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Abstrad: In this paper we propose aformal theory of granular partitions
(ways of dividing up @ sorting a mapping redity) and we show how the
theory can be gplied in the geospatiadl domain. We charaderize granular
partitions at two levels: as g/stems of cdls, and in terms of their projedive
relation to redity. We lay down condtions of well-formednessfor granular
partitions, and we define what it means for partitions to projed transparently
onto redity in such a way as to be structure-preserving. We @rtinue by
classfying ganular partitions dongthree xes, acwrding to: (a) the degreeto
which a partition represents the mereologicd structure of the domain it is
projeded orto; (b) the degreeof completenessand exhaustivenesswith which
a partition represents redity; and (c) the degreeof redundancy in the partition
structure. This clasgfication is used to charaderize three types of granular
partitions that play an important role in spatial information science cadastral
partitions, categoricd coverages, and the partitions involved in folk
categorizations of the geospatial domain.

1 Introduction

Imagine that you are (@) a geologist classfying soil samples or (b) a spatial analyst
classfying the raster pixels of adigital image or (c) a hotel manager making alist of
the guests in your hotel ona cetain night. In ead of these caes you are enploying
a cetain gid of cdls, and youare recgrizing certain oljeds as being located in
those cdls. In case (@) the cdls are labeled, for example, ‘clay’ or ‘sand and the
objeds you are recgrizing as locaed in these cdls are your soil samples. In case
(b) the céls are labeled with the names of vegetation classes, eadh classbeing made
to correspond to a particular spedrum of frequencies in the pixel array, and the
objeds that are located within thase cdls are raster cdls within the partition which
is the pixel image. In case (c) the cdls correspondto the rooms in your hotel, the
objeds are the individuals or groups who are, acwrding to the hotel register,
asdgned to these rooms on any given night.

We shall cdl a grid o cdls of the type used in these examples a grandar
partition, and we shall argue that granular partitions are involved in al listing,
sorting, caaogung and mapping adiviti es.

Granular partitions are ways of structuring redity in order to make it more eaily
graspable by cogritive subjeds guch as ourselves. Some partitions are flat: they
amourt to nahing more than a mere list (case §. Other partitions are hierarchicd:
they consist of cdls and subcdls, the latter being contained within the former. Some



partitions are built in order to refled independently existing dvisions on the side of
objeds in the world (the subdvison d the aiima kingdam into spedes and
subspedes, the subdvision o heavenly bodes into galaxies, stars, planets, moors,
etc.). Other partitions — for example the partitions creded by eledoral redistricting
commisgons — are themselves sich as to crede the necessary divisions on the side
of their objeds, and sometimes they creae those very objeds themselves. Some
partitions involve the imposition o alayer of quasi-discretenessuponan uncderlying
redity which in itself has the structure of a continuum.

In Smith and Brogaad (2000 the notion o granular partition was introduced as a
generalizaion d David Lewis's (1997 conception d classes as the mereologicd
sums of their singletons. Given its st-theoreticd roots, our basic formal ontology o
granular partitions will have two parts: (A) a theory of the relations between cdls
and the partitions in which they are houwsed, and (B) a theory of the relations
between cdls and ohjedsin redity. The murnterpart of (A) in a set-theoretic context
would be the study d the relations among subsets of a single set; the awurterpart of
(B) would bethe study o the relations between sets and their members.

Divisioninto urits, courting and parcding ou, listing, sorting, pigeonhding and
caalogung are adivities performed by human beingsin their traffic with the world.
Granular partitions are the cognitive devices designed and built by human beings to
fulfill these various purposes. As will be dea from what follows, the nation d
granular partition that is hereby implied is only distantly related to the more famili ar
notion d apartition defined in terms of equivalence dass.

The paper is gructured as follows. We start with a discusgon o properties of
granular partitions as g/stems of cdls in the sense of theory (A). We then consider
granular partitions in their projedive relation to redity in the sense of theory (B).
This provides us with the tods to define what it means to say that a granular
partition projeds onto redity in a transparent and structure-preserving way. We then
provide aclassfication o granular partition by charaderizing various properties of
the crrespondence between partition and redity, and we go onfrom there to discuss
relationships between set theory, mereology, and the theory of granular partitions as
aternative tods for the purposes of formal ontology. We anclude by considering
three dasses of partitions that have a important role to play in the geographic
domain.

2 Granular partitions as system of cells
2.1 Cdllsand subcells

All granular partitionsinvolve cdls arranged together in some sort of structure. This
structure is intrinsic to the partition itself, and oliains independently of whether
there ae objeds located in its cdls. Cellsin granular partitions may be nested ore
inside another in the way in which spedes are nested within genera in standard
biologicd taxonamies. Theory (A) studies properties granular partitions have in
virtue of the relations between and the operations which can be performed uponthe
cdlsfrom out of which they are built. We say that one cdl, z,, isasubcdl of another
cdl, z,, if thefirst is contained in the latter (' Cell’ is‘Zelle’ in German). We write z
O z, in order to designate this relationship, and we postulate @ an axiom or master
condtion:



MAZL: Thesubcdl relation O isreflexive, transitive, and antisymmetric.
Every granular partition A (‘partition’ is‘ Aufteilung in German) has amaximal cdl
defined as:

DMax: Max(zy, A) =Z(z;, A) and 0z: Z(z, A) - z0O z
where ‘Z(z, A)’ means that z is a cdl in the partition A. (In what follows the
condtion Z(z, A) will be omitted in cases where it is clea that we ae talking abou
cdls within some fixed partition A. In addition, initial universal quantifiers will be
taken as understood) We now demand that

MA2:  [Iz: Max(z, A)
which ensures that every granular partition has amaximal cdl in the sense of DMax.
From the antisymmetry of the subcdl relationit foll ows that this cdl isunique. This
roat cdl, denoted r(A), is guch that al the cdlsin the partition are included in it as
subcdls.

The nestednessof cdlsinside apartition yields chains of cdls stisfying z1 O z2
O... 0 zn. We shall cdl the cdls at the ends of such chains minimal cdls, and
define:

DMin:  Min(zy, A) =Z(z1, A) and O0z: Z(z, A) - (zOz3 - 2=12y)
Anather important asped of granular partitionsis then:

MAS3: Ead cdl inapartition is conneded to the root by afinite dhain.
MA3 leaves open the isaue & to whether granular partitions themselves are finite;

thusit does not rule out the possbility that a given cdl within a partition might have
infinitely many immediate subcdls.

2.2 Partition-theoretic sum and product of cells

Every pair of distinct cdls in a partition stand to eat ather within the partition
either in the subcdl relation a in therelation o digointness In ather words:

MA4: Two cdlsoverlap only if oneisasubcdl of the other.
Or in symbadls:
(Z:(z=21n2) - zz02z0rz; 02,
From MA3 and MA4 we can prove by a simple reductio that the chain conneding
ead cdl of apartitionto theroot is unique.

Following Smith (1991) we ca define the partition-theoretic sum and product of
cdlswithin granular partitions as follows. The partition-theoretic sum z = z, O z, of
two cdls in a partition is the O-minimal cdl satisfying z, O z end z, O z. The
partiti on-theoretic product, z = z, n z,, of two cdls is defined orly if z, and z, are
not mereologicdly digoint. If it is defined, then it yields the largest subcdl shared in
common byz, andz,.

2.3Trees

Philosophers dgnce Aristotle have recognized that the results of our sorting and
classfying adivities can be represented as thase sorts of branching structures which
mathematicians nowadays cdled trees. Trees are rooted dreded graphs withou



cycles (Wilson and Watkins 1990. Every finite partition can be represented very
simply as a rooted treein such a way that the cdls in the partition correspond to
vertices in the tree and ertices are wnreded by an edge if and ony if the
correspondng cdls gand to ead ather in an immediate subcdl relation.

We can represent a partition nd only as atreebut aso as a simple sort of Venn
diagram. In a Venn dagram partition cdls are represented as topdogicdly simple
and regular regions of the plane. Our partitions are Venn dagrams within which
regions do nd intersed. In the remainder we will often think of partitions as sich
planar maps — they are Venn dagrams withou overlapping — and the minimal cdls
correspondto the small est regions within such diagrams.

3 Granular partitionsin their projectiverelation to reality
3.1 Projection

Granular partitions are more than just systems of cdls. They are built to serve &
pictures or maps of redity. Granular partitions are systems of cdls that projed onto
redity in something like the way in which a bank of flashlights projeds onto redity
when it carves out cones of light in the darkness In some caes the cdls of a
partition pojed but there ae no oljeds for them to projed onto. (Consider the
partition cataloguing Aztec gods.) Here, however, we ae interested primarily in
granular partitions which do na projed out into thin air in this way. We write * P(z,
0)' as an abbreviation for: cdl z is projeded orto oljed o. In what foll ows we shall
asaume that a unique projedion is defined for ead granular partition. For a more
general discusson see(Bittner and Smith 200).

The theory of granular partitions allows us to employ a very general reading d
the term ‘objed’. An oljed in the partition-theoretic sense is everything orto which
some cdl of apartition can projed: an individual, a part of an individual, agroup a
classof individuals (for example abiologicd spedes), a spatia region, a padliti cd
unit (county, pdling dstrict, nation), or even (for present purpases) the universe & a
whole.

Objeds can be dther of the borafide or of the fiat sort (Smith 1995. Bona fide
objeds exist independently of human partitioning adivity. They are, smply,
recognized (highlighted) by partition cdls. Fiat objeds are objeds creded by ou
human partitioning adivity. Hence it may be that the rrespondng partition cdls
not only recogrizetheir fiat objeds but that the latter are in fad creaed throughthe
very projedion d partition cdls onto the crrespondng pation d redity. Examples
are the States of Wyoming and Montana. For an extended dscusson d the
relationships between granular partitions and fiat objeds e (Bittner and Smith
2001).

3.2 Location

When projedion succeels then the mrrespondng ganular partition represents the
correspondng pation d redity transparently and in such a way that mereologicd
structure is preserved.

We write ‘L(0, z)’ as an abbreviation for: objed o is locaed at cdl z. When
projection succeels, then locdion is what results. Projedion and locaion thus
correspond to the two ‘diredions of fit’ — from mind to world and from world to



mind — between an assertion and the rrespondng truthmaking pation d redity.
(Seale 1983 Smith 1999

Locdion presuppcoses projedion: an objed is never locaed in a cdl unless
throughthe projedion relation asociated with the relevant partition. Thus

MB1 L(o,2) - P(z 0).
In the cae where no errors have been made in the cnstruction and the projedion o
a granular partition, L(o, z) halds if and ony if P(z, 0). Thisis becaise, in such a
case, if apartition projeds agiven cdl onto agiven oljed, then that objed isindeed
locaed in the correspondngcdl.

MB2 P(z,0) - L(o, 2).
Very many granular partitions — from automobile comporent caaloguesto our maps
of states and rations — have this quality without further ado, and it is such granular
partitions uponwhich we shall concentrate in what follows. Such granular partitions
are transparent to the @rrespondng pation o redity. In this case projedion and
location are mnverse relations with resped to the partitionin question. Formally we
write:

DTr:  Tr(A) =0z0o: Pa(z, 0) « La(0, 2).
MB1 and MB2 jointly ensure that objeds are adually located at the célsthat projed
onto them. Notice however that a transparent partition, ac@rding to our definition,
may still have empty cdls. (Think of the Periodic Table, which leares empty cédls
for chemicd elements of types which have yet to be deteded.) MB1 and MB2 tell us
only that, if a cdl in a partition projeds uponsome objed, then that objed isindeed
locaed in the correspondng cdl. They do nd tell us what happens in case a cd
falsto projed onto anything at all.

An oljed o isremgnized by a cdl z if and orly if z is projeded orto o and the
objed o isadualy located at z. A partitionrecogrizes agiven oljed if and orly if it
has a cdl that remgnizes that objed (Smith and Brogaad 200). We shal
sometimes use the term ‘recognition’ as a synonym for ‘transparent projedion’ in
what follows.

4 Functionality constraints
4.1 Projection isfunctional: The confused schoolboy

Thenation d transparency is gill very wea. Thusit is consistent with ambiguity on
the side of the cdlsin relation to the objeds they target, that is with the cae where
one cdl projeds onto two dstinct objeds. Consider the partition creded by a lazy
schodboy studying the history of the Civil War in England, which has just one cdl
labeled ‘' Cromwell’. Thusit does nat distinguish between Oliver, the Lord Protedor,
and hs n Richard. Or consider the partition uili zed by those who talk of ‘China
asif the Repulic of China and the People's Repulic of Chinawere one objed.

To eliminate such ambiguity we lay down a requirement to the dfed that eath
partition must be such that its associated projedionisafunctiond relation:

MB3:  P(z,0) and P(z,0,) - 01 =0,

For granular partitions stisfying MB3, cdls are projeded orto single objeds (one
rather than two).



4.2 Location isfunctional: The Morning Star and the Evening Star

Consider a partition having roct cdl labeled ‘heavenly bodes and three subcdls
labeled: ‘The Morning Star’, ‘ The Evening Star’, and ‘Venus, respedively. As we
know, al three subcdls projed onto the same objed. This partition is clealy
somewhat barren; but it is gill perfedly consistent with the condtions we have laid
out thus far. Its distinct subcdls truly, though unknwingly, projed onto the same
objed. It isnot unusual that we give diff erent names (or coordinates, or classlabels)
to ohjeds in cases where we do nd know that they are adually the same. A good
partition, though shoud clealy be one in which such errors are avoided.

Granular partitions manifesting the desired degreeof correspondenceto ojedsin
this resped must acordingly be onesin which location, too, isafunctional relation:

MB4:  L(o,z) andL(0,2) - z1=2,
In granular partitions that satisfy MB4, locaionisafunction, i.e., objeds arelocaed
at single cdls (one rather than two). The locaion function is however partial, since

partitions are not omniscient. As MB3 rules out co-location (overcrowding), so MB4
rules out co-projedion (redundancy).

5. Structural mapping

MB1 and MB2 are, even when taken together with MB3 and M B4, still very weék.
They thus represent only a first step along the way towards an acount of
correspondence to redity for granular partitions. Such correspondence will i nvalve
two further dimensions. of structural mappng, and o completeness In the present
sedionwe aldressour attention to the topic of structural mapping.

5.1 Recognizing mereological structure

Each granular partition refleds the basic part-whole structure of redity throughthe
fad that its cdl s are themselves sich asto standin therelation d part to whole. This
means that, given the master conditions expressed within the framework of theory
(A) abowve, granular partitions have & least the potential to reflea the mereologicd
structure of the relevant domain. Andin felicitous cases this potential is redized.

We say that the cdls z, and z, refled the mereologicd relationship between the
objeds onto which they are projeded if and orly if the following hdds:

DS1: RS(z1, 25) =L(01,23) and L(0p, ) and z; 0 2, —» 0, < 0

If z, is aproper subcdl of z, then any oljed recgnized by z, must be aproper part
of any oljed reamgnized by z,. A partition refleds the mereologicd structure of the
domainit is projeded orto if and orly if eat pair of cdls stisfies DSL:

DS2:  RS(A) =02z,25: (Z(z1, A) and Z(z,, A)) - R(z4, 2o)
We then impase anew master condtion:
MB5: All granular partiti ons are structure refleding in the sense of DS2.

Note that even MB5 is gill very we&k. Its effed isin a sense entirely negative: it
merely ensures that granular partitions do nd misrepresent the mereologicd
relationships between their objeds. But granular partitions might still be blind to
(traceover) such relationships. Minimal cdls might projed onto ohjeds which stand
to ead other in any ore of the entire range of possble mereologicd relations



(parthood proper parthood disjointness and owerlap). Pairs of cels z, and z, which
do nd stand to ead aher in the subcdl relation are likewise neutral as to the
mereologicd relations between their objeds. This means that the rrespondng
partition daes not know (or does not care) how o, and g, are related, which means
that we ae antitled to infer nothing at all about the mereologicd relations amongthe
correspondng oheds.

Consider, for example, a partition that contains cdls that recognize Johnand hs
arm, i.e., L(John, z) and L(Johris arm, z,). Cell z, nead na be aproper subcdl of
the cdl z, becaise granular partitions may trace over mereologicd relationships
between the objeds they reacognize MB3 is however till strong enoughto ensure
that, if a partition tells us ©mething about the mereologicd relationships on the side
of the objeds which it recognizes, then what it tellsusistrue.

5.2 Thedomain of a partition

That uponwhich a partition is projeded, its domain, is a catain mereologicd sum
of objedsin redity. It is, asit were, the total massof stuff uponwhich the partition
sets to work: thus it is quff conceived as it is prior to any o the divisions or
demarcations effeded by the partition itself. The domains of granular partitions
might comprehend nd only individua objeds and their congtituents (atoms,
moleaules, limbs, organs), but also groups or popuations of individuals (for
example biologicad spedes and genera, battalions and dvisions, archipelagos and
diasporas) and their constituent parts or members. Granular partitions can be used to
impose adivisioninto discrete units uponcontinuows domains, for example through
temperature or frequency bands. We shall seethat maps of land wse or soil type are
another important family of granular partitions in the sense here alvanced.

Formally we define the domain of a partition simply as the objed onto which its
roat cdl i s projeded:

DD D(A)=p(r(A))

MB1-5 aready ensure (a) that everything that is loceted at some cdl of the partition
is part of what is locaed at the mrrespondng roaot cdl; and (b) that for eah

partition there can be only one such oljed. We now demand that every partition hes
anonempty domain:

MB6  [x:x=D(A)

We then say that a partition represents its domain corredly if and orly if MA14
and MB1-6 hdd.

5.3 Granularity

A granular partition is granular in virtue of the fact that it can recogrize a ojed
withou recognizing all its parts. The theory of granular partitions can thus provide
the basis for understanding the seledive focus of our maps and classficaions and
abowve dl their ability to traceover parts below a cetain level. To impose apartition
on a given damain of redity is to foreground certain oljeds and fedures in that
domain and to traceover others.

Partition cdls always projed onto wholes. If a partition remgnizes not only
wholes but also ore or more parts of such whales, then this is because there ae
additional cdls in the partition which do this recogrizing job. Consider, for



example, a partition that recognizes human beings, i.e., it has cdls that projed onto
John Mary, and so forth. This partition dces not recogrize parts of human beings —
such as bhr's arm or the moleaules in Mary’'s shouder — unlesswe ald extra cdls
for this purpose. And even if a partition reamgnizes wholes and their parts, then as
we saw abowve it is not necessary that it also refleds the mereologicd relationships
between the two.

The theory of granular partitions inherits from mereology the feaure that it is
consistent with bah an axiom to the dfed that atoms exist and with the negation o
this axiom. The theory thus enables us to remain neutral as to the existence of any
ultimate simples in redity from out of which other objeds would be mnstructed via
summation. Thisis due to the fad that granular partitions are by definition top-down
structures. The duality with trees puts gedal emphasis on this asped: we trace
down from the roat until we read aled. A led nead nd necessrily be ax atomin
the sense that it projeds upon something in redity which has no further parts. The
fad that there ae leaves Smply indicates that our partition daes not care dou what,
onthe side of redity, lies beneah a cetain level of granularity. An ojed located at
aminimal cdl isan atom only relative to the partition which we bring to bea.

6 Varieties of granular partitions

In this ®dion we discuss ®me of the more fundamental varieties of thase granular
partitions which satisfy the master condtions (MA1-4 and MB1-6) given above. We
classfy them acording to: (1) degreeof structural fit; (2) degree of completeness
and exhaustivenessof projedion; and (3) degreeof redundancy.

6.1 Structural constraints

We required of granular partitions that they refled the mereologicd structure of the
domain they recognize Remember that such refledionisto be understoodin such a
way that it leases room for the posshility that a partition is merely neutral abou
(traces over) some apeds of the mereologicd structure of its target domain. Taking
this into acourt, we can order granular partitions acarding to the degreeto which
they doindeed succeal in representing the mereologicd structure on the side of the
objeds onto which they are projeded. At the one extreme we have (1): granular
partitions that completely refled the mereologicd relations holding between the
objeds they remgrize At the other extreme ae (2): granular partitions that
completely trace over the mereologicd structure of the objeds they remgnize
(except to the degree that they recognize them as part of the domain in question).
Between these two extremes we have granular partiti ons that refled some but not all
of the mereologicd structure of the objedsthey recmgnize

Under heading (1) are those granular partitions which satisfy the weak converse
of MB5, which meansthat if o, is part of o,, andif both o, and @ are reagnized by
the partition, then the cdl at which o, islocaed isasubcdl of the cdl at which o, is
located. Formally we @an expressthis asfollows:

CM: L(oy,z) and L(0p, 20) and 0, <0, » 21 0 2,
We cdl granular partitions satisfying CM mereologically monaonic.



6.2 Proj ective completeness

So far we have dlowed granular partitions to contain empty cells, i.e., cdls that do
not projed onto any oljed. We now consider partitions which satisfy the cnstraint
that every cdl recognizes sme objed:

CC Z(z,A) - [D:L(o, 2)

We say that granular partitions that satisfy CC projed completely. These partitions
are of particular interest sincein this case projedionisatotal function.

6.3 Exhaustiveness

There may be objeds in ou target domain that are not located at any cdl. The
resulting ganular partitions are not very satisfying: governments want all their
subjeds to be locaed in some cdl of their partition d taxable individuals. They
want their partition to satisfy an exhaustiveness constraint to the dfed that every
objea in the pertinent domain is indeed reagnized. But what does it mean to say
that a partition exhausts its domain? Unfortunately we caana capture this nation
formally by using
*) 0<D(A) - z: Z(z, A) and L(o, 2),

which aserts that if some objed o is part of the domain of the partition A then there
isa cdl zin A that recognizes o. The tax authorities (as of this writing) do nd want
to tax the separate moleaules of their subjeds.

To formulate an acceptable dternative to (*) will be adifficult matter. In fad we
believe that it will be necessary to promote several restricted forms of
exhaustiveness ead ore of which will approximate in dfferent ways to the
(unredizable) condtion d unrestricted exhaustivenessexpressed in (*). To seehow
one such exhaustiveness condtion might work in first (schematic) approximation,
let usintroduce asortal predicate ¢ that singles out the kinds of objeds our taxation
partition is suppced to recgnize (for example, human beings rather than parts of
human beings). We can now demand that the taxation pertition recgrize d of
those objedsin its domain which satisfy ¢:

CEy 0< D(A) and ¢(0) —» [z: Z(z, A) and L(o, 2).
Think of CE, as asserting the ampletenessof one partition relative to ancther, the
¢-totalizer partition, which consists exclusively of minimal cdls in which al and

only the objeds stisfying ¢ are locaed. We will discuss examples of other such
condtionsin sedion 8.

6.4 Redundancy

Granular partitions are natural cognitive devices and the designers and wsers of such
devices build them to serve pradicd purposes. This means that they will normally
strive to avoid certain sorts of redundancy. One sort of redundancy — which we
might cdl correspondence redundancy — is excluded already by condtion CC. This
consists in the presence of necessarily empty cdls (cdls whose labels tell us exante
that no oljeds can be located within them).

But partitions can manifest also what we might cdl structural redundancy, and
thisis not quite so trivial. Consider a partition with a cél | abeled vertebrates, which



ocaurs as a subcdl of the cdl labeled chordates in ou standard hiologicd
clasdfication d the anima kingdam. Almost all chordates are in fad vertebrates.
Suppase (for the sake of argument) that biologists were to dscover that all chordates
must be vertebrates. Then in order to avoid structural redundancy they would
collapse into ore cdl the two cdls of chordates and vertebrates which at present
occupy dstinct levels within their zoologicd partitions. A constraint designed to
rule out such structural redundancy would be:

CR A cdl in apartition never has exadly one immediate descendant.

7 Set theory, mereology, and granular partitions
7.1 Partition theory as an alternative to set theory and mer eology

The theory of granular partitions is intended to serve, first of all, as an aternative to
set theory both as a too of formal ontology and as a framework for the
representation o human common sense. Currently it is the naive portion o set
theory that is used in almost al work on common-sense reasoning and in related
investigations of natural language semantics. Kinds, sorts, spedes are standardly
treaed as sts of their instances; subkinds as subsets of these sets. Set theory nicdy
does justice to the granularity that is involved in ou sorting and classficaion o
redity by treding oljeds as elements of sets, i.e. as sngle whole units within which
further parts are not recognized.

But set theory also hasits problems, not the least of which isthat it suppats no
distinction between natural granular totaliti es (such as the spedes cat) and such ad
hoc totalities as for example: {the moon, Napoleon, justice}. Set theory also has
problems when it comes to deding with the fad that biologicd spedes and similar
entities may remain the same even when there is a turnover in their instances. For
setsareidenticd if and orly if they have the same members. If we model the spedes
cat as the set of itsinstances, then this means that cats form a diff erent spedes every
time anew ca is born o dies. If, similarly, we model an organism as the set of its
cdls, then this means that it becomes a diff erent organism whenever cdls are gained
or logt.

Set theory also has problems when it comes to deding with relations between
objeds at different granularities. An organism is a totality of cdls, but it is also a
totality of moleaules, andit is also atotality of atoms. Y et the arrespondng sets are
distinct, sincethey have entirely distinct members.

More recently, attempts have been made to solve some of these problems by
using mereology as a framework for ontologica theorizing. Mereology is better able
to dojusticein redistic fashion to the relations between wholes and their constituent
parts at distinct levels of generdlity. All the @ove-mentioned totdlities (of cdls,
moleaules, atoms) can be recognized, when treaed mereologicadly, as being ore and
the same. Mereology hes one further advantage over set theory as atod for the sort
of midde-level ontologicd theorizing which the study d common-sense reasoning
requires, namely that it does us not require that, in order to quantify over wholes of
given sorts, one must first of all explicitly spedfy all the parts.

On the other hand, however, mereology, too, has its problems. Abowve dl it does
not have the madiinery for coping with the phenomenon d granularity; for if we
guantify over wholes in a mereologicd framework, then we thereby quantify over



all the parts of such whaoles, both known and unknavn, at al levels of granularity.
Mereology can mimic the advantages of set-theory in this resped only if we depart
from redism and make the idedizing commitment to atomism. (Galton 1999 Set
theory and mereology are then in pradice indistingushable, since eab whole
becomes isomorphic to a cetain set of atoms.

The theory of granular partitions presented in this paper is the product of an effort
to buld a more redistic, and aso a more genera and flexible, framework
embodying some of the strengths of both set theory and mereology while & the
same time avoiding their respedive weaknesss. At the formal level it assumes
standard extensional mereology (Simons 1987 and adds the primitives and axioms
of theories (A) and (B). It thereby avoids the disadvantages of the unrestricted part-
of relation via the intermediate formal madinery of cdls, which adds to mereology
the fedures of seledivity and ganularity.

7.2 Partition theory and set theory

Partition theory, as already naed, is a generaizaion o set theory understood in
Lewis's ense. At the formal level there ae some obvious $milariti es between sets
and ganuar partitions: (a) the subcdl relation and the subset relation are both
partial orders (MAL); (b) the minimal chain condtion (MA2) isthe analogue of the
set-theoretic Begriindungaxiom; (c) the existenceof aroot cdl of which all subcdls
are parts corresponds to the conception d sets as containers; (d) the transparency
and functionality of projedion and locaion (MB1-4) refled analogois feaures of
the dement-of relation.

At the same time there ae anumber of important differences between the two
frameworks. Above dl partition theory is designed to dojusticeto the fad that not
all members of the powerset of a set are of interest in the sorts of natural contextsin
which sorting and clasdfying accur. Partitions are ogrnitive atifads. They
comprehend ony those subcdl-cdl relations which refled some sort of natural
inclusion relation — for example between a spedes and its genus — on the side of
objeds in the world. Some sets then have astructure which predudes them from
being even considered as partitions in the sense defended here. Consider, for
example, the set {{ a, b}, {a c}} . Sincewe have{a} O {a b} and{a} O {a c}, any
correspondng partition would violate MA4, the condtion designed to exclude
doule munting.

8 Granular partitions of geographic space

Granular partitions are, we reped, natural cogritive devices. We asume that the
primary examples of partitions are transparent and structure refleding (they satisfy
all of the master condtions MA1—4 and MB1-6 abowe). If we imagine the system of
cdls of apartition as being ranged over against a system of objeds, with all the cdls
of the partition being accupied by oljeds (under a cetain relation o projedion),
then in the best case we have apartition that is mereologicdly monaone (CM) and
such as to projed completely (CC) and exhaustively (CE,) relative to some
condtion ¢. Such ided granular partitions are thereby also freeof redundancy (CR).
We find examples of such perfedion above dl in the éstrad, fiat domains of
databases and spatia subdvisions.



In what follows we discuss cadastral maps, which come dose to representing
granular partitions which are perfed in the sense defined. We then move on to
discuss caegoricd coverages which fall short of this ort of exad fit between
partition and the mrrespondng oljeds in redity. Finally we discuss the ‘folk’
categorizations of geographic redity.

8.1 The perfect cadastre

The perfed cadastre is what exists in the databases of cadastral authorities. It is what
you seewhen youexamine calastral maps. Y ou seemathematicaly exad lines that
separate land parcds. We are here asaiming for the sake of simplicity that the cdls
on the map projed onto correspondng parces in redity (that the map contains no
errors). We asume dso that al and only parcdsare reagrized bythe minimal cdls
of the calastral partition. Partition cdls are represented, for example, by entries in
the German Grundbuch or in its computational equivalents. There ae very strict
rules for inserting, deleting, or changing cdls in this partition, by means of which
we seek to guarantee that the calastral partition hes the ided properties st forth
abowe.

Land percds arefiat objeds. They are aeded (in nosmall part) throughthe very
projedion d the cdlsin the calastre onto redity itself. Thisisageodetic projedion
of a sort which is described by a small number of axioms. It is mathematicdly well
defined and can even (within certain limits) be computed. This projedion imposes
fiat boundries onto redity in the same way that the plotter draws the lines on a
cadastral map.

The projedion (in ou partition-theoretic sense) has the following properties.
Cadastral partitions are transparent in the sense that cdls corredly remgnize
objeds, i.e., P(z, 0) ~ L(o, 2). Projedion and location are functional relations, i.e.,
one cdl projedsonto ore land parcd and ore parcd islocated at one cdl. Cadastral
partitions are CEy-complete, where ¢ seleds minimal cdls that recogrize pieces of
land that are parcds. (Defining ¢ is a complicated matter of law, and currently there
exist only informal definitions.) The intuition unarlying this thesis is that there ae
no nomans-lands, which means: no zones within the domain of the calastral
partition that are assgned to nocdl within the partition itself. Cadastres stisfy also
CC-completeness in that they do nd contain empty cdls, i.e., cadastral entries that
do nd correspondto any pieceof land. These properties are (in the caes of interest
to us here) ensured by law and by extensive training onthe part of those who are
charged with the task of maintaining the calastre.

Cadastral partitions may reamgrize some mereologicd structure on the side of
their objeds. For example, a calastral partition may recgnize multi-parce estates
aswell as sparate single parcds. If a calastral partition properly recognizes al the
pertinent multi-parcd estates then it is mereologicdly monaone, i.e., CM halds.
Cadastral partitions have the property that they recognize too, some of the
mereotopdogicd structure on the side of their objeds, in the sense that two cdls are
adjacent in the calastre if and only if the mrrespondng land percds are neighbas
onthe ground



8.2 Categorical coverages

Areaclassmaps (W. Bunge 1966 or categoricd coverages (Chrisman 1982 belong
to a type of thematic maps that show the relationship of a property or attribute to a
spedfic geographic aea A prototypicd example of a cdegoricd coverage is the
land wse map, in which a taxonamy of land we dasses is determined (e.g.,
residential, commercial, industrial, transportation) and a spedfic aea(zone) is then
evaluated along the values of this taxonamy (Volta and Egenhdfer 1993. Another
prototypicd example is il maps, which are based on a dassficaion d the soil
covering the surface of the eath (into clay, silt, sand etc.). The znes of a
caegoricd coverage ae ajointly exhaustive and peir-wise digoint subdvision o
the relevant region d space(Bead 1989§.

There ae in fad two redprocdly dependent granular partitions involved in
caegoricd coverages. On the one hand is the partition d the atribute domain (e.g.,
of land wse or of soil types); we can think of the atribute domain with which we
dtart as a continuum, which is then partitioned into discrete bands in light of our
pradicd purposes, cgpabiliti es of measurement, and so forth. On the other hand is
the partition d the surface of the eath into correspondng zones. Both of these
partitions stisfy al of the master condtions st forth above. The dose relationship
between the two has been discussed for example by Bead (1988 and Frank et al.
(1997. The same redprocd relationship is illustrated in the way in which every
caegoricd map (a partition o space standsto its legend (a partition o the dtribute
domain represented onthe map).

Consider, first of all, the spatial comporent of a cdegorica coverage, which isa
partition d some portion of the surfaceof the eath. Using the nationsintroduced in
the foregoing we ae now able to spedfy four properties of this partition more
predsely asfollows:

First, the partition is complete in the sense that there ae no empty cdls (CC).
Seoondy, the minimal cdls of the partition exhawst a catain damain (a part of the
surfaceof the eath) in the sense of CE, , where ¢ seleds topdogicdly simple and
maximal regions that are of one or other of the soil types recogrized by the partition
of the dtribute domain. Consequently the root of the partition remgnizes the
mereologicd sum of al the regions (zones) remgrized by its cdls. Thirdly, the
correspondence between the cdls in the partition o the spatial comporent of a
caegoricd coverage and the zones it recognizes is one-one and orto. The fad that
projedion and location are here total, functional and mutualy inverse is exploited
extensively in the formalization and representation d categoricd coverges (e.g.
Frank et al. 1997, Bittner and Stell 1998 Erwig and Schneider 1999. Fourthly, asin
the cae of cadastral maps, spatia partitions remgrize the mereotopdogicd
structure of their domains in the sense that they are nat only mereologicdly
monaone in the sense of CM but also such that two cdlsin the spatial partition are
adjacent if and orly if the rrespondng parcds are neighbas onthe ground Thisis
the cae becaise the geodetic transformations used to map feaures on the surfaceof
the Earth orto planar maps preserve topdogicd relations (assuming perfed
transformations withou error and moduo the feaure of limited resolution). This
implies that the part-of relation is also preserved by the given mappings. Spatial
partitions can be mnsidered as Venn dagrams and hence they can be transformed



into a partition structure where the part-of relation becomes the subcdl relation
alongthe lines described above.

These properties of their spatial component and the dose relationship between
the spatial and attribute comporents of categoricd coverages mean that the partition
of the pertinent attribute domain also satisfies the following rice onstraints:

First, it is exhaustive relative to the spatial comporent. Every minimal cdl in the
spatial partition (a topdogicdly simple ne of homogeneous coverage) has a
correspondng minimal cdl in the dtribute partition. Thisimmediately foll ows from
the definition o the seledion predicate ¢ for minimal cels of the spatial comporent.
Consequently, the partition d the atribute domain exhausts the domain of all cases
that adually occur in the region covered by the correspondng spatial partition. For
example, if our spatial partition projeds onto a desert, then the crrespondng
partition o soil types neals to be exhaustive for the different types of sand that
ocaur in this area aad which we find it important to distinguish, but it does not need
to contain a cdl labeled ‘clay’. Secondy, projedion and locaion reed bah to be
functional, otherwise the regions carved ou on the spatial side would na be jointly
exhaustive and pairwise digjoint. Both functions may however be partial aslongas
they are exhaustive relative to the pertinent spatial comporent. The locaion function
is partial if there exist soil typesthat are not recogrized by the dtribute partition and
the projedionis partial if there ae empty cdlsin the &tribute partition.

Partitions of attribute domains are not necessarily limited to partitions consisting
only of minimal cdls (and oreroat cdl). Consider a partition d the atribute domain
Land-Use/Land-Coverage. There might be, for example, a norrminimal cdl labeled
agricultural in this partition, with subcdls labeled cultivated cropland, pasture,
livestock, and poutry. Hierarchicd partitions of attribute domains are often creaed
by refinement, i.e., we start with a root cdl recognizing the atribute domain as a
whole and add layers of subcdls in such a way that the mereologicd sum of
everything that is recognized by the cdls of one layer isremgnized also by the root
cdl. Consider for example apartition d the atribute domain ‘Rainfal in inches'.
There might be alayer of cdlsrecgrizing values falling within ore or other of the
threeintervals [0, 5], [5, 10], [10, ), together with more refined layers recogrizing
valuesin: [0, 2.5], [2.5, 5], [5, 7.5], and so forth.

Hierarchicd partitions of the atribute domain creae potentially hierarchicd
partitions of the spatial domain. Notice that the spatial comporent of hierarchicd
caegoricd coverages is not necessarily nonredundant in the sense of CR. In the
spatial comporent of a hierarchicd caegoricd coverage ‘Land Usage (Chicago)’
there might be one single region that is recognized by bdh the cdls ‘Agricultural’
and ‘Cultivated Cropland’ where the second is a subcdl of the first. In this case
location is not a function since the region in question is located within bah cdls.
Tedhnicdly the problem is dedt with by letting orly the most spedfic cdl (the one
farthest away from the roat) projed onto the regionin question.

It isimportant to seethat the regularity of the given partition structures is due to
the fad that the objeds reagnized are fiat objeds carved ou by the projeding
partitions themselves. For example, in the cdegoricd coverage for soil types there
are cetainly bora fide differences between sand and solid rock, but the distinction
between the many soil-types in between are of the fiat sort. They are creaed by
imposing a partition orto the &tribute domain ‘soil on the surfaceof Earth’. (Smith
and Mark 1999 This partition, on keing projeded, then credes as its target a spatial



partition whose cdls are separated by spatia fiat boundries on the ground The
latter demarcae ‘caegoricd zones, which are homogeneous at the level of
granularity determined by the map. The given boundiries smetimes coincide with
borafide boundriesin redity, but in most cases they do nd do so.

8.3 A folk categorization of water bodies

We discussed spatial partitions or attribute partitions that induce spatial partiti ons.
That given pertitions are charaderized by a high degreeof structure and ader isdue
not only to the fadt that they are spatial subdvisions but also to the fadt that there ae
well defined rules (of scientific methoddogy a of law) which gowern their
construction and projedion. Granular partitions in genera are much less well
structured.

body

of
water

* = term appears twice tank

Figure 1: Ontology d Water Bodies and Related Entities, based on Definitions in the
American Heritage Dictionary (taken from Smith and Mark 1999

Smith and Mark 1999analyzed the partition d water bodes and related entities
which can be extraded from the definitions contained in the American Heritage
Dictionary. The graph-theoretic representation d this partition is given in Figure 1.
If we analyzethis graph, then we can see eaily that it isnot atreg sinceit contains
cycles (e.g., pond tank, reservoir, pond. We dso can seethat there ae two cdls
labeled ‘lake’. The latter clealy indicates that location is not a function relative to
this partition.

We hypahesizethat there ae spedal feaures of the definiti ons we find compil ed
in existing dctionaries in virtue of which their underlying taxonamies appea to
deviate from the tree structure. Guarino and Welty (2000 have shown, however,
that such taxonamies can very easily be reconstituted as trees in systematic fashion.
This gives us me mnfidencethat the ideas presented above may be of service dso
in providing a framework for the cnstruction d more mherent taxonomies for use
in dictionaries and data standardsin the future.
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