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Abstract

One of the central issues in cognitive science is the nature of human representations. We argue

that symbolic representations are essential for capturing human cognitive capabilities. We start by

examining some common misconceptions found in discussions of representations and models. Next

we examine evidence that symbolic representations are essential for capturing human cognitive capa-

bilities, drawing on the analogy literature. Then we examine fundamental limitations of feature vec-

tors and other distributed representations that, despite their recent successes on various practical

problems, suggest that they are insufficient to capture many aspects of human cognition. After that,

we describe the implications for cognitive architecture of our view that analogy is central, and we

speculate on roles for hybrid approaches. We close with an analogy that might help bridge the gap.

Keywords: Analogy; Representation; Machine learning; Computational modeling; Learning;

Relational representations; Symbolic modeling

1. Introduction

What sort of representations does human cognition require? Many proposals have been

made (Dietrich & Markman, 2000; Markman, 1998), but recently distributed representa-

tions have become extremely popular. A distributed representation describes examples

and concepts in terms of a set of numbers, with the common metaphor being patterns of

activation in neural systems. Mathematically, researchers use vectors, matrices, or tensors.

Distributed representations have some desirable properties: They are relatively easy to
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construct from widely available data, the mathematics underlying them is well under-

stood, and today’s GPUs provide efficient ways to implement large-scale models. More-

over, they have been used successfully in a variety of commercially important

applications, such as speech recognition and machine translation. These successes have

caused some to argue that such non-symbolic distributed representations are sufficient to

explain human cognition (LeCun, Bengio, & Hinton, 2015; Rogers & McClelland, 2004).

We do not believe that this is the case. We believe that symbolic representations—struc-

tured descriptions, which include relations and their bindings—are essential for carrying

out higher order human cognition. This paper makes that case.

The argument goes as follows:

1. First, we briefly examine some common misconceptions concerning representations

and learning in both people and machines, to set the stage.

2. Second, we argue that structured, relational representations are necessary to explain

human cognition by drawing on the analogy literature, both direct psychological

evidence and results from computational models of analogy.

3. Third, we argue that distributed representations are insufficient for explaining human

cognition, using a combination of theoretical arguments and empirical evidence.

4. Fourth, we step back and consider the implications of analogical processing for

cognitive architecture, including the prospect of hybrid symbolic/distributed sys-

tems.

We close with additional thoughts on open questions involving representation in cogni-

tion, and an analogy.

2. Setting the stage

There is a set of long-standing misconceptions that need to be cleared out of the way

first, so that we can focus on the matter at hand.

2.1. Misconception: Symbolic means serial, logical, and non-numerical

Symbolic models have integrated structural and numerical information from the start of

cognitive science. For example, semantic networks used relationships between nodes, while

at the same time, using parallel spreading activation (Collins & Quillian, 1970; Collins &

Loftus, 1975). Models of human spatial reasoning typically combine both quantitative and

qualitative aspects (e.g., Forbus, 1980; Forbus, Nielsen, & Faltings, 1991; Kuipers, 2000),

which correspond to coordinate and categorical aspects of spatial models in the psychologi-

cal literature (e.g., Holden, Newcombe, & Shipley, 2015; Huttenlocher, Hedges, & Duncan,

1991). Hinton’s (1979) classic model of mental imagery is another example of structured

representations combined with numerical properties. Both ACT-R (Anderson, 2009) and

SOAR (Laird, 2012) use numerical components in their representations, for example, statis-

tical metadata on recency, frequency, and utility for symbolic structures. There are currently
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several theoretical frameworks that tightly integrate logic and probability, including Markov

Logic Networks (Domingos, Kok, Poon, Richardson, & Singla, 2006) and Bayesian Logic

(Milch et al., 2007), while Rosenbloom’s (2010) SIGMA cognitive architecture is exploring

how to build a complete cognitive architecture, including both symbolic and statistical rea-

soning, out of graphical models.

IBM’s Watson provides an example of how symbolic systems can be parallel, incorporate

non-logical techniques, and rely on probabilities. In 2011, it demonstrated a revolutionary

improvement in what is known as “factoid” question answering, that is, answering factual

questions by retrieving and combining information from textual sources. Accuracy in fac-

toid Q/A performance using purely statistical techniques had hovered around 30% for years.

The IBM team was the first to achieve 85–90% accuracy (Ferrucci, 2012). They parsed

questions into structured descriptions, and then used a combination of statistical language-

level methods and structured inference techniques to explore, in parallel, many possible

answers. Classifiers learned during training were used to estimate confidence in intermediate

results throughout processing. This combination led to performance that was both broad

enough and rapid enough to beat some of the top human Jeopardy! players in the world, in a

game that requires real-time competitive natural language question answering.

2.2. Misconception: Symbolic systems don’t do well at learning

Again, one counterexample among many is IBM’s Watson. Its performance rests in

part on the PRISMATIC knowledge base (Fan, Kalyanpur, Gondek, & Ferrucci, 2012).

PRISMATIC provides shallow structured knowledge that includes probabilities, which are

used to help determine the likelihood of answers. PRISMATIC was learned by reading

massive amounts of English text (Wikipedia, several encyclopedias, literary works, and

many other documents). The reading process involved constructing full syntactic parses

and named entity recognition over the entire corpus, constructing over 900 million syn-

tactic frames. The parser used for this was IBM’s English Slot Grammar parser (McCord,

Murdock, & Boguraev, 2012), which was also used in understanding questions in the

real-time system. Importantly, unlike other parsers, it uses a hierarchical conceptual ontol-

ogy of 160 concepts in its grammar rules.

In artificial intelligence, work on statistical relational learning abounds,1 including a

thriving inductive logic programming community.2 In cognitive science, many other sym-

bolic models of learning have been built; for example, both SOAR and ACT-R have been

used to model many learning tasks. Other examples include explanation-based learning

systems (e.g., DeJong, 1993; Minton et al., 1989; Mitchell, Keller, & Kedar-Cabelli,

1986) and systems that learn problem solving (e.g., VanLehn & Jones, 1991). We discuss

analogical models of learning below.

2.3. Misconception: Artificial neural networks are biologically plausible

An excellent summary of six objections from neuroscience regarding the biological

plausibility of deep learning can be found in Bengio, Lee, Bornschein, and Lin (2015).
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Some of these objections include that real neurons communicate via spikes instead of

continuous values, and that back-propagation would require “precisely clocked” computa-

tion to keep feed-forward and back-propagation operations separate. In addition to these

problems, the increasing evidence for the role of glial cells in synaptic firing (e.g., Allen

& Barnes, 2005; Auld & Robitaille, 2003; Eroglu & Barres, 2010) suggests that models

based solely on neurons and their connections are at best incomplete. By contrast, neuroi-

maging results from Chatterjee and his collaborators (Chatterjee, 2010; Jamrozik,

McQuire, Cardillo, & Chatterjee, 2015) provide neural evidence for relational representa-

tion in human cognition.

2.4. Misconception: Artificial neural networks learn in human-like ways

Human learning is often very efficient, as measured by the number of examples

needed. For example, in Marcus, Vijayan, Bandi Rao, and Vishton’s (1999) studies of

rule learning, 7-month-old infants learned a grammar-like pattern after hearing just 16

examples, three times each. An analogy-based model learned a structural pattern within

the same number of stimuli as human children, while connectionist models required

orders of magnitude more exposures (Kuehne, Gentner, & Forbus, 2000). In contrast,

deep learning systems require enormous numbers of examples. For example, AlphaGo

beat the world’s best Go player, but only after being trained on over 30 million games

(Silver et al., 2016)—more than any human could play in a lifetime.3 We discuss more

such unrealistic data requirements below.

2.5. Misconception: Machine learning systems, including deep learning systems, learn
without human intervention

Biological organisms are miracles of autonomous learning, compared to the state of

the art in today’s machine learning systems. Today’s machine learning systems require

continual human intervention: preparing data, deciding on input representations and

hyper-parameters,4 running the algorithm (or algorithms), inspecting the results, and

repeating this cycle many times (Bengio, 2012). When enough resources are available—
data and human engineering—systems have sometimes achieved human-level perfor-

mance on the specific tasks that they are engineered for. AlphaGo, which combined

Monte-Carlo tree search with a static evaluator trained via deep learning, was developed

by experts who created training regimes based on how the system was evolving (Silver

et al., 2016). This training process included setting up representation conventions for the

components, including “a small number of handcrafted local features [which] encode

common-sense Go rules.” Even IBM’s Watson, which used both machine learning and

symbolic methods, involved roughly 25 researchers working for 4 years, in 2-week cycles

of development, testing, and evaluation (Baker, 2011). This in no way detracts from the

magnitude of these achievements. Nevertheless, it does indicate that today’s learning sys-

tems require the guidance of experts who are fully familiar with their internals,5 unlike

people being taught or people learning on their own.
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To summarize: Symbolic relational representations have been used in systems that

learn, and do not restrict cognitive systems to use only logic, can operate in parallel as

well as serial and have proven effective at large-scale learning. Artificial neural networks,

despite their practical successes, are not accurate models of biological systems, do not

learn as rapidly (in terms of number of examples) as people do, and are hand crafted in

their architecture and training for specific tasks. In all of today’s learning systems, human

experts are heavily involved in their construction and training, where training includes

the kind of inspection and manipulation of their internals that is not possible when train-

ing people or other animals.

While both symbolic and neural systems have useful properties, many of the supposed

limitations of symbolic systems are myths, and many of the supposed advantages of neu-

ral systems are myths. The state of the art of learning systems today, in either form,

requires far more human intervention, in task-specific ways, than biological systems do.

3. The necessity and effectiveness of structure in human representations

Structured information is a crucial part of human cognition. Causal reasoning, plans,

explanations, and discourse are all everyday examples of structured information that people

process routinely. Any model that aspires to explain human cognition must be able to pro-

vide an account of how we process such information. The simplest account is that we have

internal symbolic representations, constructed to capture the connections between different

things in the world—their relationships—which are needed to comprehend them. This was

one of the original approaches of cognitive science, and it continues to be productively used

by many scientists. Indeed, even some non-symbolic approaches end up seeking ways to

bridge to, or implement, symbolic representations: Examples include Barsalou’s (1999) per-

ceptual symbol systems, neural Turing machines (Graves, Wayne, & Danihelka, 2014), and

using temporal binding to implement symbols in distributed systems (Hummel, 2011).

This section argues that symbolic, relational representations are necessary to explain

human cognition. The structure of the argument is as follows:

1. Analogy and similarity are central to human cognition.

2. Since structure-mapping theory involves relational representations, including higher-

order relations, such representations are necessary for explaining human cognition.

3. Furthermore, this suggests that using symbolic relational representations should pro-

vide an effective way to model reasoning and learning across a broad range of cog-

nitive tasks.

We start by reviewing evidence for the importance of structure-mapping in human cog-

nition. We then review how computational models of structure-mapping processes have

been used to model a range of cognitive phenomena, including visual problem solving,

textbook problem solving (including transfer learning), moral decision-making, and con-

ceptual change. This demonstrates the effectiveness of symbolic modeling for capturing

many aspects of human cognition.
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3.1. Psychological evidence

Gentner’s (1983) structure-mapping theory of analogy proposed that analogy involves

constructing correspondences between structured descriptions. This process is often

referred to as structural alignment. This theory and related approaches (Doumas, Hum-

mel, & Sandhofer, 2008; Holyoak & Thagard, 1995; Hummel & Holyoak, 1997; Kokinov

& French, 2003) have generated considerable empirical support, both in terms of explain-

ing existing findings and predicting new ones (Forbus, 2001). For example,

1. People prefer analogical inferences that are supported by higher order relational

structure (Clement & Gentner, 1991).

2. People prefer one-to-one correspondences in analogical mapping (Krawczyk,

Holyoak, & Hummel, 2005; Markman, 1997).

3. Structural alignment provides a better model of human similarity judgments than

feature-based models (Gentner & Markman, 1995; Markman & Gentner, 1993a),

including which direction is preferred in similarity comparisons (Bowdle & Gent-

ner, 1997).

4. Structure-mapping explains several phenomena involving difference detection,

including that comparison promotes noticing both commonalities and related differ-

ences (Gentner & Gunn, 2001; Markman & Gentner, 1993b); and that it is faster to

notice that two items are different when they are very different, but faster to name a

difference between them when they are very similar (Sagi, Gentner, & Lovett, 2012).

5. Structure-mapping correctly predicts that metaphor interpretation involves an initial

symmetric phase, followed by directional process (Wolff & Gentner, 2011).

There is a substantial body of psychological evidence indicating that analogy and simi-

larity are central to human cognition (Gentner, 2003), and even that analogical processes

are instrumental in language learning (Gentner & Namy, 2006; Tomasello, 2003). Further-

more, there is evidence that analogical inferences can occur without conscious awareness

(Day & Gentner, 2007; Perrott, Gentner, & Bodenhausen, 2005). If analogy and similarity

are central to human cognition, and they rely on structured, relational representations, then

that suggests relational representations may be necessary for human cognition. Indeed, it

has been argued that our superior relational representation and reasoning capabilities are

what set us apart from other primates (Christie, Gentner, Call, & Haun, 2016; Gentner,

2003, 2010; Hofstadter & Sander, 2013; Penn, Holyoak, & Povinelli, 2008).

3.2. Symbolic relational models explain a variety of psychological phenomena

It is one thing to argue that structured descriptions are necessary in human representa-

tions; it is another to show that such representations are actually capable of fueling mod-

els that reason and learn in human-like ways (Cassimatis, Bello, & Langley, 2008). There

is a long history of such models in cognitive science, continuing to this day. For example,

cognitive architectures originally aimed at skill learning, such as SOAR (Laird, 2012) and

ACT-R (Anderson, 2009), have demonstrated the ability to handle a wider range of
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cognitive tasks than any existing machine learning system or system relying on

distributed representations. Given the focus of this paper, we do not attempt a complete

survey, and instead we highlight some of our computational studies showing the power of

structure-mapping.

The large-scale models discussed below use three component models of processes

involved in analogy:

1. SME (Falkenhainer, Forbus, & Gentner, 1989; Forbus, Ferguson, Lovett, & Gent-

ner, 2016) models analogical matching. It produces correspondences as well as a

numerical similarity score, and candidate inferences representing relational struc-

ture that can be projected from one description to the other.

2. MAC/FAC (Forbus, Gentner, & Law, 1995) models similarity-based retrieval.

Given a probe, it finds an approximation to the most similar case in long-term

memory, using a two-phase process.

3. SEQL (Kuehne et al., 2000) and its descendent, SAGE (McLure, Friedman, & For-

bus, 2015), model analogical generalization. They operate incrementally, construct-

ing generalizations that preserve the common structure between very close

examples. SAGE constructs probabilities for each aligned statement in a generaliza-

tion, and it can handle disjunctive concepts as well as outliers.

These component models have been incorporated into a cognitive architecture, the

Companion cognitive architecture (Forbus, Klenk, & Hinrichs, 2009). This architecture is

an exploration of the hypothesis that analogy and qualitative representations are essential

to human cognition. We discuss four categories of tasks next to provide evidence for the

power of analogical modeling to explain cognitive phenomena.

3.2.1. Analogy in problem solving
We have modeled the use of analogy to import solution plans from previously solved

examples (i.e., derivational analogies; Veloso et al., 1995), and it showed that processes

promoting expertise in people, such as doing careful qualitative analysis during the solu-

tion process, do indeed lead to performance improvements in the system’s problem sol-

ving (Ouyang & Forbus, 2006). We have also modeled the use of analogy to import

principles from prior problems, such as relevant equations (Klenk & Forbus, 2009), a

form of transfer learning. In those experiments, a Companion system was trained and

tested on a portion of the AP Physics exam by the Educational Testing Service, the orga-

nization which creates the test each year. One or two prior examples were sufficient for a

Companion to be able to learn transferable knowledge via analogy. Moreover, the opera-

tions of the Companion model were compatible with analogy events found by other

researchers in protocol studies (Klenk & Forbus, 2007).

Another way that humans use analogy in problem solving is to make comparisons

within problems. For example, comparative analysis problems involve sorting a set of

scenarios along a dimension (e.g., when trying to pull out a tree stump, which of the four

configurations of ropes shown in an accompanying diagram provides the most force?).

The Companion architecture has been used to model the solution of such problems from
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conceptual physics textbooks (Chang, Wetzel, & Forbus, 2014), using SME to compare

relational representations of sketched versions of the diagram (see visual problem solving

discussion below). Similarly, the Companion architecture was used to model the solution

of problems from the Bennett Mechanical Comprehension test, a widely used test of spa-

tial ability. There, the physical principles were explained to a Companion via examples

that integrated visual and conceptual information. New problems were solved, using

MAC/FAC to retrieve previous explanations and apply them via analogy to solve new

problems (Klenk, Forbus, Tomai, & Kim, 2011).

3.2.2. Analogy in visual problem solving
Most machine learning systems for doing visual tasks, including deep learning systems,

start with pixel-level inputs. However, decades of research in vision science indicate that

the early stages of visual processing compute edges and other descriptions that combine

numerical and structural information (Marr, 1982; Palmer, 1999). We model this by using

sketches consisting of digital ink,6 and using vision techniques to compute relational rep-

resentations automatically from the ink. This automatic computation is performed via

CogSketch (Forbus, Usher, Lovett, Lockwood, & Wetzel, 2011), which is designed as a

model of human high-level vision. CogSketch contains multiple levels of visual represen-

tation and processing, including gestalt principles for grouping, the ability to decompose

ink into edges and recombine it into new shapes, and rudimentary texture detection. This

enables CogSketch simulations to automatically construct their own representations and

carry out visual re-representation as needed.

One of the key hypotheses underlying CogSketch is that structure-mapping operations

play important roles in high-level visual reasoning and learning. Thus, SME, MAC/FAC,

and SAGE are all built into CogSketch itself. For example, mental rotation is modeled as

a two-pass operation, the first using SME over orientation-independent qualitative repre-

sentations, and the second being a quantitative computation (Lovett & Forbus, 2013).

Analogical generalization (via SAGE) has been used with sketched inputs to learn spatial

prepositions (Lockwood, Lovett, & Forbus, 2008) and other kinds of spatial concepts

(McLure et al., 2015).

The analogical capabilities of CogSketch have enabled it to be used in modeling sev-

eral well-known human visual problem-solving tasks. These models have the property

that they achieve human-level performance on these tasks, while providing explanations

or predictions of human behavior. The models all use the same set of representations,

automatically constructed from sketches produced via copy/paste from PowerPoint, with

task-specific processing being performed by high-level spatial routines (Lovett, 2012).

We describe three such tasks next.

The first task is solving geometric analogy problems (Evans, 1968), of the form A is

to B as C is to ?, with five options being provided to choose between.7 The initial CogS-

ketch model produced accurate reaction time predictions based on when the model

needed to explore alternate representations (Lovett, Tomai, Forbus, & Usher, 2009). An

improved version of the model sheds light on the controversy between two methods pro-

posed in the psychological literature. One method is projection, which is imagining what
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difference between A and B would lead to, if applied to C. The other method is second-

order comparison, namely comparing the differences between A and B to the differences

between C and each of the possible answers. The model shows that projection is more

efficient when possible, but that it cannot always be done, so both strategies can be nec-

essary. A model combining both strategies explains the variation in human reaction times

with an R2 of over 0.76 (Lovett & Forbus, 2012).

The second task is a visual oddity task, which was used to study geometric processing

differences between Americans and Munduruk�u, an indigenous South American group

(Dehaene, Izard, Pica, & Spelke, 2006). Given an array of six images, the goal is to pick

the one that is odd or doesn’t fit. The CogSketch model used SME to compare the exam-

ples in the array to produce generalizations, and to look for an image that was signifi-

cantly different from generalizations formed from the others. An ablation study on the

model was able to suggest reasons for the differences that the original study found

between the two groups (Lovett & Forbus, 2011).

The third task is Ravens’ Progressive Matrices, a widely used test of human fluid intelli-

gence. Ravens’ problems are like geometric analogies, but with one cell of a 292 or 393

array of images missing, to be filled in by the test-taker. The CogSketch model encodes sev-

eral strategies argued for in the literature, implemented in terms of analogical comparisons

between elements of the array, as well as visual re-representation strategies to reorganize its

understanding in order to improve a match. Its performance on the Standard Ravens’ test

puts it in the 75th percentile, making it better than most adult Americans. Furthermore, it

makes reaction-time predictions about human performance that have been confirmed in lab-

oratory experiments (Lovett, Forbus, & Usher, 2010; Lovett & Forbus, 2017).8

3.2.3. Analogy in moral decision-making
Human moral judgments can involve both utilitarian factors and sacred values (Baron

& Spranca, 1997), values which cannot be violated even if a higher-utility situation

would result. For example, if directly killing one person would save many more, people

will often not accept doing that, since killing is wrong. The MoralDM model (Dehghani,

Tomai, Forbus, & Klenk, 2008) captures the impact of sacred values via a qualitative

order of magnitude representation, which makes the utilitarian differences seem negligible

in the face of the severity of the violation of such a value. MoralDM uses a combination

of rules and analogy to help detect the presence of sacred values in a decision problem.

A natural language understanding system (Tomai & Forbus, 2009) is used to construct

cases from simplified English stories. Adding new cases improves performance (as mea-

sured by matching the majority decisions taken by participants in psychological experi-

ments), and analogical generalization over such cases provides further improvement

(Blass & Forbus, 2015).

3.2.4. Analogy in modeling conceptual change
Friedman’s (2012) TIMBER model of conceptual change uses structure-mapping over

qualitative representations to explain several phenomena in conceptual change. This

includes learning intuitive models of force from a series of sketches, where a Companion

702 K. D. Forbus, C. Liang, I. Rabkina / Topics in Cognitive Science 9 (2017)



ends up going through a sequence of models similar to the sequence of models human

students go through (Friedman & Forbus, 2010). The same model has been used to simu-

late protocol data of children learning about how the seasons work (Friedman, Forbus, &

Sherin, 2011), to explain transitions in mental models due to self-explanation in learning

about circulatory systems (Friedman & Forbus, 2011), and to explain how feedback might

be used to correct misconceptions about the day/night cycle from misunderstood instruc-

tional analogies (Friedman, Barbella, & Forbus, 2012).

3.3. Analogical models of cognition are powerful

Stepping back, these models share some important properties. First, they successfully

explain or predict a variety of psychological phenomena, including both perceptual and

higher order cognitive phenomena. Second, they are effective as machine learning sys-

tems. We believe these two points are not unrelated: Building systems that work in a

more human like way can provide better learning systems.

While far from complete, we believe that even this suite of examples9 provides a

daunting challenge for those proposing that distributed representations can suffice for

explaining human cognition.

4. Why feature vectors are inadequate

Arguments and evidence against spatial models have been known in cognitive psychol-

ogy for decades (e.g., Tversky 1977), although this point have been ignored in much

recent work in AI and cognitive science. This section provides three additional arguments

against the sufficiency of feature vectors, and distributed representations more generally,

for capturing human cognition. We discuss each in turn.

4.1. Feature vectors do not scale well

Suppose we were to try to use feature vectors to capture the kinds of representations

that people use. One impressive feature of human cognition is that it is flexible,

combining information from multiple modalities and from far-ranging domains of

knowledge. Historical analogies of Donald Trump to Mussolini or to Berlusconi, for

example, involve bringing together a wide range of information about economics, per-

sonality, and social conditions. To do comparisons such as these, cases must be con-

structed consisting of many relations, and must be compared. How big are cases? Some

statistics on the comparisons involved in five analogy experiments (Forbus et al., 2016)

are shown in Table 1.

Given the state of the art in distributed representations, we see two problems. First,

there is representing the wide range of relations needed to capture human cognition. In

the subset of the Cyc knowledge base10 we are using, which we expect is smaller than

what will be needed to fully capture human cognition, there are over 118,000 attributes,
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23,550 binary relations, and 4,786 ternary relations. A straightforward calculation of rep-

resenting inputs in terms of this ontology directly would lead to feature vectors in the

hundreds of millions to billions of features. Distributed representation schemes provide

information compression, to be sure, but to date, none have come close to handling this

size of relational vocabulary. Progress is being made, for example Yang, Yih, He, Gao,

and Deng (2014, 2015), but they only work with a relatively small number of relations,

at least an order of magnitude fewer than even the number of binary relations in

ResearchCyc, let alone the encoding of non atomic terms, higher order predicates, and

modal operators.

The second scaling problem is that techniques for handling nested structure in dis-

tributed representations rely on sequential scanning (Socher et al., 2012; Tai et al., 2015).

It is hard to see how such operations can keep up with the speed of human analogical

processing, where single-sentence metaphor processing occurs within 1.5 s (Wolff &

Gentner, 2011).

The final scaling issue with distributed representations is that they tend to not be incre-

mental. That is, when constructed from words or linked data, all of the data from which

they are constructed must be available up front—new terms or predicates cannot be added

later, without rerunning the learning process from scratch.11 This is a significant differ-

ence from the incremental nature of human learning.

4.2. Distributed representations often do not lead to human-like performance

While deep learning systems have been successful in applications in speech recognition

and machine translation, they require massive amounts of data to do so, far more than a

person would experience in a lifetime.12 For applications this does not necessarily matter,

but in terms of explaining cognition it obviously does. When these techniques have been

applied to vision, interesting instabilities have been found. By starting with random noise,

and using the signal of a fully trained deep learning system as feedback for hill climbing,

images can be created that, to people, look like random noise but that the deep learning sys-

tem will identify with high probability as being an image of a specific type of entity, like

“cheetah” (Nguyen, Yosinski, & Clune, 2015). Similarly, small distortions in real images,

imperceptible to people, can lead to changing the network’s classification of what the image

Table 1

Statistics on representations in five analogy experiments

Task Mean No. of Entities Mean No. of Relations

Geometric analogies 2.5 16

Oddity tasks 3 20

Thermodynamics problems 15 89

Physics problems 32 87

Moral reasoning 16 31
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is (Szegedy et al., 2014). This suggests that such networks are not operating in the way that

people do on visual stimuli.13 As Goodfellow, Shlens, and Szegedy (2015) put it:

The existence of adversarial examples suggests that being able to explain the training

data or even being able to correctly label the test data does not imply that our models

truly understand the tasks we have asked them to perform. Instead, their linear

responses are overly confident at points that do not occur in the data distribution, and

these confident predictions are often highly incorrect. This work has shown we can

partially correct for this problem by explicitly identifying problematic points and cor-

recting the model at each of these points. However, one may also conclude that the

model families we use are intrinsically flawed.

Attempts to model higher order cognition with distributed representations are rare. One

such attempt is the DRAMA model of analogical mapping (Eliasmith & Thagard, 2001),

which is claimed to be “an existence proof of using distributed representations to model

high-level cognitive phenomena” using holographic reduced representations. We note that

DRAMA does not produce candidate inferences, which are an essential capability of ana-

logical matching, which means it would be incapable of serving as a matcher in any of

the larger-scale analogical models described above. Another example is the work by

Rogers and McClelland (2004) on categorization, lexical access, and how human capabili-

ties degrade with dementia. While the dementia results are intriguing, we note that their

models remain small, more like what symbolic models were doing in the 1970s, and

training the network requires hundreds to thousands of “epochs,” each consisting of re-

running every training example presented to the system. That such models could scale to

human-sized conceptual vocabularies seems extremely unlikely.14

In machine learning, there are few direct comparisons between structured and dis-

tributed representations because the tasks that they are applied to usually do not overlap.

However, a recent machine learning task, link plausibility, provides a way to compare

tradeoffs between structured and distributed representations directly. The goal of this task

is to learn to tell whether or not a triple, expressed using semantic web linked data con-

ventions, is likely to be true or not. For example, a true triple is <Barack Obama, Nation-

ality, USA> and a false triple is <Barack Obama, Nationality, Kenya>. Several

distributed representation approaches have been tested on this task, on two common data-

bases, compressing structured representations into vectors, matrices, or tensors, depending

on the approach. Liang and Forbus (2015) explored a different approach, staying with the

original relational form of the data, and using SAGE combined with structured logistic

regression to learn an analogy-based classifier. Not only did this system achieve state-of-

the-art performance, but it also demonstrated two other advantages. First, it was able to

produce understandable explanations for its conclusions, which the other systems could

not, because their learned representations are uninspectable. Second, it used orders of

magnitude fewer examples than the other systems required. We suspect that this advan-

tage comes directly from staying with relational representations: The other systems, in
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effect, “pureed” the symbolic representations into distributed representations, requiring

much more training data to implicitly capture the structure that was there to begin with.

4.3. What is being learned in distributed representation systems is not obvious

If what is being learned in the intermediate layers in deep learning systems closely

corresponded to the layers of representations that psychophysics and neuroscience suggest

are used in human visual processing, then it is hard to see how they could so easily be

fooled in ways that people cannot, as noted above. Further evidence of this can be found

in the careful analysis of image captioning systems of Devlin, Gupta, Girshick, Mitchell,

and Zitnick (2015), which shows that nearest neighbor models often beat deep learning

systems. How can this be? They observe that the underlying dataset has many similar

images, so captions used for one image are equally appropriate for others. Up to 80% of

the captions produced by Vinyals, Toshev, Bengio, and Erhan (2015), for example, could

be found explicitly in the training set. These findings cast doubt on just how generative

these systems actually are.

This problem is not limited to vision. For example, Levy, Remus, Biemann, and Dagan

(2015) looked at nine word representation methods and five lexical-inference datasets

used in the literature that have been used in experiments claiming that supervised distri-

butional methods could learn lexical inference relations. They found that these claims did

not hold up: That is, instead of learning that “X is a Y,” these systems are learning that

Y is a good hypernym, independent of X. Similarly, Latent Semantic Analysis (LSA,

Landauer & Dumais, 1997) was intended to be a model of semantics, in that the dot pro-

duct of two vectors would constitute an estimate the similarity of the documents the vec-

tors were produced from. LSA does turns out to be a good predictor of word-word

associative priming (Landauer, Foltz, & Laham, 1998), but there is evidence that this is

not the same thing as similarity (Gentner & Brem, 1999; Gentner & Gunn, 2001).

Several of the researchers pointing out these problems still believe that distributed rep-

resentations are an important approach, but that there are problems with current methods

for evaluating them. Whether distributed representations can be improved to the point

where these issues are overcome is an open question at this point. However, given the

problems with distributed representations versus the demonstrated capabilities of rela-

tional representations, we suggest that symbolic representations should be a central part

of efforts to explain human cognition.

5. Our proposal: Symbolic representations and structure-mapping

We summarized above multiple computational experiments involving structure-map-

ping over symbolic representations that demonstrate its effectiveness in modeling human

cognition. Here we step back and describe our big picture, based on what we have

learned so far.
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What are the functional advantages of structure-mapping that make it so central to

human cognition? Our work, both theoretical and with cognitive models of structure-map-

ping processes, suggest several reasons:

1. The use of relational representations provides sufficient expressive power for

human cognition, unlike feature vectors or multidimensional space models. Struc-

ture-mapping processes can operate over structured representations to model prob-

lem solving (both conceptual and visual), conceptual change, and moral decision-

making, as outlined above.

2. Examples can be immediately reused in new situations, even without a complete

and correct domain theory or introducing logical variables (Forbus & Gentner,

1997; Gentner & Medina, 1998). That is, even a partial explanation, manifested in

a description by one or more higher order relations (e.g., causality, implication) can

give rise to candidate inferences to provide conjectures. This supports within-

domain transfer (Klenk & Forbus, 2009). Depending on the nature of the higher

order relationships, these inferences can be deductive or abductive (Blass & Forbus,

2016; Forbus, 2015).

3. Structure-mapping supports incremental generalization, via the SAGE model

(McLure et al., 2015). As noted above, this enables relational abstractions to be

learned with many fewer examples than vector-based models.

4. Analogy solves three of the core problems inherent in probabilistic models, namely

determining which aspects of complex stimuli go together (Halstead & Forbus,

2005), where priors come from—the frequency of each statement is tracked within

generalizations—and where hypotheses come from (Christie & Gentner, 2010).

Thus analogical processing provides a natural complement to Bayesian approaches

(e.g., Gershman, Horvitz, & Tennenbaum, 2015).

Looking at the large scale models we have constructed using our models of match-

ing, retrieval, and generalization, a common pattern can be found, one that is the basis

for the Companion cognitive architecture (Forbus et al., 2009). In computer science, an

architectural stack is a layering of systems that depend on each other. Examples include

the hardware and software layers within today’s computing systems, web services, and

representations in the Semantic Web. It is useful to visualize the patterns of usage for

these analogical process models as an analogy stack, as show in Fig. 1. Analogical

matching (via SME) is the most primitive operation. Similarity-based retrieval (via

MAC/FAC), which uses SME in the FAC stage, is next. The case libraries that MAC/

FAC operates over are constructed and maintained via analogical generalization (via

SAGE).15

The generalization pools of SAGE can be considered as analogically constructed mod-

els of concepts. SAGE can be used for classification of new examples, using MAC/FAC

over a larger pool, the union of generalization pools corresponding to candidate concepts,

and tracking from which pool the best retrieval came from. Thus, to the extent that classi-

fication is viewed as a central operation in cognition—and it certainly seems necessary,
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but not sufficient—the analogical approach provides a powerful model fully capable of

using relational information as well as attributes.

What kinds of concepts might this stack be able to model? Examples we have

explored, in addition to those mentioned above, include the following:

1. Learning natural language constructions (McFate & Forbus, 2016; Taylor, Fried-

man, Forbus, Goldwater, & Gentner, 2011).

2. Word sense disambiguation, where overlap in syntactic and semantic properties of

sentences suggest which sense of a word would be most appropriate (Barbella &

Forbus, 2013).

3. Decision-making in strategy games, including learning censors (e.g., trying to farm

the desert is not a good idea), by accumulating experience as cases and re-applying

it (Hinrichs & Forbus, 2007).

In a human-scale analogical cognitive system, the pools might well be divided along

functional lines, for example concepts providing word models might have their own copy

of MAC/FAC that operates only over that subset of the pool, with visual concepts and

concepts used in decision-making similarly operating in parallel. In computer-science

terms, most of the computations are data-parallel; that is, they can scale arbitrarily, lim-

ited only by the size of the underlying substrate. First-principles reasoning would be used

for encoding, constraint-checking, planning when prior experience is not available, and

some aspects of metacognition. But all of these operations should be facilitated by the

rapid availability of relevant generalizations and examples provided via analogical pro-

cessing.

How many pools and examples might there be? To make a crude lower bound esti-

mate, let us assume the following:

1. A student is exposed to ten new concepts per course, each of which is illustrated

by 5 examples and used in five assignments, leading to 10 pools and 100 examples

from each course. Suppose the student is on a quarter system, and they take 12

courses per year, across 16 years of schooling. Then schooling would contribute at

least 1,920 pools and 19,200 examples. (If education works well, these pools will

SAGE

MAC/FAC

SME
Matching

Retrieval

Generalization

Contains no 
domain

knowledge

Within 
an 

Agent’s 
Long-
Term 

Memory

Fig. 1. The analogy stack. SME is used by MAC/FAC, and SAGE uses both SME and MAC/FAC.
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overlap pools of prior knowledge, but if not, viz. the inert knowledge problem, they

might be distinct.)

2. When doing word sense disambiguation, a generalization pool is used for each pair

of word and sense. Using WordNet 3.0 as a baseline,16 this would suggest at least

360,000 pools, with the number of examples assimilated by them collectively corre-

sponding to the occurrence of each word that a person is exposed to. How many

words? Observational studies of families suggest a range from 13 million words to

45 million words in family interactions alone by age 4, depending on socioeco-

nomic status (Hart & Risley, 2003).

3. The number of visual concepts that people are exposed to is even harder to esti-

mate. Using WordNet as a starting point, one ballpark estimate is 1.6 million dis-

tinct visual concepts (Smith, 2014). For simplicity, let us assume a mean of 10

examples per visual concept.

These are deliberately conservative estimates—we have not included concepts concern-

ing how to make specific decisions, for example. Roughly, this estimate suggests at least

2 million generalization pools are built up through upward of 45 million examples.

An interesting property of this approach is that it supports a continuum of processing.

Recall that examples include both attributes and relations. The attribute component of

such descriptions contains the same kind of information as feature vectors do, albeit in a

more compact form. Arguably, such descriptions subsume what can be done with feature

vectors, since the analogy stack is capable of handling descriptions based purely on attri-

butes. Matching two descriptions with nothing but attributes would still provide a similar-

ity score, like a dot product of feature vectors would. But it would also produce

correspondences between the entities and candidate inferences that can be used either to

summarize differences or for pattern completion. If these descriptions were accumulated

in SAGE, the attribute information would include probabilities. But the same mechanisms

also work, and in fact work better, when there is relational information connecting enti-

ties in a representation. Moreover, like people, the more overlapping relational informa-

tion there is, the better it will operate. Thus, this model potentially provides a smooth

continuum for reasoning from attribute-based descriptions to rich, relational descriptions

laden with causal and inferential information, including statistics that can be used in

inferring causality from other information (e.g., Friedman & Forbus, 2008).

5.1. Hybrids: A role for distributed representations?

While we believe there is ample evidence for the necessity of relational representations

to explain human cognition, this does not imply that they are sufficient. It could be the

case that the combination of analogy and statistics over structured representations is

indeed sufficient. But it could also be that some form of distributed representation is used

by people in addition to relational representations. For example, Kahneman (2011) among

others argues that one way to characterize cognition is in terms of two systems. System 1

is viewed as fast, automatic, emotional, subconscious, and heavily used. System 2 is
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viewed as slow, effortful, rule-governed, and conscious. There are many differences

between proposed dual-system models, and there are a variety of critiques of them (Evans

& Stanovich, 2013). While this distinction might be an oversimplification, it has many

attractions, so let us speculate on it. Some confine similarity to System 1, but we suspect

that structure-mapping operations are used in both systems. Moreover, one can imagine

complementary uses for distributed representations in both systems as well. In System 1,

the lack of explanation for many rapid judgments might be due to the use of distributed

representations. In System 2, distributed representations might be used as a source of con-

trol knowledge used to guide rule-based reasoning. (This seems more of a stretch, since

statistics associated with the rules themselves might well suffice [Sharma, Witbrock, &

Goolsbey, 2016].)

There is already evidence that such hybrids can be useful in language processing tasks.

For example, IBM’s Watson includes as one of its evaluation methods the Logical Form

Answer Candidate Scorer (LFACS). As described in Murdoch (2011), LFACS is essen-

tially the SME algorithm, but specialized for operating over lexical-level representations

connected via syntactic relations. In addition to SME-style structural evaluation, it uses

WordNet similarity scores to evaluate competing correspondences. Similarly, Turney

(2011) reports on a model using his Latent Relation Mapping Engine (Turney, 2008),

which combines structure-mapping and distributed representations to solve word compre-

hension test problems. Finally, while we have our doubts about word2vec as a model of

human word similarity judgments, we used it along with a version of SME applied over

syntactic relations computed by the Stanford Core NLP system to achieve state-of-the-art

performance on the Microsoft Paraphrase task (Liang, Paritosh, Rajendran, & Forbus,

2016). Similarly, AI2’s Aristo system combines statistical methods with reasoning over a

semi-automatically constructed knowledge base to answer fourth-grade science test ques-

tions (multiple choice only, no diagrams) from unseen, unedited NY Regents Science

Exams (Clark et al., 2016). Whether distributed representations turn out to be only a use-

ful engineering approximation or part of human cognition remains an interesting question

worth exploring.

6. Conclusions

The current popularity of distributed representations and deep learning is understand-

able, since they can produce useful results on commercially important problems. How-

ever, those representations and processes are unlikely to be sufficient to explain human

cognition. They require vastly more data than people need in order to learn, they are unli-

kely to scale well to the full range of human cognition, their performance can sometimes

be a poor fit to what we know about people, and what they are really learning is hard to

pin down. In contrast, the combination of analogy and symbolic, relational representations

has shown itself to be capable of explaining a wide range of cognitive phenomena,

including higher order cognitive capabilities that are well beyond today’s deep learning

systems.
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It is possible to take extreme views. For example, in a recent talk,17 Geoff Hinton

argued that symbols are “the luminiferous aether of cognitive science,” which would be

replaced by “thought vectors.” We might counter with a different historical analogy:

Distributed representations are the epicycles of cognitive science. Just as epicycles were

the arcane mathematics used to preserve the Earth-centered view of the solar system, dis-

tributed representations are ways of preserving an oversimplified model of cognition.

Both analogies might be too harsh. We think the preponderance of evidence available

at this point supports the hypothesis that symbolic, relational representations are essential

for human cognition. Perhaps hybrid systems may ultimately provide the best account,

where distributed representations are not just an engineering approximation. Or it may be

that statistics combined with structural representations are sufficient, and distributed rep-

resentations are wholly unnecessary. Only time will tell.

We end, fittingly, with an analogy: SME is to relational representations as dot product

is to feature vectors. We believe this analogy is very important for both cognitive science

and for applications of AI and machine learning. The use of structured logistic regression

with analogical generalization (Liang & Forbus, 2015) is just one example of exploiting

this analogy. We conjecture that many machine learning methods could be translated into

analogous analogy-based methods operating over relational knowledge. Combining struc-

tural and statistical learning within this framework could provide a very powerful source

of new ideas.
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Notes

1. See Getoor and Taskar (2007) for an introduction.

2. See Muggleton and de Raedt (1994) for a classic introduction, and the annual ILP

conferences (e.g., http://ilp16.doc.ic.ac.uk/) for examples of the latest research.

3. Assuming one game completed per hour, and 12 hours/day of play every day, it

would take roughly 6,868 years for a person to play that many games. Clearly,

people learn with fewer examples.

4. Hyper-parameters are the parameters of the learning algorithm, rather than the

parameters of the learned model.

5. For an engineering perspective on these problems, see Sculley et al. (2015).
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6. Digital ink is made up of points, with each stroke represented by a list of points

as well as other properties, such as thickness and color.

7. All of the examples from Evans’s classic 1968 paper are included in the CogS-

ketch distribution, along with the model.

8. By contrast, Rasmussen and Eliasmith (2011) presented a spiking neuron model

that relied on the user to hand-code both the symbolic image representations and

the object correspondences between images. No results on Ravens problems were

presented for the model.

9. To facilitate experimentation, we have released a corpus of over 5,000 examples

of SME comparisons, from a subset of these experiments (Forbus et al., 2016).

10. We are using contents from ResearchCyc 4.0, http://www.cyc.com/platform/resea

rchcyc/. We do not include all of their KB contents, and we have added our own

to support qualitative reasoning and analogical reasoning and learning.

11. This is different from pre-training, where, for example, coefficients from a system

like word2vec are used as initialization for a new system.

12. Goodfellow, Bengio, and Courville (2016) note, “As of 2016, a rough rule of

thumb is that a supervised deep learning algorithm will generally achieve accept-

able performance with around 5,000 labeled examples per category, and will

match or exceed human performance when trained with a dataset containing at

least 10 million labeled examples.”

13. See Lee, Ekanadham, and Ng (2008), and Lee, Grosse, Ranganath, and Ng (2009)

for attempts to learn more human-like early representations.

14. The set of challenges that the phenomena of analogy raises for distributed repre-

sentations was laid out in (Gentner and Markman (1993); see also Table 1 of

Markman and Gentner (2000). We note that models based on distributed represen-

tations have yet to surmount these challenges.

15. For computer science readers: Since we are assuming a vast amount of knowledge

and experience in long-term memory, we have flipped the usual way of drawing

such a stack; that is, MAC/FAC depends on SME, and SAGE depends on both

MAC/FAC and SME.

16. http://wordnet.princeton.edu/wordnet/man/wnstats.7WN.html, retrieved 4/23/16.

17. https://drive.google.com/file/d/0B_hicYJxvbiOUHNUUUx6Vl9HRlU/view?pref=2

&pli=1, retrieved 4/24/16.
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