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Transfer learning is the ability to apply previously learned knowledge to new problems
or domains. In qualitative reasoning, model formulation is the process of moving from
the unruly, broad set of concepts used in everyday life to a concise, formal vocabulary
of abstractions, assumptions, causal relationships, and models that support problem-
solving. Approaching transfer learning from a model formulation perspective, we found that
analogy with examples can be used to learn how to solve AP Physics style problems. We
call this process analogical model formulation and implement it in the Companion cognitive
architecture. A Companion begins with some basic mathematical skills, a broad common
sense ontology, and some qualitative mechanics, but no equations. The Companion uses
worked solutions, explanations of example problems at the level of detail appearing in
textbooks, to learn what equations are relevant, how to use them, and the assumptions
necessary to solve physics problems. We present an experiment, conducted by the
Educational Testing Service, demonstrating that analogical model formulation enables a
Companion to learn to solve AP Physics style problems. Across six different variations
of relationships between base and target problems, or transfer levels, a Companion
exhibited a 63% improvement in initial performance. While already a significant result,
we describe an in-depth analysis of this experiment to pinpoint the causes of failures.
Interestingly, the sources of failures were primarily due to errors in the externally
generated problem and worked solution representations as well as some domain-specific
problem-solving strategies, not analogical model formulation. To verify this, we describe
a second experiment which was performed after fixing these problems. In this second
experiment, a Companion achieved a 95.8% improvement in initial performance due to
transfer, which is nearly perfect. We know of no other problem-solving experiments which
demonstrate performance of analogical learning over systematic variations of relationships
between problems at this scale.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Transfer learning research is motivated by the observation that people improve in their ability to learn new domains
based on their experiences in related tasks. We focus here on the task of model formulation [10]. Given a scenario description,
a domain theory of model fragments, and a question, model formulation produces a scenario model, which consists of the
relevant abstractions, processes, and causal relationships useful for answering the question. An important contribution of
the qualitative reasoning community has been formalizing this process. For example, methods have been developed to
efficiently identify what levels of detail should be included and which perspectives should be taken in a scenario model
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. A ball is released from rest from the top of a 200m tall building on Earth and falls to the ground. If air resistance
is negligible, which of the following is most nearly equal to the distance the ball falls during the first 4s after it is
released? (a) 20m; (b) 40m; (c) 80m; (d) 160m.

2. An astronaut on a planet with no atmosphere throws a baseball bat upward from near ground level with an initial
speed of 4.0m/s. If the baseball bat rises to a maximum height of 5.0m, what is the acceleration due to gravity on
this planet? (a) 0.8m/s?; (b) 1.2m/s% (c) 1.6m/s%; (d) 20m/s?.

3. A box of mass 8kg is at rest on the floor when it is pulled vertically upward by a cord attached to the object. If
the tension in the cord is 104N, which of the following describes the motion, if any, of the box? (a) It does not
move; (b) It moves upward with constant velocity; (c) It moves upward with increasing velocity but constant
acceleration; (d) It moves upward with increasing velocity and increasing acceleration.

4. A block of mass M is released from rest at the top of an inclined plane, which has length L and makes an angle q

with the horizontal. Although there is friction between the block and the plane, the block slides with increasing

speed. If the block has speed v when it reaches the bottom of the plane, what is the magnitude of the frictional
force on the block as it slides? (a) f= Mgsin(q); (b) f= Mgcos(q); (c) /= MgLsin(q)- Y2Mv* ;(d) = [MgLsin(q)-

vMV)/L.

Fig. 1. Example AP Physics problems of the four types used in this work.

[35,42]. However, these approaches have three limitations. First, they rely on having a complete and correct domain theory.
Such domain theories are difficult to construct. A more incremental, learning-oriented approach would be valuable for many
applications, so that a system’s competence could be improved over time as needed. Second, work in model formulation
tends to start with fairly abstract scenario descriptions, e.g. circuit schematics or process diagrams. While this is fine for
engineering applications, the ability to create qualitative and quantitative models of everyday situations (e.g., the scenarios
found in physics problems) is one of the hallmarks of human flexibility in problem-solving. Third, also due to an emphasis
on engineering domains, model formulation research has largely ignored learning. We propose instead a quite different
approach: analogical model formulation. Analogical model formulation builds scenario models of everyday situations, based
on prior experience. We believe that analogical model formulation provides a way to create systems that can incrementally
learn a domain by making effective use of what knowledge they have, even when it is incomplete.

Solving physics problems provides a good example of the need for this kind of flexibility. Fig. 1 provides four examples,
illustrating types of problems that our system learns to solve. (These problems will be used as examples through the paper.)
We factor out natural language understanding by using predicate-calculus versions of these problems, but, unlike previous
systems such as MECHO [3] or ISAAC [36], the translation process leaves everyday concepts in place. That is, balls, buildings,
astronauts, boxes, baseball bats, flying, falling, and pulling all appear in the formal problem descriptions.? Understanding the
relevant abstractions and assumptions for a physics problem stated as an everyday scenario is a difficult problem. Modeling
decisions are contextual. For example, a coin falling off a building can be considered to be a point mass. But if we were
modeling the exact same coin spinning on a table, it cannot be considered a point mass since its shape and size must be
considered. The generalizations in any common-sense ontology are unlikely to provide much help: cats, coins, and pianos
can all be considered as point masses in particular situations, but they are not closely related in any non-trivial ontology
we are aware of. Analogical model formulation addresses the three limitations in model formulation research outlined
above. First, since it relies on examples, analogical model formulation does not require a complete domain theory. Second,
it operates directly with representations of situations drawn from a broad vocabulary of concepts. Finally, by accumulating
examples, a system using analogical model formulation learns to formulate new models of different situations.

While complex, there is ample evidence that people are able to solve physics problems stated in everyday terms. The
problems used throughout this work were generated by the Educational Testing Service, which administers the AP Physics
examination in the United States. The AP Physics exam tests the ability of high school students to solve physics problems.
Students’ performance on this exam indicates that they do learn to categorize everyday objects in terms of domain ab-
stractions, determine what equations are relevant, infer parameter values from scenarios, and assume default circumstances
when necessary. The problems used in this work were generated automatically, from templates. The four problems, one from
each problem type, shown in Fig. 1 represent roughly 20% of the typical Mechanics portion of the AP Physics examination.

Solving physics problems via analogical model formulation begins by retrieving an example analogous to the current
scenario. Analogical model formulation uses the explanation of this example to formulate a model of the current scenario.
Finally, the system uses traditional rule based reasoning over the model to arrive at a solution for the problem. Using
example explanations, analogical model formulation enables the system to learn from examples how to make the following
modeling decisions necessary for solving physics problems:

e Which equations are relevant and how they should be instantiated (e.g., the force exerted on the box is equal to the

mass of the box multiplied by the acceleration of the box).
o Which assumptions to make by default (e.g., assuming that events happen on Earth).

2 We used a subset of the ResearchCyc ontology, containing over 30,000 concepts. See http://research.cyc.com for details.
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e Which assumptions about the values of specific quantities to make based on the scenario (e.g., objects at rest have
0 m/s).

We implement analogical model formulation using the Companion cognitive architecture [18]. A central hypothesis of
the Companion architecture is that the flexibility and breadth of human common sense reasoning arises from analogical
reasoning and learning from experience [17]. That is, people use their experience to enable them to solve new problems, and
over time, extract generalizations and heuristics. For model formulation, this is consistent with Falkenhainer’s [8] observation
that engineers often use analogy with their experience to create new models. Klenk et al. [28] showed that a Companion
can formulate models by analogy to solve everyday physical reasoning problems, such as those on the Bennett Mechanical
Comprehension Test [2]. This article goes beyond that result by demonstrating that analogical model formulation can be
used to solve variations of AP Physics style problems, through an external evaluation involving a substantial number of
problems over systematic variations in relationships between problems.

Characterizing how well learned knowledge transfers is complex. One way involves identifying different transfer levels,
each representing a particular type of relationship between a known source problem and a novel target problem. We use
an externally-developed set of six transfer levels® in this research. To illustrate them, we use Problem 1 from Fig. 1 as an
example of a source problem:

A ball is released from rest from the top of a 200 m tall building on Earth and falls to the ground. If air resistance is negligible, which
of the following is most nearly equal to the distance the ball falls during the first 4 s after it is released?

1. Parameterization: Target problem has different parameter values, but the qualitative outcome is the same.

A ball is released from rest from the top of a 500 m tall building on Earth and falls to the ground. If air resistance is negligible,
which of the following is most nearly equal to the distance the ball falls during the first 3 s after it is released?

2. Extrapolation: Target problem has parameter values that are so different that the qualitative outcome changes as well.

A ball is released from rest from the top of an 80 m tall building on Earth and falls to the ground. If air resistance is negligible,
which of the following is most nearly equal to the distance the ball falls during the first 5 s after it is released?*

3. Restructuring: The target problem asks for a different parameter.

A ball is released from rest from the top of a 200 m tall building on Earth and falls to the ground. If air resistance is negligible,
how long does it take to fall 80 m?

4. Extending: The target problem includes distracting information.

A ball with a mass of 5 kg is released from rest from the top of a 100 m tall building on Earth and falls to the ground. If air
resistance is negligible, which of the following is most nearly equal to the distance the ball falls during the first 4 s after it is
released?

5. Restyling: The target problem involves different types of everyday objects.

A crate is dropped off the edge of a 100 m cliff on Earth and falls to the ground. If air resistance is negligible, which of the
following is most nearly equal to the distance the crate falls during the first 4 s after it is released?

6. Composing: The target problem requires combining concepts from two different base problems.

An astronaut on a planet with no atmosphere throws a ball upward from near ground level with an initial speed of 4.0 m/s.
The ball rises to a maximum height of 5.0 m before returning to the astronaut who then drops the ball from the top of a 100 m
tall building. If air resistance is negligible, which of the following is most nearly equal to the distance the ball falls during the
first 4 s after it is released? (Composed the Source Problem with Problem 2 from Fig. 1.)

We describe how a Companion using analogical model formulation solves AP Physics style problems, across these six
transfer levels. We start by briefly reviewing the key aspects of the Companion cognitive architecture and the representations
used in this work. Next, we illustrate the model formulation challenges in AP Physics and highlight how analogy can solve

3 These levels are from a 10-level catalog of transfer tasks used in DARPA’s Transfer Learning Program (http://www.darpa.mil/ipto/programs/tl/docs/
TL_Brief.ppt).

4 In 5 s, a ball falling from rest would travel 125 m. However the building the ball falls from is only 80 m tall; therefore the correct answer is that the
ball falls 80 m.
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these problems. Then we describe the analogical problem-solving method, which learns by accumulating worked solutions.
We discuss an experiment, administered by ETS, in which a Companion using analogical model formulation achieved a
63.8% initial improvement across the six transfer levels. We present a detailed analysis indicating that most problem-
solving failures were caused by human errors in the implementation and representations, and not due to analogical model
formulation. After addressing these issues, a second experiment was performed in which the Companion achieved an initial
improvement of 95.8% averaged across the six transfer levels. We close with a discussion of additional related work and our
plans to build upon these results.

2. Companion cognitive architecture

Through the Companion architecture, we are exploring the hypothesis that analogical processing [21,17] is central to
human reasoning and learning. Forbus et al. [19] provide an overview of the theoretical commitments of the Companion
architecture. We begin by outlining the agent architecture and how it supports analogical model formulation. Then, we
describe the computational models for analogical matching and retrieval it uses, and how they facilitate transfer.

2.1. Agent architecture

The Companion architecture is a distributed agent architecture. Each agent has its own knowledge base (KB), whose
contents are periodically updated and synchronized. Communication between agents occurs through KQML messages [11].
For these experiments, the following agents were used:

e Session Manager: Provides facilities for user interaction.

e Facilitator: Manages sessions and directs communications between agents.

e Executive: Monitors the Companion’s responsibilities and delegates work to the appropriate agents (e.g. follows scripts
describing experiments, records quiz results, checkpoints KBs, etc.).

Session Reasoner: Performs domain reasoning, in this case physics problem-solving.

Similarity-based Retriever: Monitors the working memory of the Session Reasoner, and provides similar prior cases when
there is a close match.

The Session Manager runs locally on the user’s machine, the rest of the agents run on cluster nodes. New problems
are given either individually through the Session Manager, or by a script describing an experiment which is uploaded to
the Executive. The Executive hands the problem to the Session Reasoner, which implements all but the retrieval portion
of the analogical model formulation and problem-solving processes. While the MAC/FAC algorithm (see below) used in the
Retriever is efficient, distributing it reduces the memory load on the Session Reasoner as the size of case libraries rises.

2.2. Computational models of analogical processes

We use Gentner’s [21] structure-mapping theory, which postulates that analogy and similarity are based on a structural
alignment between two representations (the base and the target). The alignment process constructs one or more maximal
structurally consistent matches. A structurally consistent match is one that satisfies the constraints of tiered-identicality,
parallel connectivity, and one-to-one mapping. The tiered-identicality constraint provides a strong preference for only allow-
ing identical predicates to match, but allows for rare exceptions. For example, minimal ascension [7] allows non-identical
predicates to match if they are part of a larger mapped structure and share a close common ancestor in the ontology,
which is useful for cross-domain analogies. Analogical model formulation uses within-domain analogies between problems
and examples. Therefore, in this work, only identical predicates are allowed to match. Parallel connectivity states that if
two predicates are matched then their arguments must also match. The one-to-one mapping constraint requires that each
element in the base corresponds to at most one element in the target and vice versa. To explain why some analogies
are better than others, structure-mapping uses the principle of systematicity: Mappings that are highly interconnected and
contain deep chains of higher order relations are preferred over mappings with an equal number of relations which are in-
dependent from each other. Such nested structures indicate explanations, which provide context to help evaluate analogical
inferences.

The Structure-Mapping Engine (SME) [9] models analogical matching. Given two structured representations as input (the
base and target), SME produces one or more mappings, each representing a construal of what items (entities and expressions)
in the base go with what items in the target. Each mapping is represented by a set of correspondences. Mappings also
include candidate inferences which are conjectures about the target using expressions from the base which, while unmapped
in their entirety, have subcomponents that participate in the mapping’s correspondences. Based upon the systematicity
constraint, a structural evaluation score is computed to estimate the match quality. SME operates in polynomial time, using
a greedy algorithm [15,20]. The heart of transfer is the extraction of knowledge from prior examples using SME’s candidate
inferences.

To illustrate this more concretely, let us examine SME’s operation over the small base and target representations from
Table 1. The base description contains six facts describing a ball being released and falling. The target description describes
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Table 1

Example base and target descriptions.

Base “A ball is released and falls” Target “A box is released”

Entities - Fall-1, Ball-1, Release-1 Entities - Box-1, Release-2

Expressions Expressions

(a) (FallingEvent Fall-1) (g) (BoxTheContainer Box-1)

(b) (Ball Ball-1) (h) (ReleaseOfSupport Release-2)

(c) (ReleaseOfSupport Release-1) (i) (objectActedOn Release-2 Box-1)

(
(d) (objectActedOn Release-1 Ball-1)
(e) (causes-EventEvent Release-1 Fall-1)
(f) (primaryObjectMoving Fall-1 Ball-1)

a box getting released. An initial mapping is created by matching identical predicates in the expressions, (d) <> (i) and
(c) < (h). Because they are structurally consistent (i.e., the mapping does not violate the parallel connectivity or one-
to-one mapping constraints), this mapping is accepted with the following correspondences: Release-1 <> Release-
2 and Ball-1 < Box-1. Partially matched expressions from the base become candidate inferences by replacing the
parts of the base expression which participate in the correspondences with the target items. In this case, expression (b)
becomes (Ball Box-1), expression (e) becomes (causes-EventEvent Release-2 (AnalogySkolemFn Fall-
1)) and expression (f) becomes (primaryObjectMoving (AnalogySkolemFn Fall-1) Box-1). The expression
AnalogySkolemFn is used to represent unmapped entities from the base. Candidate inferences are conjectures about the
target. In this example, some are correct, i.e., the Release-2 event causes something like the Fall-1 event from the
base, and the Box-1 is the object moving of this event. On the other hand, they need not be correct (e.g., Box-1 is not a
Ball). This paper describes how analogical model formulation uses the correspondences and candidate inferences to solve
physics problems based on examples.

MAC/FAC [16] models similarity-based retrieval. It takes as input a probe and a case library. The probe is a structured
description, representing what is currently being worked on by some system. The case library is a set of cases, each a
structured description, representing the set of available examples. MAC/FAC selects a case from the case library based upon
similarity with the probe. It does this in two stages. The first stage (MAC) computes a special kind of feature vector for the
probe and each case in the case library, whose components are proportional to the number of occurrences of individual
predicates in each structured representation. The case from the case library with the highest (or up to three, if very close)
dot product with the probe is returned from the MAC stage. The second (FAC) stage uses SME to compare these candidates
to the probe. The candidate with the highest structural evaluation score is returned by the algorithm as its reminding. (If
others are very close, up to three can be returned, but in this work, only the most similar reminding is used.)

Both SME and MAC/FAC have been used successfully in many domains (e.g. case-based coaching, reasoning about physical
systems, and thermodynamics), and as cognitive simulations to model a number of psychological results [13]. Here, these
domain independent processes facilitate transferring knowledge at each of the six transfer levels. Because SME and MAC/FAC
focus on structural matches, numbers are treated as entities, whose specific values are ignored. Therefore the matching
process is insensitive to particular numeric values (i.e., 5 is treated the same as 500), simplifying parameterization transfer.
The emphasis on relational structure aids extrapolation and restructuring problems because contextual information in the
base remains associated in the candidate inferences. Both SME and MAC/FAC handle partial matches, facilitating the handling
of extending and restyling problems. Finally, composing, as explained below, is achieved by using multiple retrievals to cover
all the phenomena mentioned in the problem.

3. Representations of problems and worked solutions

When students study for the AP Physics exam, one important way they learn is by doing problem sets. For feedback,
students often get worked solutions. These step-by-step explanations are always used in textbooks to illustrate problem-
solving. Worked solutions are typically incomplete, outlining steps abstractly rather than at the level of detail found in a
proof. Our system is designed to use such worked solutions to formulate models of new problems. In collaboration with ETS
and Cycorp, we developed representation conventions for problems and worked solutions. These conventions allowed us to
factor out natural language understanding, while keeping the incomplete nature of worked solutions intact.

All of the representations used in this work are in CycL, the predicate calculus language of the ResearchCyc KB [33].
The KB used by the Companion’s agents consists of a subset of ResearchCyc KB, plus our own extensions. The extensions
include problem-solving strategies and an implementation of QP theory [12], as well as rules for inferring some kinds of
qualitative information from pre-existing ResearchCyc concepts. ResearchCyc is useful for representing physics problems
and worked solutions because it includes over 30,000 distinct types of entities, over 8000 relationships and functions,
and 1.2 million facts constraining them. Thus, the everyday concepts that appear in physics problems like “astronaut” and
“dropping” are already defined for us, rather than us generating them specifically for this project. This reduces tailorability
in our experiments. In addition to the templates used to create the problems in Fig. 1, ETS and Cycorp developed templates
to generate problems and worked solutions representing each transfer level. Consequently, all the problems and worked
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(isa Throwing-1 ThrowingAnObject)

(isa Astronaut-1 Astronaut)

(isa Planet-1 Planet)

(isa BaseballBat-1 BaseballBat)

(groundOf Planet-1 Ground-1)

(performedBy Throwing-1 Astronaut-1)

(no-GenQuantRelnFrom in-ImmersedFully Planet-1 Atmosphere)
(eventOccursNear Throwing-1 Ground-1)

(objectThrown Throwing-1 BaseballBat-1)

(querySentenceOfQuery Query-1 (valueOf (AccGravityFn Planet-1) Acc-1))

Fig. 2. Part of the representation of Problem 2 (simplified for readability).

solutions in this evaluation were created externally. The representations of the 460 physics problems® used in this evaluation
contained 4973 instances from 108 conceptual types and 103 unique relations. When including the worked solutions, the
representations include 11,230 instances from 110 types and 144 relations.

3.1. Example problem and worked solution

The problem representations are intended to be direct translations into predicate calculus from natural language problem
statements, without any abstraction or reasoning. Fig. 2 shows a subset of the 37 facts used to represent Problem 2 from
Fig. 1. The facts in Fig. 2 define the planet with no atmosphere, the astronaut throwing the bat and the question asking for
the gravitational force of the planet. The average number of facts for each problem is 44.

The worked solutions are predicate calculus representations of the example problems found in textbooks. They are not
deductive proofs, nor problem-solving traces of the operations of our solver. They leave out many steps and characterize
problem-solving operations in very general ways. Here is an English rendering of the worked solution for Problem 2 from
Fig. 1:

1. Categorize the problem as a distance-velocity problem under constant acceleration.

2. Instantiate the distance-velocity equation specific to the quantities of this problem (e.g. the bat and the upward motion
event) (Vj% = V,.2 + 2ad).

3. Given the projectile motion of the bat, lack of atmosphere, and the maximum altitude of bat, infer that the acceleration
of the bat is equal to the acceleration due to the gravity of the planet (a = g), the distance the bat travels during the
upward motion event (d =5 m) and that the bat is not moving at the maximum height (V=0 m/s).

4. Use the assumed values and the given parameters to solve the equation for the acceleration due to gravity (g =
—1.6 m/s2).

5. Determine if there is a relevant boundary condition, i.e., ascertain that the answer is consistent (g = —1.6 m/s?).

6. Select the appropriate multiple choice answer (c).

The predicate calculus version of this worked solution consists of 104 facts.

Fig. 3 shows part of the representation for Step 3. The first fact indicates that this is an assuming value step. The
stepUses statements give the context for assuming the values. The subset of stepUses statements displayed here state
that there is no atmosphere on the planet, the throwing event occurs near the ground and that the bat is the object
moving in the upward movement event. The last three facts contain the results of this step, which are values for specific
parameters: the speed of the bat at the end of the upward movement event, the distance that bat travels during this event
and the bat’s acceleration during this event. Figs. 2 and 3 as well as the rest of the figures which include predicate calculus
representations use simplified entity, predicate and function names to improve readability. The complete representations for
the problem and worked solution of Problem 2 appear in Appendix A. The average number of facts across all the worked
solutions is 163.

4. Analogical model formulation

The primary contribution of this work is the process of analogical model formulation. Our analysis of physics problems
indicates that successful problem-solving typically requires four types of modeling decisions: relevance reasoning, quantity
value assumptions, default circumstances, and modeling abstractions. This section describes each in turn, and how we use
analogous worked solutions to make modeling decisions in new problems, without needing a complete domain theory.

Relevance reasoning in physics problem-solving determines which equations are applicable for a given situation. Even
in a relatively constrained domain like AP Physics, the number of potentially relevant equations can be quite large, due to

5 The representations of these problems and worked solutions can be found at http://www.qrg.northwestern.edu/analogy_challenge/ap_physics.html.
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(stepType Step3 DeterminingValueFromContext)
(stepUses Step3 (isa Throwing-1 ThrowingAnObject))
(stepUses Step3 (occursNear Throwing-1 Ground-1))
(stepUses Step3
(no-GenQuantRelnFrom in-ImmersedFully Planet-1 Atmosphere))
(stepUses Step3 (objectMoving Upward-1 BaseballBat-1))
(stepUses Step3 (direction Upward-1 Up-Directly))

(stepResult Step3
(valueOf
(AtFn ((QPQuantityFn Speed) BaseballBat-1) (EndFn Upward-1))
(MetersPerSecond 0)))
(stepResult Step3
(valueOf ((QPQuantityFn DistanceTravelled) BaseballBat-1 Upward-1)
(Meter 3)))
(stepResult Step3
(valueOf (AtFn ((QPQuantityFn Acceleration) BaseballBat-1) Upward-1)
((QPQuantityFn AccelerationDueToGravity) Planet-1)))

Fig. 3. Problem 2 worked solution Step 3 (simplified for readability).

specialized forms. For example, while solving Problem 2, it would be a mistake for a system to consider magnetic forces on
the baseball bat. Efficient problem-solvers must first determine which equations are relevant. Our method uses the insight
that similar problems are likely to involve similar equations. All the equations for physics phenomena applied to a problem
are found by searching the candidate inferences produced by the analogy between the new problem and worked solution(s).

Quantity value assumptions occur when the problem-solver infers a parameter value from the scenario. For instance, in
Problem 2, the problem-solver must recognize that the distance the baseball bat travels is 5 m and that its velocity at the
end of the upward motion event is 0 m/s. Neither of these facts is given explicitly in the problem. While the velocity at
the end of the upward motion event could be derived via calculus or a qualitative model, the distance the bat travels is
necessarily an approximation, because the scenario description states that the throwing event occurs “near ground level”
and the maximum altitude of the bat is 5 m. Our method uses candidate inferences to suggest quantity values via analogy.

Physics problems frequently require problem-solvers to assume certain circumstances by default. The most common of
these in AP Physics is to assume that events happen on Earth and are subject to Earth’s gravity. For example, Problem 3, the
lifting box problem, requires this assumption to determine the net force on the box. Again, our method relies on analogy to
find such default circumstances.

The last type of modeling decision involves categorizing everyday objects as abstractions. When reasoning with a domain
theory defined in abstract terms, it is necessary to move from the everyday objects and events to this abstract vocabulary.
This is another form of relevance reasoning, because abstractions are a way of framing the problem in terms of what
phenomena should be considered. Given the problem of a ball falling off the building, a problem-solver would likely abstract
the ball into a point mass and not an electrical particle, thus pruning the search space to the appropriate equations and
relevant assumptions. As indicated above, the relevant equations and assumptions are suggested via analogy. In other words,
abstraction modeling decisions are implicit in the other modeling decisions made by analogical model formulation.

Here we show how a Companion uses analogical model formulation to make these modeling decisions for the following
restyling variation of Problem 2 from Fig. 1:

“A physicist on an asteroid with no atmosphere throws a spoon upward from near ground level with an initial speed of
4.0 m/s. If the spoon rises to a maximum height of 5.0 m, what is the acceleration due to gravity on this asteroid? (a)
0.8 m/s%; (b) 1.2 m/s?; (c) 1.6 m/s?; (d) 20 m/s%.”

First, the Retriever, using MAC/FAC, provides the worked solution to Problem 2 (outlined in Section 3.1) as a reminding.
Then, the Session Reasoner uses SME to create an analogy with this reminding as the base and the new problem as the
target. The most relevant correspondences from the best mapping are summarized in Table 2. Recall that candidate infer-
ences are expressions from the base (here, the worked solution) that are conjectured to hold in the target, by virtue of the
mapping’s correspondences. A number of these are stepUses or stepResult statements, representing worked solution
steps and their contexts which suggest modeling decisions in the problem. Analogical model formulation draws upon these
candidate inferences to incrementally build a scenario model for the problem.

As an example of relevance reasoning, Step 2 of the worked solution contains the equation V} = V12 + 2ad in terms
of the baseball bat and its upward movement event in the original problem. The candidate inferences generated from this
step include a corresponding equation with the quantities V¢, V;, a, and d in terms of the problem entities: Spoon-5 and
Upward-5.

Analogical model formulation handles decisions concerning quantity value assumptions and default circumstances in
the same manner. Worked solutions contain steps indicating one of these assumptions was necessary. These steps appear as



1622 M. Klenk, K. Forbus / Artificial Intelligence 173 (2009) 1615-1638

Table 2

Correspondences between the worked solution and the problem
scenario. Only correspondences used in creating candidate infer-
ences are included, for brevity.

Worked solution item Problem scenario item
Planet-1 Asteroid-5
BaseballBat-1 Spoon-5
Astronaut-1 Physicist-5
Upward-1 Upward-5

(StartFn Upward-1) (StartFn Upward-5)
(EndFn Upward-1) (EndFn Upward-5)

Given: a problem, P, and a case library, C, of worked solutions, {ws;...ws,}
1. Retrieve analogue ws; using MAC/FAC with probe: P and case library: C
1.1. While there is unmapped event structure,
1.1.1. retrieve additional analogue ws; using MAC/FAC with probe: (P — {facts covered by the currently mapped
structure }) and case library: (C — {already retrieved worked solutions})
2. Analyze P to determine the sought after quantity, q, and problem type, t.
3. Using analogical model formulation, solve for q by one of the following methods, using t to determine when the
answer is appropriate:
3.1. If the value of q is given in P, use that value.
3.2. If the value of q is mentioned in a candidate inference, use that candidate inference.
3.3. Search candidate inferences generated by analogs for an equation, e, mentioning q
3.3.1. Recursively solve for each of the other quantities, q;...q; , mentioned in e
3.3.2. Solve e for q
4. If boundary condition check exists in candidate inferences,
4.1. Compare mapped values in P to determine correct value for q
5. Use the computed value for q to select the multiple choice answer for P

Fig. 4. Solving AP Physics problems via analogical model formulation.

candidate inferences in the problem as a result of the analogical mapping. These candidate inferences suggest quantity value
and default circumstance assumptions in the problem. In this mapping, the candidate inferences suggest that the velocity
of the spoon at the end of its upward movement is zero, the distance the spoon travels during the upward movement
event is 3 meters, and the acceleration of spoon during the upward movement event is the acceleration due to gravity of
the asteroid. While default circumstances do not occur in this example, they are represented in the same way in worked
solutions and handled by analogical model formulation in the same manner.

We wanted to provide the most stringent test of analogical model formulation from examples that we could. Conse-
quently, the only modeling knowledge the system has concerns heuristics for evaluating candidate inferences. Importantly,
the system has no general knowledge of physics equations, quantity values, or default circumstances. Without a reminding,
it cannot solve any problems. This resulted in a useful simplification: the system does not explicitly categorize everyday
objects in terms of abstractions. Making such abstractions explicit is useful only when there is abstract domain knowledge
that will trigger on it. Such information is implicit in the choice of equations, quantity value assumptions, and default cir-
cumstances. As the experiments below indicate, this works well when the analogous problems are sufficiently similar. We
expect explicit categorization to become important in more distant transfer, and indeed have conducted preliminary exper-
iments in learning such knowledge [27]. However, since it is not necessary in these problems, we defer further discussion
of this until Section 8.

5. Solving AP Physics problems via analogical model formulation

Here we describe our algorithm for solving AP Physics style problems, including analogical model formulation. Fig. 4
outlines the algorithm. After describing each step in detail, we outline how it is implemented in the Companion cognitive
architecture.

5.1. Step 1: Retrieve analogous worked solutions

The process of solving a physics problem begins by generating an analogy with one or more relevant worked solutions.
With the problem as the probe, MAC/FAC is used to retrieve a relevant example from a case library of worked solutions.
The mapping between the worked solution (as the base) and the problem (as the target) is evaluated for adequacy by the
loop in Step 1.1. Fundamentally, physics problems are about events. The event structure of a problem consists of the events
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that occur in it. If the analogy does not map all of the event structure, additional analogues must be retrieved. Otherwise,
there would be no knowledge from which to formulate a model for the unmapped events.® For each iteration in Step 1.1,
the already-matched parts of the probe are suppressed, so that retrievals are focused only on cases that are similar to
the unmatched aspects of the problem. This was essential for handling the Composing transfer condition, since multiple
analogues are needed to solve a single problem. For example, solving the Composing example in Section 1 might retrieve a
worked solution for Problem 1 of Fig. 1, which would cover the release and falling events, but not the throwing and upward
motion events. This would cause another retrieval to be made using MAC/FAC, with only the facts pertaining to the throwing
and upward motion events as the probe. These two retrievals result in two sets of candidate inferences, both of which are
available to the problem-solver in the following steps.

5.2. Step 2: Problem analysis

Solving most physics problems eventually boils down to finding the value for some quantity. But which quantity, and
what form of description is appropriate for the value, must be ascertained by analyzing the problem. There are several
different broad types of problems on the AP Physics exam. The subset of the exam used in this work contains the following
types of problems:

e Numeric value problems: Determining the numeric value of a specific parameter.

A ball is released from rest from the top of a 200 m tall building on Earth and falls to the ground. If air resistance is negligible,
which of the following is most nearly equal to the distance the ball falls during the first 4 s after it is released? (a) 20 m;
(b) 40 m; (c) 80 m; (d) 160 m.

e Symbolic value problems: Determining the symbolic value of a specific parameter.

A block of mass M is released from rest at the top of an inclined plane, which has length L and makes an angle q with the
horizontal. Although there is friction between the block and the plane, the block slides with increasing speed. If the block
has speed v when it reaches the bottom of the plane, what is the magnitude of the frictional force on the block as it slides?
(a) f=Mgsin(g); (b) f =Mgcos(q); (c) f=MgLsin(q) —1/2Mv?; (d) f = [MgLsin(q) — 1/2Mv?]/L.

e State elaboration problems: Determining which parameter value will produce a described outcome.

Which of the following tensions is required to move a box of mass 8 kg from rest on the floor upward with constant acceleration
when it is pulled vertically upward by a cord attached to the box? (a) 40 N; (b) 60 N; (c) 70 N; (d) 120 N.

e Qualitative behavior problems: Determining the qualitative outcome of a situation.

A box of mass 8 kg is at rest on the floor when it is pulled vertically upward by a cord attached to the box. If the tension in the
cord is 104 N, which of the following describes the motion, if any, of the box? (a) It does not move; (b) It moves upward with
constant velocity; (c) It moves upward with increasing velocity but constant acceleration; (d) It moves upward with increasing
velocity and increasing acceleration.

This step identifies the problem type and sought quantity by analyzing the facts describing the query of the problem
and the multiple choice answers. If the query concerns a quantity, then that is considered to be the sought quantity. In that
case, the problem type is determined to be numeric or symbolic based on the kinds of expressions found in the possible
answers. Instead of asking for specific quantity values, the query can concern a qualitative state. In these cases, if the
possible answers are quantity values then the problem is a state elaboration problem, otherwise the problem is a qualitative
behavior problem. For state elaboration problems, the sought quantity is determined by analyzing the event structure in
the problem. In the example above, the acceleration of the box is the sought parameter. For qualitative behavior problems,
the sought quantity is found by domain-specific rules that determine what value(s) are needed to distinguish between the
possible answers. In the example above, for instance, the acceleration and velocity of the box during the pulling event would
be sought.

The basic problem-solving strategy in physics problems is solving equations to find values. For numeric and symbolic
value problems, this is sufficient. For qualitative behavior problems, the values of the sought quantities are tested to see
which of the qualitative descriptions they satisfy. For state elaboration problems, we create an assumption case for each
answer choice. The assumption case includes all the facts of the problem and an assumption of the value for the parameter

6 The distracters added in the Extending transfer condition never included events, only quantities and entities. Distracting events would cause the system
to retrieve additional worked solutions to potentially model them. The effect of this on problem-solving performance would likely be limited to extending
the length of time it took the Companion to produce the solution.
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given in the answer choice (e.g., the tension in the example problem above). Then, for each assumption case, we solve for
the sought quantity and determine if it is consistent with the problem description. If it is, then that assumption case is the
correct answer.

5.3. Step 3: Solve for q via analogical model formulation

This step creates a scenario model incrementally, based on the analogy with the worked solution(s). The process starts
by trying to find an appropriate value for the sought quantity q. In general, this is a recursive process, so we describe the
general strategy for solving quantities.

Given a quantity g to be solved for, its value can be determined in one of three ways:

1. It is already known as part of the problem. That is, there is a valueOf statement in the problem representation that
provides an appropriate value for q. By appropriate, we mean that when a numeric answer is sought, the valueOf
statement provides a numeric value, and when a symbolic answer is sought, the valueOf statement is expressed in
symbolic terms compatible with the possible answers, as ascertained in the previous section. In this case, the value
from the statement is used.

2. It is assumable. That is, there is a candidate inference containing a stepResult statement which provides a value for
g. In this case the value from the analogy is assumed.

3. It is mentioned in a relevant equation. That is, there is a candidate inference which contains an equation that men-
tions g. In this case, recursive subgoals are spawned to solve for the other quantities in the equation, and once their
values are found, a value is derived for gq.

While the first case is straightforward, the second and third cases make important modeling decisions via analogy. The
second case handles quantity value assumptions and default circumstances. The third case handles relevance reasoning,
since analogous situations are assumed to be governed by similar equations.

Analogical modeling decisions, like all non-deductive inferences, should be verified if possible [6]. The stepUses
statements in the worked solution provide context for the worked solution step. These statements can be thought of as
preconditions for the analogical modeling decision. Currently, we only use these preconditions in one situation. If these
statements mention a planetary body, which is not included in the mapping, and there is a different planetary body in the
problem, the analogical modeling decisions based upon this solution step are deemed unusable. This is a useful heuristic
for this domain because decisions based on planetary bodies typically involve assumptions involving gravitational constants,
which of course vary across planets. Currently, the rules that do these verifications are hand coded. In future work, we plan
to enable Companions to learn and refine these rules with experience.

In addition to verifying the inference, it is important to understand how numbers are handled in the analogical map-
ping. Because these are all within-domain analogies, when there is a correspondence between number entities, it is likely
spurious. For example, if the problem includes a ball moving at 1 m/s and the worked solution includes a ball moving at
2 m/s, then 1 could be placed in correspondence with 2. This is a spurious correspondence because there is no reason to
believe that all 2’s in the worked solution should be considered 1's in the problem. Therefore when candidate inferences for
equations include numeric values, we use the number from the worked solution. When the candidate inferences concern
an assumed value, the target value is used only when the units match; otherwise, the base value is used. Returning to our
example, if the worked solution includes the distance-velocity equation, V2 = Vi2 — 2ad, then the resulting mapping would

include a candidate inference suggesting V2 = Vi2 — lad as an appropriate equation for the problem. Because we always
use the number from the worked solution, even with the spurious correspondence, the correct equation V2 = Vi2 —2ad is
instantiated in the problem.

Because the focus of this work is on model formulation, we provided our system with complete knowledge of units and
conversions. The equation solving and algebraic simplification routines are straightforward, based on [14].

5.4. Step 4: Checking boundary conditions

Doing “sanity checks” of answers is always a good problem-solving practice. In physics, this is involves testing boundary
conditions. For example, if a problem asked, “How far a ball would fall off a 200 m building in 4 s?”, its worked solution
would include a sanity checking step in which the computed answer, 80 m, was compared to the height of the building,
200 m. Since this is less, the computed answer is okay. If the computed answer were larger than the height of the building,
it means that the boundary conditions of the equations are violated. Since one ignores the impact crater in these problems,
the answer would then be the height of the building, because that is the point at which the behavior captured by the falling
event ends.

This aspect of the scenario model also depends on the analogy. Boundary conditions are recognized by candidate in-
ferences involving ordinal relationships (i.e., greaterThan or lessThan) between parameters in the problem. Currently
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Fig. 5. Analogical model formulation implemented on the Companion cognitive architecture.

only boundary condition tests involving the sought quantity are processed. This is because it is clear how to resolve such a
failure, i.e., use the value compared against it instead, because it constitutes a limit point [12] for that quantity.’

5.5. Step 5: Selecting the multiple choice answer

Finally, the appropriate multiple choice answer is selected. For numeric and symbolic value problems, the computed an-
swer is compared against each of the answer choices and the closest answer is selected.® For qualitative behavior problems,
qualitative arithmetic is used to select the consistent answer choice. For instance, if there is a computed positive vertical
velocity, the object must be moving upwards. In the example qualitative behavior problem of Section 5.2, the Companion
determines that answer (c), the box moves upward with constant acceleration and increasing velocity, is the only consistent
choice. This is because the box’s velocity at the beginning of the event is 0 m/s and its computed acceleration during the
event is 3 m/s?. For state elaboration problems, the first assumed value that is consistent with the computed answer is se-
lected. In the state elaboration example from Section 5.2, the problem states that the box is moving upward with constant
acceleration, therefore, the consistent assumption case results in a positive acceleration for the box. The answer (d) contains
the only tension, 120 N, which results in a positive acceleration, 5 m/s2.

Importantly, the system is not allowed to guess if it cannot compute the answer for a problem.

5.6. Implementation in a Companion

Fig. 5 shows how the steps of the algorithm are divided among the agents in a Companion. Aside from retrieving worked
solutions, the entire process takes place on the Session Reasoner. The Session Reasoner requests relevant worked solution(s)
from the Similarity-based Retriever. When the Session Reasoner selects an answer, it is sent to the Session Manger for
display on the user’s machine. We implement the algorithm from Fig. 4 using an AND/OR problem-solver drawn from [14].
The problem-solving knowledge consists of 27 methods, 169 backchaining rules, and two reasoning sources, which are
procedural attachments efficiently implementing analogical processing and algebraic operations.

For illustration, here is how a Companion employs the above algorithm to solve the following restyling problem:

“A box is dropped from the top of a 300 m cliff on Earth and falls to the ground. If air resistance is negligible, which
of the following is most nearly equal to the distance the box falls during the first 7.3 s after it is released? (a) 36.5 m;
(b) 73 m; (c) 266.45 m; (d) 532.9 m.”

The problem is presented to the Companion as a case of 28 predicate calculus facts. The Companion begins by asking the
Retriever for a relevant example, which in this case is the worked solution for Problem 1 from Fig. 1. The Session Reasoner
uses SME create a mapping between the retrieved worked solution and the problem. The event structure of the problem
contains three events: the initial situation, the dropping, and the falling. All three events are included in the correspondences
of this mapping; therefore the Companion does not retrieve additional analogues. Next, it determines that this is a numeric

7 This heuristic is reasonable for mechanics but would not be appropriate for other domains, such as thermodynamics.
8 Learning to recognize when a computer answer is not “close enough” to any of the choices requires generalizing across experiences from the domain.
Analogical model formulation focuses on the direct application of examples and consequently learning such strategies is outside the scope of this work.
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Base expressions:
(valueOf ((QPQuantityFn DistanceTravelled) Ball-1 Interval-1) Distance-1)
(valueOf ((QPQuantityFn Time-Quantity) Interval-1) (SecondsDuration 4))
(temporallyCooriginating Fall-1 Interval-1)
(TimeInterval Interval-1)
(objectActedOn Release-1 Ball-1)
(primaryObjectMoving Fall-1 Ball-1)
7. (objectStationary Initial-Situation-1 Ball-1)
Target Expressions:

1. (valueOf ((QPQuantityFn DistanceTravelled) Box-5 Interval-5) Distance-5)
(valueOf ((QPQuantityFn Time-Quantity) Interval-5) (SecondsDuration 7.3))
(temporallyCooriginating Fall-5 Interval-5)

(TimeInterval Interval-5)

(objectActedOn Release-5 Box-5)
(primaryObjectMoving Fall-5 Box-5)
(objectStationary Initial-Situation-5 Box-5)

o U W N

~N oW

Fig. 6. Expressions in alignment based upon identical predicates.

Base Expression
(stepResults Step-5
(equationForSolution WorkedSolution-1
(mathEquals
((QPQuantityFn DistanceTravelled) Ball-1 Interval-1)
(PlusFn
(TimesFn (AtFn ((QPQuantityFn Speed) Ball-1l) (StartFn Interval-1))
((QPQuantityFn Time-Quantity) Interval-1))
(TimesFn 0.5
(AtFn ((QPQuantityFn Acceleration) Ball-1) Interval-1)
(SquaredFn ((QPQuantityFn Time-Quantity) Interval-1))))))
Candidate Inference
(stepResults (AnalogySkolemFn Step-5)
(equationForSolution (AnalogySkolemFn WorkedSolution-1)
(mathEquals
((QPQuantityFn DistanceTravelled) Box-5 Interval-5)
(PlusFn
(TimesFn (AtFn ((QPQuantityFn Speed) Box-5) (StartFn Interval-5))
((QPQuantityFn Time-Quantity) Interval-5))
(TimesFn (AnalogySkolemFn 0.5)
(AtFn ((QPQuantityFn Acc