Polynomial-time compilation

Self-Explanatory Simulators

Kenneth D. Forbus
Qualitative Reasoning Group, The Institute for the Learning Sciences
Northwestern University
1890 Maple Avenue, Evanston, IL, 60201, USA

Brian Falkenhainer
Xerox Modeling Research & Technology
1350 Jefferson Rd, Henrietta, NY, USA

Abstract: Self-explanatory simulators have many potential
applications, including supporting engineering activities,
intelligent tutoring systems, and computer-based training
systems. Yet compilation methods have been too slow for large-
scale systems, interpreter-based strategies are restricted to
running on large computers with expensive commercial
software, and neither technology has been shown to scale to
very large systems. This paper describes an algorithm for
compiling self-explanatory simulators that operates in
polynomial time. It is capable of constructing self-explanatory
simulators with thousands of parameters. This algorithm is
fully implemented, and we show empirical evidence that
suggests that its performance is quadratic in the size of the
system being analyzed. We also analyze the tradeoffs between
compilers and interpreters for self-explanatory simulation in
terms of application-imposed constraints, and discuss plans for
applications.

1. Introduction

Self-explanatory simulators {1 ,2,3 ,4] integrate qualitative and
quantitative knowledge to produce both detailed descriptions of
the behavior of a system and causal explanations of how that
behavior comes about. They have many potential applications,
such as in intelligent tutoring systems and learning
environments [5 , 6] and in supporting the design process

{7 ,8 1. Realizing this potential requires both developing
systems that can operate efficiently on substantial models and
understanding the tradeoffs involved in the automatic
construction of self-explanatory simulators. This paper makes
two contributions towards these goals. First, we describe a
polynomial-time method for compiling self-explanatory
simulators, and show that it operates successfully and quickly
on models larger than most industrial applications require.
Second, we analyze how the quality of the simulator produced
trades off against the time taken to construct it, and consider
how these tradeoffs affect potential applications. Throughout,
the discussion is limited to initial-value simulations of lumped-
element (ordinary differential-algebraic) systems.

Section 2 reviews the basic idea of self-explanatory simulators
and the relevant literature. Section 3 describes our new
polynomial-time compilation technique, including both
theoretical and empirical complexity analyses. Section 4
identifies tradeoffs in constructing self-explanatory simulators
in light of task requirements. Section 5 summarizes and
outlines our plans for future work.

2. Self-explanatory simulation: The basics

Traditional numerical simulators generate predictions of
behavior via numerical computation using quantitative models
of physical phenomena. Most simulators are written by hand,
although an increasing number are generated by domain-
specific toolkits (e.g., SPICE for electronics). The modeling
decisions, such as what phenomena are important to consider,
how does the phenomena work, how can it be modeled
quantitatively, and how can the quantitative model be
implemented for efficient computer solution, are mostly made
by hand. Domain-specific toolkits provide fairly good solutions
to the last two problems, and by what libraries they do or do
not include, can simplify the first problem. However, the
choices of how to translate the physical description into the
conceptual entities supported by the toolkit, and which
quantitative model to use from the library provided by the
toolkit to model an entity, are still made by hand. Moreover, no
existing toolkit provides the intuitive explanations used by
scientists and engineers to describe how a system works. These
intuitive, qualitative descriptions serve several important
purposes in building and working with simulations. First, they
guide the formulation of quantitative models by identifying
what aspects of the physical situation are relevant. Second,
qualitative descriptions are used to check the results of a
simulation, to ensure that it “makes sense.” Thus two
advantages of self-explanatory simulation are increased
automation and better explanations [1].

Self-explanatory simulators harness the formalisms of
qualitative physics to automate the process of creating
simulators. Given an initial physical description, a qualitative
analysis of the situation reveals what conceptual entities are
relevant to the task at hand, and identifies what causal factors
affect a parameter under different circumstances. This
information is then used, in concert with quantitative
information in the domain theory, to construct appropriate
numerical programs for simulating the system. By
incorporating explicit representations of conceptual entities
(such as physical processes) in the simulator, causal
explanations can be given for the simulated behavior.
Moreover, the qualitative representations provide some of the
same opportunities for automatic “reality checks” that an expert
would apply in evaluating a simulation. For instance, a
simulation of a fluid system which reported a negative amount

1 Create a scenario model via instantiation of model fragments from the domain theory.
2 Analyze the scenario model to define the appropriate notion of state for the simulator:

2.1 Extract physical and conceptual entities.

2.2 Define boolean parameters (i.e., logical variables corresponding to conditions such as valves being open or
closed, or physical processes being active).

23 Define numerical parameters & relevant comparisons among them.

24 Extract influences to create causal ordering

3 Write simulator code

3.1 Simplify boolean parameters

32 Compute update order for numerical parameters using the influence graph and for boolean parameters using
logical dependencies between them.

3.3 Write code to evolve state descriptions (evolver).

34 Write code to detect state transitions (transition finder)

3.5 Write code to detect inconsistencies (nogood checker)

3.6 Write structured explanation system

Figure 1: The SIMGEN MKk3 Algorithm

of liquid in a container is not producing realistic results. The
ability to detect such conditions is called self-monitoring.

The first systems to generate self-explanatory simulators were
compilers. That is, the creation of a simulator was done off-
line, with the goal of producing code whose execution would
asymptotically approach the speed of traditional numerical
simulators while providing services they did not (i.e.,
explanations and increased self-monitoring). This goal was
met, but only at the cost of high compilation times. For
example, SIMGEN Mk1 [1] used envisioning for its qualitative
analysis procedure. This provided powerful explanation
capabilities (including answering counterfactual questions via
comparing the simulated behavior to alternatives in the
envisionment) and a high degree of self-monitoring, because the
numerical state of the simulator could be checked against a
complete qualitative state. Unfortunately, envisioning, like all
non-resource limited forms of qualitative simulation, is
exponential in the size of the system being analyzed. A closer
analysis of what simulation authors do led to the substitution of
a simpler qualitative analysis system: Qualitative simulation is
simply not necessary for simulation construction. A person
writing a numerical simulator never explicitly identifies (with
the possible exception of defining initial conditions) even a
single global qualitative state of the system being simulated.
SIMGEN Mk? [2] used a qualitative analysis procedure that
avoided the obviously exponential steps in qualitative reasoning
that are unnecessary given quantitative information, such as
branching on all ways to resolve an ambiguous influence on a
variable or all possible combinations of state transitions. This
compiler could construct simulators of systems larger than any
envisioning-based system ever could (i.e., involving dozens to
hundreds of parameters), such as a twenty stage distillation
column [9]. The tradeoff is that some explanatory capabilities
(i.e., efficient counterfactual reasoning) and self-monitoring
capabilities (i.e., the guarentee that every numerical simulator
state satisfied some legal qualitative state) were lost. However,
as Section 3 explains, even this compiler was still subject to
combinatorial explosions.

An alternative to compiling self-explanatory simulators is to
build simulators that act as interpreters, i.e., that interleave
model-building, model translation into executable code, and

code execution[3,4]. In PIKA [4], for example, Mathematica is
used in conjunction with a causal ordering algorithm to produce
a decomposition of a set of equations into independent and
dependent parameters, along with an order of computation to
update dependent parameters. Every state transition which
changes the set of applicable model fragments reinvokes
Mathematica and causal ordering to produce a new simulator
for the new state. (An incremental constraint system was
proposed to minimize this cost.) Part of the motivation for such
systems was the perceived slowness of compiler techniques: By
only building models for behaviors that are known to be
relevant, presumably the entire time from formulation of the
problem to solution would be reduced, even though any
particular execution of a simulator might be slower due to the
need to perform reasoning during simulation. Such systems are
not themselves immune from combinatorial explosions (see
Section 4), but on some examples can exhibit impressive
performance.

It should be noted that some of the specific performance claims
made for PIKA are problematic, e.g., in [4]itis claimed that
PIKA is “5,000 times faster than SIMGEN Mk2.” There are
several minor problems with this claim, such as the fact that the
performance difference is ten times less on the other example
for which data is available about both systems (e.g., boiling
water), and it is not clear what the relative performance
difference between the different computers used is. However,
the worst problem is that the domain theories used by each
system are substantially different: PIKA uses just two model
fragments, with choices for quantitative models “hard wired”
into these fragments. By contrast, in keeping with the goal of
increased automation, the domain models used in SIMGEN
Mk2 were basically the same as used in other qualitative
reasoning systems, with quantitative information added in a
modular fashion. In the SIMGEN Mk?2 quantitative models, for
instance, quantitative parameters such as fluid and thermal
conductances and container sizes were explicit variables that
could be set by the simulation user at run time. In PIKA such
information was hard-wired into the model fragments in the
form of example-specific numerical constants, which is not very
realistic.

3.SIMGEN MKk3: A polynomial-time compiler for self-
explanatory simulators

Previous work has shown that the advantages of self-
explanatory simulation can be achieved in several ways. To
better understand the tradeoffs between these methods, we
wanted to figure out how fast self-explanatory simulation
compilers could be. If such systems were inherently
exponential, then the range of applications for them would be
strictly limited. If, on the other hand, self-explanatory
simulators could be compiled in polynomial time (preferably
low-order, of course), then with enough software engineering
such compilers could be used in a broad range of applications.

We have succeeded in developing a polynomial-time algorithm
for compiling self-explanatory simulators. This has required
some important simplifications, which reduce some of the
advantages of self-explanatory simulators. However, the
ability to quickly generate simulators for systems containing
thousands of parameters suggests that these simplifications are
worthwhile.

The rest of this section describes our algorithm. As we explain
the algorithm we analyze its complexity. Since each step
contains so many subprocesses, we only show that each step is
polynomial, instead of attempting to theoretically derive a
concrete bound. We evaluate its performance, and show
empirical data that suggests that its performance is quadratic in
the size of the input description.

3.1 The SIMGEN Mk3 Algorithm

The structure of the algorithm is shown in Figure 1. Its overall
structure is similar to SIMGEN Mk2 [2], so in the rest of this
section we focus mainly on the tradeoffs made to achieve

polynomial time performance.

3.1.1 Creation of the scenario model

We assume domain theories are written in a compositional
modeling language, using Qualitative Process theory [10] to
provide their qualitative aspects. A key tradeoff is how much
qualitative reasoning should be performed. More qualitative
reasoning provides more constraints on the system’s behavior,
which can be exploited to generate more compact code and
better self-monitoring, but at the price of more inference. In
fact, the cost of qualitative reasoning was by far the dominant
cost in SIMGEN Mk1 and Mk2. Interpreters like PIKA [4] and
DME [3] appear to do no qualitative reasoning beyond
instantiating model fragments corresponding to equations,
which we suspect is the main factor responsible for their
efficiency. Consequently, we minimized the amount of
qualitative reasoning in this compiler to see the consequences of
that design decision. Specifically, we use a qualitative reasoner
to instantiate model fragments and draw certain trivial
conclusions (i.e.,if A>B then ~A=B). No transitivity
inferences are made: In earlier compilers, these inferences were
the dominant cost in qualitative reasoning, both because the
number of such conclusions rises combinatorially with the size
of the systems and the ATMS label update algorithm tended to
g0 exponential in that subsystem. No attempt is made to

resolve influences, nor to compute possible state transition
conditions (i.e., limit analysis). The consequences of this
decision are made clear in subsequent sections.

We use TGIZMO, a publically available QP implementation

[11] for our qualitative reasoner. We modified it in two ways.
First, the pattern-directed rules that implement many important
QP operations were simplifed, to strip out aspects of reasoning
not needed by the compiler (e.g., transitivity reasoning over
ordinal relations). Second, the modeling language
implementation was modified so that logical antecedents for
specific kinds of facts (e.g., whether or not a physical process is
active) are explicitly asserted in the database as well as being
represented via clauses in TGIZMO’s LTMS [12]. This
information is needed by the compiler in order to write code for
updating the trith values of dynamic booleans, i.e., those
statements whose truth values may change during simulation.
In previous compilers this information was gleaned from the
statement’s ATMS label, but we chose to use an LTMS [12]
instead to avoid the potential exponential growth of labels [13].

The only combinatorial explosions that occurred in previous
compilers occurred in the qualitative analysis phase, so the
complexity of this step is crucial. Its time complexity is a
function of the cost of instantiating model fragments and the
cost of drawing conclusions with them. The cost of instantiation
can be decomposed into two factors: The cost of pattern
matching, and the size of the description produced by the
operation of the system’s rules. The cost of pattern-matching is
polynomial in the number of antecedents [11]. We assume that
both the scenario model and the domain theory are finite, and
that the number of new entities introduced by the domain
theory for any scenario model is a polynomial function of the
size of the scenario model. We further assume that at worst the
number of clauses instantiated about any particular statement
in the scenario model is bounded by a polynomial. (It is easy to
construct domain theories which violate these assumptions if
one tries [14], but in practice these assumptions are always
satisfied.) Since the work of instantiation is the product of the
number of instantiations and the work to perform each, the
instantiation process is polynomial-time. Furthermore, the
dependency network so created is polynomial in size, as a
function of the size of the domain theory and scenario model.
This means that the cost of inference remains polynomial in
these factors, since we use an LTMS, for which the cost of
inference is worst-case linear in the size of the dependency
network [11]. We thus conclude that the time complexity of
this step is polynomial.

3.1.2 Constructing the simulator’s state

In this step the results of the qualitative analysis are harvested
to create specifications for what information comprises a state
of the simulator. The numerical parameters of the state
include the quantities mentioned in the qualitative model. The
statements for which boolean parameters are introduced are the
existence of individuals, the existence of quantities, activation
status of processes and views, and any statements mentioned in
the antecedents of these EXIST and ACTIVE statements
(except for ordinal relations, which are handled seperately).
Each boolean parameter has an associated antecedents
statement, a necessary and sufficient condition for the truth of
the corresponding statement.

Any truth values known in the scenario model are presumed to
hold universally over any use of the simulator. If for example a
fluid path is assumed to be aligned, every behavior of the
simulator will be generated assuming this fact. (The compiler is
clever enough to not generate simulator parameters for such
statements, although they are still woven into the explanation
system appropriately.) Every truth value that is not known is
treated as something that must be ascertained at runtime. This
technique allows the compiler to produce tighter code by
exploiting constraints of the domain and any hints from the
user. A simple symbolic evaluation procedure is used to test
such constraints. This symbolic evaluator is used for such tasks
as ascertaining what statements are universal and simplifying
antecedents statements to produce tighter code.

Most of the work in this step consists of fetching information
from the TGIZMO database and constructing corresponding
internal datastructures in the compiler, which is obviously
polynomial ime. The only other potentially expensive part of
this computation is the symbolic evaluation procedure. This
procedure is simply a recursive analysis of propositional
statements, checking the (preexisting) LTMS labels of ground
terms at the leaves, and so it too is polynomial.

By comparison, when an ATMS is used such simplifications are
automatically performed by the label update mechanism, which
can take exponential time. The extra information available in
ATMS labels was used for several optimizations in SIMGEN
Mk2, including merging tests for ordinal relations that could be
proven to be equivalent.

3.1.3 Writing the simulator code

The ATMS provided a direct connection between a fact and the
assumptions underlying it, irregardless of the structure of the
dependency network between them. While the use of explicit
antecedents is much cheaper, there is a certain inelegance (and
runtime inefficiency) in not being able to collapse long chains of
inference. (It seems unfair to penalize domain modelers who
use compositional modeling appropriately, i.e., by decomposing
knowledge into small fragments which are then woven together
inferentially in model formulation.) The symbolic evaluator
mentioned above addresses part of this problem. The other
technique we use (in step 3.1) is to divide the boolean
parameters into equivalence classes with canonical members,
according to logical dependency. That is, if a boolean
parameter A depends only on B, and B in turn depends only on
C, and C either has an empty antecedent or an antecedent with
more than one ground term, then A, B, and C would be in the
same equivalence class, and C would be its canonical member.
Each such equivalence class is represented by a single boolean
parameter (although each original statement is still part of the
cxplanation system to preserve clarity). Since dividing a set
into equivalence classes is polynomial time, this step is also.

In regard to Step 3.2, the state space assumption, common in
engineering and satisfied by QP models [15], guarentees we
can always divide the set of parameters into dependent and
independent parts, with the independent parameters being those
which are directly influenced (or uninfluenced) and with the
dependent parameters computed from them. To gain a similar
guarentee for the boolean parameters we must assume that the
domain theory is condition grounded [14], which again is
reasonable for all the domain theories we have seen in practice.

An independent boolean parameter mentions no other boolean
parameters in its antecedents. It could be universally true or
false, it could be something whose truth value is ascertained at
runtime, either as a consequence of the simulation user’s
assumptions (e.g., the state of a valve) or ordinal relations (e.g.,
the existence of a contained liquid when there is a non-zero
amount of water in the container). A boolean parameter that is
not independent is dependent.

The update order is found for both numerical and boolean
dependent parameters by sorting them according to their
maximum distance from the independent parameters, using the
graph of influences in the numerical case and the antecedent
relations in the boolean case. This is clearly a polynomial-time
process. (For comparison, the computation of a boolean update
order was unnecessary when an ATMS was used, because the
labels could be processed to find an appropriate set of
antecedents. Aside from the cost of label updating, the ATMS
method could end up producing less efficient code, by not
taking advantage of the caching offered via intermediate
parameters to eliminate redundant tests.

The overall structure of the code produced by the compiler in
steps 3.3 through 3.5 is the same as that produced by SIMGEN
Mk2. Inevolvers, the effects of direct influences are calculated
first to estimate derivatives, the dependent numerical
parameters are then updated, followed by the boolean
pz-).rametc:rs.1 In transition finders, the limit points of the system
are tested to see if any state transitions have occurred, and
rollback signals are generated to allow the simulator to
modulate its step size to ensure that state transition points are
included in the simulated behavior. In nogood checkers, logical
constraints are tested against the state of a simulator to warn if
the numerical model has diverged from what is qualitatively
legal. We summarize the important changes in how they are
generated that are caused by restricted inferencing.

The main impact of restricted inferencing in generating evolvers
is in the selection of quantitative models for updating dependent
numerical parameters. For instance, a domain theory might
have two quantitative models for how the level of liquidina
container depends on its amount, one for cylindrical containers
and one for rectangular containers.” If the compiler knows the
shape of the container it can install the appropriate model,
otherwise it must write a runtime conditional and provide both
models in the simulator. In SIMGEN Mk2 influence resolution
was performed to see what combinations of qualitative
proportionalities might co-occur, so that appropriate
quantitative models could be constructed for each combination.
For efficiency this compiler eschews influence resolution, using
instead the assumption that the domain modeler has supplied,
for each class of dependent parameter, an appropriate set of
quantitative models (specified in a manner similar to [1]). The
antecedents for these models are used to construct a runtime
conditional, ensuring that each model is executed as
appropriate. Here compile-time error checking has been
sacrificed to efficiency: previous compilers would detect when a
quantitative model was not available for a logically possible
condition.

! The default output mode uses Euler integration, since that is often the
method of choice for training simulators and minimizes runtime costs,
so that we can prodice code which runs well on very small machines.
However, we have decomposed evolvers into subroutines that can be
used with more complex integration methods when needed.

2 Onc of our domain theories in fact includes these models.

Example SIMGEN Mk3 SIMGEN Mk2
Two containers 6.42 seconds 22.8 seconds
Boiling water 5.32 seconds 25.2 seconds
Spring/Block 1.85 seconds 6.4 seconds
3x3 grid of containers 54 seconds 16286 seconds

Table 1: Compilation times for SIMGEN Mk3 vs Mk2 on standard test examples
(IBM RS/6000 Model 530, 128MB RAM, Lucid Common Lisp 4.01)

In generating transition finders, restricted inference can result in
“dead code,” i.e., runtime tests that are moot because they will
never occur. Given how cheap inequality tests are, this is not a
serious drawback, and many of them are avoided by using the
symbolic evaluation procedure to exploit any information that is
available about a comparison. Generating nogood checkers is
also greatly simplified: Previous versions filtered the ATMS
nogood database to find contradictory combinations of
assumptions that, if detected in the runtime system, indicated
that something is amiss. Empirically, those the filter conditions
had to be quite strong, since most of the nogoods would never
arise, given the definition of qualitative state in terms of known
numerical parameters. SIMGEN MKk3 simply uses the symbolic
evaluation procedure to see what ordinal relations are known to
be impossible and test for those. In principle this could result in
reduced self-monitoring, but in practice this appears to be
negligible.

Each of these computations involves simple polynomial-time
operations (see [2] and Section 3.1.2) over structures whose
size is polynomial in the initial scenario description, so they are
polynomial time as well.

3.1.4 Writing the explanation system

The final step in generating a self-explanatory simulator is
creating a runtime system that will provide the same causal
explanations that were available in the original qualitative
analysis, as well as links to the quantitative models used. For
this purpose we use a structured explanation system that
concisely summarizes the qualitative and quantitative analyses.
Such systems provide an abstraction layer between a reasoning
system and an interface that allows each to be optimized
independently. Every conceptual entity, every boolean
parameter, and every numerical parameter has an associated
element in the explanation system, as well as every influence
and every mathematical model. These explanation elements
have associated procedures that enable them to evaluate
whether or not they hold at any state of the simulation, so that a
user can get explanations either while the simulator is operating
or as a post-mortem. These explanations are more detailed than
those generated by equation-based systems such as PIKA, since
they can respond both in qualitative and quantitative terms.

Generating a structured explanation system requires a case
analysis of the elements used in earlier steps of the compiler
construction. This analysis selects the appropriate class of
explanation element and creates the necessary pointers between
it and other such elements to provide coherent causal

explanations. This translation procedure is is linear time, in the
size of the results of the qualitative analysis and the number of
quantitative models used by the system. Importantly, restricted
inferencing has little effect on the quality of the explanation
system: Models are still completely instantiated, so full
ontological and causal information remains available.

3.2 Empirical Results

SIMGEN MK3 is fully implemented, and has been tested
successfully on the suite of examples described in [2]. Inall
cases it is substantially faster than SIMGEN Mk2, as Table 1
shows.

The simulators it produces, like those of SIMGEN Mk2, operate
at basically the speed of a traditional numerical simulator, with
the only extra runtime overhead being the maintenance of a
concise history [1] for explanation generation. Currently the
compiler’s output is Common Lisp, and even with this
performance handicap, the simulators it produces run quite well
on even small machines (1.e., Macintosh Powerbooks).

To demonstrate that SIMGEN MKk3’s performance is in fact
polynomial time, we generated a set of test examples similar to
those used in [2]. That is, a scenario description of size n
consists of an n by n grid of containers, connected in
Manhattan fashion by fluid paths. We generated a sequence of
scenario descriptions, with n ranging from 2 to 10. (The reason
we chose 10 as an upper bound is that the simulator which
results contains just over 2,400 parameters, which is roughly
three times the size of the STEAMER engine room
mathematical model [16]) Extending the domain theory in
{11}, contained liquids include mass, volume, level, pressure,
internal energy, and temperature as dynamical parameters, as
well as other static parameters (e.g., boiling temperature,
specific heat, density, etc.). Containers can be either cylindrical
or rectangular, with appropriate numerical dimensions in each
case. The liquid flow process affects both mass and internal
energy. We then ran the compiler to produce simulators for
each scenario, to see how its performance scaled.

The results are show in Table 2. In an n X n grid scenario, there
are n’ containers and 2[nz—n] fluid paths, so the numbers of
parts in these examples ranges from &8 to 280. The count for
quantities includes both static and dynamic parameters, and the
count for booleans includes both conditions controllable by the
user (e.g., the state of valves) and qualitative state parameters,
such as whether or not a particular physical process is
occurring. The proposition count is the number of statements
in the simulator’s explanation system.

Grid # # # # Compile time
Size parts quantities bool propositions (seconds)

2 8 83 24 456 6

3 21 198 63 1131 19

4 40 363 120 2108 49

5 65 578 195 3387 105

6 96 843 288 4968 202

7 133 958 399 6851 356

8 176 1523 528 9036 586

9 225 1938 675 11523 927

10 280 2403 840 14312 1429

Table 2: Results of SIMGEN MK3 on n x n Manhattan grid
(IBM RS/6000 Model! 350, 64MB RAM, Lucid Common Lisp 4.01)

The theoretical analysis in previous sections suggests that the
compile time should be polynomial in the number of parts in the
system. A least-squares analysis indicates that this is correct:

A quadratic model (0.017P* + 0.399P + 4.586, where P is the
number of containers and paths) fits this data nicely, with X :
= 0.03. Additional evidence for quadratic performance is found
in Table 3, which shows the compiler’s performance on
examples constructed out of chains of containers. A chain of
length N has 2N-1 parts, i.e., N containers and N-/ fluid paths.
A least-squares analysis indicates again that a quadratic model
.01 8P + 0.554P + 0.228, where P is the number of
containers and paths) fits this data well, with X * = 0.004.

Additional tests are in progress. For example, we plan to
translate Sgouros’ distillation theory [9] into the simpler format
used by SIMGEN Mk3 to measure the performance
improvement on it. Since this example was larger than the 3 x
3 container grid, and yet was compiled by SIMGEN MKk2 in
less time than that example (1.5 hours versus four hours), we
expect substantial speedup on this problem as well.

4.TradeofTs in self-explanatory simulators

Different applications entail different tradeoffs: In some cases
potential users have powerful workstations and can afford the
best commercial software (e.g., many engineering
organizations), and in some cases potential users have only
hand-me-down computers and publically available software
(e.g., most US schools). Here we examine the tradeoffs in self-
explanatory simulation methods with respect to potential
applications.

Broadly speaking, the computations associated with self-
explanatory simulations can be divided into three types: (1)
model instantiation, in which the first-order domain theory is
applied to the ground scenario description, (2) model
translation, in which the equations associated with a state are
identified, analyzed, and converted into an executable form, and
(3) model execution, i.e., using numeric integration to derive
descriptions of behavior from a given set of initial values.

The choice of compiler versus interpreter is mainly a choice of
how to apportion these computations, and the tradeoffs are
analogous to those of programming language interpreters and

compilers. Interpreters are more suited for highly interactive
circumstances, where a substantial fraction of effort is spent
changing models compared to running them. Scientists and
engineers formulating and testing models of new phenomena
and highly interactive, exploratory simulation environments for
education are two such applications. Compilers are more
suitable for circumstances where the additional cost of
compilation is offset by repeated use of the model, or when the
environment for model execution cannot support the resources
required by the development environment. Engineering
analysis and design, where a small number of models are used
many times (e.g., in numerical optimization of system
properties), and most educational software and training
simulators, where maximum performance must be squeezed out
of available hardware, are applications where compilers have
the edge.

The cost of model generation is dominated by the
expressiveness of the representation language for models and
the amount of simulator optimization that is performed. In
SIMGEN MKk3, the order of computation is specified as an
inherent part of the domain theory due to the causal ordering
imposed by qualitative process theory influences. Thus, no
algebraic manipulation is required at model generation time.
Other systems allow a domain theory to contain equations in an
arbitrary form. Thus, the equations must be sorted (using a
causal ordering algorithm [7]) and symbolically reformulated to
match that sort. This technique provides the ease of using
arbitrarily-ordered arithmetic expressions, but can lead to
exponential behavior for some classes of equations.

Chain # # # Compile
Length quantiti leans propositions Time (sec)

2 38 9 194 2.05

3 58 15 305 3.43

4 78 21 416 5.02

5 98 27 521 6.66

6 118 33 638 8.72

7 138 39 749 10.5

8 158 45 860 12.5

9 178 51 971 148

10 198 57 1082 17.8

11 218 63 1193 19.9

12 238 69 1304 22.6

13 258 75 1415 25.6

14 278 81 1526 284

15 298 87 1637 31.9

16 318 93 1748 35.1

Table 3: SIMGEN MKk 3 data, linear chain of containers
(IBM RS/6000, 64MB RAM, Lucid Common Lisp 4.01)

Another way in which the representation language for models
affects potential applications is in the kinds of explanations that
can be generated. Domain theories that explictly represent
conceptual entities as well as equations can provide better
explanations than those which do not. While in a few domains
(e.g., electronics) expert causal intuitions are not strongly
directional, in many domains (e.g., fluids, mechanics,
thermodynamics, chemistry, etc.) expert causal intuitions are
strongly directed [17], and there is no a priori guarentee that
the causal accounts produced by causal ordering will match
expert intuitions [18 J. Using equation-based models reduces
the overhead of uncovering and formalizing expert intuitions,
but at the cost of reducing explanation quality. Using explicit
qualitative representations provides an additional layer of
explanations, but at the cost of increased domain theory
development time. Interestingly, TGIZMO accounts for less
than 15% of SIMGEN Mk3's time, so the penalty for using
rich, compositional domain theories appears to be quite small.
How these design choices fare in real applications is, of course,
an empirical question, and characteristics of task environments
often prove suprising. For instance, in [4] it is suggested that
PIKA “...isn’t quite fast enough to drive a truely interactive
simulation [for an embedded multimedia system]” This
assumes that the user requires instant feedback on arbitrary
mode] changes. We doubt that this assumption is correct in
practice; for example, precompiling a set of simulations for
common variations of particular examples would probably
cover the majority of interactions with a user community, and
our experience with other educational software suggests that
users who wanted to try something novel wouldn’t mind
waiting a minute or two for their simulation. On the other
hand, our working assumption that self-explanatory simulation
via interpreters is too resource-intensive for most eduational
applications could be proven wrong by the combination of
advances in computer technology coupled with domain-specific
algebraic manipulation systems. Interestingly, even our current
implementation of SIMGEN Mk3 can, running on a
PowerBook, compile new simulators for small systems
reasonably quickly. Both kinds of systems may end up on
students’ desks and in their homes in the near future.

5.Discussion

Previous work on self-explanatory simulation has produced
systems that can handle medium-sized systems (e.g., a few
dozen to a few hundred parameters). In this paper we describe
anew

algorithm for compiling self-explanatory simulators that extends
the range of the technology to systems involving thousands of
parameters. We have shown, both theoretically and
empirically, that self-explanatory simulators can be compiled in
polynomial time, as a function of the size of the input
description and the domain theory. This advance was made
possible by the observation that minimzing inference could
substantially improve performance [4]. These gains are not
without costs: SIMGEN Mk3 does less self-monitoring and less
compile-time error detection than previous versions. Algebraic
manipulation is neither performed at compile time nor at run
time, for example, and the simulators produced can contain
code that will never actually be executed. On the other hand,
no explanatory capability is lost over SIMGEN Mk2, and the
ability to run rapidly on small examples, and to scale up to very
large systems, outweighs these drawbacks for most
applications.

One open question concerns the possibilty of recovering most, if
not all, of the self-monitoring and error checking of previous
compilers by the judicious use of hints. Many programming
language compilers accept advice from programmers, in the
form of declarations. Qualitative representations can be viewed
as declarations, providing advice to self-explanatory simulators
at the level of physics and mathematics rather than code. Most
qualitative reasoning systems infer as much as possible from
limited information, such as inferring that a particular flow rate
must always be positive. It would be interesting to see how
well domain-specific and example-specific hints could replace
the functionality provided by inference in earlier compilers.

At this point, we believe self-explanatory simulators are ready
for applications. We believe that the major remaining hurdles
are building domain theories plus software engineering. The
only way to prove this is to attempt some applications.
Consequently, we are building a virtual laboratory for
engineering thermodynamics, containing the kinds of
components used in building power plants, refrigerators, and

heat pumps, using a domain theory developed in collaboration
with an expert in thermodynamics. We are also building a
shell to support the construction of training simulators, such as
a self-explanatory simulator for a shipboard propulsion plant, to
finally fulfill one of the early goals of qualitative physics [19].

6.Acknowledgements

This research was supported by grants from NASA Langley
Research Center and from the Office of Naval Research. We
thank Franz Amador for supplying us with a sample PIKA
domain theory.

7.Bibliography

1 Forbus, K. and Falkenhainer, B. Self-explanatory simulations:
An integration of qualitative and quantitative knowledge,
Proceedings of AAAI-90.

2 Forbus, K. and Falkenhainer, B. Self-Explanatory
Simulations: Scaling up to large models, Proceedings of AAAI-
92.

3 Iwasaki, Y. & Low, C. Model generation and simulation of
device behavior with continuous and discrete changes.
Intelligent Systems Engineering, 1(2), 1993.

4 Amador, F., Finkelstein, A. and Weld, D. Real-time self-
explanatory simulation. Proceedings of AAAI-93.

5 Forbus, K. Towards Tutor Compilers: Self-explanatory
simulations as an enabling technology, Proceedings of the
Third International Conference on the Learning Sciences,
August, 1991.

6 Neville, D., Notkin, D., Salesin, D., Salisbury, M., Sherman,
J., Sun, Y., Weld, D. and Winkenbach, G. Electronic “How
Things Work' Articles: A Preliminary Report. JEEE
Transactions on Knowledge and Data Engineering, August
1993.

7 Gautier, P. and Gruber, T. Generating explanations of device
behavior using compositional modeling and causal ordering.
Proceedings of AAAI-93.

8 Forbus, K. Self-Explanatory Simulators: Making computers
partners in the modeling process. In Carrete, N. P. & Singh,
M.G. (Eds.), Qualitative Reasoning and Decision
Technologies, CIMNE, Barcelona, Spain, 1993.

9 Sgouros, N. Integrating qualitative and numerical models in
binary distillation column design, Proceedings of the 1992
AAAI Fall Symposium on Design of Physical Systems, October,
1992.

10 Forbus, K. Qualitative Process theory. Artificial
Intelligence, 24, 1984

11 Forbus, K. and de Kleer, J. Building Problem Solvers, MIT
Press, 1993.

12 McAllester, D. An outlook on truth maintenance. MIT Al
Lab memo AIM-551, 1980.

13 DeCoste, D. and Collins, J. CATMS: An ATMS which
avoids label explosions. Proceedings of AAAI9].

14 Forbus, K. Pushing the edge of the (QP) envelope. In Recent
Progress in Qualitative Physics, Faltings, B. and Struss, P.
(Eds.), MIT Press, 1992.

15 Woods, E. The Hybrid Phenomena theory. In Proceedings
of JCAI-91, Sydney, Austrailia.

16 Roberts, B. and Forbus, K. The STEAMER mathematical
simulation. BBN Technical Report No. 4625, 1981.

17 Forbus, K. and Gentner, D. Causal reasoning about
quantities. Proceedings of the Eighth annual conference of the
Cgnitive Science Society, Amherst, Mass., August, 1986

18 Skorstad, G. Finding stable causal interpretations of
equations. In Faltings, B. and Struss, P. (Eds.), Recent
advances in qualitative physics, MIT Press, 1992.

19 Hollan, J., Hutchins, E., & Weitzman, L. STEAMER: An
interactive inspectable simulation-based training system. A/
Magazine, 5(2), 15-217.

