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Abstract 
Most CBR systems rely on a fixed library of cases, where 
each case consists of a set of facts specified in advance.  
This paper describes techniques for dynamically extracting 
cases for analogical reasoning from general-purpose 
knowledge bases, and dynamically expanding them during 
the course of analogical reasoning.  These techniques have 
several advantages: (1) Knowledge authoring is simplified, 
since facts can be added without regard to which case(s) 
they will be used in.  (2) Reasoning is more efficient, since 
task constraints can be used during case extraction to focus 
on facts likely to be relevant.  (3) Larger problems can be 
tackled, since cases can be dynamically expanded with more 
details during the matching process itself, rather than 
starting with completely detailed cases.  We describe 
algorithms for case extraction and case expansion, including 
how a version of the Structure-Mapping Engine (SME) has 
been modified to incorporate this new matching technique.  
The utility of this technique is illustrated by results obtained 
with two large knowledge bases, created by other groups, 
and used to answer questions in the DARPA High-
Performance Knowledge Base Crisis Management 
Challenge Problem. 

Introduction 
Analogical reasoning operates by comparing cases.  In 
most case-based reasoning systems, cases are stored as 
named collections of facts in a memory (c.f. [15, 16]).  
Most CBR systems are designed for a specific range of 
problems, and this strategy can be effective for such tasks.  
However, it becomes problematic for creating systems that 
can tackle multiple types of problems, involving very large 
amounts of knowledge.  An International Crisis 
Management Assistant, for example, would require 
substantial knowledge of the nations of the world and their 
history.  How should this knowledge be organized into 
cases?  For example, facts about Great Britain presumably 
appear in cases describing WWI, WWII, and Great Britain, 
as well as cases describing interactions of Great Britain 
with other countries and describing events that occur inside 
it.  Knowing what to store where becomes a complex issue, 
leading to potential missed inferences and storage 
redundancies.  Worse, different tasks demand different 
types of information.  Reasoning about Great Britain’s 
military options in response to a hypothetical threat is, for 
instance, unlikely to require knowledge of its livestock 
feeding practices, although such practices are very relevant 
in reasoning about its economic relationships with the rest 
of the European Union.  The static organization of 
knowledge into cases, whose contents are crafted by 
human designers in advance, is unlikely to scale to this 
level of application system, let alone the human-like 

flexibility of common sense reasoning. 
 
Considering what would be involved in scaling up to 
human-sized knowledge bases raises a second problem 
with case organization: Controlling level of detail.  For 
example, a representation of the Persian Gulf War might be 
broken into three major phases: the invasion of Kuwait, 
Operation Desert Shield, and Operation Desert Storm.  
Each of these phases consists in turn of various events, 
which are often further decomposable, and so on.   Similar 
examples abound in medicine, engineering, science, and 
business.   A rich case library should describe complex 
systems and events at multiple levels of detail.  
Unfortunately, larger cases are more expensive to match: 
directly comparing two full cases containing thousands of 
propositions can easily blow out even today’s large 
memories and render a system too slow to be usable.  The 
ability to modulate the level of detail during matching 
seems essential to scaling up. 
 
This paper proposes a new method for organizing and 
using case libraries in analogical reasoning.  The idea is to 
store the facts of all cases in a general-purpose knowledge 
base, and automatically extract relevant subsets of 
knowledge for reasoning, based on task constraints.  This 
leads to two techniques:  
1. Dynamic case extraction extracts case contents from a 
knowledge base, given a target entity and a query about 
that entity.   
2. Dynamic case elaboration expands a case during the 
matching process, adding more information to help the 
matcher decide between competing submatches. 
 
These techniques have three advantages.    First, they 
simplify knowledge authoring: Concrete, specific facts can 
be added without regard to which case (or cases) they are 
part of, since that decision will be made automatically.  
Second, reasoning with cases can be made more efficient: 
The contents of a case can be partially determined by the 
current task, thus eliminating irrelevant material from 
consideration.  Third, larger cases can be handled.  In a 
fixed-contents case memory, finding the right level of 
detail is a difficult tradeoff.  Too little detail, and useful 
inferences will be missed.  Too much detail, and the 
reasoning system bogs down.  We show that dynamic case 
expansion enables us to handle detailed cases that, on the 
same system, lead to memory blowouts if matched directly. 
 
The next section begins with a brief review of the relevant 
aspects of structure-mapping theory, SME, and 
MAC/FAC, the analogical reasoning approach and tools 
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we are using.  Then we describe the methods we use for 
structuring cases in a knowledge base and extracting 
relevant aspects of them via KB queries.  Dynamic case 
expansion during matching is discussed next.  Empirical 
results obtained as part of the DARPA High Performance 
Knowledge Bases Crisis Management Challenge Problem 
follow, showing that these techniques work well with two 
different knowledge bases and case libraries, neither 
authored by us.  Finally, we discuss related work and 
future plans. 

Prelude: Cases and analogical matching 
According to structure-mapping theory [11], an analogy 
match takes as input two structured representations (base 
and target) and produces as output a set of mappings.  
Each mapping consists of a set of correspondences that 
align items in the base with items in the target and a set of 
candidate inferences, which are surmises about the target 
made on the basis of the base representation plus the 
correspondences.  The constraints that govern mappings, 
while originally motivated by psychological concerns [11], 
turn out to be equally important for the use of analogy in 
case-based reasoning, since they ensure that candidate 
inferences are well defined and that stronger arguments are 
preferred [12].   
 
Two simulations based on structure-mapping are 
particularly relevant to this paper.  The Structure-Mapping 
Engine (SME) [1,5,7] is a cognitive simulation of 
analogical matching.  Given base and target descriptions, 
SME finds globally consistent interpretations via a local-
to-global match process.  SME begins by proposing 
correspondences, called match hypotheses, in parallel 
between statements in the base and target.  Then, SME 
filters out structurally inconsistent match hypotheses. 
Mutually consistent collections of match hypotheses are 
gathered into global mappings using a greedy merge 
algorithm. An evaluation procedure based on the 
systematicity principle is used to compute the structural 
evaluation for each match hypothesis and mapping.  These 
numerical estimates are used both to guide the merge 
process and as one component in the evaluation of an 
analogy.  SME operates in polynomial time, and its results 
can be incrementally extended as new information arrives. 
 
MAC/FAC is a two-stage model of similarity-based 
retrieval that is consistent with psychological constraints 
[6] and has been used in a fielded application [6].  The key 
insight of MAC/FAC is that memory contents should be 
filtered by an extremely cheap match that filters a 
potentially huge set of candidates, followed by a structural 
match (i.e., SME) to select the best from the handful of 
candidates found by the first stage.  The extremely cheap 
match is based on content vectors, a representation 
computed from structured descriptions.  Each dimension of 
a content vector represents the number of occurrences of a 

particular predicate in a description.  For example, if a 
(tiny) description had three BEFORE statements and one 
IMPLIES statement, its content vector would be 
((BEFORE 0.75)(IMPLIES 0.25)). Content vectors are 
normalized to avoid size biases.  Content vectors are useful 
cheap matchers because their dot product provides an 
estimate of the largest structural match that could be 
obtained between the two original structured descriptions.  
During the construction of the match hypothesis forest in 
SME, base and target items with identical predicates are 
hypothesized to match, which may in turn suggest other 
matches (e.g., entity matches, non-identical function 
matches).  Thus the size of a match hypothesis forest for 
two structured descriptions is roughly correlated with the 
dot product of their corresponding content vectors.  In this 
paper, we use content vectors as a cheap similarity metric.  
Every entity (and indeed every predicate) in the knowledge 
base has an associated content vector, derived from the set 
of statements in the KB that mentions that entity. 

Dynamic case construction 
Cases are about something.  That something can be a 
specific entity (e.g., the United States) or an event (e.g., 
WWII).  Depending on task, even abstract concepts can be 
the subject of comparison, e.g., comparing notions of 
justice across cultures.  We assume that one can always 
identify a seed for a case, the entity that the case is about.  
Given a task T, the case for a seed is a subset of facts from 
the KB about seed that are relevant for T.  The two issues 
that must be addressed are 
1. What facts about a seed S are relevant for a given task T?   
2. What bounds the subset of the KB to be included? 
The set of facts about S that are relevant to T can be 
divided into two sets: Those that explicitly mention S and 
those that do not.  (If the term S appears in fact F, we 
denote this via Mentions(F,S).)   Not every fact that 
mentions S is relevant: In reasoning about possible US 
responses to an economic crisis, it is very unlikely that the 
fact that George Washington was the first US president 
will be relevant.  We assume that for each task T, a set of 
predicates RP(T) can be identified such that statements 
whose predicates are in RP(T) and mention S are relevant.  
For example, in the case of reasoning about economic 
interests, predicates such as has-economic-interest and 
economic-action are included in RP(economic-

interests).  RP can be defined very broadly, excluding 
only predicates used for internal, bookkeeping statements, 
or very sharply, including only predicates relevant to a 
particular aspect of knowledge about a domain (e.g., 
economic versus political versus military).  RP can also be 
defined via inference rather than via explicit enumeration. 
  
Unfortunately, task constraints are often more complex 
than can be expressed in terms of simply filtering via 
categories of predicates.  For example, when reasoning 
about options a country might have had in a situation based 
on a historical precedent, one wants to extract the relevant 
facts of the situation up to, but not after, the key event.  By 



 

 

doing this, the match against the historical precedent will 
yield candidate inferences that represent potential options 
for the new situation that are analogous to what occurred in 
the historical precedent.    Such task constraints can be 
expressed in terms of filtering out facts that match some 
specific criterion.  Since the criterion depends on the 
details of the task and the representations, we must settle 
for describing it abstractly.  Consequently, we assume the 
existence of a procedure, Filter?, that takes two 
arguments, a fact and a task, and returns true if the given 
fact should be ignored.   
 
We can use RP and Filter? to narrow in on the facts 
relevant to a task. Let the set RM(S,T) be the set of facts 
that mention S, whose predicate is in RP(T), and which do 
not satisify Filter? (i.e., they are relevant to the task).  
RM(S,T) constitutes the relevant facts for T that mention S 
explicitly.  These are not necessarily all of the relevant 
facts, of course, since the background for these facts in turn 
may need to be considered.     
 
The set of relevant facts that do not mention S explicitly is 
found by recursive expansion, based on the entities 
mentioned in RM(S,T).  Let GT(<expressions>) refer to 
the set of ground terms occurring in the statements 
<expressions>.  The terms (i.e., entities, events, processes, 
etc.) in GT(RM(S,T)) are the conceptual entities for which 
additional facts should be included, since constraints on 
these terms can affect conclusions drawn with RM(S,T).  
Let the basic relevant facts RB(S,T) be defined as follows: 
 RB(S,T) = {f ∈ KB | f ∈RM(S,T) 
            ∨ [predicate(f) ∈ RP(T)  
                     ∧ GT({f}) ⊆ GT(RM(S,T))] } 
That is, RB(S,T) is the set of facts in RM(S,T), plus the 
facts that mention only entities in RM(S,T).  The basic 
relevant set of facts can be expanded by recursively 
computing RB(e,T), for every e∈GT(RM(S,T)), and taking 
their union..  Obviously, the scope of this expansion has to 
be limited, otherwise in a highly interconnected knowledge 
base, all the facts will be included in every case.   We 
scope the expansion by having Filter? be more 
constrained on facts that don’t mention S.  Table 1 shows 
the different Filter? methods for the case denoting 
functions from [9], which range from no expansion 
(minimal-case-fn) to expanding all the sub-parts of the 
original case (recursive-case-fn).  The appropriate 
definitions for what are internal, bookkeeping predicates 
(book-keeping?), causal relationships (causal?), 
part/whole relations (subparts?) and attributes 
(attributes?) will be specific to the particular KB.  For 
example, in Cyc isa statements constitute attributes. 
 
Input: 
• An entity or expression S which the case will be about. 
• A knowledge base KB and task T 
• A procedure Filter? that encodes task-specific 
constraints (see text). 
 
Procedure GenerateCase(S,T) 

1. RM(S,T) ← {} 
2. For all f ∈ KB s.t. Mentions(f,S), 
    2.1 If predicate(f)∈RP(T) ∧ ¬Filter?(f,T) then 
            RM(S,T) ← RM(S,T) ∪ {f} 
3. RB(S,T)  ← RM(S,T) 
4. For each E in GT(RM(S,T)) 
    4.1 RB(S,T) ← RB(S,T)∪GenerateCase(E,T) 
   

Figure 1: GenerateCase algorithm 

 
Function Method 
Minimal-case-
fn(S) 

Book-keeping?(f) or ¬mentions(f,S) 

Case-fn(S) Book-keeping?(f) or (¬mentions(f,S) and 
¬Attribute?(f)) 

Event-case-fn(S) Book-keeping?(f) or (¬mentions(f,S) and 
¬(Attribute?(f) or causal?(f))) 

Agent-case-fn(S) Book-keeping?(f) 
In-context-case-
fn(S,C) 

Book-keeping?(f) or GT(f) � subparts(C) = φ 
or (¬mentions(f,S) and ¬Attribute?(f)) 

Recursive-case-
fn(S) 

Book-keeping?(f) or(GT(f) ⊄ GT(RM(S,T) and 
¬mentions(f, {subparts(S)})  

Table 1 – The semantics of filter? for the analogy ontology 
case functions 

Dynamic case expansion 
Complex cases typically have a hierarchical structure.  
Complex events have subevents, complex objects have 
parts, complex systems have subsystems, and complex 
devices have components.  This hierarchical structure 
typically manifests itself in representations by things that 
are conceptual entities at one level being expanded into a 
collection of facts and entities when viewed at a finer level 
of detail.  Matching can be made more efficient by 
exploiting this hierarchical structure.  All matchers require 
time proportional to the size of the input descriptions.  
Starting with a high-level description, then incrementally 
refining the match by further exploring potentially 
corresponding parts, avoids considering many fruitless 
matches.  For example, in comparing a person to a 
chimpanzee the rough match between their overall form 
invites a closer look at comparing their heads but not, say, 
the human’s head to the chimpanzee’s foot.  Matching then 
becomes an incremental, iterative process, with the results 
of one stage of matching helping to guide the next.  We 
call this process dynamic case expansion.   
 
The ideas of the previous section provide the framework 
needed for dynamic case expansion.  Given a comparison, 
the seed is chosen to be at an appropriate level of detail 
(i.e., Persian Gulf War versus Operation Desert Storm 
versus a particular sortie), corresponding to the highest 
level of abstraction required.  Base and target cases are 
created, without recursing, and SME is used to create the 
forest of match hypotheses that describes how statements 
in these two cases might be aligned.  As noted above, 
expansion takes place at entities, so it is potential matches 
(MHs) between entities that form the candidates for 
expansion.  There are three criteria used for deciding 



 

Proceedings of AAAI-2000 

whether to expand an MH: 
1. There must be at least one other competing MH for 
either the base or target entity in the original MH.  Only 
those MH’s whose score is close to the top scoring MH 
(currently 60%) are considered. 
2. The content vector overlap between the two entities 
paired by the MH must be over some threshold (currently 
0.4).  This heuristic makes it more likely that expansion 
will give rise to new overlapping structure. 
3. A task-specific procedure, Expandable?, which takes as 
arguments a candidate for expansion and the depth, and 
returns true if the candidate is worth expanding.  For 
example, in reasoning about international crises it is 
typically only appropriate to expand events one level, 
whereas actors and goals are worth expanding deeper. 
 
An MH is expanded by treating the entities it pairs as seeds 
for case extraction, as described in the previous section.  
The new facts for the entities are added to the appropriate 
descriptions (i.e., facts about the base entity are added to 
the base, and similarly for the target).  Normally, when 
new statements are added to the base or target, SME’s 
incremental match process extends the set of match 
hypotheses by considering the new base items against all 
of the target, and the new target items against all of the 
base.  Our focused match algorithm modifies this by 
considering the new base items only against the new target 
items, thus avoiding hypothesizing local matches that are 
likely to be irrelevant.  This process continues recursively, 
up to some depth bound (currently 2).  The algorithm is 
described in detail in Figure 2.   
 
Inputs:  
• The base B and target T being compared 
• The knowledge base KB from which B & T were drawn 
• Procedures Filter? and Expandable? that encodes task-
specific constraints (see text). 
• An integer MaxDepth which limits expansion by depth 
• A threshold CVOverlap that specifies the minimal 
content vector overlap (currently 0.4). 
• The match hypothesis forest MHS created by the standard 
SME algorithm given initial B, T. 
Context: This algorithm is executed immediately after the 
usual match hypothesis forest step in the incremental SME 
algorithm, and when finished, the rest of the SME 
algorithm proceeds as usual. 
 
Procedure CaseExpansion 
  For each MH in MHS, ExpandMHS(MHS, 0) 
 
Procedure ExpandMHS(theMHS, depth) 
1. When depth = MaxDepth, return. 
2. For each MH in theMHS 

a. Unless Entity?(BaseItem(MH)), skip. 
    2.2 Unless InCompetition?(MH, newMHS), skip. 
    2.3 Unless Expandable?(MH), skip. 
    2.4 Unless CVDotProduct(MH) > CVOverlap, skip. 

2.5 NewBase ← GenerateCase(BaseItem(MH),KB)    

2.6 NewTarget  ← GenerateCase(TargetItem(MH),KB) 
2.7 NewMHS ← CreateMHS(NewBase,NewTarget) 
2.8 MHS ← MHS ∪ NewMHS 
2.9 ExpandMHS(NewMHS, depth+1) 

 
Procedure CVDotProduct(MH) 
 ContentVector(BaseItem(MH)) 
  • ContentVector(TargetItem(MH)) 
 
Procedure InCompetition? (MH1, MHS) 
1. For each MH2 ∈MHS, such that MH1 ≠ MH2 
    1.1 Unless BaseItem(MH1) = BaseItem(MH2) or 
                      TargetItem(MH1) = TargetItem(MH2), skip. 
    1.2  If CVDotProduct(MH2) > CVOverlap, then 
               return True from InCompetition? 
2. Return False from InCompetition? 
 
Figure 2: Dynamic case expansion algorithm 
 
Importantly, this process is different from recursively 
calling SME on the cases created from the entities because 
global mappings are not created during expansion at any 
level.  Structure-mapping theory tells us that large, 
systematic matches are preferred [11].  Global mappings 
between lower-level matches would not be sensitive to 
relations that occur at higher levels.  By keeping all of the 
match hypotheses in the same forest, SME’s constraint 
satisfaction mechanisms can combine evidence from all 
levels in creating its interpretations, which improves 
accuracy and enables interpretations to include all relevant 
levels of detail.   
 
The worst-case complexity of the focused match algorithm 
is polynomial, assuming a fixed maximum depth limit for 
recursive expansion and assuming that the computation of 
RM and RP is polynomial.  The latter are polynomial if 
implemented as lookup operations rather than inference 
steps; if they require inference, then the complexity of the 
inference machinery becomes a factor.  The savings over 
uniform preexpansion come from two sources: (1) Many 
fewer match hypotheses are generated, saving storage and 
time, and  (2) fewer match hypotheses means fewer things 
to consider when constructing global interpretations.  
These savings can be significant in practice, as the next 
section illustrates. 

Empirical Results 
In the DARPA High Performance Knowledge Bases 
program, the Crisis Management Challenge Problems 
focused on building knowledge bases and systems that 
could answer the kinds of queries that an analysts’ assistant 
might provide.  When reasoning about international crises, 
analysts commonly rely on analogy to analyze the present 
in terms of history (c.f. [17,18]).  Consequently, a number 
of analogy queries were included in the tests, and we used 
the algorithms described here in providing analogical 
processing services for both teams in the evaluation.  



 

 

Examples of the analogy questions include 
 
TQE225: How is the UN’s mediation of the dispute 
between Iran and the Taliban in the 1998 Iranian-
Taliban Crisis similar to the UN’s mediation of 
the dispute between Iran and the GCC in the Y2 
Scenario? 
 
SQM226: Who/what is IRAN in Y2-SCENARIO-CONFLICT 
similar to in PERSIAN-GULF-WAR? How so, and how 
are they different? 
 

Examining how the case creation and case expansion 
algorithms work on these problems is a good test for two 
reasons.  First, the cases involved in these problems were 
often substantial, two orders of magnitude larger than 
many examples used in the analogy literature, and an order 
of magnitude larger than anything we had tackled 
previously.  Second, our algorithms had to work with two 
independently developed knowledge bases, created by 
other research groups.  (Since the evaluation was 
competitive, we were allowed to consult with both teams 
about how to improve their knowledge bases, but were not 
allowed to make extensions ourselves.) 
 
Table 2 describes data from an experiment using queries 
from the Crisis Management challenge problem. The first 
two columns indicate what team’s KB was used and the 
specific query.  The next six columns show the initial size 
of the base or target, as found via GenerateCase (Start), 
how large it reached due to dynamic expansion (Final), and 
the size of the full case (Max).  The results of dynamic 
case creation and expansion are shown in the next two 
columns, which indicate the size of the match hypothesis 
forest generated in SME (MHs) and the total run time 
(seconds).  The final four columns provide data that help 
tease apart the relative contributions of dynamic case 
expansion versus creation.  The No Dynamic Expansion 
column shows the amount of work done when the focused 
match algorithm is not used.  In this condition, SME is 
being run on the largest cases found dynamically, but 
interactions between different aspects of the cases matches 
are considered, as opposed to only attempting matches 
between expansions of corresponding parts.  The final pair 
of columns indicate the amount of work done if the full 

cases were compared.  Runs marked with “*” indicate that 
the program hadn’t completed by the time recorded.  The 
task-specific settings of the algorithms used in these runs 
were as follows: For RP, only internal, bookkeeping 
predicates were excluded. For Filter?, depending on the 
query, either nothing was filtered out, or causal 
consequences of the seed were filtered out.  Expandable? 
always expanded interests and was set so events were 
expanded first, and objects expanded at the last iteration. 
This reduced complexity in the scoping algorithm used in 
Filter?.  The same parameter settings were used for both 
team’s KB’s; only the particular lists of predicates (e.g., 
what constituted a bookkeeping predicate, interest, or 
event) varied. 
 
The table contents are ordered by the worst-case match 
hypothesis count.  Several interesting properties can be 
seen in this table1.  First, smaller cases are faster, and when 
sufficiently small, the complete case tends to be retrieved.  
Looking at the KB, the cases used in these queries are 
without substantial substructure, so this makes sense.   
Even on these smaller cases, some space savings occurs 
due to the focused nature of the matches used during case 
expansion, but the overhead of dynamic expansion makes 
the runtime slower.   However, on larger cases, both 
significant time and space savings are found: up to an order 
of magnitude reduction in storage, and finishing in a 
reasonable time versus not finishing at all in the largest 
cases.  The average storage savings over all examples is 
75%, and the speedup over the entire set of queries is 4.6.  
The combination of significant speedups plus the ability to 
do examples that were impossible before is strong evidence 
for the utility of our techniques.  

Related Work 
In some systems cases are automatically generated by 
performance systems (c.f. , [1]) but most often cases are 
created manually, with the help of software tools (e.g., 
[15]).  Although cases can be added to or modified by 
                                                           
1 It may seem surprising that run time is not always a 
monotonic function of the number of MHs, but this falls 
directly out of the structure of the SME algorithm [7] 

TABLE 2: Crisis 
Management queries 

Base Target Dynamic 
Creation +expansion 

No Dynamic 
Expansion 

No Dynamic 
Creation 

Team Query Start Final Max Start Final Max MHs Seconds MHs Seconds MHs Seconds 
SAIC SQM226 777 883 2062 632 822 1312 2579 27 10634 346 36602 3000* 
SAIC TQE225 437 503 1057 777 863 2062 2030 32 11437 310 33114 2400* 
SAIC TQE226 777 1117 2062 239 507 507 3976 144 11699 259 18824 1493 
Cyc TQE225 299 721 721 192 1891 1891 9146 141 11614 821 11614 821 
Cyc SQM226 192 1891 1891 108 592 592 6319 112 9299 307 9299 307 
SAIC TQM226 240 324 493 632 729 1312 1470 12 3619 13 8933 123 
Cyc TQE226 192 1842 1891 34 168 168 1857 47 2704 46 2704 46 
SAIC  TQF225a 184 274 274 234 486 486 1499 14 2122 5 2122 5 
Cyc TQM226 119 205 205 108 592 592 1318 8 1583 3 1583 3 
Cyc TQF225a 79 239 239 120 457 457 780 7 869 1 869 1 
Cyc TQF225b 118 129 129 423 440 440 665 4 665 1 665 1 
SAIC TQF225b 91 120 120 99 144 302 302 6 333 1 333 1 
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human authors, from the perspective of the reasoning 
system such case memories are static, since they are not 
being evolved during the course of reasoning.  The practice 
of storing results of a problem solving session as new 
cases, while helping to expand a system’s performance 
across multiple reasoning sessions, does not affect the 
structure of cases within a single reasoning session itself.    
 
The closest previous work is Progressive Sapper [19], 
which combines spreading activation with progressive 
deepening to provide an anytime algorithm for retrieval.  
Unfortunately, like Sapper, it accumulates match 
hypotheses in long-term memory, which leads to an 
exponential growth over time.  Thus it seems unlikely that 
this model would scale up to the size of knowledge bases 
that our system handles.  Progressive Sapper also does not 
exploit the semantics of the domain and task in the way 
that we do, nor does it exploit the ongoing match in 
deciding how to expand a case.   

Discussion 
The traditional reliance of CBR on a libraries of fixed-
structure cases has been useful in practice, but it is unclear 
that such techniques will scale to human-scale memories.  
The ability to dynamically extract cases from large-scale 
knowledge bases, combined with the ability to dynamically 
expand them during matching, supports the use of 
analogical reasoning with rich, relational representations 
drawn from large-scale, general-purpose knowledge bases.  
In addition to providing a fundamentally new capability, 
dynamic case expansion also provides more efficient 
matching on large descriptions, facilitating scale-up.  The 
fact that these techniques succeed on multiple large-scale 
knowledge bases constructed by other research groups is 
strong evidence that these techniques are generally useful 
 
A number of issues remain to be explored.  As the structure 
of large knowledge bases becomes understood, it may be 
possible to have a stronger theory of what our algorithm 
currently uses as procedural parameters.   Techniques from 
compositional modeling [6] might be generalized to 
automatically handle selection of initial perspective and 
level of detail.  Finally, new possibilities for dynamic 
expansion open up when considering larger-scale systems: 
Suppose SME were run to completion with the most 
abstract level of match, with expansion taking place when 
a downstream system needed more detail about a particular 
aspect of a comparison.  This could provide a useful 
generalization to Falkenhainer’s map/analyze cycle [3]. 
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