
Polynomial-time compilation
of

Self-Explanatory Simulators

KennethD. Forbus
QualitativeReasoningGroup,The Institutefor theLearningSciences

NorthwesternUniversity
1890MapleAvenue,Evanston,IL, 60201,USA

BrianFalkenhainer
Xerox Modeling Research& Technology
1350JeffersonRd, Henrietta,NY, USA

Abstract: Self-explanatory simulatorshavemanypotential
applications,including supportingengineeringactivities,
intelligent tutoring systems,andcomputer-basedtraining
systems.Yetcompilation methodshave beentoo slow for large-
scalesystems,interpreter-basedstrategiesare restricted to
running on large computers with expensive commercial
software, andneithertechnologyhasbeenshownto scaleto
very largesystems.Thispaperdescribesan algorithm for
compiling self-explanatorysimulatorsthatoperates in
polynomial time. It is capable of constructing self-explanatory
simulators with thousands of parameters. This algorithm is
fully implemented,andwe showempirical evidencethat
suggeststhat its performanceis quadratic in the sizeof the
system being analyzed. Wealso analyze the tradeoffs between
compilers and interpretersfor self-explanatory simulation in
terms of application-imposed constraints, and discuss plans for
applications.

1. Introduction

Self-explanatory simulators [1 .2 ,3 .4 ] integratequalitativeand
quantitativeknowledgeto produceboth detaileddescriptionsof
the behavior of a systemand causalexplanationsof howthat
behaviorcomesabout. Theyhavemanypotentialapplications,
suchasin intelligenttutoring systemsandlearning
environments [5 , 6 1 andin supportingthedesignprocess
[7 ,8 1. Realizingthispotential requires both developing
systems that can operate efficiently on substantialmodelsand
understandingthe tradeoffsinvolved in theautomatic
constructionof self-explanatorysimulators. This papermakes
two contributionstowardsthesegoals. First, wedescribea
polynomial-timemethodfor compiling self-explanatory
simulators, andshow that it operates successfullyandquickly
on modelslarger than most industrial applications require.
Second, we analyze how the quality of thesimulatorproduced
trades off against the time takento construct it, and consider
how thesetradeoffsaffect potential applications.Throughout,
thediscussionis limited to initial-valuesimulationsof lumped-
element(ordinarydifferential-algebraic)systems.

Section2 reviewsthe basic ideaof self-explanatory simulators
andtherelevantliterature. Section3 describes our new
polynomial-timecompilationtechnique,including both
theoreticalandempiricalcomplexityanalyses.Section4

identifiestradeoffsin constructingself-explanatorysimulators
in light of taskrequirements.Section5 summarizesand
outlinesourplansfor futurework.

2. Self-explanatory simulation: The basics

Traditional numerical simulators generatepredictions of
behavior via numerical computation usingquantitativemodels
of physicalphenomena. Most simulators axe written by hand,
although an increasing number are generatedby domain-
specifictoolkits (e.g.,SPICE for electronics).The modeling
decisions,such as whatphenomenaaxe important to consider,
how doesthephenomenawork, how canit be modeled
quantitatively, and how can thequantitative model be
implemented for efficient computer solution, are mostly made
by hand. Domain-specifictoolkits provide fairly good solutions
to the last two problems,and by what libranestheydo ordo
not include, cansimplify thefirst problem. However, the
choicesof how to translate the physical description into the
conceptualentities supportedby thetoolkit, andwhich
quantitative model to usefrom thelibrary provided by the
toolkit to model an entity, are still madeby hand. Moreover, no
existingtoolkit providestheintuitive explanationsusedby
scientistsand engineersto describehow asystemworks. These
intuitive, qualitative descriptions serveseveral important
purposesin building and working with simulations. First, they
guide theformulation of quantitative models by identifying
what aspectsof thephysical situation axe relevant. Second,
qualitativedescriptions axeusedto checktheresultsof a
simulation,to ensurethat it “makessense.”Thus two
advantagesof self-explanatorysimulationareincreased

automation andbetterexplanations[I].

Self-explanatorysimulatorsharnesstheformalismsof
qualitativephysicsto automatetheprocessof creating
simulators. Givenan initial physicaldescription,aqualitative
analysisofthesituationrevealswhatconceptualentitiesaxe
relevantto thetask at hand,andidentifieswhatcausalfactors
affect a parameterunderdifferentcircumstances.This
informationis thenused,in concertwith quantitative
informationin thedomaintheory,to constructappropriate
numericalprogramsfor simulatingthesystem. By
incorporatingexplicit representationsof conceptualentities
(suchasphysicalprocesses)in thesimulator,causal
explanationscanbegivenfor thesimulatedbehavior.
Moreover,thequalitativerepresentationsprovidesomeof the
sameopportunitiesfor automatic“reality checks”that anexpert
would applyin evaluatingasimulation. For instance,a
simulationof a fluid systemwhich reporteda negativeamount



Create a scenariomodel via instantiation of model fragmentsfrom thedomaintheory.
2 Analyzethescenario model to define the appropriate notion of state for the simulator:

2.1 Extract physical andconceptualentities.
2.2 Define booleanparameters (i.e.,logical variables correspondingto conditionssuchasvalvesbeing open or

closed,or physicalprocessesbeingactive).
2.3 Define numerical parameters & relevantcomparisonsamongthem.
2.4 Extractinfluencesto createcausalordering

3 Write simulator code
3.1 Simplify booleanparameters
3.2 Compute updateorder for numerical parameters using theinfluence graph andfor booleanparametersusing

logical dependenciesbetweenthem.
3.3 Write codeto evolvestatedescriptions(evolver).

3.4 Write codeto detect statetransitions (transitionfinder)

3.5 Write codeto detectinconsistencies(nogoodchecker)
3.6 Write structured explanationsystem

Figure 1: The SIMGEN Mk3 Algorithm

of liquid in a container is not producing realistic results. The
ability to detectsuchconditions is calledself-monitoring.

The first systemsto generateself-explanatorysimulators were
compilers. That is, thecreation of a simulator wasdoneoff-
line, with the goal of producing codewhoseexecutionwould
asymptotically approach thespeedof traditional numerical
simulators while providing servicestheydid not (i.e.,
explanationsandincreasedself-monitoring). This goal was
met, but only at the cost of high compilation times. For
example,SIMGEN Mkl [1] usedenvisioningfor its qualitative
analysis procedure. This provided powerful explanation
capabilities (including answering counterfactual questionsvia
comparing the simulated behavior to alternatives in the
envisionment)and a high degreeof self-monitoring, becausethe
numerical stateof thesimulator could be checkedagainsta
completequalitative state. Unfortunately, envisioning,like all
non-resourcelimited forms of qualitative simulation, is
exponentialin the sizeof thesystem being analyzed. A closer
analysis of what simulation authors do led to thesubstitution of
a simpler qualitative analysis system:Qualitative simulation is
simply not necessaryfor simulation construction. A person
writing a numerical simulator never explicitly identifies (with
thepossibleexceptionof defining initial conditions)evena
singleglobal qualitative stateof the systembeing simulated.
SIMGEN M.k2 [21 useda qualitative analysisprocedure that
avoided theobviously exponentialstepsin qualitative reasoning
that axe unnecessarygiven quantitative information, such as
branching on all waysto resolvean ambiguousinfluenceon a
variable or all possiblecombinationsof statetransitions. This
compiler could constructsimulators of systemslargerthan any
envisioning-basedsystemevercould (i.e., involving dozensto
hundreds of parameters),suchas a twenty stagedistillation
column [9 1. The tradeoff is that someexplanatory capabilities
(i.e., efficient counterfactualreasoning) andself-monitoring
capabilities(i.e.,the guarenteethat every numerical simulator
statesatisfied somelegal qualitative state)werelost. However,
as Section 3 explains, eventhis compiler was still subject to
combinatorial explosions.

An alternative to compiling self-explanatory simulators is to
build simulators that act as interpreters, i.e.,that interleave
model-building, model translation into executablecode,and

codeexecution[3,4]. In PIKA [41, for example, Mathematica is
usedin conjunction with a causalordering algorithm to produce
a decompositionof a setof equationsinto independentand
dependentparameters,along with an order of computation to
updatedependentparameters. Every statetransition which
changesthe set ofapplicable model fragments reinvokes
Mathematica and causalordering to produce a newsimulator
for thenew state. (An incremental constraint systemwas
proposedto minimize this cost.) Partof themotivation for such
systemswastheperceivedslownessofcompiler techniques: By
only building modelsfor behaviors that are known to be
relevant, presumably theentire time from formulation of the
problem to solution would be reduced, eventhough any
particular executionof a simulator might beslowerdueto the
needto perform reasoningduring simulation. Suchsystemsam
not themselvesimmune from combinatorial explosions(see
Section4), but on someexamplescan exhibit impressive
performance.

It should be noted that someof the specificperformanceclaims
madefor PIKA are problematic, e.g., in [4] it is claimed that
PIKA is “5,000 timesfasterthanSIMGENMk2.” Thereaxe
severalminor problems with this claim, such as the fact that the
performancedifference is tentimes lesson the other example
for which data is availableabout both systems(e.g.,boiling
water), andit is not clearwhat the relative performance
difference betweenthe different computersusedis. However,
the worst problem is that thedomain theories usedby each
system are substantially different: PIKA usesjust two model
fragments, with choicesfor quantitative models“hard wired”
into thesefragments. By contrast, in keepingwith thegoal of
increased automation, thedomain models usedin SIMGEN
Mk2 werebasicallythe sameas usedin other qualitative
reasoningsystems,with quantitative information addedin a
modular fashion. In the SIMGEN Mk2 quantitative models, for
instance,quantitativeparameterssuchas fluid and thermal
conductancesandcontainersizeswereexplicit variablesthat
couldbe setby thesimulationuseratruntime. In PIKA such
informationwas hard-wiredinto themodelfragmentsin the
form of example-specific numericalconstants, which is not very
realistic.



3.SIMGEN Mk3: A polynomial-time compiler for self-
explanatory simulators

Previouswork hasshownthat the advantages of self-
explanatory simulation can be achievedin severalways. To
betterunderstandthetradeoffsbetweenthesemethods,we
wanted to figure out how fast self-explanatory simulation
compilers could be. If suchsystemswereinherently
exponential, then therange of applications for them would be
strictly limited. If, on the other hand, self-explanatory
simulators could becompiled in polynomial time (preferably
low-order, of course),then with enoughsoftware engineering
such compilerscould be usedin a broad range of applications.

Wehave succeededin developinga polynomial-time algorithm
for compiling self-explanatorysimulators. This has required
someimportantsimplifications,whichreducesomeof the
advantagesof self-explanatorysimulators. However,the
ability to quickly generatesimulatorsfor systemscontaining
thousandsof parameterssuggeststhat thesesimplificationsare
worthwhile.

The rest of this sectiondescribesour algorithm. As weexplain
thealgorithmweanalyzeits complexity. Sinceeachstep
containsso manysubprocesses,we only showthateachstepis
polynomial, insteadof attemptingto theoreticallyderivea
concretebound. Weevaluateits performance,andshow
empiricaldatathat suggeststhat its performanceis quadraticin
thesizeoftheinput description.

3.1 TheSIMGEN Mk3 Algorithm

Thestructureof the algorithm is shownin Figure 1. Its overall
structureis similar to SIMGENMk2 [2], soin therestofthis
sectionwe focusmainlyon thetradeoffsmadeto achieve
polynomial timeperformance.

3.1.1 Creation of the scenario model

We assumedomaintheories are written in a compositional
modelinglanguage,usingQualitative Processtheory[10] to
providetheirqualitativeaspects.A keytradeoff is howmuch
qualitativereasoningshouldbeperformed.Morequalitative
reasoningprovidesmoreconstraintson thesystem’sbehavior,
whichcanbe exploitedto generatemorecompactcodeand
better self-monitoring,but at thepriceof moreinference. In
fact,thecostof qualitativereasoningwasby farthedominant
cost in SIMGEN MkI and Mk2. Interpreters like PIKA [4] and
DME [3] appear to do no qualitative reasoningbeyond
instantiatingmodel fragmentscorrespondingto equations,
whichwesuspectis the main factorresponsiblefor their
efficiency. Consequently,we minimizedtheamountof
qualitativereasoningin this compilerto seetheconsequencesof
that designdecision. Specifically,we usea qualitativereasoner
to instantiate model fragmentsand draw certain trivial
conclusions(i.e.,if A>B then—A=B). No transitivity
inferencesammade:in earliercompilers,theseinferenceswere
thedominantcostin qualitativereasoning,both becausethe
numberof suchconclusionsrisescombinatoriallywith the size
of thesystemsandthe ATMS label updatealgorithm tended to
go exponentialin that subsystem.Noattempt is madeto

resolveinfluences,nor to computepossiblestatetransition
conditions (i.e.,limit analysis).The consequencesof this
decisionammadeclearin subsequentsections.

WeuseTGIZMO, apublically availableQP implementation
[11] for our qualitativereasoner. We modifiedit in two ways.
First, thepattern-directedrulesthat implementmanyimportant
QP operationsweresimplifed,to strip out aspectsof reasoning
notneededby thecompiler(e.g., transitivityreasoningover
ordinalrelations). Second,themodelinglanguage
implementationwasmodifiedsothat logical antecedentsfor
specifickindsof facts (e.g.,whetherornot aphysicalprocessis
active)areexplicitly assertedin thedatabaseaswell asbeing
representedvia clausesin TGIZMO’s LTMS [121. This
informationis neededby thecompilerin orderto write codefor
updatingthetruthvaluesof dynamicbooleans,i.e., those
statementswhosetruthvaluesmaychangeduringsimulation.
In previouscompilersthisinformation wasgleanedfrom the
statement’sATMS label,but wechoseto useanLTMS [12 1
insteadto avoidthepotentialexponentialgrowthof labels[13 1.

Theonly combinatorialexplosionsthat occurredin previous
compilersoccurredin thequalitativeanalysisphase,sothe
complexityof thisstepis crucial. Its time complexityis a
functionof thecostof instantiatingmodel fragmentsandthe
costof drawingconclusionswith them.Thecostofinstantiation
canbedecomposedinto two factors:Thecostof pattern
matching,andthesizeof thedescriptionproducedby the
operationof thesystem’srules. The costof pattern-matchingis
polynomialin thenumberof antecedents[11]. Weassumethat
boththescenariomodel andthedomaintheoryarefinite, and
thatthenumberof new entitiesintroducedby thedomain
theoryfor anyscenariomodel is a polynomial functionof the
sizeof thescenariomodel. We furtherassumethat atworstthe
numberof clausesinstantiatedaboutanyparticularstatement
in thescenariomodel is boundedby apolynomial. (It is easyto
constructdomaintheorieswhich violatetheseassumptionsif
onetries [14 1’ but in practicetheseassumptionsarealways
satisfied.) Sincetheworkof instantiationis theproductof the
numberof instantiationsandthework to performeach,the
instantiationprocessis polynomial-time. Furthermore,the
dependencynetworksocreatedis polynomial in size,asa
functionof thesizeof thedomaintheoryandscenariomodel.
This meansthat thecostof inferenceremainspolynomialin
thesefactors,sinceweuseanLTMS, for whichthecostof
inferenceis worst-caselinearin thesizeofthedependency
network [11]. Wethus concludethat the time complexityof
this step is polynomial.

3.1.2 Constructing the simulator’s state

In this steptheresultsof thequalitative analysisam harvested
to create specifications for what information comprises a state
of the simulator. The numerical parameters of thestate
includethequantitiesmentionedin thequalitativemodel. The
statementsfor which booleanparametersareintroducedarethe
existenceofindividuals, theexistenceof quantities,activation
status of processesandviews,andany statementsmentionedin
theantecedentsof theseEXIST andACTIVE statements
(exceptfor ordinalrelations,whicharehandledseperately).
Eachbooleanparameterhasan associatedantecedents
statement,anecessaryandsufficientcondition for thetruth of
thecorrespondingstatement.



Any truth valuesknownin thescenariomodel are presumedto
hold universallyover anyuseof thesimulator. If for examplea
fluid pathis assumedto bealigned,everybehaviorof the
simulatorwill begeneratedassumingthisfact. (The compileris
cleverenoughto not generatesimulatorparametersfor such
statements,althoughtheyamstill woveninto theexplanation
systemappropriately.)Everytruth valuethatis not known is
treatedassomethingthat mustbeascertainedat runtime, This
techniqueallowsthecompilerto producetightercodeby
exploitingconstraintsof thedomainandanyhints from the
user.A simplesymbolicevaluationprocedureis usedto test
suchconstraints.This symbolicevaluatoris usedfor suchtasks
as ascertainingwhatstatementsareuniversalandsimplifying
antecedentsstatementsto producetightercode.

Mostof thework in this stepconsistsof fetching information
fromtheTGIZMO databaseandconstructingcorresponding
internal datastructures in thecompiler, which is obviously
polynomial time. The only other potentially expensivepartof
this computationis the symbolic evaluation procedure. This
procedureis simply arecursiveanalysisof propositional
statements,checkingthe(preexisting)LTMS labelsof ground
termsattheleaves,andso it toois polynomial.

By comparison, whenan ATMS is usedsuchsimplifications am
automatically performed by thelabel update mechanism,which
can take exponential time. The extra information availablein
ATMS labelswasusedfor severaloptimizations in SIMGEN
Mk2, including mergingtestsfor ordinalrelationsthat couldbe
provento beequivalent.

3.1.3 Writing thesimulatorcode

TheATMS provided adirect connectionbetweena factandthe
assumptionsunderlyingit, irregardlessof thestructureof the
dependencynetworkbetweenthem. While theuseof explicit
antecedentsis muchcheaper,thereis acertaininelegance(and
runtimeinefficiency)in notbeingableto collapselong chainsof
inference.(It seemsunfair to penalizedomainmodelerswho
usecompositionalmodelingappropriately,i.e.,by decomposing
knowledgeintosmall fragmentswhicharethenwoventogether
inferentially in model formulation.) The symbolicevaluator
mentioned aboveaddressespartof thisproblem. Theother
techniquewe use(in step3.1) is to dividetheboolean
parametersinto equivalenceclasseswith canonicalmembers,
accordingto logical dependency.Thatis, if aboolean
parameterAdependsonly onB, andB in turn dependsonly on
C, andC eitherhasanemptyantecedentoran antecedentwith
morethanonegroundterm,thenA, B, andC would bein the
sameequivalenceclass,andC would be its canonicalmember.
Eachsuchequivalenceclassis representedby asinglehoolean
parameter(althougheachoriginal statementis still partof the
explanationsystemto preserveclarity). Sincedividinga set
into equivalenceclassesis polynomialtime, this stepis also.

In regardto Step 3.2, thestatespaceassumption,commonin
engineeringandsatisfiedby QP models[15 ], guaxenteeswe
canalwaysdivide thesetof parametersinto dependentand
independentparts,with theindependentparametersbeingthose
which aredirectly influenced(or uninfluenced)andwith the
dependentparameterscomputedfromthem. To gaina similar
guarenteefor thebooleanparameterswemustassumethat the
domain theoryis conditiongrounded[14], which againis
reasonablefor all thedomaintheorieswe haveseenin practice.

An independentbooleanparametermentionsno otherboolean
parametersin itsantecedents.It couldbeuniversallytrueor
false,it could be something whosetruth valueis ascertainedat
runtime,eitherasaconsequenceof thesimulationuser’s
assumptions(e.g.,thestateof avalve) or ordinal relations(e.g.,
theexistenceof acontainedliquid whenthereis a non-zero
amountof waterin thecontainer).A booleanparameterthat is
not independentis dependent.

The updateorderis foundfor both numericaland boolean
dependentparametersby sorting themaccordingto their
maximumdistancefromtheindependentparameters,usingthe
graphof influencesin thenumericalcaseandtheantecedent
relationsin theboolcancase. This is clearlyapolynomial-time
process.(Forcomparison,thecomputationof a booleanupdate
orderwasunnecessarywhenanATMS wasused,becausethe
labelscould beprocessedto findanappropriatesetof
antecedents.Asidefrom theCostof labelupdating,theATMS
methodcouldendup producinglessefficient code,by not
taking advantageof thecachingofferedviaintermediate
parametersto eliminateredundanttests.

Theoverall structureof thecodeproducedby thecompilerin
steps3.3 through3.5 is thesameasthatproducedby SIMGEN
Mk2. Inevolvers,theeffectsof directinfluencesarecalculated
first to estimatederivatives,thedependentnumerical
parametersarethenupdated,followed by theboolean
parameters.

1
In transitionfinders,thelimit pointsofthesystem

aretestedto seeif anystatetransitionshaveoccurred,and
rollback signalsaregeneratedto allow thesimulatorto
modulateits stepsizeto ensurethat statetransitionpointsare
includedin thesimulatedbehavior. In nogoodcheckers,logical
constraintsamtestedagainstthestateof asimulatorto warnif
thenumericalmodel hasdivergedfrom whatis qualitatively
legal. Wesummarizetheimportantchangesin how theyaxe
generatedthat arecausedby restrictedinferencing.

Themain impactofrestrictedinferencingin generatingevolvers
is in theselectionof quantitativemodelsfor updatingdependent
numericalparameters.For instance,a domaintheorymight
havetwo quantitativemodelsfor howthelevel of liquid in a
containerdependson itsamount,onefor cylindrical containers
andonefor rectangularcontainers.

2
If thecompilerknowsthe

shapeofthecontainer it can install theappropriatemodel,
otherwiseit mustwritearuntimeconditional andprovideboth
modelsin thesimulator. In SIMGEN Mk2 influenceresolution
wasperformedto seewhatcombinationsof qualitative
proportionalities might co-occur,sothat appropriate
quantitativemodelscouldbeconstructedforeachcombination.
For efficiencythis compilereschewsinfluenceresolution,using
insteadtheassumptionthat thedomainmodelerhassupplied,
for eachclassof dependentparameter,anappropriatesetof
quantitativemodels(specifiedin a mannersimilar to [1]). The
antecedentsforthesemodelsareusedto constructa runtime
conditional,ensuringthateachmodel is executedas
appropriate. Herecompile-time error checking has been
sacrificedto efficiency: previouscompilers would detectwhen a
quantitativemodel wasnot availablefor a logically possible
condition.

The default output modeusesEuler integration,since that is often the
methodof choice for trainingsimulatorsand minimizesruntimecosts,
so that we can producecodewhichrunswell on very smallmachines.
However, we have decomposed evolvers into subroutinesthat canbe
used with morecomplexintegrationmethods when needed.2

()neof our domain theories in fact includesthesemodels.



Example SIMGEN Mk3 SIMGEN Mk2
Two containers 6.42seconds 22.8 seconds
Boiling water 5.32seconds 25.2 seconds
SpringlBlock 1.85seconds 6.4 seconds
3x3grid of containers 54 seconds 16286seconds
Table1: Compilation timesfor SIMGEN Mk3 vs Mk2 on standardtestexamples
(IBM RSI6000Model 530, 128MBRAM, Lucid Common Lisp 4.01)

In generatingtransitionfinders,restrictedinferencecanresultin
“deadcode,”i.e.,runtimeteststhat ammoot becausetheywill
neveroccur. Givenhow cheapinequality testsare, this is not a
seriousdrawback,andmany of them areavoidedby usingthe
symbolicevaluationprocedureto exploitanyinformationthat is
availableaboutacomparison. Generatingnogoodcheckersis
alsogreatlysimplified: PreviousversionsfilteredtheATMS
nogooddatabaseto find contradictorycombinationsof
assumptionsthat, if detectedin theruntimesystem,indicated
that somethingis amiss. Empirically, thosethefilter conditions
hadto bequite strong,sincemostof thenogoodswould never
arise,giventhedefinition of qualitativestatein termsof known
numericalparameters.SIMGEN Mlc3simply usesthesymbolic
evaluationprocedureto seewhatordinal relationsareknownto
be impossibleandtest for those. In principlethis couldresultin
reducedself-monitoring,but in practicethisappearsto be
negligible.

Eachof thesecomputationsinvolvessimplepolynomial-time
operations(see[2] andSection3.1.2)over structureswhose
size is polynomial in the initial scenario description, so they am
polynomial time as well.

3.1.4 Writing theexplanationsystem

The final stepin generatingaself-explanatorysimulatoris
creatinga runtimesystemthat will providethesamecausal
explanationsthat wereavailablein theoriginal qualitative
analysis,aswell aslinks to thequantitativemodelsused. For
this purposeweusea structuredexplanationsystemthat
conciselysummarizesthequalitativeandquantitativeanalyses.
Suchsystemsprovideanabstractionlayerbetweenareasoning
systemandaninterfacethat allows eachto beoptimized
independently. Every conceptualentity, everyboolean
parameter,andevery numericalparameterhasanassociated
elementin theexplanationsystem,as well aseveryinfluence
andeverymathematicalmodel. Theseexplanationelements
haveassociatedproceduresthat enablethem to evaluate
whetheror not they hold at any stateof thesimulation,so that a
usercangetexplanationseitherwhile thesimulatoris operating
orasapost-mortem.Theseexplanationsaremoredetailedthan
thosegeneratedby equation-basedsystemssuchasPIKA, since
theycanrespondboth in qualitativeandquantitativeterms.

Generatingastructuredexplanationsystemrequiresacase
analysisof theelementsusedin earlierstepsof thecompiler
construction.This analysisselectstheappropriateclassof
explanationelementandcreatesthenecessarypointersbetween
it andothersuchelementsto providecoherentcausal

explanations.This translationprocedureis is lineartime, in the
sizeof theresultsof thequalitativeanalysisandthenumberof
quantitativemodelsusedby thesystem. Importantly,restricted
inferencinghaslittle effecton thequalityof theexplanation
system:Models arestill completelyinstantiated,so full
ontologicalandcausalinformation remainsavailable.

3.2 EmpiricalResults

SIMGEN Mk3 is fully implemented,andhasbeentested
successfullyon thesuiteof examplesdescribedin [2]. In all
casesit is substantially faster than SIMGENMk2, as Table 1
shows.

Thesimulatorsit produces,like thoseof SIMGEN Mk2, operate
at basicallythespeedof a traditionalnumericalsimulator,with
theonly extraruntimeoverheadbeingthemaintenanceof a
concisehistory [1] for explanationgeneration.Currentlythe
compiler’s output is CommonLisp, and even with this
performancehandicap,the simulators it produces runquite well
onevensmall machines(i.e., MacintoshPowerbooks).

To demonstratethat SIMGENMk3’s performanceis in fact
polynomialtime, we generateda setof testexamplessimilar to
thoseusedin [2]. That is, ascenariodescriptionof sizen
consistsof ann by n grid of containers,connectedin
Manhattanfashionby fluid paths.We generatedasequenceof
scenariodescriptions,with n rangingfrom 2 to 10. (Thereason
we chose10 asanupperboundis that thesimulatorwhich
resultscontainsjust over2,400parameters,whichis roughly
threetimesthesizeof theSTEAMERengineroom
mathematicalmodel [16 1) Extendingthedomaintheoryin
[111, containedliquids includemass,volume, level, pressure,
internalenergy,andtemperatureasdynamicalparameters,as
well asotherstaticparameters(e.g.,boiling temperature,
specificheat,density,etc.). Containerscanbeeithercylindrical
orrectangular,with appropriatenumericaldimensionsin each
case.Theliquid flow processaffectsboth massandinternal
energy. We thenran thecompilerto producesimulatorsfor
eachscenario,to seehow itsperformancescaled.
Theresultsareshowin Table2. In ann x n grid scenario,there
aren

2
containersand2[n

2
-n] fluid paths,so thenumbersof

partsin theseexamplesrangesfrom 8 to 280. Thecountfor
quantitiesincludesboth staticanddynamicparameters,andthe
countfor booleansincludesboth conditionscontrollableby the
user(e.g., thestateof valves)andqualitativestateparameters,
suchaswhetheror nota particularphysicalprocessis
occurring. Thepropositioncountis thenumberof statements
in thesimulator’sexplanationsystem.



Table 2: Resultsof SIMGEN Mk3 on n x n Manhattangrid

(IBM RS/6000Model 350,64MB RAM, Lucid Common Lisp 4.01)

Thetheoreticalanalysisin previoussectionssuggeststhatthe
compile time should be polynomial in the number of partsin the
system. A least-squaresanalysisindicatesthat thisis correct:
A quadraticmodel (0.017P

2
+ 0.399P+ 4.586, whereP is the

number ofcontainers andpaths) fits this data nicely, with X 2

= 0.03. Additional evidencefor quadratic performanceis found
in Table3, which showsthe compiler’s performanceon
examplesconstructedout of chainsof containers. A chainof
lengthN has2N-1 parts, i.e.,N containersandN-I fluid paths.
A least-squaresanalysisindicates againthat a quadratic model
(0.018P

2
+ 0.554P+ 0.228,whereP is the number of

containers andpaths) fits this data well,with X 2 = 0.004.

Additional tests amin progress. For example,weplan to
translate Sgouros’ distillation theory [9] into thesimpler format
usedby SIMGEN Mk3 to measurethe performance
improvementon it. Sincethis examplewaslarger than the 3 x
3 containergrid, andyetwascompiledby SIMGEN Mk2 in
lesstime thanthat example(1.5hoursversusfour hours),we
expectsubstantialspeedupon this problem as well.

4.Tradeoffs in self-explanatorysimulators

Different applicationsentail different tradeoffs: In somecases
potentialusershavepowerfulworkstationsandcanafford the
bestcommercialsoftware(e.g.,manyengineering
organizations),andin somecasespotential usershaveonly
hand-me-downcomputersandpublically availablesoftwam
(e.g.,mostUS schools). Here weexaminethetradeoffs in self-
explanatorysimulationmethods with respectto potential
applications.

Broadlyspeaking,the computationsassociatedwith self-
explanatorysimulationscan bedivided into threetypes: (1)
model instantiation,in which the first-order domaintheory is
appliedto thegroundscenariodescription,(2) model
translation, in whichtheequationsassociatedwith a stateare
identified,analyzed,andconvertedintoanexecutableform, and
(3) model execution,i.e., usingnumericintegrationto derive
descriptionsof behavior from a given set of initial values.
Thechoiceof compilerversusinterpreteris mainly a choiceof
how to apportionthesecomputations,andthetradeoffsare
analogous to thoseof programminglanguageinterpretersand

compilers. Interpretersaremoresuitedfor highly interactive
circumstances,whereasubstantialfractionofeffort is spent
changingmodelscompamdto runningthem. Scientistsand
engineersformulatingandtestingmodelsof newphenomena
andhighly interactive,exploratorysimulationenvironmentsfor
educationaretwo suchapplications. Compilersaremore
suitable for circumstanceswherethe additional cost of
compilation is offsetby repeateduseofthemodel,or whenthe
environment for model executioncannot support the resources
required by the developmentenvironment. Engineering
analysisand design,where a small number of models are used
many times(e.g., in numerical optimization of system
properties), and mosteducational softwareandtraining
simulators, wheremaximum performancemustbesqueezedout
of available hardware, are applications where compilers have
theedge.
The cost of modelgeneration is dominated by the
expressivenessof therepresentationlanguage for modelsand
theamount ofsimulator optimization that is performed. In
SIMGEN Mk3, theorderofcomputationis specifiedasan
inherent partof the domaintheory due to the causalordering
imposedby qualitative processtheory influences.Thus, no
algebraic manipulation is required at model generationtime.
Other systemsallow a domaintheory to contain equationsin an
arbitrary form. Thus, theequations mustbe sorted (usinga
causalordering algorithm [7]) and symbolically reformulated to
match that sort. This techniqueprovidesthe easeof using
arbitrarily-ordered arithmetic expressions,but can leadto
exponentialbehaviorfor someclassesof equations.

Grid
Size paris

4
quantities booleans

4
propositions

Compile time
(seconds)

2~
3

8 83 24 456 6
21 198 63 1131 19

—

40 363 120 2108 49
65 578 195 3387 105
96 843 288 4968 202

7 —

—

133 958 399 6851 356
176 1523 528 9036 586

9 225 1938 675 11523 927

10 280 2403 840 143t2 t429



Table 3: SIMGEN Mk 3data, linear chain of containers

(IBM RS/6000,64MB RAM, Lucid CommonLisp 4.01)

Anotherway in whichtherepresentationlanguagefor models
affects potential applicationsis in the kinds of explanations that
canbe generated. Domain theoriesthat explictly represent
conceptualentitiesas well asequationscanprovidebetter
explanations than thosewhich do not. While in a few domains
(e.g.,electronics)expertcausalintuitions axenot strongly
directional, in many domains (e.g., fluids, mechanics,
thermodynamics, chemistry,etc.)expert causal intuitions am
strongly directed [17 ], andthereis noapriori guarentecthat
thecausalaccountsproduced by causal ordering will match
expert intuitions [18 ]. Using equation-basedmodelsreduces
the overheadof uncovering andformalizing expert intuitions,
but at the costof reducing explanationquality. Usingexplicit
qualitative representationsprovides an additional layer of
explanations,but atthecost of increaseddomaintheory
developmenttime. Interestingly,TGIZMO accountsfor less
than 15% of SIMGEN Mk3’s time, sothepenaltyfor using
rich, compositionaldomaintheoriesappearsto bequite small.
How thesedesignchoicesfam in real applicationsis,of course,
an empiricalquestion,andcharacteristicsoftaskenvironments
oftenprovesuprising. For instance,in [4] it is suggestedthat
PIKA “isn’t quite fastenoughto drivea trudyinteractive
simulation[for anembeddedmultimediasystem]” This
assumes that theuserrequiresinstantfeedbackon arbitrary
model changes. Wedoubt that this assumption is correct in
practice; for example, precompiling a set of simulations for
commonvariations of particularexamples would probably
cover the majority of interactions with a user community, and
our experience with other educational software suggests that
users who wanted to try something novel wouldn’t mind
waiting a minute or two for their simulation. On theother
hand, our working assumption that self-explanatorysimulation
via interpreters is too resource-intensive for most eduational
applications could be proven wrong by the combination of
advances in computer technologycoupledwith domain-specific
algebraicmanipulationsystems.Interestingly, even our current
implementation of SIMGEN Mk3 can,runningon a
PowerBook, compile new simulators for small systems
reasonablyquickly. Both kindsofsystemsmayendup on
students’ desks and in their homes in the nearfuture.

5.Discussion

Previouswork on self-explanatory simulation hasproduced
systemsthat canhandlemedium-sizedsystems(e.g.,afew
dozento a few hundredparameters).In thispaperwe describe
a new
algorithmfor compiling self-explanatory simulators that extends
therangeof thetechnologyto systemsinvolving thousandsof
parameters. We have shown,both theoretically and
empirically, that self-explanatory simulators can be compiled in
polynomial time, as a function of thesizeof the input
description andthedomaintheory. This advancewas made
possibleby theobservationthat minimzing inferencecould
substantially improve performance [4]. Thesegainsam not
without costs:SIMGEN Mlc3 doeslessself-monitoringandless
compile-timeerrordetectionthanpreviousversions. Algebraic
manipulationis neitherperformedatcompiletime noratrun
time, for example, andthe simulators producedcan contain
code that will never actually be executed. On the other hand,
no explanatory capabilityis lostoverSIMGEN Mk2, andthe
ability to runrapidlyon small examples,and to scaleup to very
large systems,outweighsthesedrawbacksfor most
applications.

One open question concerns the possibilty of recovering most, if
not all, of the self-monitoring and error checking of previous
compilersby thejudicious useof hints. Manyprogramming
language compilers accept advice from programmers,in the
form of declarations.Qualitativerepresentationscan be viewed
as declarations, providing advice to self-explanatory simulators
at the level of physics and mathematics rather than code. Most
qualitative reasoning systems infer as much as possible from
limited information, such as inferringthat a particularflow rate
must always be positive. It would be interesting to see how
well domain-specific and example-specific hints couldreplace
the functionality provided by inference in earlier compilers.

At this point, we believe self-explanatory simulators areready
for applications.We believethat themajorremaininghurdles
are building domain theoriesplussoftwareengineering.The
only wayto provethisis to attemptsomeapplications.
Consequently,we are building a virtual laboratory for
engineering thermodynamics, containing the kinds of

Chain
Length

4
quantities

4
booleans

4
propositions

Compile
Time (sec)

:2
3

38 9 194 2.05

58 15 305 3.43
78 21 416 5.02

98 27 527 6.66
t18 33 638 8.72

7 138 39 749 10.5
158 45 860 t2.5

9 178 51 971 14.8

10 198 57 1082 17.8
11 218 63 1193 19.9
12 238 69 1304 22.6

13 258 75 1415 25.6

14 278 81 1526 28.4

15 298 87 1637 31.9

16 318 93 1748 35.1

components used in building power plants, refrigerators, and



heatpumps,usinga domaintheorydevelopedin collaboration
with anexpertin thermodynamics. We are also building a 18 Skorstad,G. Finding stablecausal interpretations of
shell to support theconstruction of training simulators, such as equations. In Faltings, B. andStruss, P. (Eds.),Recent
a self-explanatory simulator for a shipboardpropulsion plant, to advancesin qualitativephysics,MIT Press,1992.
finally fulfill oneoftheearlygoalsof qualitativephysics[19 1. 19 Hollan, J., Hutchins, E., & Weitzman, L. STEAMER: An
6 Acknowledgements interactive inspectable simulation-based training system. Al

Magazine,5(2), 15-27.
This researchwassupportedby grantsfrom NASA Langley
ResearchCenterandfrom theOffice of Naval Research.We
thank Franz Amador for supplying uswith a samplePIKA
domain theory.

7.Bibliography

I Forbus, K. and Falkenhainer, B. Self-explanatory simulations:
An integration of qualitative and quantitative knowledge,
ProceedingsofAAAI-90.
2 Forbus, K. andFalkenhasner,B. Self-Explanatory
Simulations: Scalingup to large models, ProceedingsofAAAI-
92.
3 Iwasaki,Y. & Low, C. Modelgenerationandsimulationof
device behavior with continuousand discretechanges.
IntelligentSystemsEngineering, 1(2), 1993.
4 Amador, F., Finkelstein,A. and Weld, D.Real-time self-
explanatorysimulation.ProceedingsofAAAI-93.
5 Forbus,K. TowardsTutor Compilers:Self-explanatory
simulationsasanenablingtechnology,Proceedingsof the
ThirdInternationalConferenceon theLearningSciences,
August, 1991.
6 Neville, D., Notkin,D., Salesin, D.,Salisbury,M., Sherman,
I., Sun, Y., Weld, D. and Winkenbach,G. Electronic llow
ThingsWork’ Articles: A PreliminaryReport.IEEE
Transactionson KnowledgeandData Engineering, August
1993.
7 Gautier, P. andGruber,T. Generatingexplanationsofdevice
behaviorusingcompositionalmodelingandcausalordering.
ProceedingsofAAAI-93.
8 Forbus,K. Self-ExplanatorySimulators:Making computers
partners in themodelingprocess.In Carrete,N. P. & Singh,
M.G. (Eds.), Qualitative ReasoningandDecision
Technologies,CIMNE, Barcelona, Spain, 1993.

9 Sgouros, N. Integratingqualitativeandnumerical models in
binarydistillationcolumndesign,Proceedingsof the1992
AAAIFall SymposiumonDesignof PhysicalSystems,October,
1992.
10Forbus,K. QualitativeProcesstheory. Artificial
Intelligence,24, 1984

11 Forbus, K. andde Kleer,J. Building ProblemSolvers,MIT
Press,1993.
12 McAllester,D. An outlook on truthmaintenance.MIT Al
LabmemoAIM-55l, 1980.
13 DeCoste,D. andCollins, J. CATMS:AnATMSwhich
avoids label explosions.ProceedingsofAAAI9I.
14 Forbus, K. Pushing the edge of the (QP) envelope. In Recent
Progressin QualitativePhysics,Faltings,B. andStruss,P.
(Eds.), MIT Press, 1992.
15 Woods,E. The Ilybrid Phenomenatheory. In Proceedings
of IJCAI-91,Sydney,Austrailia.
16 Roberts, B. and Forbus, K. The STEAMER mathematical
simulation. BBN Technical Report No. 4625, 1981.
17 Forbus,K. andGentner, D. Causalreasoningabout
quantities.Proceedingsof theEighthannualconferenceof the
CgnitiveScienceSociety,Amherst,Mass.,August, 1986




