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Abstract 

A central goal of qualitative physics is to provide a 
framework for organizing and using quantitative knowl- 
edge. One important use of quantitative knowledge is 
numerical simulation. While current numerical simula- 
tors are powerful, they are often hard to construct, do 
not reveal the assumptions underlying their construc- 
tion, and do not produce explanations of the behaviors 
they predict. This paper shows how to combine qualita- 
tive and quantitative models to produce a new class of 
self-explanatory simulations which combine the advan- 
tages of both kinds of reasoning. Self-explanat*ory sim- 
ulations provide the accuracy of numerical models and 
the interpretive power of qualitative reasoning. We de- 
fine what self-explanatory simulations are and show how 
to construct them automatically. We illustrate their 
power with some examples generated with an imple- 
mented system, SIHGEN. We analyze the limitations of 
our techniques, and discuss plans for future work. 

1 Introduction 

A central goal of qualitative physics is to provide a 
framework for organizing and using quantitative knowl- 
edge. One important use of quantitative knowledge is 
numerical simulation. With recent advances in com- 
putational power, numerical simulations are playing an 
ever increasing role in science and enginegring. Yet they 
have important limitations. Most of today’s simulations 
are built by hand, with the long development time and 
travails associated with custom software. The physical 
assumptions underlying the simulation are at best only 
made explicit in technical reports or documentation, and 
cannot be accessed by the simulation engine or other 
reasoning systems using its results. And while numeri- 
cal simulations are superb at producing sets of numbers 
representing predictions of system behavior over time, 
they do not incorporate any mechanism for interpret- 
ing their results (save graphics). This pa.per introduces 
a new class of self-explanatory sin2ulation.s which inte- 
grates methods from qualitative physics to directly ad- 
dress these limitations. 

By tightly integrating qualitative knowledge with nu- 
merical simulations, we hope to achieve three advan- 
tages: increased automation, improved self-monitoring, 
and better explanations. We describe each in turn. 
Increased automation: In most engineering domains nu- 
merical simulations are still built by hand. With some 
exceptions (e.g. SPICE and similar systems for electronic 
circuits), most simulation tools leave the formulation of 
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physical models to the user. For example, PC-DYSIM [5] 
supports modeling of dynamic systems [24] by providing 
a generic simulation engine and standardized graphics 
routines but lacks a well-tested, standard parts library 
for building system models. In fact, we have been un- 
able to find any such library describing fluid and thermal 
systems for engineering thermodynamics. Engineers we 
talk to agree that such a library would be useful, but 
they lack ways to organize it. Qualitative physics pro- 
vides such formalisms for organizing knowledge, so that 
general model libraries can be built and used by simula- 
tion compilers to take on more of the modeling burden. 
Improved self-monitoring: One unfortunate consequence 
of the predominance of hand-crafted simulations is spo- 
radic detection of errors and inconsistencies. Many nu- 
merical simulations are designed for a narrow range of 
behaviors, but often such limitations are only recorded 
in the mind of the programmer. This can lead to er- 
roneous results for unsuspecting users, such as negative 
water levels in tanks. By making modeling assumptions 
explicit, the simulator itself should be able to ensure 
that its numerical predictions are consistent with the 
qualitative intuitions. 
Better explanations: Computer-based tutors like 
STEAMER [17; 281 and RBT [31] use a combination of nu- 
merical simulators to provide students with a “feel” for 
a system’s dynamics and hand-cra.fted explanation fa- 
cilities to tie observed behaviors to principles [16; 11; 
311. We hope to help automate the production of such 
tutors. Other engineering tasks could benefit from self- 
explanatory simulations. A designer, for instance, could 
find what range of parameters leads to the desired set 
of behaviors, and ascertain what needs to be changed if 
the desired behaviors are unachievable. 

Section 2 describes the structure of self-explanatory 
simulators and outlines how they can be a.utomatically 
constructed. Section 3 illustrates these ideas with ex- 
amples from some simulators generated by SIMGEI?, our 
implemented simulator compiler. Section 4 analyzes our 
compilation technique. We close with related research 
and our plans for future work. 

2 Self-explanatory Simulations 

A self-explanatory simulation integra.tes qua.litative and 
numerical models to produce accurate predictions and 
causal explanations of the beha.vior of continuous phys- 
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ical systems. Self-explanatory simulators produce nu- 
merical simulations of behavior, just as traditional sys- 
tems do. However, they also can describe what is hap- 
pening in qualitative terms, and provide a causal expla- 
nation of the parameters’ behavior at any time during 
the simulation. In addition, all the modeling assump- 
tions involved in creating the qualitative and numeric 
models are completely explicit, and hence subject to in- 
spection, review, and revision. 

Writing self-explanatory simulators requires knowing 
a system’s qualitatively distinct regions of behavior and 
the ability to construct mathematical models for each 
region. These models must then be embedded in a con- 
trol structure which switches between them as appropri- 
ate, and keeps the qualitative and quantitative accounts 
of behavior in sync to generate useful explanations and 
detect clashes. We have developed a program which 
compiles such simulators automatically, to relieve the 
modeler from this complex chore. Our program, called 
SIMGEN, takes as inputs (1) a qualitative domain model, 
(2) a corresponding math-model library, and (3) a spe- 
cific physical system to model. 

Roughly, SIMGEN works like this. The qualitative do- 
main model is used to produce a total envisionment for 
the physical system. Next the math-model library is 
used to construct a set of ordinary differential equations 
for each qualitatively distinct region of behavior identi- 
fied in the envisionment. A simulation program is writ- 
ten for each set of equations, using the causal account 
from the qualitative model. The state transitions in the 
ehvisionment are used to construct procedures which de- 
tect when the set of relevant equations changes. Collec- 
tively, these procedures constitute a simula.tor capable 
of producing predictions and explanations starting from 
any valid initial condition of the physical system. 

This section describes self-explanatory simulations 
and how they are built. We begin by examining the 
domain knowledge required, define an appropriate, inte- 
grated notion of state, and describe both their architec- 
ture and how they are compiled. 

2.1 Integrating qualitative and numerical 
domain knowledge 

For a given physical system and task, a relevant quali- 
tative model can be automatically built from the con- 
structs of a general QP (qualitative process) domain 
model (c.f. [12; 9; lo]). An envisionment using this 
model determines the space of possible behaviors to con- 
sider. Suppose we design a corresponding quantitative 
domain model that satisfies the following constraints: 
(1) All parameters that can change during a behavior 
must be mentioned in the QP model; (2) all behaviors 
generated by the numerical model must be predicted 
and thus explained by the qualitative model (requiring 
the converse is difficult [22]); and (3) every state-space 
boundary where the set of governing equations changes 

is marked by a transition in the qualitative mode1.l In 
this case the envisionment identifies the set of potentially 
relevant numerical models, with each qualitative state 
being governed by a single set of equations. We define 
a math modeE library to be an association of numerical 
models to (combinations of) the qualitative proportion- 
alities in a QP domain model. For example, a contained 
liquid description typically includes the relationship 2 

LeVel(?Cl) OCQ+. Amount-of(?cl) 

The corresponding numeric entry for cylindrical contain- 
ers might be (assuming ?cl = (c-s ?sub liquid ?can)) 

(= (A (level (c-s ?sub liquid ?can>) > 
(/ (A (amount-of (c-s ?sub liquid ?can>> > 

(* PI (A (density ?sub)) 
(expt (A (radius ?can>> 2)) >> 

where density and radius are numerical constants not 
appearing in the QP model. Models like these are com- 
posed to produce simulation code, as described below. 

2.2 State in self-explanatory simulations 
Integrating qualitative and quantitative state is a key 
idea of self-explanatory simulations. For concreteness, 
consider an envisionment produced by QPE, an envisioner 
for QP theory [14]. Each qualitative state is defined by a 
set of assumptions (e.g., an ATMS environment), whose 
consequences a.re what is true in that state. These as- 
sumptions are drawn from classes of statements gleaned 
from an automatic analysis of the scenario model. For 
example, if the model for a scenario includes a container 
can, then the possibility of liquid or gas being in can 
is important, and hence one of the possible relationships 
between Amount-of-in(water,gas, can) and ZERO must 
be included in each qualitative state. Similarly, if a pair 
of containers is connected by a fluid path, then the possi- 
ble relationships between their pressures becomes one of 
the constituents of state, since this information is needed 
(along with other facts) to ascertain whether or not a 
liquid flow is occurring between them. In addition to 
inequalities, other classes of assumptions needed to es- 
tablish state properties are identified and included as 
well. For example, an assumption about whether or not 
the fluid path is blocked is essential to knowing if flow 
can occur, and hence must be included in a state. 

The constituents of a qualitative state are thus a 
set of propositions, drawn from a. set of choices that 
can be considered the basis set for qualitative states. 
Many (indeed, most) of these propositions are ordinal 
relationships between continuous parameters. A tradi- 
tional numerical state, on the other hand, consists of a 

‘Enforcing the converse, that every qualitative transition 
corresponds to a change in equations, would be useful for 
minimizing complexity but cannot always be done. Modeling 
an indicator turning on at 10% below a critical value, for in- 
stance, requires a transition without any change of equations. 

21n QP theory [12], aCXQ+ b is an indirect influence and 
reads “a is qualitatively proportional to b”. It indicates a 
positive monotonic relationship between a and b. I+(a, bE) 
is a direct inj?zdence and indicates that t,he derivative of CL is 
equal to the sum of all bt’s actively influencing it. 
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vector of numerical values for the continuous parame- 
ters. Call this vector Nj. We define a new notion of 
state by linking these two notions. First, for each non- 
ordering proposition class in the basis set, we a.dd to n/, 
a boolean variable whose value is true or false according 
to whether the corresponding statement is true or false 
in a given state. For example, Blocked(Pipe1) becomes 
an explicit parameter in NJ. (This extension is com- 
mon, at least in training simulators.) Second, we define 
state as a pair < NJ, &I >, where Q/ ranges over the 
set of states in the envisionment. A state is consistent 
if and only if the values of NJ satisfy the propositions 
of the qualitative state corresponding to the value of 
Ql. Otherwise, it is inconsistent. Checking the consis- 
tency of a state is straightforward. For each non-ordinal 
proposition in QJ, check that its corresponding boolean 
parameter has the appropriate value. For each ordinal 
relationship in &J, check if the same relationship holds 
between the corresponding numerical parameters.3 

Determining the components of Ni for a system re- 
quires analyzing the envisionment in concert with the 
math-model library. A boolean parameter must be in- 
cluded for each class of non-ordering propositions in the 
basis set. A numeric parameter must be included for 
each continuous property in the QP model, as well as for 
each constant introduced by the corresponding numer- 
ical models (such as Density and Radius in the entry 
for Level above). 

2.3 The architecture of self-explanatory 
simulators 

A self-explanatory simulation consists of a tightly inte- 
grated set of qualitative and numerical representations. 
Such simulations are generated by self-explanatory sim- 
ulators, which in turn are constructed by a simulator 
compiler. The compiler takes as input an envisionment 
of a specific system and a math model library, and pro- 
duces a simulator, consisting of a set of procedures and 
datastructures which support prediction and explana- 
tion concerning the classes of behaviors described by the 
envisionment. 

There are three crucial components in a self- 
explanatory simulator: (1) a set of euohers, procedures 
which specify for each qualitative state how to update its 
numerical parameters over time; (2) a. set of state transi- 
tion procedures (STP’s) which detect qualitative changes 
in state, and (3) an explanation facility which uses infor- 
mation from the envisionment to provide causal accounts 
and characterize possible behaviors. These components 
interact during simulation as follows. The value of Qr is 
used to fetch the corresponding evolver. The evolver is 
executed to update NJ. The STP corresponding to &I is 
fetched and executed to see if a transition has occurred. 
If it has, then &J is updated to this new state. The cycle 
repeats until no more simulation is required. The expla- 
nation facility can be used during or after simulation to 

3The finite precision of floating 
“fuzz” parameter to detect equality. 

point requires using a 

better understand the results. 
SIMGEN works by first computing the constituents of 

NJ and QJ. Next it writes the evolvers and state transi- 
tion procedures. Finally, it caches information from the 
envisionment to support explanation. The rest of this 
section describes these components in more detail, and 
how SIMGEN builds them. 

2.3.1 Evolvers 
An evolver is a procedure which, given a state vector 

and At, produces a new state vector representing the 
evolution of the modeled system over At. Roughly, tra- 
ditional simulations operate by identifying a small set of 
state variables, estimating derivatives for them, comput- 
ing their new values, and then calculating new values for 
any relevant dependent variables. This organization can 
be easily translated into QP terms. In a QP model, the 
directly influenced parameters correspond to state vari- 
ables, since direct influences comprise an integral con- 
nection [12]. The indirectly influenced parameters, that 
is, those linked by some chain of qualitative proportion- 
alities to the directly influenced parameters, form the 
dependent variables. Any pa.rameters not mentioned in 
the QP model are constants, and hence cannot change. 

A key problem in writing simulation progra.ms is es- 
tablishing an order of computa.tion for a given set of 
equations. In QP theory, a qualitative proportionality 
represents both a functional and a causal relationship. 
Since entries in the math-model library correspond to 
combinations of qualitative proportionalities, we can use 
the cuusuZ ordering [18] in d uced by the influences in the 
qualitative model to construct an order of computation 
for any consistent set of numeric equations. In particu- 
lar, (1) estimate the derivatives of directly influenced 
parameters (e.g., the state variables), (2) update the 
amounts (A) of directly influenced parameters, (3) re- 
compute amounts of indirectly influenced parameters, 
and (4) estimate derivatives of indirectly influenced pa- 
rameters by subtracting old values from new. 

The individual updates within steps 1, 2, and 4 can 
be performed in any order (our current system uses Eu- 
ler integration for simplicity). The order of computation 
in step 3 can be determined by a simple search of the 
influence graph. Notice that QP theory requires the sub- 
graph of qualitative proportionalities to be loop-free in 
any legal state; feedback is represented by explicit inte- 
gral connections (e.g., direct influences) only. This has 
the effect of demanding that any loop contain a.t least 
one state variable, a common constraint in numeric sim- 
ulators. For example, Figure 1 illustrates the graph of 
influences for a simple two-container liquid flow. Given 
the current values for the Amount-Ofs and Heats, the 
Levels are computed next, followed by the Pressures 
and then Flow-Rate, while t,he Temperatures can be 
computed in any order (in this situation). The math- 
model library must contain at least one model for each 
consistent combination of qualitative proportionalities.4 

41f there is more than one model, currently one is selected 
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Figure 1: The influence graph for a two-container flow 
problem. The graph of influences that holds at any mo- 
ment in a QP description indicates a causal ordering be- 
tween the parameters it describes. The state variables 
are given by the direct influences. 

+ 
Amount-of(Wf) Qaw B. Level(Wf) Opop w Prersure(Wf) Qpmp 

AntOU~-of(Wg) - b Level(Wg) Opop 4 Pr.rr”r.(Wg)~~-R~te(Pio) 
< 

Heat Qpmp b Temperature(Wi) 

QPP b Tempenture(Wl) 

The model is tested to ensure that all parameters it men- 
tions have already been computed in the current situa- 
tion, using the order constraints of the influence graph. 

Conceptually, an evolver could be supplied for each 
qualitative state. However, it is more practical to divide 
states into equivalence classes, grouping together those 
governed by a common set of equations and writing only 
a single evolver for each group. In QP models two states 
can share an evolver when they have the same set of 
active processes and views, since the set of qualitative 
proportionalities for each state is identical, and hence 
the corresponding equations will be the same. 

An important opportunity for self-monitoring occurs 
when setting up states. The strategy used for writ- 
ing evolvers is also used to write initialization rou- 
tines, which obtain values for independent variables from 
the user, calculate dependent parameters and estimate 
derivatives, and check the resulting state’s consistency. 

2.3.2 State Transition Procedures 
Traditional mathematical formalisms do not provide 

a comprehensive, formal language for describing when 
an equation holds. By using QP theory as the basis 
for a modeling language, such conditions can be stated 
formally and used in reasoning. Given a particular qual- 
itative state, we can ascertain what conditions must be 
monitored to detect when a transition occurs, and write 
STP’s that sense such transitions and determine the new 
qualitative state. 

The parameters that must be monitored for each state 
are determined by analyzing the envisionment’s tran- 
sitions. Recall that limit hypotheses indicate possible 
changes in ordinal relationships [12]. All of the changes 
possible in the current situation must be monitored. 
Usually the result of a limit hypothesis is unique, but 
not always - underconstrained properties of objects com- 
ing into existence or actions which cause discontinuous 
changes [15] can result in multiple next states. In such 

at random. Clearly, this is an opportunity for a reasoned 
choice, based on criteria such as desired accuracy and per- 
formance requirements. 

cases the STP must also perform enough extra tests 
to discriminate between the possibilities. Importantly, 
these tests are all inexpensive numerical inequality tests, 
and typically only a handful are needed for each state, 
so the overhead of transition finding is quite small. 

Handling transitions where a numerical relationship 
changes to equality requires special care, since the equal- 
ity may only hold for an instant and hence could be 
missed. We call this the numerical transition skip (NTS) 
problem. We detect when NTS has occurred by noting 
when one of the monitored relationships undergoes a dis- 
continuous change (e.g., when Ni < N2 holds at one tick 
but Nl > N2 holds at the next). This causes the run- 
time system to “roll back” the simulation, performing 
binary search to find a value for At that hits the tran- 
sition. Once the numerical values at the transition are 
computed, the simulation proceeds with the original At. 

STP’s also share the burden of self-monitoring. As- 
suming that the initial state vector is consistent, incon- 
sistencies can only arise when the evolution NJ “drifts 
away” from the subspace consistent with QJ. The pro- 
cedure outlined above already catches cases where the 
result of a transition is not a state the envisionment pre- 
dicted. However, inconsistencies involving unmonitored 
relationships are not detected by default. What level of 
error checking is reasona.ble depends on circumstances. 
For example, if the domain models are well-tested, only 
the minimal testing described so far may be needed. 
When more stringent self-monitoring is required, such 
as developing a new domain model, the numerical com- 
ponent of state can be re-classified as often as desired. 
Reclassifying at every clock tick, for instance, ensures 
that any misalignments between qualitative and quanti- 
tative models is caught a.s early as possible. (Such tests 
can be made reasonably efficient by using a discrimi- 
nation tree to peform the classification, but since the 
overhead is still substantially higher, these extra tests 
are not performed by default in our implementation.) 

2.3.3 Supporting Explanation Generation 

Using qualitative models to ground and generate sim- 
ulation procedures supports a variety of explanation gen- 
eration tasks. The qualitative model provides a causal 
account for all changes in every state. The inclusion 
of QJ in the state vector provides access to the appro- 
priate account for any (simulated) time. Furthermore, 
this causal explanation is not simply a post-hoc recon- 
struction - given the organization of evolvers above, it is 
literally the way the simulation of the system is evolved! 
Similarly, information about classes of possible futures 
is available through the transitions of the envisionment. 
At any simulated time, one can find out what events 
might happen, or could have happened instead with 
other choices for ni,. 

We make two stipulations concerning the run-time 
system. First, we require that it includes access to in- 
formation from the envisionment. How much informa- 
tion is needed a.nd how it is accessed varies according 
to task requirements. If the run-time system cannot be 
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compute-intensive, the simulation compiler might iden- 
tify in advance what information is needed about each 
envisionment state and create a database to serve as a 
cache for the run-time system. Alternately, relevant por- 
tions of an envisionment or history could be generated 
incrementally, on demand. (Currently we simply include 
pointers to the envisionment in the simulator itself.) 

The second stipulation is that the run-time system 
must maintain a registration [13], which describes the 
history of the system in terms of occurrences of states of 
the envisionment. Each episode in this history includes 
the corresponding state of the envisionment, a numeri- 
cal value for its temporal beginning, and if it ends, a nu- 
merical value for its end along with the limit hypothesis 
which occurred. (It is straightforward to compute STP’s 
that provide this information.) This history provides the 
temporal framework required to relate simulated time to 
a path of qualitative states, and hence provide access to 
the appropriate qualitative knowledge. 

3 Examples 

Here we show some interactions with simulators pro- 
duced by SIMGEN, our compiler of self-explanatory sim- 
ulations. The QP domain models used are similar to 
those in [12], but are slightly enhanced to better model 
the interaction of heat and ma.ss flows [6]. The questions 
were posed using a formal query language, and the En- 
glish output was generated automatically by the default 
explanation facility. 

Simple Liquid Flow: The two-container example in 
Figure 2 shows that the simulation can provide a variety 
of information about parameters and possible behaviors. 

Boiling: In Figure 3, the simulator detects that boil- 
ing has begun, and changes evolvers appropriately. Fur- 
thermore, it enforces the semantics of existence, by re- 
fusing to provide information about properties of objects 
at times when they don’t exist. 

Spring/Block Oscillator: As Figure 4 illustrates, 
SIMGEN is not limited to thermodynamic systems. Here 
a naive user attempts to provide a negative spring con- 
stant (a “perturbing force”, rather than a restoring 
force). This is inconsistent with the user’s presumed 
starting state, and after examining the equations and the 
assumptions, the user makes a more reasonable choice. 

4 Analysis 

What are the limits of SIMGEN? Given a QP domain 
model, a math model library that provides appropri- 
ate expressions for each instance of indirectly influenced 
quantities (e.g., one that follows the causal ordering rep- 
resented by the graph of influences), SIMGEN can compile 
a self-explanatory simulator for any system that can be 
successfully envisioned with that domain model. Issues 
of scale and numerical stability are important, of course, 
as noted below. But more fundamentally, when can we 
have the appropriate domain models? 
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Figure 2: A simple example of liquid flow. Questions 
about specific points in time establish the temporal con- 
text for subsequent questions. 

lx 1.0d-3) - R[LEUEL(C-S(URiER.LIQUID,F))~ 
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p$&. 0d0 I , I 

I: 
50.0d0 

00.0dQ 

.0d0 70.0d0 J00.0d0 JS0.0d0 ?00.0d0 
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Q: What is happening at t = 50.0 seconds? 
A: A flow of water from F to G. 

Q: What is A[LEVEL(C-S(WATER,LIQUID,F))]? 
A:The level of the water in F is 0.24224941. 

Q: How is LEVEL(C-S(WATER,LIQUID,F)) changing? 
A: The level of the water in F is decreasing. 

Q: What affects LEVEL(C-S(WATER,LIQUID,F))? 
A:The level of the water in F is changing as a 
function of the amount of the water in F. 

Q: What happens next? 
A: At 130.5-seconds the pressure of the water 

in F and the pressure of the water in G 
become equal.- Then, nothing is happening. 

Q: What else might have happened? 
A: The transition at 130.5 seconds was inevitable. 

Q: What is happening at t = 200.0 seconds? 
A: Nothing is happening. 

Q: What happens next? 
A: This behavior continues forever. 

Just as no single traditiona. engineering technique for 
organizing knowledge has proven a.dequate for all do- 
mains, we should not expect any single ontology to suf- 
fice for qualitative physics. 5 The process-centered view 
works best for domains like thermodynamics [27] and 
chemistry, where explicit reasoning a.bout processes is 
crucial. The device-centered view [7; 291 works best 
when the idealizatious of network theory hold. For ex- 
ample, analyzing a voltage divider can give rise to si- 
multaneous equations, which cannot be solved via prop- 
agation alone. SIMGEN could not handle this system. It 

5[8] makes a similar point comparing engineering to 
economics. 



Figure 3: Changes in regime and existence are automat- 
ically detected. 

- R[RnOUNl-oF-INirW~ER,LIOUIO,CRn)l 
---' R[RrmUNI-oF-IN(~IER,GflS,CRN)] 

- ACTEHPERRlURE(C-S~URIER.LIOUID.CRN~~I 
---' flllENPERfllunE(C-S(WIlER,CRS.CRN))I 

Q: Summarize the behavior 
A: The initial state is S3. In S3 there is heat is 

flowing from STOVE to the water in CAN. 

The boiling temperature of WATER and the 
temperature of the water in CAN become equal, 
which leads to Sl. In Sl, heat is flowing from 
STOVE to the water in CAN and the water in CAN 
is boiling. 

The amount of steam in CAN becomes positive, 
which leads to S16. In S16, heat is flowing 
from STOVE to the water in CAN, heat is flowing 
from STOVE to the steam in CAN, and the water 
in CAN is boiling. 

The amount of water in CAN becomes zero, 
which leads to S4. In S4, heat is flowing 
from STOVE to the steam in CAN. 

The temperature of the steam in CAN and the 
temperature of STOVE become equal, which leads 
to s5. In S5, nothing is happening. 

Q: What is happening at t = 100.0 seconds? 

A: Heat is flowing from STOVE to the water in CAN. 

Q: What is the temperature of the steam? 

A: Sorry, the temperature of the steam in CAN 
does not exist at 100.0 seconds. 

Q: What happens next? 

A: At 238.6 seconds the boiling temperature of WATER 
and the temperature of the water in CAN become 
equal. Then, heat is flowing from STOVE to the 
water in CAN and the water in CAN is boiling. 

Q: What else might have happened? 

A: The only other possibility was: The temperature 
of the water in CAN and the temperature of STOVE 
become equal, which leads to S2. In S2, nothing 
is happening. 

Figure 4: Clashes between qualitative and quantitative 
models are detected. 

Q: Set up a run starting from S5 for 120.0 seconds, 
with dt = 0.001, using these parameters: 

VELOCITY(B) = 0.0 
REST-LENGTHCSPR) = 5.0 
POSITION(B) = 5.0 
MASS(B) = 1.0 
K(SPR) = -0.1 

A: The values provided do not match S5. 
The differences are: 
(A (FORCE B)) is greater than zero, 
should be less than. No legal state. 

Q: Show the equations for S5. 
A: (= (ACC PI01 U (FORCE B) (MASS B))) 

(= (FORCE B) (FORCE SPR)) 
(= (LENGTH SPR) (+ (POSITION B) 

(REST-LENGTH SPR))) 
(= (FORCE SPR) (* (- (K SPR)) 

(- (LENGTH SPR) 
(REST-LENGTH SPR)))) 

(= (D (VELOCITY B)) (ACC PI011 

Q: Change K to be 0.1 and simulate. 
A: Okay. 

could handle the analogous fluid system, however. Mod- 
eling the nodes of a system as containers, and charge as 
something that flows between them, provides the basis 
for a &P-style causal account. Conversely, when the 
“stuff” flowing in a system has behaviors that cannot 
be captured in System Dynamics (such as phase changes 
and chemical properties), the device ontology is unsuit- 
able. SIMGEN provides the most leverage where QP the- 
ory works best. For domains where time-varying differ- 
ential equations a.re only part of the relevant mathemat- 
ics, such as aerodynamic analyses, stability of structures, 
and other heavily geometric analyses, SIMGEN obviously 
provides little leverage. 

So far we have discovered two kinds of difficulties in 
building math model libraries. First, we found ourselves 
using ever more sophisticated qualitative models in or- 
der to provide enough functional dependencies to yield 
rea.sonable numerical models. Second, many engineer- 
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ing formulations have evolved under the constraint of 
simplifying algebraic analyses, rather than supporting 
causal reasoning. For instance, heat is often not used 
as an explicit variable in today’s formal thermodynamic 
analyses (those which refer directly to temperature), al- 
though textbooks often revert to employing heat in its 
commonsense usage when discussing difficult points. In 
any case, we believe the discipline imposed by support- 
ing self-explanatory simulations should be viewed as an 
invigorating challenge, which will ensure that one’s do- 
main models will be both powerful and accurate. 

Importantly, while an envisionment is needed to gen- 
erate self-explanatory simulators, no new qualitative rea- 
soning needs to occur during simulation. The qualitative 
knowledge is compiled into a set of procedures express- 
ing its implications for the particular system. Given 
good optimization techniques, it seems self-explanatory 
simulators could become asymptotically close in speed 
to the best hand-written numerical simulators, despite 
their increased transparency and robustness. 

5 Related Work 

Several recent projects have focused on the relationship 
between qualitative and quantitative knowledge [23; 30; 
27; 321. None of these efforts focus on automatically 
constructing numerical simulators or explanation gener- 
ation. The closest in spirit is [3], which also argues for a 
unification of qualitative and numerical simulation. We 
differ in most specifics, however: Berleant augments a 
QSIM representation with interval values for parameters 
to restrict behavior generation, while we co-evolve quali- 
tative and numerical states. We generate simulations au- 
tomatically, whereas QSIM models are hand-crafted, and 
we also focus on generating causal explanations, while 
Berleant focuses on constraining a-causal predictions. 

Sussman’s Dynamicist ‘s Workbench project, which 
uses AI techniques to develop efficient numerical sim- 
ulations from equational models, shares several of our 
concerns, including generating efficient code and pro- 
ducing understandable results. Their work complements 
ours in several ways. They have focused on sophisti- 
cated reasoning about numerical techniques [l] maxi- 
mizing efficient computation [4], including compiling to 
special-purpose hardware [2]. But while the behaviors 
of the systems they are analyzing are subtle, they start 
with a single set of equations which governs the system 
for all time. By contrast, we have downplayed reason- 
ing about numerical methods in favor of understanding 
how to automatically generate a system’s equations from 
a physical model, including situations where the rele- 
vant set of equations changes over time, and on produc- 
ing understandable explanations. We believe our work 
will benefit from their advances in numerical reasoning, 
while theirs will benefit from our use of qualitative rea- 
soning to guide simulation construction and improved 
techniques for detecting clashes between qualitative and 
quantitative models. 

Our compilation of qualitative knowledge into sim- 

ulation procedures finds ethos in [21], which describes 
the compilation of diagnosis and redesign rules from a 
general-purpose knowledge base of device models. In 
fact, the KSL group has proposed a simulation foundry 
which could create simulations from a knowledge base of 
physical models and structural equations [19]. SIMGEN 
can be viewed in part as an instantiation of this idea, 
although they did not anticipate our notion of self- 
explanatory simulations. 

6 Discussion 

We introduced a new kind of simulation, self- 
explanatory simulations, which blend qualitative and 
quantitative knowledge to provide several of the advan- 
tages of each. By using qualitative analysis to repre- 
sent when different sets of equations are appropriate, 
we gain increased automation. By incorporating knowl- 
edge of what behaviors are reasonable into simulation 
code and co-evolving numerical and qualitative states 
we achieve improved self-monitoring. And by incorpo- 
rating “compiled” knowledge from an envisionment, we 
are able to produce understanda.ble explanations. Im- 
portantly, complex, first-principles reasoning can occur 
off-line - self-explanatory simulat8ions can run at speeds 
which asymptotically approach standard numerical sim- 
ulations. 

While this method of integrating qualitative and 
quantitative knowledge is by no means the only one, 
we believe it is pa.rticularly important. For design, it 
is important to ensure that reasonable parameter val- 
ues can result in the desired behaviors. For training, the 
value of numerical simulators is already well-established, 
but the incorporation of inexpensive explanation facili- 
ties can make them even more valuable. In developing 
models, either qualitative or numerical, of a new phe- 
nomena, checking the match between the model and 
your intuitions is an important task. By formulating 
intuitions explicitly in the form of qualitative models, 
self-explanatory simulations can help detect whether or 
not the behaviors predicted by a numerical model make 
sense. 

6.1 Future Work 

This research suggests several new possibilities: 
Scaling up: Envisioning is not the only qualita- 

tive simulation technique which could support self- 
explanatory simulations. For example, given an incre- 
mental envisioner and simulation compiler, states and 
simulation procedures could be generated on the fly, just 
one step ahead of the current qualitative state. Or, if the 
structure of the system is extremely large and the run- 
time system must be kept simple, the simulator could be 
decomposed into subsystems. Q-/ would be a vector of 
&J’S for the subsystems, and the evolvers for the subsys- 
tems would be executed in concert to provide the effect 
of an evolver for the whole syst.em. These and other 
alternatives need exploration. 
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Self-explanatory simulations for other kinds of quali- 
tative physics: SIMGEN might be adapted to the device 
ontology. SIMGEN relies critically on two features of QP 
theory: the causal account provides the order of compu- 
tation for parameters, and the use of quantified descrip- 
tions allows explicit modeling assumptions. The causal 
account in device ontologies is based on an identified in- 
put perturbation or signal, which is consistent with the 
use of specified inputs to drive numerical device-centered 
simulators such as SPICE [20]. It also seems possible to 
adapt many of the representational techniques of QP 
theory to give device-centered models the same ability 
to explicitly encode modeling assumptions. However, we 
leave such extensions for advocates of this ontology. 

Tut or Compilers: Self-explanatory simulators could 
become a core component in a variety of computer-based 
tutors. By using SIMGEN with action-augmented envi- 
sionments [15], it may be possible to automatically con- 
struct a class of training simulators (such as STEAMER) 
automatically. By caching envisionment information 
and “cross-compiling”, self-explanatory simulators could 
be built for delivery on inexpensive target hardware. Ac- 
tually building a tutor compiler will require a great deal 
of work, including developing powerful domain models, 
developing better explanation generation systems, and 
support software such as graphical systems. However, 
we are very excited by the possibility of semi-automating 
the production of computer-based tutors. 
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