the Blue force
has an armor unit that is in the same location. The pattern
meatcher contains afew hundred such transformations.

" Match #2 top
Score: rating-verygood on the dimension of Deception-Operation-Use
Score: rating-good on the dimension of Synchronization

Score: rating-good on the dimension of COA-Effectiveness

Node correspondences

\ Pattern \ COA

the Wain-Attack-Task and Engagement-Jilitary-Task called |the Mam-Attack-Task and Seize-Terrain-Feature called

Engage-Enemy-2 Object-640
\ Conducting-MA \ BondTankBde
\ Supporting MA i BéthTarkBde

the Supporting- Attack-Task and Engagement-Military-Task
called Engage-Enemy-1

the Supporting-Attack-Task and Seize-Terrain-Feature
called Object-764

Figure 7: A report from critiquing by patterns

Figure 7 shows an example report generated by matching
patterns, as presented by the SHAKEN interface. The top
of the report indicates the critiquing scores. The COA
being evaluated has a score of Very Good on the dimension
of deception. The table that follows indicates which nodes
in the pattern matched which nodes in the COA. For
example, B2ndTankBde conducts the main attack, and
B4thTankBde conducts the supporting attack.

Critiquing by normative simulation: Normative
simulation critiques a COA by executing each step. It relies
on the KM situation mechanism, and executes each step
based on its effects (add/delete lists). It analyzes
dependencies between conditions and effects, checking that
the required conditions for each step are met when the step
is supposed to take place, and that the expected effects of
the overall process are, in fact, obtained. It aso checks
how different steps are related to each other, including their
tempora ordering and causal relationships. The simulation
reports possible errors and presents them as critiques. For
instance, for each step in the COA, normative simulation
computes the net relative combat power available, and
compares it against the required relative combat power
ratios already encoded in the system.

Figure 8 shows an example normative simulation
report. In this case, one of the preconditions of a military
action has failed: the given combat power ratio is not high
enough to perform the given task. The net relative combat
power of a military unit is computed based on the combat
power of its subunits. The explanation section of the report
shows in detail how the combat power was computed by
combining various pieces of information, including unit
equipment, default combat power, and remaining unit
strength, through multiple COA steps. The user can check
this explanation to see why the condition failed.

egrea with the resulis for this step 7 Yes No

Checking soft
RIS Warning: System found these condittons to be false:

Force ratin
explanation

o Units involved are { B1stAVINEn)

o Forumt BlstAVNEn [(Aviation-Battalion)],
(allegiance is Blue), its equipment i3 (the AT64)
s the default combat power 15 2.81

o Since its remaining strength is 0,66 the relative
combat power is (2,81 * 0.66) = 1.87

o Therefore, total relative-combat-power is : 1.87

o Enemies : { E2ndTankBde)

o Forunit B2ndTankBde [{ Armored-Brigade)],
(allegiance 15 RBed), #s equipment 15 unknewn so
the default combat poweris 2.56

o Since its remaining strength 18 0.85 the relative
combat power is (256 ¥ 0.85) = 2.18

o Sothe avallable-force-rate 150 187/ 2 18=
0.86

1. The available-force-ratio (0.86) == The required-force-ratio (1.0)

Click here for suggestions

Figure 8: COA critiquing by normative simulation

The combat power numbers are dynamic, and take into
account how the various units undergo attrition over a
period of time. The action is flagged if the actual relative
combat power during an action is less than the required
relative combat power. Even when the combat power
exceeds what is required, the commander can use the report
information to check that all the decisive points have
overwhelming relative combat power ratios.

In this instance, an SME added a special case of the
Attack-by-Fire action to account for this kind of situation
(i.e., when an aviation battalion attacks an armored unit, a
combat power ratio of 0.5 is enough). Once this special
case was added, the precondition was satisfied.

Critiquing by empirical simulation: Empirical and
normative simulation complement each other in SHAKEN.
Simulation is used to capture complex dynamics in the
COA, and to explicitly model uncertainty. For empirical
simulation, SHAKEN uses the Capture the Flag (CtF) tool
[1], based on the AFS abstract physics-based model of
division-level engagements described earlier (see Figure 2).
Once a nuSketch COA is trandated to CtF, Monte Carlo
simulation is performed, running the COA multiple times
until statistically significant results are obtained. The data
from these trials is summarized in HTML reports, showing
combat power ratios and graphical snapshots of critical
events (e.g., engagements) during the simulated runs.

Figure 9 shows the combat power ratio graph produced
for a particular engagement during a single ssmulation run.
The ratio increases as the Blue side gains dominance over
time, indicating a Blue army victory. A chief strength of
empirical simulation is unexpectedly ssimple: SMEs can
watch their COAs unfold visually, and can immediately see
flaws and strengths. The results are analyzed to construct a
qualitative representation of the space of outcomes,
explicitly identifying critical points.

Combat Power Ratio vs. Time for Battle 1 Trial 1

Fower 1

Elue
Combat

FRed
Combat

Power T T T T T T T T T T T T T T

288 218 220 238 248 258 268 279 200 200 308 318 328 339 348 3

Combat Power Ratio Graph

Time in ticks

Figure 9: Output from empirical CtF simulation

Evaluation

We evaluated the system with the help of two domain
experts, both of whom were retired Army officers. One
had served at the rank of lieutenant general, and the other
as an intelligence officer. The objective of the evaluation

was twofold: to assess how effectively the knowledge
acquisition capabilities of SHAKEN would work for
domain experts with no training in forma knowledge
representation, and to test the performance of the resulting
knowledge base on the COA critiquing task.

The evaluation was conducted over 15 days. During
the first 7 days, we provided hands-on training to the two
subject matter experts, using an example critiquing task.
The SMEs were then given a new task, in the form of a
COA problem statement and its solution, expressed in
textual form, and were asked to address it using the system.
The SMEs were asked to encode the textual description in
SHAKEN. They then authored critiquing knowledge,
independent of the COAs, and used it to critique them.

Before encoding a COA, the SMESs produced a manual
critique for it, to serve as a guideline for evaluating the
ultimate critique to be produced by the system. Authoring
the critiqguing knowledge was an iterative task: the
knowledge was successively refined based on the system
critique, and how it differed from the manual critique.

Over the 15-day period, the SMEs authored three
different COAs and 60 pieces of critiquing knowledge.
The critiquing knowledge included patterns and specia
cases of actions. Below, we present the textual description
of afew patterns authored by the SMEs during evaluation.
The critiquing dimensions are shown in bold font:

If a COA secures a piece of terrain narrower than 50
meters, it makes good use of terrain.

If the supporting attack occurs before the main attack, it
is good for COA effectiveness, mission accomplishment,
and synchronization.

If an armored unit attacks a mechanized infantry unit
outside a city, it isgood for enemy maneuver engagement.

The antecedent encodes the condition under which the
pattern applies, and often includes spatia information such
as terrain or unit location. In some cases, the antecedent
can include negation, for example, the location of a unit not
being in a city. Let us now consider two examples of
special cases of actions, where the bold text represents the
sufficient property of the special case:

When an aviation unit attacks an artillery unit, it is
sufficient to have a combat power ratio of 0.3.

While seizing a bridge, it is sufficient to have a combat
power ratio of 0.3.

These example patterns and special cases of actions
show that SMEs with very little training in knowledge
representation were able to author nontrivial pieces of
critiquing knowledge. In particular, the first-order logic
formalization of this knowledge, synthesized automatically
from the graphs by SHAKEN, includes quantified
variables, implications, negation, and, in the case of special
cases of actions, concept definitions (bi-directional
implications). These formal structures are clearly beyond
anything that the SMEs could encode directly. In addition,

through the cnstraints imposed by the graphicd interface
(e.g., guiding the SME to seled concepts from the existing
ontology, restricting the dwoices of relations to only
semanticdly valid ones), the SMEs formalized their
knowledge in conformance with SHAKEN's underlying
ontology. This ill ustrates the key achievement of this work,
namely, a significant enhancement of the SME's ability to
articulate formal knowledge, in a way consistent with, and
building ypon, the preexisting krowledge in the system.

We tested the empiricd simulation on the COAs
authored by the SMEs. Monte Carlo summaries of mass
lost and goals achieved over multiple simulations $owed
clea differences between these COAs. In addition, the
COAs that we felt were most dangerous had the greaest
amournt of variancein their outcome. This highlights one of
empiricd simulation’s greaest strengths. the aility to go
beyond static analysis and focus instead on the dynamics of
multiple concurrent processes.

Despite these adievements, we encountered several
limitations. The most significant problem is to trandate
natural but informal domain concepts (e.g., “sufficient
force”, “flank’, “contour”, “overwhelm”) into a
computable form (e.g., in terms of coordinates and
distances), a prerequisite for machine reasoning about the
domain. While SHAKEN provides good suppat for
entering formal knowledge once that conceptual trandation
is made, it provides little help with the trandlation in the
first place Thisturned out to be the most notable dhallenge
for the SMEs. It is exacebated in the COA domain, where
many important concepts are spatial in nature, but
particularly difficult to pin down predsely in formal terms.

Seowond, athough the interface helps SMEs enter
knowledge in terms of the eisting ontology, there is dill
potential for SMEs to make mistakes. For example, they
sometimes used negation in a way that differed from their
intent, without redizing that the semantics of what they
encoded was aubtly different (e.g., one SME encoded “an
attadk not on a dty isgood’, intending to encode “no attadk
on a dty isgood’). More proadive theding and validation
of SME inputs would help identify and corred such errors.

As additiona evaluation data, at the end of the 15-day
period we ompared the SHAKEN critiques produced
using an SME's formally encoded knowledge with the
manual criti ques written by the same SME. Our goal wasto
ched that the SME's encoded knowledge was to some
extent “reasonable” compared with his ided solution (the
manual critique), that is, to ched that the SME's rules
were not simply “formal nonsense”. The SMEs were asked
to asdgn a mrredness gore on afive-point scde (-2 to +2)
to the results produced by SHAKEN using their encoded
knowledge. A score was given to ead critiquing dimension
that the SME considered relevant to the particular COA.

Of the 16 relevant critiquing dimensions for one of the
representative COAs, the system critique recaved a score
of +2 for 8 of the dimensions; for 3, a score of +1; for 4, a
score of —1; and for 1, a score of -2. Although many other
fadors influence these scores (e.g., the inherent knowledge

representation and reasoning cgpadty of SHAKEN itself),
the results indicéte that the SME was able to enter at least
some of his knowledge with a reasonable degree of
acarracy and fidelity.

The SMES overal asessnent was that a COA analysis
cgpability such as the one we tested could ultimately be
very useful in solving operational problems: The software
can work through tedious details and dauble-chedk all
potential COAs, espedally when the commanders are tired,
under presaure, and under time anstraints.

Althoughour goal isto bregk new ground in knowledge
aquisition technology, rather than to spedficdly critique
COAs, it is nevertheless interesting to consider what it
would take for the COA-critiquing application of
SHAKEN, using SME-entered knowledge, to readh a
sufficiently mature level for deployment. The technology
requires numerous enhancements before it comes close to
being deployable. For example, a library of a few hurdred
patterns and speda cases of adion will have to be built
before the system starts producing ron-obvious critiques
that add value to what a @mmander can quickly determine
with a visual inspedion of a COA. One way to drive such a
knowledge base mnstruction is to work with a sizéble
colledion of case studies [23] that will provide cncrete
test cases, a well-defined scope for knowledge entry, and
clea performance citeria. The detail captured in the
normative simulation can also be improved, giving spedal
attention to simulating concurrent events.

Related Work

In previous work, we developed an extensive ontology
of plan evauation and plan critiquing [5]. In another
previous gudy, we evaluated nuSketch as a COA authoring
tod, and demonstrated that COAs authored using nuBketch
were omparable in quality to ones authored with more
traditional methods [22].

In the present work, the main innovations are: (a) using
the plan critiquing ontology in conjunction with normative
simulation; (b) acquiring critiquing krowledge in the form
of patterns and necessary and sufficient conditions for
adions; and (c) showing that the system can exhibit some
level of COA critiquing competence, through dedarative
inference, normative simulation, and empiricd simulation.

There has been significant work in building interadive
plan authoring environments [20], but it has not addressed
the spedfic problem of COA critiquing. The use of patterns
for COA critiquing was demonstrated in [11], which let
experts €led subsets of a COA sketch to generate aitiques
that could be subsequently applied via analogy or as rules.
However, that system only used information explicitly
represented in the sketch, whereas a broader range of
knowledge can be used in SHAKEN patterns.

FutureWork

Work is under way to address many of the limitations
identified in the previous sdion. For example, we ae

making extensions to nuSketch to support richer COA
descriptions. Similarly, we are implementing the normative
simulation of concurrent events.

We are also developing a suite of capabilities that will
let SHAKEN users enter, organize, and retrieve knowledge
using English. These capabilities make use of the START
[14] and Omnibase [15] systems. To perform knowledge
entry, the user enters a sentence or phrase, which is parsed
into a concept map representation similar to that used
within SHAKEN. Through an interactive dialog between
the user and the system, this concept map is refined into a

SHAKEN concept map, which is added to SHAKEN' s

knowledge base. Using a similar approach, English
guestions are trandated into concept map patterns, which
are then used to identify matching concepts within
SHAKEN'" sknowledge base.

Summary

We presented the application of a genera-purpose
knowledge-based system, SHAKEN, to the specific task of
military Course of Action (COA) analysis. We showed how
SHAKEN can capture and reuse expert knowledge for
COA critiquing, and produce a high-level assessment of a
COA through declarative inference and simulation. The
system has been used and evaluated by domain experts.
The generality of the approach makes it applicable to
knowledge capture for task analysis in other domains.

Acknowledgments
We thank Commander Dennis Quinn and Lt. Gen. Len Wishart
for serving as the domain experts for the evaluation, and Murray
Burke for his encouragement and support for this work. This
rescarch was supported by DARPA’s Rapid Knowledge
Formation project under contract N66001-00-C-8018.

References

1. Atkin, M., GW. King, D. Westbrook, B. Heeringa, A.
Hannon, and P. Cohen. SPT: Hierarchical Agent Control: A
Framework for Defining Agent Behavior. In Fifth Intl. Conf.
on Autonomous Agents, p. 452-432, 2000.

2. Atkin, M.S., D.L. Westbrook, P.R. Cohen, and G.D. Jorstad.
AFS and HAC: Domain-General Agent Smulation and
Control. In Workshop on Software Tools for Developing
Agents, AAAI-98, p. 89-95, 1998.

3. Barker, K., B. Porter, and P. Clark. A Library of Generic
Components for Composing Knowledge Bases. In
International Conference of Knowledge Capture, 2002.

4. Blythe, J. SHAKEN Action Description Language. Technical
Report, Information Sciences Ingtitute, University of Southern
California, 2002.

5. Blythe, J. and Y. Gil. A Problem-Solving Method for Plan
Evaluation and Critiquing. In Intl. Knowledge Acquisition
Workshop. Banff, 1999.

6. Clark, P., K. Barker, B. Porter, A. Souther, V. Chaudhri, S.
Mishra, J. Thomere, J. Blythe, J. Kim, P. Hayes, K. Forbus,
and S. Nicholson. A Modified Template-Based Approach to

Question-Answering from Knowledge Bases. Technical
Report, SRI International, Menlo Park, CA, 2002.

7. Clark, P. and B. Porter. KM -- The Knowledge Machine User
Manual. Technical Report, U. of Texas at Austin, 1999.

8. Clark, P., J. Thompson, K. Barker, B. Porter, V. Chaudhri, A.
Rodriguez, J. Thomere, S. Mishra, Y. Gil, P. Hayes, and T.
Reicherzer. Knowledge Entry as Graphical Assembly of
Components. In Intl. Conf. on Knowledge Capture, 2001.

9. Forbus, K., R. Ferguson, and D. Gentner. Incremental
Structure Mapping. In Proc. Cognitive Science Society, 1994.

10. Forbus, K., R. Ferguson, and J Usher. Towards a
Computational Model of Sketching. In Intelligent User
Interfaces Conference. Santa Fe, New Mexico, 2001.

11. Forbus, K., T. Mostek, and R. Ferguson. An Analogy
Ontology for Integrating Analogical Processing and First-
Principles Reasoning. In |AAI-02, 2002.

12. Forbus, K. and J. Usher. Sketching for Knowledge Capture:
A Progress Report. In Intelligent User Interfaces. 2002.

13. Forbus, K., J. Usher, and V. Chapman. Sketching for
Military Courses of Action Diagrams. In Proceedings of
Intelligent User Interfaces Conference. Miami, FL, 2003.

14. Katz, B. Annotating the World-Wide Web using Natural
Language. In 5th RIAO Conference on Computer Assisted
Information Searching on the Internet, 1997.

15. Katz, B., S. Felshin, D. Yuret, A. Abrahim, J. Lin, G.
Marton, A.J. McFarland, and B. Temelkuran. Omnibase:
Uniform Access to Heterogeneous Data for Question
Answering. In 7th International Workshop on Applications of
Natural Language to Information Systems, 2002.

16. Kim, J. and J. Blythe. Supporting Plan Authoring and
Analysis. In Intelligent User Interfaces. Miami, FL, 2003.

17. Kim, J. and Y. Gil. Knowledge Analysis on Process Models.
In 17th Intl. Joint Conf. on Artificial Intelligence (1JCAI-
2001), p. 935-942, 2001.

18. King, G.W., M.S. Atkin, and D. Westbrook. Tapir: The
Evolution of an Agent Control Language. In First Conference
on Autonomous Agents and Multiagent Systems, 2002.

19. Mishra, S., A. Rodriguez, M. Eriksen, V. Chaudhri, J.
Lowrance, K. Murray, and J. Thomere. Lightweight solutions
for user interfaces over the WMAW. In International Lisp
Conference. San Francisco, CA, 2002.

20. Myers, K. Strategic Advice for Hierarchical Planners. In
Intl. Conf. on Knowledge Representation and Reasoning, p.
112-123, 1996.

21. Nicholson, S. and K. Forbus. Answering Comparison
Questions in SHAKEN: A Progress Report. In Spring
Symposium on Mining Answers from Text and Knowledge
Bases. Stanford, CA, 2002: AAAL.

22. Rasch, R., A. Kott, and K.D. Forbus. Al on the Battlefield:
An Experimental Exploration. In Innovative Applications of
Artificial Intelligence. Edmonton, Canada, 2002.

23. Schmitt, M.JF., USMCR, Mastering Tactics: A Tactical
Decision Games Workbook. Marine Corps Gazette. 1994,
Quantico, VA: Marine Corps Association.

