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Abstract
Self-explanatory simulators have many potential applica-
tions, including supporting engineering activities, intelligent
tutoring systems, and computer-based training systems . To
fully realize this potential requires improving the technology
to efficiently generate highly optimized simulators . This
paper describes an algorithm for compiling self-explanatory
simulators that operates in polynomial time. It is capable of
constructing self-explanatory simulators with thousands of
parameters, which is an order of magnitude more complex
than any previous technique. The algorithm is fully imple-
mented, and we show evidence that suggests its performance
is quadratic in the size of the system being simulated.

	

We
also analyze the tradeoffs between compilers and interpret-
ers for self-explanatory simulation in terms of application-
imposed constraints, and discuss plans for applications .

1. Introduction
Self-explanatory simulators [1,2,3,4] integrate qualitative
and quantitative knowledge to produce both detailed de-
scriptions and causal explanations of a system's behavior .
They have many potential applications in intelligent tutoring
systems and learning environments [5, 6] and engineering
tasks [7,8] . One step towards realizing this potential is de-
veloping techniques that can operate efficiently on systems
involving many hundreds of parameters, so that, for in-
stance, complex training simulators can be generated auto-
matically. This paper describes a polynomial-time method
for compiling self-explanatory simulators and shows that it
operates successfully on models larger than most industrial
applications require. This paper considers only initial-value
simulations of lumped-element (ordinary differential-
algebraic) systems .

Section 2 reviews the basics of self-explanatory simula-
tors . Section 3 describes our new polynomial-time compila-
tion technique. Section 4 outlines the complexity analysis
and Section 5 summarizes empirical results, including evi-
dence that its performance is quadratic in the size of the sys-
tem being simulated. Section 6 identifies tradeoffs in con-
structing self-explanatory simulators in light of task re-
quirements . Section 7 outlines our plans for future work .

2.

	

Self-Explanatory simulation : The basics
Traditional numerical simulators generate predictions of
behavior via numerical computation using quantitative mod-
els of physical phenomena. Most simulators are written by
hand, although an increasing number are generated by do-
main-specific toolkits .[KDFI1 Modeling decisions, such as
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what phenomena are important to consider, how does the
phenomena work, how can it be modeled quantitatively, and
how to implement the quantitative model for efficient com-
puter solution, are mostly made by hand . Domain-specific
toolkits provide reasonable solutions to the last two prob-
lems, and with appropriate libraries they can simplify the
first problem. However, the choices of how to translate the
physical description into the conceptual entities supported
by the toolkit, and which quantitative model to use from the
library to model an entity, are still made by hand . More-
over, no existing toolkit provides the intuitive explanations
used by scientists and engineers to describe how a system
works . These intuitive, qualitative descriptions serve sev-
eral important purposes in building and working with simu-
lations. First, they guide the formulation of quantitative
models by identifying what aspects of the physical situation
are relevant. Second, qualitative descriptions are used to
check the results of a simulation, to ensure that it "makes
sense." Thus two advantages of self-explanatory simulation
are increased automation and better explanations [1] .

Self-explanatory simulators harness the formalisms of
qualitative physics to automate the process of creating simu-
lators . Given an initial physical description, a qualitative
analysis of the situation reveals what conceptual entities are
relevant to the task and what causal factors affect a parame-
ter under different circumstances . This information is then
used, in concert with quantitative information in the domain
theory, to construct numerical simulation programs for the
system . By incorporating explicit representations of con-
ceptual entities (such as physical processes) in the simulator,
causal explanations can be given for the simulated behavior .
Moreover, the qualitative representations allow automating
some of the "reality checks" that an expert would apply in
evaluating a simulation . For instance, a simulation of a fluid
system which reported a negative amount of liquid in a con-
tainer is not producing realistic results. This ability is called
self-monitoring .

Figure 1 shows a typical architecture for self-explanatory
simulators . The state vectors are arrays of floating point and
boolean values describing the state of the system at a par-
ticular point in time . The floating point values represent the
values of continuous parameters, such as pressure and veloc-
ity. The boolean values represent the validity of statements
about the physical system at that time, e.g ., if liquid exists
inside a container or if a particular physical process is act-
ing. Given a state vector and a time increment, the evolver
generates a state vector representing the state of the system
after that time increment.



In many physical systems, the equations governing the
temporal evolution of the system's behavior can themselves
change, as when phase changes occur or flows start and
stop . These changes occur at limit points, which mark the
boundaries between qualitatively distinct behaviors. The
transition finder (again see Figure 1) detects the occurrence
of limit points . The controller uses the transition finder and
evolver to "roll back" the simulation to include all limit
points in the simulated behavior. This increases the accu-
racy of the simulation because it ensures that the appropriate
sets of equations are always used, and increases the accuracy
of explanations because it ensures that causally important
events (e .g ., reaching aphase transition) are included in the
simulated behavior . The controller also is responsible for
recording a concise history describing the system's qualita-
tive behavior over time . This concise history is used in con-
junction with a structured explanation system [9] to provide
hypertext explanations of the system's behavior over time,
including physical, causal, and mathematical descriptions .
The nogood checker generates a warning if qualitative con-
straints are violated by a state vector, thus providing self-
monitoring .

The first systems to generate self-explanatory simulators
were compilers, doing all reasoning off-line to produce soft-
ware that approached the speed of traditional simulators
while providing causal explanations and self-monitoring.
These compilation strategies were computationally expen-
sive . SIMGEN MK1 [1] used envisioning, an exponential
technique, for its qualitative analysis procedure.

SIMGEN MK2 [2] exploited the observation that simula-
tion authors never explicitly identify even a single global
qualitative state of the system being simulated, hence quali-
tative simulation is unnecessary for simulation construction .
Qualitative analysis is still necessary to determine what
physical phenomena are relevant, for instance, but most ex-
ponential reasoning steps could be eliminated . SIMGEN
Mk2 could construct simulators of systems larger than any
envisioning-based system ever could (i.e., involving up to
hundreds of parameters), such as a twenty stage distillation
column [10] . This advance in capabilities was not free: The
tradeoff was that some explanatory capabilities (i .e., effi-
cient counterfactual reasoning) and self-monitoring capabili-
ties (i .e., the guarantee that every numerical simulator state
satisfied a legal qualitative state) were lost in moving from
SIMGEN Mkl to SIMGEN Mk2. As Section 3 explains,
even SIMGEN Mk2 was subject to combinatorial explo-
sions, because it was based on an ATMS . The techniques in
this paper trade away more self-monitoring to achieve poly-
nomial-time performance.

An alternative to compiling self-explanatory simulators
is to build interpreters that interleave model-building, model
translation into executable code, and code execution [3,4] .
For example, PIKA [4] uses Mathematica and a causal or-
dering algorithm to decompose a set of equations into inde-
pendent and dependent parameters and find an order of
computation. Every state transition which changes the set of
applicable model fragments reinvokes this reasoning to pro-
duce a new simulator. ([11] uses an incremental constraint
system to minimize this cost.) One motivation for interpret-
ers was the perceived slowness of compiler techniques ; by
only building models for behaviors that are known to be
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relevant, presumably the overall time from formulation of
the problem to the end of simulation would be reduced, even
though the simulation time itself might be longer due to run-
time reasoning. Such systems are not themselves immune
from combinatorial explosions, and have never been tested
on examples as large as compilers (c.f. [10]), but on small
examples interpreters can exhibit impressive performance.

It should be noted that the claim that PIKA is "5,000
times faster than SIMGEN MK2" [4] is problematic, for
three reasons. First, the domain theories used by each sys-
tem were completely different. PIKA used just two model
fragments, with built-in quantitative models containing ex-
ample-specific numerical constants. This is not realistic . By
contrast, in keeping with the goal of increased automation,
the domain models used in SIMGEN MK2 were similar to
others used in qualitative physics, with quantitative informa-
tion added modularly. For instance, parameters such as
fluid and thermal conductances and container sizes and
shapes are explicit variables in our models that can be set by
the simulation user at run-time . Second, the hardware and
software environments used by the two systems were com-
pletely different, making the comparison figures meaning-
less . Finally, the factor of 5,000 claimed is based on one
example only ; the other example for which even roughly
comparable data is available shows a difference smaller by a
factor of 10 .

3.

	

SIMGENMK3 : Compiling self-explanatory
simulators in polynomial-time

We have developed a polynomial-time algorithm for
compiling self-explanatory simulators . The improvements
in complexity are purchased at the cost of reduced self-
monitoring and less compile-time error checking . However,
the ability to quickly generate simulators for systems con-
taining thousands of parameters suggests that these costs are
worth it. Here we outline the algorithm and explain how it
works. We begin by describing why using an ATMS [16]
was the source of exponential behavior in SIMGEN MK2.
Next we examine the inference services needed to generate
simulators, and show polynomial-time methods for achiev-
ing them . Finally, we outline the algorithm.



3.1 ATMS: The exponential within
ATMS' are often used in qualitative reasoning when many
alternative situations are being explored [12] . A qualitative
state can be defined as a set of assumptions and their conse-
quences, so that states (and partial states) can be concisely
represented by ATMS labels [13] .

	

The labels in an ATMS
database provide a simple and elegant inferential mechanism
for simulation generation . For instance, the code needed to
generate the truth of a proposition could be generated by
interpreting the label as a disjunction of conjunctions, with
each assumption becoming a procedural test. (For instance,
the boolean corresponding to a particular liquid flow occur-
ing might be set to TRUE if the boolean corresponding to
the fluid path being aligned was TRUE and the numerical
value for the pressure in the source were greater than the
numerical value for the pressure in the destination.) Labels
for causal relationships were used to infer what combina-
tions of them could occur together, and hence what mathe-
matical models were needed . (For instance, there can be
several distinct models for flow rates, depending on whether
or not one is considering conductances, but no two of these
models can ever hold at the same time .) Using labels made
certain optimizations easy, such as proving that two distinct
ordinal relationships were logically equivalent and thus al-
lowing the same test to be used for each, which enhances
reliability . (For example, in a spring-block oscillator the
relationship between the length of the spring and its rest
length determines the sign of the force.)

Unfortunately, even when we did not perform qualitative
simulation at all, the number of environments generated by
the ATMS grew exponentially with the size of the system
modeled. Empirically, we found that the source of this
growth was the transitivity inference system, whosejob it is
to infer new ordinal relationships via transitivity andmark as
inconsistent combinations of ordinal relations that violate
transitivity . This makes sense because dependency networks
in which assumptions arejustified by other assumptions, and
especially those containing cycles, lead to exponential label
growth [14] . The majority of assumptions in a typical
analysis are ordinal relations, and cyclic dependencies are
inherent in transitivity reasoning. Transitivity reasoning
cannot be avoided when using an ATMS in simulation
generation, because without it the labels will include
impossible combinations . We conclude that the ATMS must
be abandoned to generate simulators in polynomial time .

3.2 How to get what you really need without
exponential performance

What is the minimum reasoning needed to generate a
simulator for a physical scenario? (1) The model fragments
of a domain theory must be instantiated to identify the
relevant physical and conceptual entities and relationships
(e .g., the existence of contained fluids and phase change
processes) . (2) The causal and quantitative relationships
that follow from them must be determined, to generate the
appropriate causal accounts and mathematical models (e .g .,
models that allow the level of a liquid to be computed given
its mass, density, and specifications of its container) . (3)
The truth values of propositions corresponding to these
relationships holding and/or entities existing (e .g. whether
the liquid exists at a particular time, and if so, what
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ists at a particular time, and if so, what processes are acting
on it) must be inferred to control the operation of the quanti-
tative models . The performance of any compiler and the
quality of the code it produces depends on how these ques-
tions are answered . For instance, if the shape of a container
can be fixed at compile-time, then the model for liquid level
depending on that shape can be "hard-wired," but if the
shape is unknown, a run-time conditional must be inserted
and code representing alternative models generated.

Three techniques provide the inferential services needed
for polynomial-time simulation generation . (1) Reification
of antecedents : When instantiating model fragments, create
explicit assertions concerning their antecedents, in addition
to installing the appropriate dependency network. One ex-
ample is
((liquid-flow (C-S water liquid f) PI G)
:ANTECEDENTS
( :AND (> (A (amount-of-in water liquid F)) ZERO)

(aligned PI)
(> (A (pressure (C-S water liquid f))

(A (Pressure G)))))
(The creation of such assertions is automatic, and is

transparent to the domain modeler.) Such reified antece-
dents are also generated for causal relations and mathemati-
cal models . These antecedent assertions are used by the
compiler in generating truth value tests for propositions . (2)
Symbolic evaluation : If the truth value of a proposition is
known at compile-time, it is presumed to hold universally .
For instance, if a valve is known to be open at compile-time,
the simulator produced should always presume the valve is
open, but otherwise the simulator should include explicit
tests as to whether or not the valve is open and change its
operation accordingly. A simple symbolic evaluator pro-
vides this information, using the reified antecedents and a
logic-based TMS [16] . Given a proposition, it returns
TRUE, FALSE, or MAYBE, according to whether the propo-
sition is universally true, universally false, or can vary at
run-time . (3) Deferred error checking: Finding errors at
compile-time can require exponential work . One example is
proving that exactly one of the quantitative models for a
specific phenomena must hold at any given simulated time .
Such exponential inferences can be avoided by substituting
run-time conditionals . For instance, if there are N mathe-
matical models of aphenomena, insert a conditional test that
runs the appropriate model according to the simulator's cur-
rent parameters, and signals an error if no model is appro-
priate . This reduces self-monitoring, in that finding such
problems at compile-time would be useful . However, this
solution is common practice in building standard simulators
when its behavior might enter a regime for which the author
lacks a good mathematical model.

3.3 The SIMGENMx3 Algorithm
The algorithm is outlined in Figure 2. It is very similar to
SIMGEN Mx2 (described in [2]), so here we focus on how
the above techniques are used.

Step 1: Creation of the scenario model
As before, we assume domain theories are written in a com-
positional modeling language, using Qualitative Process



theory [15] for their qualitative aspects.

	

Since the cost of
qualitative reasoning was the dominant cost in SIMGEN
Mxl and Mx2, the tradeoffs in this step are crucial . The
source of efficiency in interpreters like PIKA [4] and DME
[3] is that they appear to do no qualitative reasoning beyond
instantiating model fragments directly corresponding to
equations.

Step 1 uses a qualitative reasoner to instantiate model
fragments and draw certain trivial conclusions (i .e ., if A>B
then ? A=B) . No transitivity reasoning, influence resolution
or limit analysis is attempted. We use TGIZMO, a publicly
available QP implementation [16] for our qualitative rea
soner.

	

We modified it in two ways . First, the pattern-
directed rules that implement many QP operations were
simplified, stripping out inferences not needed by the com-
piler. Second, we implemented antecedent reification by
modifying the modeling language implementation to assert
antecedents explicitly in the database as well as producing
LTMS clauses.

Step 2: Constructing the simulator's state
Here the results of qualitative analysis are harvested to spec-
ify the contents of state vectors, the concise history, and the
explanation system . The numerical parameters are the quan-
tities mentioned in the scenario model. Boolean parameters
are introduced for relevant propositions : the existence of
individuals (EXISTs) and quantities (QUANTITY), the status of
processes and views (ACTIVE), and any ground propositions
mentioned in their antecedents, recursively (except ordinal
relations, which are computed by comparing numerical val-
ues) . Each boolean parameter has an associated antece-
dents statement, a necessary and sufficient condition for the
truth of the corresponding proposition .

As noted above, any proposition known to be true in the
scenario model is presumed to hold universally over any use
of the simulator. The compiler does not generate simulator
parameters for such propositions, although they are still
woven into the explanation system appropriately . Every
proposition whose truth value is not known in the scenario
yields aboolean parameter whose value must be ascertained
at run-time . This technique allows the compiler to produce
tighter code by exploiting domain constraints and user hints .
The symbolic evaluator decides what propositions are static
and simplifies antecedents containing them .

Step 3: Writing the simulator code
To achieve flexibility compositional modeling demands de-
composing domain knowledge into small fragments . This
can lead to long inference chains, which if proceduralized
naively, would result in simulators containing redundant
boolean parameters and run-time testing . Step 3 .1 simplifies
inference chains in order to produce better code . We use two
simplification techniques : (1) Symbolic evaluation exploits
compile-time knowledge to simplify expressions and (2) A
minimal set ofboolean parameters is found by dividing them
into equivalence classes, based on their antecedents . That is,
if a proposition A depends only on B, and B in turn depends
only on C, and C either has an empty antecedent or an ante-
cedent with more than one ground term, then A, B, and C
would be in the same equivalence class, and C would be its
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1. Create scenario model by instantiating model fragments
from domain theory
2. Analyze scenario model to define simulator state vector
and constituents of concise history and structured
explanation system.

2.1 Extract physical and conceptual entities
2.2 Define boolean parameters for relevant

propositions
2.3 Define numerical parameters and relevant

comparisons
2.4 Extract influences to create causal ordering

3 . Write simulator code
3.1 Simplify antecedents of boolean parameters
3.2 Compute update orders

3.2 .1 For numerical parameters,
use causal ordering

3.2.2 For boolean parameters,
use equivalences and dependencies

3.3 Write evolver code
3.4 Write transition finder code
3.5 Write nogood checker code
3.6 Write structured explanation system

Figure 2: TheSIMGEN Mx_3 Algorithm

canonical member . Each equivalence class is represented in
the simulation code by a single boolean parameter, although
all original propositions are retained in the explanation sys-
tem to maintain clarity .

In Step 3 .2, the state space assumption, common in en-
gineering and satisfied by QP models [17], guarantees we
can always divide the set of parameters into dependent and
independent parts, with the independent parameters being
those which are directly influenced (or uninfluenced) and
with the dependent parameters computed from them. To
gain a similar guarantee for boolean parameters we stipulate
that the domain theory is condition grounded [18], an as-
sumption satisfied by all domain theories we have seen in
practice .

	

An independent boolean parameter mentions no
other boolean parameters in its antecedents . It could be uni-
versally true or false, or its value could be determined at
run-time by ordinal relations (e .g ., the existence of a con-
tained liquid depending on a non-zero amount of that sub-
stance in liquid form in the container) or by the simulation
user's assumption (e.g., the state of a valve) . A boolean
parameter that is not independent is dependent.

	

Thelogical
dependencies between boolean parameters define an order-
ing relation that can be used as the order of computation for
them .

The overall structure of the code produced by the com-
piler in steps 3.3 through 3.5 is the same as in SIMGEN
Mx2. The only change in step 3.6 is taking into account the
simplifications in the boolean parameters, which is simple so
we ignore it here . In evolvers, the effects of direct influ-
ences are calculated first to estimate derivatives, the de-
pendent numerical parameters are then updated, followed by
the boolean parameters . The main impact of restricted in-
ferencing in writing evolvers arises in selecting quantitative
models for updating dependent numerical parameters . For
instance, a domain theory may have two quantitative models
for the level of liquid as a function of mass, depending on



whether the container is cylindrical or rectangular. If the
compiler knows the shape of the container (via symbolic
evaluation) it can install the appropriate model, otherwise it
must provide both models in the simulator and write a run-
time conditional . The compiler must also handle models in
which the equations governing a quantity vary over time . In
SIMGEN MK2 these cases were handled by using influence
resolution to see what combinations of qualitative propor-
tionalities could co-occur, constructing appropriate quantita-
tive models for each combination or signaling a compile-
time error if the domain theory failed to include an appro-
priate quantitative model. In SIMGEN MK3 we instead re-
trieve all the quantitative models for a parameter not ruled
out via symbolic evaluation and write code that selects the
relevant model based on evaluating the models' antecedents
in the current state vector . The evolver code includes a test
for none of the known models being relevant, and generates
a run-time error in such cases .

In generating transition finders, restricted inference can
lead to moot run-time tests, corresponding to physically im-
possible transitions . However, symbolic evaluation catches
most of them, and this is not a serious drawback because
inequality tests are very cheap. Generating nogood checkers
is simplified : Previous compilers generated code based on
ATMS nogoods to detect impossible behaviors. Much effort
was wasted filtering the nogoods, since the vast majority of
them were transitivity violations, which are irrelevant when
ordinal relations are computed from known numerical pa-
rameters . SIMGEN Mx3 simply uses the symbolic evalua-
tion procedure to see what ordinal relations are known to be
impossible and test for those.

4.

	

Complexity Analysis
A detailed complexity analysis is beyond the scope of

this paper (but see [19]) ; here we settle for proving that the
algorithm is polynomial .
Step 1 : The only exponential behavior in previous compil-
ers occurred in this step, so its complexity is crucial. The
time complexity is the sum of the time to instantiate model
fragments and the time to draw conclusions with them . The
cost of instantiation can be decomposed into two factors:
The cost of pattern matching, and the size of the description
produced by the operation of the system's rules. The cost of
pattern-matching is polynomial in the number of antecedents
[16] . We assume that both the scenario model and the do-
main theory are finite, and that the number of new entities
introduced by the domain theory for any scenario model is a
polynomial function of the size of the scenario model. Do-
main theories with exponential, or even unbounded, creativ-
ity are possible in theory [18], but never appear in practice .

The number of clauses instantiated about any particular
statement is bounded by apolynomial, since it is a function
of (a) the number of relevant domain theory statements,
which is always small and certainly independent of the size
of the scenario and (b) the number of entities introduced is
polynomial . Since the work of instantiation is the product of
the number of instantiations and the work to perform each,
the instantiation process is polynomial-time. Furthermore,
the dependency network so created is polynomial in size, as
a function of the size of the domain theory and scenario
model. This means that the cost of inference remains poly-
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Table 1: Compilation times (in seconds) for SIMGEN MK2 vs
MK3 on standard test examples (IBM RS/6000 Model 530,
128MB RAM, Lucid Common Lisp 4.01)

nomial in these factors, since we use an LTMS, for which
the cost of inference is worst-case linear in the size of the
dependency network [16] . We thus conclude that the time
and space complexity of this step is polynomial.
Step 2 : Most of the work in this step consists of fetching
information from the TGIZMO database and constructing
corresponding internal compiler datastructures, which is
obviously polynomial time . The only other potentially
expensive part of this computation is the symbolic evalua-
tion procedure. Symbolic evaluation of a ground term is
performed by checking its LTMS label, which is constant
time . Symbolic evaluation of a compound expression is a
recursive analysis of the structure of the expression, ending
in ground terms. The size of expressions is determined by
the antecedents in the domain theory, and thus for any do-
main model a maximum size can be found for such expres-
sions independent of the size of the scenario model. Ergo
symbolic evaluation is also polynomial in the size of the
scenario model.

Step 3: Each of these computations involves simple
polynomial-time operations (see [2]), the most expensive
being sorting the numerical parameters via the causal order-
ing, sorting the boolean parameters via logical dependen-
cies, and computing the equivalence classes for boolean
parameters . All of these are simple polynomial-time opera-
tions, operating over datastructures whose size is polynomial
in the initial scenario description, so they are polynomial
time as well .

Exam tle Mk2 Mk3
Twocontainers 22.8 6.42
Boilinm water 25 .2 5.32
S , rin, -/Block 6.4 1.85

3?3 container grid 16286 54



Table 2 : Results ofSIMGEN MK3 on n ? n Manhattan grid
(IBM RS/6000 Model 350, 64MB RAM, Lucid Common Lisp
4.01)

5.

	

Empirical Results
SIMGEN Mx3 is fully implemented, and has been tested

successfully on the suite of examples described in [2] . In all
cases it is substantially faster than SIMGEN Mx2, as Table
1 shows. The simulators it produces, like those of SIMGEN
Mx2, operate at basically the speed of a traditional numeri-
cal simulator, with the only extra run-time overhead being
the maintenance of aconcise history for explanation genera-
tion . Currently the compiler's output is Common Lisp with-
out any numerical declarations, and even with this perform-
ance handicap, the simulators it produces run quite well on
even small machines (i .e ., Macintosh Powerbooks).

To empirically demonstrate that SIMGEN Mx3's per-
formance is polynomial time, we generated a set of test ex-
amples similar to those used in [2] . That is, a scenario de-
scription of size n consists of an n by n grid of containers,
connected in Manhattan fashion by fluid paths. Figure 3
illustrates for the three by three case . We generated a se-
quence of scenario descriptions, with nranging from 2 to 10 .
(The reason we chose 10 as an upper bound is that the simu-
lator which results contains just over 2,400 parameters,
which is roughly three times the size of the STEAMER en-
gine room numerical model [20] .) Extending the domain
theory in [16], contained liquids include mass, volume,
level, pressure, internal energy, and temperature as dynami-
cal parameters, as well as other static parameters (e .g ., boil-
ing temperature, specific heat, density) . Containers can be
either cylindrical or rectangular, with appropriate numerical
dimensions in each case . The liquid flow process affects
both mass and internal energy . We then ran the compiler to
produce simulators for each scenario, to see how its per-
formance scaled. The results are show in Table 2. In an n ?
n grid scenario, there are nZ containers and 2[n2-n] fluid
paths, so the numbers of parts in these examples ranges from
8 to 280. The count for quantities includes both static and
dynamic parameters, and the count for booleans includes
both conditions controllable by the user (e .g ., the state of
valves) and qualitative state parameters, such as whether or
not a particular physical process is occurring. The proposi-
tion count is the number of statements in the simulator's
explanation system.

The theoretical analysis in previous sections suggests
that the compile time should be polynomial in the number of
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parts in the system . A least-squares analysis indicates that
this is correct: A quadratic model (0.017PZ + 0.399P +
4.586, where P is the number of containers and paths) fits
this data nicely, with ? z = 0.03. Additional evidence for
quadratic performance is found in Table 3, which shows the
compiler's performance on examples constructed out of lin-
ear chains of containers . A chain of length N has 2N-1 parts,
i.e ., N containers and N-1 fluid paths. Figure 4 illustrates . A
least-squares analysis indicates again that a quadratic model
(0.018Pz + 0.554P + 0.228, where P is the number of con-
tainers and paths) fits this data well, with ? z = 0.004 .

Figure 4: Alinear chain of containers, three long.

6. Tradeoffs in Self-Explanatory Simulators:
Compilers versus Interpreters
Different applications entail different tradeoffs : Some poten-
tial users have powerful workstations and can afford the best
commercial software (e .g ., many engineering organizations),
and some potential users have only hand-me-down com-
puters and publicly available software (e .g ., most US
schools) . Here we examine tradeoffs in self-explanatory
simulation methods with respect to potential applications .

Broadly speaking, the computations associated with self-
explanatory simulations can be divided into three types: (1)
model instantiation, in which the first-order domain theory

Table 3: SIMGEN Mk 3 data, linear chain of containers (IBM
RS/6000, 64MB RAM, Lucid Common Lisp 4.01)

is applied to the ground scenario description, (2) model
translation, in which the equations associated with a state
are identified, analyzed, and converted into an executable
form, and (3) model execution, in which numeric integration

Grid
Size

#
quantities

#
booleans

#
propositions

Compile
time (sec)

2 83 24 456 6
3 198 63 1131 19
4 363 120 2108 49
5 578 195 3387 105
6 843 288 4968 202
7 958 399 6851 356
8 1523 528 9036 586
9 1938 675 11523 927
10 2403 840 14312 1429

N #
quantities

#
booleans

#
propositions

Compile
Time (sec)

2 38 9 194 2.05
3 58 15 305 3 .43
4 78 21 416 5 .02
5 98 27 527 6.66
6 118 33 638 8 .72
7 138 39 749 10 .5
8 158 45 860 12 .5
9 178 51 971 14 .8
10 198 57 1082 17 .8
11 218 63 1193 19 .9
12 238 69 1304 22 .6
13 258 75 1415 25 .6
14 278 81 1526 28 .4
15 298 87 1637 31 .9
16 318 93 1748 35 .1



is used to derive behavior descriptions from initial values .
The choice of compiler versus interpreter is mainly achoice
of how to apportion these computations, with tradeoffs
analogous to those of programming language interpreters
and compilers . Interpreters are more suited for highly inter-
active circumstances, where more effort is spent changing
models than running them. Exploratory and rapid-
prototyping environments for scientists and engineers
formulating and testing models of new phenomena, and
highly interactive construction kit simulation environments
for education may be two such applications . Compilers are
more suitable for circumstances where the additional cost of
compilation is offset by repeated use of the model, or when
the environment for model execution cannot support the
resources required by the development environment.
Compilers seem to have the edge in engineering analysis and
design, where a small number of models are used many
times (e.g ., in numerical optimization), and most educational
software and training simulators, where maximum
performance must be squeezed out of available hardware.

The cost of model generation is dominated by the ex-
pressiveness of modeling language and the amount of simu-
lator optimization performed. In SIMGEN Mk3, the order of
computation is specified as an inherent part of the domain
theory due to the causal ordering imposed by Qualitative
Process theory influences . Thus, no algebraic manipulation
is required at model generation time. Other systems allow a
domain theory to contain equations in an arbitrary form .
Thus, the equations must be sorted (using a causal ordering
algorithm [7]) and symbolically reformulated to match that
sort. This technique provides the ease of using arbitrarily
arithmetic expressions, but can lead to expensive processing
for some classes of equations. [KDF2] Furthermore, the time
taken to switch models (0 .1 seconds for a small model on a
fast workstation) even with PIKA's incremental constraint
algorithm suggests that switching delays for large models
(e.g., training simulators) could be unacceptable.

Another way in which the modeling language affects po-
tential applications is in the kinds of explanations that can be
generated. Domain theories that explicitly represent con-
ceptual entities as well as equations can provide better ex-
planations than those which do not. While in afew domains
(e.g., electronics) expert causal intuitions are not strongly
directional, in many domains (e.g ., fluids, mechanics, ther-
modynamics, chemistry, etc.) expert causal intuitions are
strongly directed [21], and there is no a priori guarantee that
the accounts produced by causal ordering will match expert
intuitions [22] .

	

Using equation-based models reduces the
overhead of formalizing expert intuitions, but at the cost of
reduced explanation quality. Using explicit qualitative rep-
resentations provides an additional layer of explanations, but
at the cost of increased domain theory development time .
Interestingly, TGIZMO accounts for less than 15% of
SIMGEN MK3's time, so the penalty for using rich, compo-
sitional domain theories appears to be quite small.

7. Discussion
Previous work on self-explanatory simulation produced
software that could compile systems up to a few hundred
parameters . This paper describes a new algorithm for com-
piling self-explanatory simulators that extends the technol-
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ogy to systems involving thousands of parameters . We have
shown, both theoretically and empirically, that self-
explanatory simulators can be compiled in polynomial time,
as a function of the size of the input description and the do-
main theory . This advance was made possible by the obser-
vation that minimizing inference could substantially improve
performance [4]. These gains are not without costs:
SIMGEN MK3 does less self-monitoring and less compile-
time error detection than previous versions, and the simula-
tors produced can contain dead code . However, no explana-
tory capability is lost, and the ability to scale up to very
large systems outweighs these drawbacks for most applica-
tions . Even our current research implementation of
SIMGEN MK3 can, running on a PowerBook, compile new
simulators for small systems reasonably quickly.

One open question concerns the possibility of recovering
most, if not all, of the self-monitoring and error checking of
previous compilers by the judicious use of hints . Many pro-
gramming language compilers accept advice in the form of
declarations . Qualitative representations can be viewed as
declarations, providing advice to self-explanatory simulators
at the level of physics and mathematics rather than code .
Perhaps domain-specific and example-specific hints could
replace the functionality provided by inference in earlier
compilers.

We now believe that the remaining hurdles to using self-
explanatory simulators in applications are building domain
theories and software engineering. We are working on two
applications . First, we are building an articulate virtual
laboratory for engineering thermodynamics, containing the
kinds of components used in building power plants, refrig-
erators, and heat pumps, using a domain theory developed in
collaboration with an expert in thermodynamics [9] . Second,
we are also developing a tool for building training simula-
tors, such as a self-explanatory simulator for a shipboard
propulsion plant, to finally fulfill one of the early goals of
qualitative physics [23] .
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