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Abstract 
Reasoning by analogy is a central phenomena in cognition. 

Existing computational models of analogy provide accounts of 
how analogical inferences are generated, but do not specify 
how they might be evaluated or integrated with other methods 
of reasoning. This paper extends the model of analogical in- 
ference in structure-mapping theory in two ways. First, we 
propose techniques for the structural evaluation of analogical 
inferences, to model one of the factors people appear to use in 
evaluating the plausibility of arguments based on comparisons. 
Second, we propose an information-level model of analogical 
inferences that supports reasoning about correspondences and 
mappings. We describe how this model fits with existing psy- 
chological evidence and illustrate its operation on several ex- 
amples, using a computer simulation. These examples include 
evaluating the validity of a qualitative mental model and a 
prototype case-based coach that is being added to an already- 
fielded intelligent learning environment. 

Introduction 
Psychological results on analogical reasoning suggest 

that there are core techniques of comparison and analogical 
inference uhich, in concert with other processes, are used in 
tasks ranging from perception to conceptual change 
[Genmer & Markman 19971. Yet there has been surpris- 
ingly little research on analogical inference. Existing com- 
putational models of analogy model the generation of candi- 
date inferences (Genmer, 1982, 1983; Holyoak, Novick, & 
Melz, 1994; Keane, 1990). and particular simulations have 
used candidate inferences in modeling analogical reasoning 
and learning in physical domains (Falkenhainer, 1987; For- 
bus, Ferguson, & Genmer, 1994). but no models of analogi- 
cal inference with a level of generality on par with models of 
mapping and retrieval have been proposed. Within the case- 
based reasoning (CBR) community analogical inference (or 
adaptation) has been one of the least explored aspects. 
Many effective CBR systems only act as retrieval systems, 
counting on human partners to understand and apply the 
retrieved information (Kolodner 1994; Schank & Cleary 
1994). Those which do adaptation (c.f. Carbonell et a1 
1991 ; Kass 1986; Leake 1996) rely on domain-specific and 
task-specific methods. Our goal here is a domain-general 
account of how analogical inferences are evaluated and inte- 
grated with other knowledge. 

Analogical inference is a complex phenomena, involving 
interactions of analogical processing with a variety of other 
cognitive processes. This paper provides another step to- 
wards a computational model of analogical inference, by 
extending Gentner's (1 983) structure-mapping theory in two 
ways. First, we describe a method for structural evaluation 
of analogical inferences, which estimates how promising an 
inference is based on its form and the mapping that gener- 
ated it. There is evidence that people use such estimates in 
deciding whether to pursue an analogy and which inferences 
are worth exploring further. Second, we describe a logical 
form for expressing analogical inferences that enables them 
to be integrated with other reasoning processes. 

Our model is intended as a cognitive model in two re- 
spects: (1) The structural evaluation method should give 
answers that produce the same ordinal preferences in tasks 
as human subjects. (2) The logic of candidate inferences 
stands as an information-level model of the iustifications 
someone would give for an analogical inference. We de- 
scribe how this model is consistent with existing psycho- 
logical evidence on analogical inference. We also illustrate 
how a computer simulation of the model can combine 
qualitative reasoning with analogical inferences to evaluate a 
possible analog for a home heating system, and how these 
techniques are being used in a prototype case-based coach 
for an intelligent learning environment. 

Review of S tructure-Mapping 
According to structure-mapping theory, an analogy 

match takes as input two structured representations (base 
and target) and produces as output a set of mappings. Each 
mapping consists of a set of correspondences that align 
items in the base with items in the target and a set of candi- 
date inferences, which are surmises about the target made on 
the basis of the base representation plus the correspon- 
dences. The constraints on the correspondences include 
structural consistency, i.e., that each item in the base maps 
to at most one item in the target and vice-versa (the I: I con- 
straint) and that if a correspondence between two statements 
is included in a mapping, then so must correspondences 
between its arguments (the parallel connectivity constraint). 
Which mapping is chosen is governed by the systernaticity 
constraint: Preference is given to mappings that match sys- 
tems of relations in the base and target. Each of these theo- 



retical constraints is motivated by the role analogy plays in 
cognitive processing. The 1 : 1 and parallel connectivity con- 
straints ensure that the candidate inferences of a mapping are 
well-defined. The systematicity constraint reflects a (tacit) 
preference for inferential power in analogical arguments. 

The Structure-Mapping Engine (SME) (Falkenhainer et 
a1 1986, 1989; Forbus et a1 1994) is a cognitive simulation 
of analogical matching. Given base and target descriptions, 
SME finds globally consistent interpretations via a local-to- 
global match process. SME begins by proposing correspon- 
dences, called match hypotheses, in parallel between state- 
ments in the base and target. Then, SME filters out structur- 
ally inconsistent match hypotheses. Mutually consistent 
collections of match hypotheses are gathered into global 
mappings using a greedy merge algorithm. An evaluation 
procedure based on the systematicity principle is used to 
compute the structural evaluation for each match hypothesis 
and mapping. These numerical estimates are used both to 
guide the merge process and as one component in the 
evaluation of an analogy. 

Figure 1 : If propositions A-E and entities a-e are part of a map- 
ping, then {F,G,E,e,f) would be used to generate a candidate infer- 
ence. {E,e) are the "border" of the inference. 

Candidate inferences for a mapping are generated by ex- 
anlining how the base intersects the mapping. Let a root of 
a description be a statement that is not the argument of any 
other statement in the description. If a root participates in 
the mapping, then it is part of the overlap between base and 
target, and can provide no new information. If a root is not 
part of the mapping, but has subexpressions that are part of 
the mapping, then a candidate inference is computed. In 
Figure 1, A, D, and F are roots. Since A and D participate in 
the mapping, only F serves as a starting point for a candidate 
inference. The form of the inference is the root expression, 
with substitutions made as necessary from the correspon- 
dences, and with skolem functions introduced for base con- 
stants that do not have correspondences (i.e., f i n  Figure 1). 

Evaluating and Using Analogical Inferences 
Structure-mapping theory defines analogical inferences 

as projections from the base that are structurally supported 
by the correspondences of a mapping. SME provides algo- 
rithms for automatically generating them. However, this is 
not enough: analogical inferences must be evaluated and 
used. Two central issues are: 
1. How can the plausibility of analogical inferences be 

estimated? In addition to domain and task constraints, 

structural properties of the match are used by people as 
a factor in estimating plausibility. 

2. What is the logical/explanatory import of analogical 
inferences? To capture their use in human reasoning, 
we must be able to couple analogical inference with 
other forms of reasoning. 

We address each issue in turn. 

Structural evaluation of candidate inferences 
The structural evaluation of a mapping provides an esti- 

mate of match quality, based on the nature of the overlap. 
We suggest that a similar structural evaluation occurs psy- 
chologically for candidate inferences. However, for candi- 
date inferences we postulate two distinct dimensions: 

Support: How much structural support does an analogi- 
cal inference derive from the mapping that generated it? 
Extrapolation: How far does an analogical Inference go 
beyond the support lent by the mapping? 

We believe these two measures have significantly differ- 
ent functional roles. Support is the measure most like the 
structural evaluation of mappings: More is always better. 
Extrapolation is more complex: High extrapolation seems 
desirable in tasks like brainstorming or theory generation, 
but low extrapolation may be preferable for within-domain 
comparisons involving highly familiar situations. Conse- 
quently, we define each independently, although they are 
computed in a similar fashion. 

The support and extrapolation structural evaluation al- 
gorithms are variations of the algorithm used for mappings. 
The score of a mapping is the sum of the scores of its corre- 
spondences. The scores of the correspondences are com- 
puted by the following algorithm: (1) each correspondence 
is given some initial score wi and then (2) scores are incre- 
mented via a trickle-down method to enforce the systema- 
ticity preference for deep matching structures. That is, if 
w ( M H , )  is the score associated with a match hypothesis MH,, 
MH, is a match hypothesis that applies to one of MH~'s  argu- 
ments, and 6 is the trickle-down factor, then w (MH,) is in- 
cremented as follows: 

W (MH,) 4- max(W (MH,) + 6W (MH,) ; 1.0) 

To compute the support score of a candidate inference, 
this same algorithm is used on the correspondences that sup- 
port it in the mapping and adding up the results. Returning 
to Figure 1, the inference relies on the correspondences for 
E, d, and e, so the support score would be the sum of the 
scores for their correspondences. Notice that the support 
score encodes the systematicity preference: Trickle-down 
from E affects the scores for d and e. 

The extrapolation score of an analogical inference is, 
roughly, the size of the new information over the total size 
of the inference. Consider two limiting cases. If there were 
no support (i.e., a hallucination), all the information would 
be new, so the extrapolation score would be 1. If there 
were nothing new (everything was there already), then the 
score would be 0. Any real candidate inference will be 
somewhere in between these two values. 

The algorithm for computing extrapolation scores is 
1. Apply the trickle-down algorithm used to score corre- 
spondences to the structure of the inference itself, i.e., as if 
we were matching the inference to itself 
2. The extrapolation score is 



where inside refers to the items in the candidate inference 
that are part of the mapping and outside refers to the items in 
the candidate inference that are being projected. Again re- 
ferring to Figure 1, the extrapolation score in this case 
would b e  

W ( F )  + W(G) + W ( f )  

Using the trickle-down algorithm provides a more con- 
servative score than simply counting items would, since the 
existence of large structures outside the mapping will lead to 
higher scores inside the mapping due to trickle-down, al- 
though this effect is limited by the non-linearity of the 
trickle-down scheme, as noted above. 

A logic of candidate inferences 
The second requirement for evaluating candidate infer- 

ences is the ability to express them in a form that can inter- 
act with other processes. Let c be a candidate inference. 
We require c to be a proposition. Intuitively, the validity of 
c depends in part upon the validity of the correspondences 
that support it. We reify correspondences as propositions as 
follows. Let MH (b,, t,) be the hypothesis that bl in the base 
corresponds to, i.e., matches, tl in the target. The seman- 
tics of MH statements reflect the consistency constraints on 
match hypotheses, e.g., ~ ~ ( b ~ , t ~ )  is inconsistent with 
MH (b,, t,) and MH (b2, t,) , for bl#b2 and t,+t,. 

Analogical inference is not deductively valid1. That is, 
we may assume an analogical inference to be true in the ab- 
sence of evidence to the contrary, but stand ready to retract 
it if it is implicated in a contradiction. Also, invalidating 
one analogical inference does not necessarily rule out other 
inferences made by the same mapping2. Therefore we must 
be able to express belief in the plausibility of each candidate 
inference independently. Let PLAUSIBLE- CI ( c )  be the 
proposition that candidate inference c is plausible, given 
available knowledge. PLAUSIBLE-CI is nonmonotonic, in 
the same sense of McCarthy's (1 987) ABNORMAL predicate or 
Hobbs et a1 (1993) ETC predicate. That is, we assume that 
in reasoning PLAUSIBLE-CI statements are assumed to be 
true in the absence of information to the contrary, but will be 
viewed as candidates for retraction if contradictions arise. 

Given these definitions, we can now express an analogi- 
cal inference as follows: 

MH (bl, tl) &...&MH (b,, t,) &PLAUSIBLE-CI ( C )  C 

That is, the candidate inference is justified by the corre- 
spondences between the base and target, unless it is discov- 
ered to be invalid. 

A further piece of vocabulary is needed in order to cap- 
ture the intuition that belief in a candidate inference is tied 
to belief in the mapping that generated it. The importance of 
structural consistency in analogical reasoning suggests that 

See Falkenhainer (1990) for a discussion of the relationship be- 
tween analogy, deduction, abduction, and induction. 

One prediction of the atom/solar system analogy is that electrons 
would have "moons" orbiting them. The failure to find these 
moons did not cause the analogy to be abandoned. 

people work with mappings rather than isolated correspon- 
dences. The predicate USING-MAPPING serves as a control 
assertion indicating belief in the set of correspondences 
structurally entailed by a mapping. Each USING -MAPPING 
statement justifies MH statements concerning its correspon- 
dences, i.e., if mapping M pairs items b,, t, ... b,, t,, then 

USING-MAPPING (M) 3 MH(~,, t,) 

USING-MAPPING I M )  a MH(bp, tp) 
With this vocabulary the results of analogical matches 

can be expressed in a form that captures our intuitions about 
the strucvral dependencies of a candidate inference. For 
purposes of simulation, this vocabulary can be used to ex- 
press the results of analogical processing in a form that can 
be used by other processes. This facilitates the simulation of 
tasks that use analogical inferences in combination with 
other reasoning processes. 

Implementation 
We have extended SME to compute the support and ex- 

trapolation scores for candidate inferences. We integrated 
SME with the LTRE reasoning system ffom Forbus & de 
Kleer (1993). Promising analogical inferences (based on 
task-specific criteria) are installed in the LTRE according to 
the logic described previously, and assuming the PLAUSI- 
BLE-CI statement to be true by default. 

Psychological Support for the Model 
The ability to identify which inferences follow from a 

given set of correspondences has been demonstrated ex- 
perimentally (Clement & Gentner 1991; Spellman & HO- 
lyoak 1996). Markman (in preparation) has demonstrated 
that analogical inferences follow structural consistency, even 
when there are multiple possible mappings. Our model for 
the logical form of analogical inference is consistent with 
these results. 

Our definition of support score is consistent with several 
lines of evidence. Psychologically, matches involving larger 
systems of statements are viewed by subjects as more sound 
(Gentner et a1 1993). Clement & Gentner (1991) showed 
that subjects made predictions based on statements con- 
nected to a common antecedent in the base, and that candi- 
date inferences connected to systematic base structures are 
preferred to those which are not. 

Similarity has been suggested as a central process in in- 
duction tasks (Heit & Rubenstein, 1994; Lassaline 1996; 
Osherson et  a1 1990), so it is useful to see how this model 
fits with these studies. Lassaline (1996) asked subjects to 
rate the similarity of pairs of fictitious animals and the in- 
ductive strength of a property inference (i.e., if A has x, w, 
and z ,  and B has x, Y, and z, how likely is it that A has Y?, 
where A and B were fictitious animals and the rest of the 
variables were filled in with properties such as "dry flaky 
skin" or "attacks of paranoia") . Adding a relation in the 
base that explained the inferred property (i.e., telling the 
subjects that in B, x causes Y whlle leaving the description of 
A unchanged) increased inductive strength, but adding a re- 
lation that was not connected to the inference did not. A 
simple model of this task is to treat it as analogical mapping, 
with animal B serving as base and animal A as the target, 



and treating inductive strength as a function of the candidate 
inference support score. Using these assumptions, a simula- 
tion of her experiments also yields this result3. Figure 2 
illustrates. 
--------------------------- --------------------------- 
Base description ex2-la-lr-B 

(CAUSE (DRY-FLAKY-SKIN B) (FREQUENT-HEADACHES B) ) 

(RESTLESS-SLEEPING-HABITS B) 

(ACTIVE-METABOLISM B) 
........................... --------------------------- 
Target description ex2-la-lr-A 

(RESTLESS-SLEEPING-HABITS A) 

(ACTIVE-METABOLISM A) 

(DRY-FLAKY-SKIN A) 
.......................... .......................... 
Mappings for <SME 4s. 

;; Mapping 5: Score 0.4950 

[Correspondences omi ttedl 

Inferences: 

(CAUSE (DRY -FLAKY -SKIN A) (FREQUENT-HEADACHES A) ) 

Support = 1.082 
Extrapolation = 0.520602569782898 

Figure 2: An example of simulating inductive inference 
via analogical mapping. 

volved more typical members of a category. l'he structural 
descriptions for more typical members of a category might 
have more overlap among themselves than descriptions of a 
set of less-typical members, thus they might provide more 
- - - - - - - 

Inference: 

(implies 

(and (continuous-settable-control thermostat) 

(controls (setting thermostat) furnace)) 

(qprop (applied-heat furnace) 

(setting thermostat))) 

Support = 6.0 

Extrapolation = 0.273607748184019 

[...details omitted ... I 
Contradiction found for 

#<CANDIDATE-INFERENCE #x10799D8> 

of <Mapping 32>: 

1. Setting of THERMOSTAT controls FURNACE. 

2. THERMOSTAT is a continuously settable control. 

3. applied heat of FURNACE has no indirect 

influences. 

Retracting #<CANDIDATE-INFERENCE #x10799D8>. 

1 Figure 3: Mental model denied. 
support for candidate inferences. 

Examples 
Heit and Rubenstein (1994) found that people make 

stronger inferences about whether one animal has a property We have tested our model of analogical inference on a 

based on another animal's having it when the kind of prop- variety of examples. We describe two examples next to 

erty to be inferred (anatomical or behavioral) matches the illustrate that it can operate on complex representations, 

kind of similarity between the animals (anatomical or be- including automatically generated descriptions. 

havioral). For kstance, people judge the likelihood that 
whales travel shorter distances in extreme heat to be higher 
when told that tuna do, relative to when they are told that 
bears do, presumably because whales and tuna have more 
behavioral overlap (both swim) while whales and bears 
match anatomically (both mammals). If subjects are linking 
new properties with their existing knowledge about these 
animals, then this result is consistent with our model because 
the set of support for the analogical inference would be 
higher. 

Osherson e t  a1 (1990) investigated multi-premise induc- 
tive arguments, i.e., robins use serotonin as a neurotrans- 
mitter, bluejays use serotonin as a neurotransmitter, there- 
fore sparrows use serotonin as a neurotransmitter, modeling 
them as category-based induction. They give similarity a 
central role in their model, but assume only that a numerical 
value for the similarity of two objects (again, animals) can 
be computed. The structural evaluation of a mapping could 
serve this purpose. If we firther assume a SEQL-like model 
of abstraction from multiple comparisons (Skorstad, Gent- 
ner, & Medin, 1988), analogical inference may also play a 
larger role in explaining some of the same phenomena. For 
example, Osherson et a1 found that an argument that a prop- 
erty held for a category was stronger if the premises in- 

Lassaline also found that adding shared attributes increased in- 
ductive strength, while adding shared relations did not. Our model 
does not exhibit this behavior. However, other experiments have 
found, consistent with our model, that inductive strength increases 
with similarity (Osherson et a1 1990). 

Evaluation of potential analogs 
A common misconception about home heating systems is 

that, if your house is cold, setting your thermostat to a higher 
setting than ultimately desired will cause it warm up faster. 
Kempton (1986) showed in interviews that this faulty mental 
model is often due to mistaken analogies, such as a gas 
pedal analogy. Pushing the pedal down farther causes the car 
to reach the desired speed sooner because the engine will 
supply more power to the wheels. Adopting this analogy 
typically leads to higher heating bills without increased com- 
fort, since the temperature will not increase any faster, and 
eventually will overshoot and must be turned down. 

How might someone escape from this mistaken analogy? 
The ability to integrate analogical inference with other forms 
of reasoning enables us to model the process of evaluating 
such analogies. It is well-known that in common sense rea- 
soning it is virtually impossible to have a complete set of 
antecedents for conclusions (McCarthy 1987). Thus in the 
gas pedal scenario, the control relationship between the en- 
gine and the continuous nature of the gas pedal's setting 
might be conjectured to be suff~cient to provide continuous 
control over the engine, which means that more throttle 
leads to faster attainment of a desired speed. Using SME to 
compare two representative descriptions, a single mapping is 
generated whose candidate inference is shown in Figure 3. 
The home heating scenario, with this inference, is then ana- 
lyzed using a qualitative physics system (Forbus, 1984) on 
the same description database that SME used. After instan- 
tiating a simple domain theory, finding what physical proc- 
esses were acting, and resolving influences to figure out the 



causal dependencies between quantities, a contradiction was 
found because, according to the domain theory, the applied 
heat of the furnace is an independent parameter. (This ex- 
planation is also shown in Figure 3) 

Case-based Coaching in Education 
CBR systems are sometimes used in educational soft- 

ware as a coach, to support students doing a task (e.g., 
Schank & Cleary 1994). We are adding a software design 
coach to CyclePad (Forbus & Whalley, 1994), an intelligent 
learning environment for engineering thermodynamics. Cy- 
clePad is based on the idea of teaching principles by engag- 
ing students in design tasks, such as designing power plants, 
aircraft engines, and refrigerators. CyclePad is currently in 
experimental use by students at Northwestern University, 
Oxford, and the US Naval Academy. A recurring problem 
is that students, being novice designers, tend to get stuck. If 
their design fails to meet its requirements, how might they 
improve it? Case-based coaching is a natural approach for 
this task, since basing advice on interesting examples gives 
students additional motivation and context. 

We have used our analogical inference system to create a 
prototype case-based coach module for CyclePad. The idea 
is this: When the student asks for help, the current state of 
their design is augmented with a teleological description 
generated by CARNOT (Everett, 1999, a program that rec- 
ognizes the intended purpose of the parts of the cycle and 
how they are relevant to the student's goals. This descrip- 
tion is used to retrieve a case from a library of designs that 
solves a similar problem. Using analogical inference to 
adapt this example to the student's particular problem, the 
coach will then offer concrete advice on how the student 
might improve their design, using the case as its justifica- 
tion. (See Fig. 4) With the exception of automatic linking of 
task-specific criteria and connecting it to the existing Cy- 
clePad interface, this coach has been fully implemented. 

The case library is directed at design problems students 
are likely to have. Entries in the case library are created as 
follows: The domain expert uses CyclePad to construct a 
cycle that illustrates a particular problem. In "watch me" 
mode, the expert then modifies the design in a way that fixes 
the problem. Thus the structural description of the cycle, 
CARNOT's teleological analysis of what the cycle does and 
how each part of the cycle contributes to this function, and a 

Case Studept-Design 

I({-T" Boiler .t1;1 
Condense 

Reheater I Boiler Pump - I 
P.um . 

Figure 4: Case-based coaching provides design tints 1 

formal representation of the expert's transformation are all 
automatically generated for the case. The only hand-input 
part of the representation is the expert's specification of the 
exact name of the problem, i.e., low thermal efficiency or 
high operating cost, which has to be stated in a tightly con- 
strained formal representation language and added to the 
case. The selection of 12 initial cases was based on the 
likely needs of intermediate thermodynamics students. The 
test problems were generated in the same way. The average 
number of expressions in each case is 77 and the average 
number of entities is 19. 

We use the MACFAC retrieval model [Forbus et a1 
19951 to retrieve cases. MACIFAC output's is further fil- 
tered as follows: Any candidate inference that does not hy- 
pothesize a transformation is eliminated from consideration 
as irrelevant. (There can be at most one relevant inference 
per retrieved case, but sometimes there are one or two extra, 
irrelevant inferences, and sometimes a retrieved case does 
not yield a useful inference.) For those remaining, the infer- 
ence with the highest support score is chosen as the advice 
to give to the student. 

In our experiments so far, we have found that when mul- 
tiple cases were retrieved, choosing the analogical inference 
with the highest support score always provides the optimal 
advice. This result should be viewed with caution, since the 
number of problems tried has been small, the case base is 
onlv about one-fourth of what we believe is needed for 
broad coverage, and, most importantly, it has not been field- 
tested with students. Even so, this does suggest that general- 
purpose cognitive simulation tools, operating on rich, auto- 
matically generated case libraries, can provide accurate and 
efficient case-based coaching. 

Related Work 
In addition to the case-based reasoning work mentioned 

earlier, there are a variety of cognitive models of analogical 
mapping and retrieval. Existing models of general analogical 
processing (such as Keane's (1990) IAM, Holyoak & Tha- 
gard's (1989) ACME, and Humrnel & Holyoak's (in press) 
LISA) often provide methods for generating inferences. 
However, they do not provide evaluation methods or inte- 
grate them with other reasoning systems. Furthermore, 
ACME and LISA do not guarantee to produce structurally 
consistent mappings, which makes it difficult to get accurate 
analogical inferences (Gentner, 1982; Markman, in prepa- 
ration). Falkenhainer's (1990) PHINEAS used SME in a 
model of scientific discovery. Its techniques for using and 
evaluating analogical inferences were specific to its task and 
domain. 

Discussion & Future Work 
Analogical inference is a complex phenomenon to model 

because it involves the interaction of a number of cognitive 
processes. In this paper we extended the structure-mapping 
notion of candidate inferences in two ways. First, we pro- 
posed a method for the structural evaluation of candidate 
inferences. This allows evaluating the goodness of the in- 
ference in terms of its relation to the mapping that generated 
it. Second, we developed a vocabulary for logically ex- 
pressing the relationship between a candidate inference and 



the structural correspondences that support it. These exten- 
sions appear compatible with the overall pattern of psycho- 
logical results on analogical inference. Moreover, we have 
demonstrated that they can be implemented effectively and 
used in systems that combine analogical reasoning with 
other forms of reasoning and can operate with complex, 
automatically generated representations4. 

We are exploring this model further in two ways: (I)  we 
are designing experiments to test the psychological plausi- 
bility of the extrapolation score and other predictions of the 
model and (2) we are integrating this model into a new cog- 
nitive simulation of analogical problem solving and reason- 
ing. We hope that these extensions bring us a step closer 
towards a full computational model of analogical inference. 
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