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Abstract 

Back of the envelope reasoning involves generating 
quantitative answers in situations where exact data and 
models are unavailable and where available data is often 
incomplete and/or inconsistent. A rough estimate generated 
quickly is more valuable and useful than a detailed analysis, 
which might be unnecessary, impractical, or impossible 
because the situation does not provide enough time, 
information, or other resources to perform one. Such 
reasoning is a key component of commonsense reasoning 
about everyday physical situations. This paper presents a 
similarity-based approach to such reasoning. In a new 
scenario or problem, retrieving a similar example from 
experience, sets the stage for solving the new problem by 
borrowing relevant modeling assumptions and reasonable 
values for parameters.  We believe that this tight interweaving 
of qualitative and analogical reasoning is characteristic of 
common sense reasoning more broadly. Understanding the 
feel for magnitudes is another crucial aspect of such 
reasoning, and incorporating effects of quantitative 
dimensions in similarity judgments and generalizations, 
hitherto unexplored, raises very interesting questions. 

1 Introduction 
 
We live in a world of quantitative dimensions, and 
reasonably accurate estimation of quantitative values is 
necessary for understanding and interacting with the world. 
Our life is full of evaluations and rough estimates of all 
sorts. How long will it take to get there? Do I have enough 
money with me? How much of the load can I carry at once? 
These everyday, common sense estimates utilize our ability 
to draw a quantitative sense of world from our experiences. 
 Back of the envelope (BotE) analysis involves the 
estimation of rough but quantitative answers to questions 
where the models and the data might be incomplete. In 
domains like engineering, design, or experimental science, 
one often comes across situations where a rough answer 
generated quickly is more valuable than waiting for more 
information or resources. Some domains like environmental 
science [Harte, 1988] and biophysics [O’Connor and 
Spotila, 1992] are so complex that BotE analysis is the best 
that can be done with the available knowledge and data.  
BotE reasoning is ubiquitous in daily life as well.  Common 
sense reasoning often hinges upon the ability to rapidly 
make approximate estimates that are fine-grained enough 
for the task at hand.  We believe that the same processes 
underlie both these common sense estimates and expert’s 
BotE reasoning to generate ballpark estimates.  Specifically, 
the drawing upon experience to make such estimates, and 

the achievement of expertise in part by accumulating, 
organizing, and abstracting from experience to provide the 
background for such estimates, are the same fundamental 
processes. We claim that qualitative reasoning [Forbus, 
1984] is essential for such analyses for two reasons: 

1. Qualitative models provide analytic framework. 
Understanding what entities and physical processes 
are relevant is crucial in determining what 
parameters are relevant.  Modeling assumptions 
expressed in terms of the conceptual understanding 
of the situation determine when particular 
quantitative estimation techniques are appropriate.  

2. Qualitative models facilitate comparison .  Similarity 
in qualitative, causal structure helps determine what 
experience is relevant when making an estimate.  
Similarity is also used in helping evaluate the 
reasonableness of an estimate.  Including qualitative 
descriptions in remembered experiences along with 
quantitative data facilitates comparison and 
abstraction from experiences.   

 A combination of QR and experiential knowledge seems 
to be the key to BotE reasoning. QR helps us determine 
what phenomena are relevant, and experiential knowledge 
supplies useful default and pre-computed information, 
including both numeric values and relevant modeling 
assumptions, as well as knowledge about similar situations 
that can serve as a reality check for the estimates.   The need 
to compare parameters and to make estimates guided by 
similarity in turn raises interesting questions about what 
role(s) quantitative dimensions play in our judgments of 
similarity, and how we develop our quantitative sense of a 
domain with experience.  
 In this paper, we look at quantitative estimation (also 
called rough estimation, back of the envelope analysis, etc), 
which we believe highlights some of the very important 
questions at the intersection of analogical and qualitative 
reasoning [Forbus and Gentner, 1997], and more. We argue 
that BotE reasoning provides a fertile ground for exploring 
key aspects of common sense reasoning, and present our 
approach towards modeling it. Section 2 presents a brief 
review of relevant research. Section 3 elaborates on our 
approach. Section 4 contains two extended examples that 
illustrate our arguments. Section 5 presents some open 
research issues and our initial attempts to address them, and 
we wind up with our plans for future work. 

2 Related Work 
This section is divided into three subsections. We start with 
a review of psychological work on real-world quantitative 
estimation of dimensions and probabilities. In section 2.2, 
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we review models of similarity. Section 2.3 differentiates 
our work from semi -quantitative reasoning.  

2.1 Psychology of Quantitative Estimation  
Peterson and Beach (1967) review a set of psychological 
studies to test people’s abilities to derive statistical measures 
of populations and samples such as proportions, means, 
variances, correlations, etc. Although some of the studies 
have conflicting results, the key result that people are quite 
good at abstracting measures of central tendency, and there 
are systematic differences in intuitive judgments and 
objective statistical values. For example, people don’t weigh 
all deviations equally in computing variance.  Instead, they 
are quick to believe in a distribution even from a few 
samples, and tend to be conservative in revising their 
measures on the basis of new data points. Tversky and 
Kahneman (1974) reported people’s assessment of 
probabilities of uncertain events. In a very important set of 
results, they show that people make systematic errors 
because of a set of heuristics that they employ.  
 Brown and Siegler (1993) proposed a framework for real-
world quantitative estimation called the metrics and 
mappings framework. They make a distinction between the 
quantitative, or metric knowledge (which includes 
distributional properties of parameters), and ordinal 
information (mapping knowledge). Through a set of 
experiments they showed that the ways people revise and 
assimilate quantitative and ordinal information are quite 
different. Their experiments involved subjects making 
quantitative estimates of populations of ninety-nine 
countries.  Afterwards participants were told the correct 
value for populations of 24 of the countries, and then they 
went through and re-estimated the full set of 99 populations 
(the 24 seed countries and 75 transfer countries). Metric 
properties (as measured by sum of absolute value of errors 
for all of the estimates) improved, but ordinal knowledge 
(the order of different population, as measured by the rank-
order correlation) remained unchanged. On the other hand, 
telling them laws like “Population of European countries are 
generally overestimated”, and “Population of Asian 
countries are generally underestimated”, improved their 
ordinal knowledge.  
 Linder (1999) studied quantitative estimation in the 
context of engineering education. Based on responses to real 
world questions, he tried to build a framework for how 
people do rough estimations. About a hundred mechanical 
engineering seniors at MIT, and fifty each at five other 
universities attempted these estimation questions. He also 
compiled responses from a hundred professionals, out of 
which about there were about thirty each of electrical and 
mechanical engineers, and the rest from other engineering 
and science backgrounds. His focus was how to improve 
engineering curricula, and thus his framework is informal 
and not couched in computational terms; nevertheless, it 
provides an interesting source of data. In one experiment, 
when people were asked to estimate dimensions of an 
aluminum bar, more than 50% came up with correct 
estimates and all the answers were in the correct order of 
magnitude.  However, in the same experiment, when people 
were asked to estimate the power of a DC motor, only about 

30% got it right and the responses varied by six orders of 
magnitude!  We suggest a possible explanation for this 
discrepancy in terms of our model below.   

2.2 Models of Similarity 
In the 1960s, a popular psychological model for similarity 
was to represent objects as points in a psychological space 
of stimulus dimensions, where similarity is defined as the 
distance between points. Multidimensional scaling 
[Shepard, 1962] is a technique designed to uncover this 
psychological space by analyzing people’s similarity 
judgments. This work drew a distinction between integral 
and separable dimensions, and explored how this distinction 
affects our similarity judgments. Tversky’s set-theoretic 
account (1977), where feature commonalities and feature 
differences both affect the similarity between two concepts, 
raised many questions about the metric space model. 
Gentner’s (1983) structure-mapping theory provides an 
account of analogy and similarity that better fits the 
psychological data than either feature space or feature set 
models.  For example, structure-mapping handles 
relationships as well as features, which is crucial for the use 
of similarity in reasoning.  The idea of structural alignment 
also provides deeper insights into the comparison process 
that has led to many new predictions.  For example, 
Markman and Gentner (1993) proposed a structure-based 
model that makes three distinctions: commonalities, 
alignable differences and non-alignable differences. 
Alignable differences are differences along the same roles in 
two representations, whereas non-alignable are differences 
along different roles. So, a hotel and motel have a lot of 
alignable differences, whereas a hotel and motorbike has a 
lot of non-alignable differences. In their recent studies, they 
have shown that people value alignable differences more 
than non-alignable while making similarity judgments.  

2.3 Semi-quantitative Reasoning 
It is important to distinguish between the notion of 
quantitativeness in semi -quantitative reasoning [Berleant 
and Kuipers, 1997] and BotE reasoning. In semi-
quantitative reasoning, functional uncertainty is represented 
by defining envelopes within which functional constraints 
must lie, and parametric uncertainty is represented by 
numeric intervals. Clearly, this is still in the spirit of purely 
first-principles reasoning, in contrast to our similarity-based 
approach to model formulation and parameter estimation.  

3 A Similarity-Based Model of BotE Reasoning  
Back of the envelope reasoning involves the estimation of 
rough but quantitative answers to questions. Most of the 
questions are real-world problems, where usually one does 
not have complete or accurate models or model parameters. 
Yet one can get a lot out of approximate estimates. This 
type of reasoning is particularly common in engineering 
practice and experimental sciences, including activities like 
evaluating the feasibility of an idea, planning experiments, 
sizing components, and setting up and double-checking 
detailed analyses. There is a tradeoff between specificity 
(resolution and certainty in the answer) and economy. As 
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we try to increase the specificity in the answer, the analysis 
requires more resources in the form of time, information, 
formalization, and computation; and one might not have one 
or more of these at hand. There is a large variety of such 
questions, such as  

Q1. Estimate the amount of work a person does shoveling 
the walk after a snowstorm.  

Q2. Estimate the drag force on a bicycle and rider 
traveling at 20 mph.  

Q3. Estimate the energy stored in a new 9-volt transistor 
battery.  

Q4. Estimate the tension of a car’s safety belt if the car 
crashes into a pillar (at speed of 30km/h and 
produces a 30 cm deep dent).  

Q5. How long does it take to reach home from your 
office, or to get ready in the morning? 

Q6. How much money would you be spending on that 
vacation you have planned? 

Q7. You know a recipe that you made for yourself some 
time back – now you have to make it for eight 
people, and you want it less spicy and you ran out of 
one of the ingredients.  

 Questions 1 to 4 are questions that might arise in 
engineering circumstances, whereas Questions 5 to 7 are 
questions that arise in daily life. Question 5 seems more 
based on direct observation than others.  For example, you 
might have earlier noticed how much time it takes for you to 
arrive, or what were your best/worst times, and you recall 
those, and might employ some measure of central tendency 
to come up with a time estimate. In Question 6 (and others), 
it seems that one must build a simple estimation model, and 
use this model to answer the question by estimating in turn 
values for the parameters in the model.  
 Essentially, BotE reasoning involves coming up with a 
numeric estimate1 for a parameter. This can be decomposed 
into two distinct (but not independent) processes.  
 
Direct parameter estimation – This involves directly 
estimating a parameter based on previous experience or 
domain knowledge.  For instance, we might know the value 
of a physical constant, or use a value from a previous 
example that is highly similar to the current problem, or 
combine multiple similar examples to estimate a value 
based on those prior values.  Or, it might be that with 
enough experiences in a domain, one has developed a feel 
for magnitudes. The knowledge and processes involved in 
developing that, for concreteness, we’ll refer to as the sense 
of the quantitative, and in Section 5, we outline our 
hypotheses about how that comes about to be.  
 
Building an estimation model – This is required when the 
parameter to be estimated is not usually directly stored or 
encountered.  In such cases one has to build a model that 
relates the parameter in question to other parameters, which 
in turn must be estimated.  

                                                                 
1 We emphasize the numeric/quantitative aspect of such reasoning 
which is in no way in any conflict with our goals are to understand 
human qualitative reasoning. Qualitative should not be thought as 
necessarily being not quantitative! 

 Lets look at a small exa mple to make this distinction 
clear. Consider the question – How many pieces of popcorn 
would fill the room you are now sitting in? The parameter, 
num-popcorn is not one that one can recall a value from 
the memory – so one way to derive it would be  

num-popcorn = volume-room/volume-
popcorn  …(1) 

Approximating room to a cuboid, and popcorn to a cube 
(considering the voids left after packing in popcorn kernels2 
this is a reasonable assumption),  

num-popcorn = l*b*h / a^3 …(2) 
where l, b, h  are length, breadth and height of the room and 
a is the edge of the cube that describes a popcorn.  In (2), 
we have built an estimation-model for the number of 
popcorn kernels, which we have now described in terms of a 
set of parameters that can be estimated by direct parameter 
estimation. Estimation-model building can be recursive 
(after our initial model in (1), we had to build sub-models 
for the volumes of the room and popcorn).  
 What makes someone good at BotE reasoning? 
Experience with similar estimation tasks, ability to compare 
a parameter with other known values, ease of access to 
estimation models seem to be some of the important factors 
in numeric estimation skill. Some parameters are clearly 
more accessible than others, and there are strong domain 
expertise effects, too. One of the important things as one 
learns a domain is extensive familiarity with the quantitative 
aspects of a domain: when is a parameter value to be 
reasonable/typical, or high, or on the conservative side, etc.  
This could explain Linder’s (1999) results about the 
variability in accuracy of BotE reasoning.  It is not 
surprising that the intuitions of an electrical engineer about 
motors and batteries is more accurate than an a mechanical 
engineer’s intuition, or that mechanical engineers’ answers 
about drag force and tension are more accurate than those of 
electrical engineers. What is this experiential knowledge, 
and how exactly does that help in BotE? 

1. Knowing a large number of examples of various 
problems and scenarios helps in building the 
estimation model. Given a new problem, we can 
solve it by retrieving a similar example from which 
we can borrow relevant modeling assumptions, 
default values, etc.  

2. Exposure to a large number of examples involving 
various quantities in a domain gives rise to sense of 
the quantitative.  

 Thus we see analogical reasoning about within-domain 
experience as being central both to building estimation 
models and to selecting reasonable values for model 
parameters.  To make these ideas clearer, we turn to some 
extended examples for illustration. 
 

                                                                 
2 Of course, if we didn’t have the volume of a popcorn in our 
domain theory, the fact that a cube is a reasonable approximation 
for a single popcorn and its related void, is an interesting (and 
general purpose) estimation modeling strategy.  
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4 Extended Examples 

In this section we look at two examples that illustrate 
various points that we made earlier. Both the questions in 
this section were used in Linder’s study. 
 
Q2 Estimate the drag force on a bicycle and rider 
traveling at 20 mph (9 m/s).  
 One of the important things to note about this problem 
(which is the case with most of real-world estimation tasks) 
is that it is not completely specified.  The basic description 
of the physical situation is very abstract, and most of the 
quantitative information that is needed to solve the problem 
is not provided.   Several subjects, given this problem, 
indicated that they pictured a person on a bicycle from a 
distance from the side and/or the front; and often they made 
sketches of these views [Linder, 1999]. This strongly 
suggests to us that the model formulation phase itself 
involves retrieving a similar known scenario, to fill in the 
details.  
 
Solution I This is a very simple solution. All of the power 
generated by the human is used up in propelling the bicycle 
at the given speed, and that all of it goes to overcoming the 
drag force. Since the estimate of the power that the human is 
producing while cycling under given conditions is the only 
parameter that it uses, the estimate strongly depends upon 
how representative the estimate of power is in the 
circumstances of the problem. 

 
Table 1: Solution I for Q2 

 
Model Power = Force * Velocity 
Parameters Power (produced by the human during 

cycling) = 200 Watts 
Velocity (given) = 9m/ s 
Force (to be estimated) 

Solution Fdrag = 200/9 ̃  22 N  

 
 In the direct parameter estimation for power, it is key that 
we look for human power output during similar activity. It 
turns out that humans can comfortably produce 100 watts of 
power, and up to 1500 watts in spurts.   
 
Solution II This is the more standard solution that a 
mechanical engineer would come up with. The drag 
equation (1), which helps calculate the drag force on a 
moving object due to surrounding fluid, is definitely 
relevant to the problem. The difficulty though is that it has a 
bunch of other parameters that we don’t know of, e.g., the 
drag coefficient, density of air, reference area of the body. 
The drag coefficient (Cdrag) itself captures all complex 
dependencies (on the viscosity and compressibility of air, 
geometry of the body, and the inclination to flow) and is 
usually derived empirically. We look for similar scenarios, 
and indeed there is one, of human falling with terminal 
velocity (maybe in context of skydiving, and this is not a 
rare piece of information, considering that quite a few 
people did use this). In the free-fall scenario, the terminal 

velocity is known, and the drag force is known (as it 
counterbalances gravity, it equals the weight of the person). 
This allows us to estimate the constant of proportionality in 
the drag equation (2), and thus the drag force during 
cycling.   

 
Table 2: Solution II for Q2 

 
Fdrag = Cdrag (1/2 ?V2) A                     …(1) 
Or,  Fdrag = KV2  for same sized objects in 
the same density fluid.                        …(2) 
Plugging the value of K back into (2) gives 
us  Fdrag. 

Model 

Similar scenario: Free-fall, known terminal 
velocity, VT = 50 m/s 
Here, Fdrag_free_fall   = Weight.               …(3) 
K = Fdrag_free_fall /VT 

2 = Weight/ VT 
2  …(4) 

Parameters [A, Cdrag, ? (density of air)] can be lumped 
into K, V (velocity), VT = 50 m/s 

Calculations K = 750/ 50^2 =  0.3  
Fdrag = 0.3 * 9 *9 ̃  25 N  

 

Q3 Estimate the energy stored in a new 9-volt transistor 
battery.  
 This problem is an interesting example, where first 
principles reasoning from the chemistry of energy 
generation in the battery involves complicated domain 
knowledge, and none of the people asked even attempted to 
reason that way. What most of the people did was to 
imagine scenarios where such a battery was being used, and 
try to think from there. And the thing that is beautiful is the 
fact that this calculation gives us an estimate that is just as 
good as the more complex method. This is a nice example 
of where, for the purposes of BotE estimates, ability to 
successfully reason from known scenarios and examples 
buys us as much as far more first principles knowledge 
would. The solution below presents reasoning with very 
little knowledge about the battery. If I don’t know anything 
about 9-volt battery, what is the next similar thing? A lot of 
people thought about car batteries, 1.5-volt AA batteries, 
etc. 
 This example also demonstrates that using examples 
allows us to transform the problem into ways that parameter 
estimation, or model building become more intuitive or 
accessible. For example, knowledge of parameters like the 
rated capacity of the battery, or, resistive load of the bulb 
would have led us to solutions, but we think in terms of 
parameters that are more accessible to us. Besides helping 
understand common sense qualitative reasoning, this is a 
great problem solving strategy for scientific and engineering 
reasoning as well. 
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Table 3: Solution for Q3 
 

Suppose I did not know anything about 
the 9v battery except its size, but I knew 
examples of where 1.5v AA batteries 
were being used. If I make the 
assumption that these two batteries are 
fundamentally the same, and only the 
difference in volume should be 
responsible for difference in energies 
stored. 
Etransistor/EAA = Vtransistor/VAA            …(1) 

Model 

In a small hand-held flashlight, all the 
power provided by the batteries is used 
up in lighting the bulb.  
N * EAA = Pbulb * Life                     …(2) 
Where Pbulb is power rating of the 
flashlight bulb, and Life is the time that a 
new set of batteries will take before they 
die out, and N is the number of batteries 
in a flashlight. 

Parameters and 
Calculations 

N = 2 (number of batteries) 
Pbulb = 1 Watts 
Life = 2 hours 
EAA = 1 * 2 * 3600 * 0.5 = 3600 J 
Vtransistor/VAA = 2 
Etransistor = 7200 J 

 

5 Open Issues  
In section 3, we mentioned estimation model building and 
direct parameter estimation as the two key processes 
underlying BotE reasoning. Our approach is to use 
similarity to guide both of these processes. Structural 
similarity, retrieval and generalization form the substrate for 
this kind of reasoning. What follows is a discussion of 
important issues in trying to extend these theories to handle 
quantities. We believe that answers to these questions will 
form an account of the sense of the quantitative. 
 Our computational account will require extending 
existing computational models of analogical processes.   
The structure-mapping engine (SME) [Falkenhainer et al 
1989] is a computational model of structure-mapping 
theory. MAC/FAC  [Forbus et al, 1995] is a model of 
similarity-based retrieval, that uses a computationally cheap, 
structure-less filter before doing structural matching. SEQL 
[Kuehne et al, 2000] provides a framework for making 
generalizations based on exposure to multiple exemplars. 
With a large number of examples, generalizations will serve 
to ease the organization of information, and also help in 
defining typicality and representativeness with respect to 
parameter values. In order to use experiential knowledge to 
guide BotE reasoning, SME, MAC/FAC and SEQL have to 
be extended so that they can make sense of quantitative 
information.  That is, they already can handle 
representations with numerical parameters, but similarity in 
aligned numerical parameter values does not affect the 

perceived similarity of the descriptions compared.   Here are 
some of the issues that are involved: 
 
How do quantitative dimensions factor in our similarity 
judgments? In our example with the battery, why do we 
think that an AA battery is more similar to the 9-volt than a 
car battery, for example? Because we intend to come up 
with quantitative answers, the similarity comparisons that 
help us retrieve the relevant examples must take into 
account the quantitative dimensions in the representations in 
the first place. Markman and his colleagues have shown in 
many different experiments that people value aligned 
differences to be more important for comparison than non-
aligned differences. An important question that remains to 
be explored is in the case of more than one aligned 
dimension, are all of them equally important, or can one 
deduce relative importance from structural representations? 
 
What are the quantitative inferences that analogy 
sanctions? In the direct parameter estimation task, given a 
base description with a missing value on a dimension, after 
we retrieve one (or more) matches for which the value on 
that dimension is known, what kind of strategies do we use 
to surmise the value for the unknown in our original 
scenario. This is an interesting question, as it is not 
necessary that we have an overall match to make estimates 
along a certain dimension only; and a good match does not 
mean that all the aligned (numeric) dimensions in the base 
and the target are equally close.  
 
How do we generalize along quantitative dimensions? In 
solving the battery example, for example, people say things 
like “1 Amp is too high a current for a walkman.” For 
domains like the price of a computer, for example, there is 
no formal way to carve the parameter space into 
qualitatively distinct regions. Yet, with exposure to multiple 
examples, we sharpen our notions of what it means for a 
personal computer to be cheap, medium-range, or 
expensive. For most of dimensions like the sizes of objects, 
price of particular consumer goods, etc., we typically 
encounter multiple different values for a particular 
parameter whose statistical distribution is unknown to us. 
To be able to estimate a reasonable value for the parameter 
in a scenario, one would need to have a notion of what 
values represent the central tendency, and which are the 
outliers, and so on. Peterson and Beach (1967) review a 
number of studies that show that we are equipped with 
intuitive statistics that helps us make such judgments. We 
are planning to extend SEQL to accumulate distribution 
information about the parameters assimilated into a 
generalization.  
 The primary underlying issue in the above questions is 
that SME, MAC/FAC and SEQL operate on symbolic, 
relational representations3. We believe a key part of the 
solution to the above questions lies in figuring out the right 

                                                                 
3 Which means 99 and 100 are as similar/different as 99 and 
10000, when treated as symbols, they are both non-identical 
symbols, but numerically, the differences in magnitude are quite 
different.   
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representations for quantity and principles for generating 
such representations based on experience. As for the former, 
Qualitative Process Theory [Forbus, 1984] proposed the 
quantity space representation, where a quantity value was 
represented by ordinal relationships with limit points (points 
on a scale where things change, e.g. Boiling and Freezing 
Points of a liquid). QP theory showed that such a 
representation is quite powerful, at the same time allows for 
expressing incompleteness in our knowledge. There is 
psychological and linguistic evidence, albeit indirect, that 
supports the quantity space representation [e.g., Brown and 
Siegler, 1993]. The notion of limit points might be far more 
general than dynamical situations. A generalized notion of 
limit points that extends to examples like cheap/expensive, 
etc., is what we call structural limit points.  The idea is that 
various quantities are relationally tied to each other, or 
things in world come in structural bundles, and the 
structural limit points are discontinuities in this structure of 
relationships.   
 We are not saying that our internal representations of 
quantity are purely numeric, or purely symbolic. Numbers 
are a very powerful representation that can capture as much 
fine-graininess as one wants, and support operations like the 
ability to compare quantities and arithmetic across different 
quantity spaces. A representation of quantity that captures 
common-sense reasoning will have to support these types of 
tasks. One of the important things in estimation is the ability 
to compare quantities. If the parameter itself is not known, 
then finding a comparable parameter, e.g., one might think 
of the ceiling as 1.5 times the height of a person, so about 
10ft is a reasonable estimate. Guerrin (1995) presents a 
scheme to map a quality space onto the set of integers so 
that one can define arithmetic, and with the refinement and 
abstraction operator, symbols from different quality spaces 
can be compared. We think an approach like that might be 
helpful in mapping between qualitative and quantitative 
scales.  

6 Summary 
In this paper we have proposed a similarity-based model of 
back of the envelope reasoning.  We propose that the same 
processes are used in both everyday common sense 
reasoning and in scientific and engineering reasoning.  We 
also propose that these processes are highly experience-
based, using within-domain analogical reasoning and 
similarity to retrieve, apply, use, and generalize from 
specific examples and previous problem-solving experience.  
This model of qualitative reasoning relies heavily on 
analogical reasoning, and is equipped with a strong sense of 
quantitative dimensions. We suspect this to be at the heart of 
common sense reasoning about the physical world.   
 We are currently exploring this model by using our 
analogical processing software (SME, MAC/FAC, and 
SEQL) to create a BotE problem solver.  This involves 
developing a corpus of examples, including descriptions of 
objects, situations, and behaviors with quantitative 
parameters.  The BotE problem solver we are building will 
store the solutions it derives in its memory, to model the 
accumulation of problem-solving expertise.   
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