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1 . INTRODUCTION

Understanding commonsense reasoning is a central problem of Artificial
Intelligence . Without a broad codification ofhuman knowledge, and tech-
niques for reasoning with such knowledge, our programs are doomed to
remain confined to specialized areas . While expert systems have sometimes
been strikingly successful in narrow, carefully defined domains, they
remain brittle and hard to maintain . Natural language "front ends" are
successful only when the domain of discourse is strictly limited . Robots
cannot predict indirect consequences of their actions (e.g . that leaving a
tool outside may cause it to rust) . Really smart programs, especially those
that must interact frequently with human beings, must share our common
knowledge and assumptions .
What is commonsense reasoning? Sometimes it is defined only indirectly,

by contrast with "expert reasoning ." Some identify commonsense reason-
ing with default or nonmonotonic reasoning . Neither definition seems
appropriate . Psychological studies ofexpert reasoning indicate that it relies
heavily on our mental models, our commonsense theories of the domain
of expertise (Gentner & Stevens 1983 ; de Kleer & Brown 1984) . While
experts certainly know more than novices about their domain, typically
this additional knowledge is highly interconnected with the knowledge
that both share . This suggests that we need to say more directly what that
knowledge is . And while commonsense reasoning often involves defaults
and nonmonotonic reasoning, it is hard to find areas of expertise that do
not also involve defaults and nonmonotonicity . Hence such reasoning
cannot be a defining property of commonsense .
Here we identify commonsense reasoning with reasoning about a par-
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ticular collection of domains . Broadly speaking, these domains include the
physical world, the social world, and the mental tirorld. I focus here on
reasoning about the physical world . Knowledge about the social world is
typically considered by workers in natural language, since such theories
are required to make sense of discourse . Knowledge about the mental
world is typically the concern of workers studying theories of knowledge
and action . While these areas are important, covering recent progress in
reasoning about the physical world alone will strain my space limitations .
Much of the research described below is typically considered to be part

of a new subfield of AI called qualitative physics . Qualitative physics is
concerned with modeling expert reasoning as well as commonsense, and
also with uncovering the ties between qualitative and traditional models
of physics . We will ignore these activities here, in favor of drawing con-
nections between qualitative physics and other areas with overlapping
concerns (e.g . temporal reasoning) .
The term "qualitative" has been used in many ways, sometimes just to

mean "non-numerical" (e .g . "qualitative student models") . Since the term
"symbolic" serves the same purpose, it seems safe to restrict "qualitative"
to a more technical meaning : having to do with reasoning about continuous
properties via discrete abstractions . This definition is still a bit vague, but
that is to be expected given that the area is relatively new .

Qualitative physics seeks ways to represent continuous properties of the
world by discrete systems of symbols . One can always quantize something
continuous, but not all quantizations are equally useful . One way to state
the idea is the Relevance Principle (Forbus 1984b) : The distinctions made
by a quantLation must he relevant to the kind of reasoning performed .
The idea is simple, but few quantizations satisfy it . Rounding to fewer

significant digits, replacing numbers by arbitrary intervals, using simple
symbolic groups (e.g. TALL, VERY TALL), or employing fuzzy logic do
not satisfy it . Representing numbers by signs (i .e . + and -) is a useful
quantization since different things tend to happen when signs change : Balls
fly up and then down, different kinds of things can happen if the level of
coffee in a cup is rising versus falling . Similarly, inequalities are useful
because processes tend to start and stop when inequalities change : Heat
flows occur when there is a temperature difference, boiling occurs when
the liquid's temperature reaches its boiling point .
With the appropriate quantizations, it becomes possible to provide more

abstract descriptions of state . These abstract descriptions make possible
more concise descriptions of behavior . Ifour state parameters are elements
of 92, there are potentially an infinite number of states . Replacing state
parameters by floating-point numbers makes the number of potential
states finite, but they still number in the billions for many systems . In the
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quantizations of qualitative physics there may be as few as a dozen, or a
hundred, or in some cases thousands of states . Each state in a qualitative
description usually corresponds to many states in a traditional description,
each distinguished by having the same "meaningful behavior pattern"
occurring in them .

Abstraction is a two-edged sword. While these abstract state descriptions
succinctly capture possible behaviors, they tend not to prescribe exactly
which behavior will occur next . By themselves they typically cannot, for
we have thrown away just the information required to settle such questions.
Thus qualitative simulations tend to be ambiguous . Often such ambiguous
answers are good enough : If a household robot cannot imagine any way
for the house to burn down as a consequence of its plan to cook supper,
it can be satisfied that the plan is at least minimally safe . However, if a
house fire is a possibility, more knowledge needs to be invoked . The ability
of qualitative physics to represent this ambiguity explicitly is beneficial,
since it provides a signal to indicate when more detailed knowledge is
required . Exploring the trade-off between abstraction and precision is one
of the principle themes of qualitative physics research today .
A central goal of qualitative physics is to achieve a degree of systematic

coverage and uniformity far in excess of today's knowledge-based systems .
In today's expert systems, knowledge is encoded about a particular domain
for a particular purpose . Instead of continuing to build such systems,
qualitative physics strives to create wide-coverage, multi-purpose domain
models . By wide-coverage, we mean that there is some large but precisely
characterizable set of systems that can be described by the domain model .
It is assumed that every model for a specific system is built by instantiating
appropriate elements of the domain vocabulary in appropriate ways . This
will reduce the amount of hand-crafting required for new programs, and
will hopefully lead to "off-the-shelf" knowledge bases .

By multi-purpose, we mean that a domain model (or a model for a
specific situation) can be used for more than one inferential task . Charac-
terizing these styles of reasoning is another goal of qualitative physics .
These styles of reasoning include qualitative simulation, interpreting
measurements, planning, comparative analysis, and others . Developing
domain-independent characterizations of these styles will hopefully lead
to generic algorithms that can be used as modules in a variety of larger
systems .
The literature in qualitative physics has begun to grow rapidly in the

last two years, and in order to focus on the new I must slight the old .
While this article is self-contained, the reader who wishes to delve more
deeply into the basics of the area should see Bobrow (1984) and Hobbs &
Moore (1985), which contain representative samples .
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HISTORIES, ENVISIONMENTS, AND TIME

Here I examine representations for change, focusing on temporal issues . I
begin by examining the notion of histories, introduced by Hayes as an
alternative to the situation calculus, and proceed to discuss the relationship
between different forms ofqualitative simulation . In discussing the notion
of envisioning I attempt to clear up some recent confusion concerning
the relationship between envisionments and histories . Finally, I survey
attempts to provide general models of time and temporal reasoning .

2.1 Histories
Representing change is a central problem of commonsense physics . The
earliest representation of changing worlds was the situation calculus
(McCarthy & Hayes 1969) . It carved up the world temporally, dividing it
into situations of unspecified duration . A situation ends when an action
occurs, and the result of taking the action on the situation gives rise to yet
another situation . Thus if we have True(ON(A, B), S1) then in the
situation S2 = Unstack(A, B, S1) we have True (Cleartop(B), S2) . The
limitations of this representation are many and well-known . It does not
represent the duration of actions or indeed the duration of the situations
themselves . It does not support reasoning about simultaneous or over-
lapping actions . But most importantly, it gives rise to theframe problem :
Explicit axioms must be provided that state for every kind of fact whether
or not it remains true after each type of action .

There have been, and continue to be, a variety of interesting attempts
to solve the frame problem . One of the most productive has been the
introduction of histories by Hayes (1979) . Intuitively, a history is a piece
of space-time, bristling with properties . A history consists of a collection
of episodes, which serve as the spatiotemporal scope for the validity of
facts associated with them. Episodes may last for an interval of time, like
situations, but unlike situations they are always bounded spatially . It is
assumed that for histories to interact they must intersect . This assumption
provides a partial solution to the frame problem, since histories which do
not touch and do not themselves have internal changes may be propagated
undisturbed . The solution is not complete, since one must still deter-
mine whether histories that intersect interact, and if so, exactly how.
Furthermore, some method for generating and extending histories must
be specified .

Space precludes a detailed presentation of the nomenclature associated
with histories, which anyway varies somewhat from researcher to
researcher . The basics may be found in Hayes (1985), with some useful
extensions in Forbus (1984b) .

2 .2 Envisionments
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Several methods of generating histories have been devised . Hayes (1985)

describes a fixed set of relationships between different types of episodes
for liquids, and proposes this as a generally applicable model. Qualitative
simulation can be used to produce histories directly, as Kuiper's QSIM
(1986) system does (see Section 2.3), or as a side effect of quantitative
simulation (Forbus 1981 a) . In several industrial applications, histories are
specified as part of the description of a problem, as in integrated circuit
fabrication (Mohammed & Simmons 1986) or hypothesized on the basis of
other knowledge (Simmons 1983) . One of the most complicated problems
occurring in sophisticated reasoning with histories is keeping straight
the justifications involved when reasoning about systems with feedback .
Williams's (1986) temporal constraint propagator (TCP) is the first system
that does this correctly .

A history describes a specific behavior of an object . While a history is (at
least potentially) infinite, it typically consists of only a finite number of
distinguishable episodes . That is, each episode can be described as an
occurrence of one of a finite set of abstract qualitative states . This assumes
there are a finite number of properties, and a finite number of values for
each property, and hence only a finite number of combinations of these
properties . Similarly, for any finite collection of objects we can define
qualitative states that describe consistent collections of every possible
distinguishable episode for each object .

Qualitative states can be defined without recourse to histories (and in
fact, were developed prior to histories) . Furthermore, there are several
ways to compute transitions between qualitative states, depending on the
nature of the physics involved . The graph formed by the collection of all
qualitative states of a system and the transitions between them is called an
envisionment . The notion of envisionment is due to de Kleer (1975) . T.ie
process of constructing an envisionment, envisioning, was the first methsd
of qualitative simulation .
A further distinction between envisioners is whether they start from a

given initial state or from all possible states . The former are said to
produce attainable envisionments, the latter total envisionments . Total
envisionments are usually larger than attainable envisionments, but are
more useful for certain tasks . A number of envisioners of each type have
been built for different theories . NEWTON (de Kleer 1975) and FROB
(Forbus 1980) both produced attainable envisionments for different kinds
of motion problems . QUAL (de Kleer 1979) produced attainable envi-
sionments for electronics, while ENVISION produced total envisionments
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for system-dynamics-like models (see Section 5.1) . For qualitative process
(QP) theory, GIZMO (Forbus 1984c) produced attainable envisionments,
while QPE (Forbus 1986b) produces total envisionments .

In a correct envisionment, every possible history can be expressed as a
path . Various properties ofthe graph correspond to important behavioral
distinctions . For example, states with no transitions from them represent
final states for the system, and cycles correspond to oscillations .

2 .3

	

Envisioning versus History Generation
The relationship between envisionments and histories is more subtle than
first suspected, and is still being explored . Some aspects are clear ; for
instance, Forbus (1987a) defines a logic ofoccurrence that specifies how a
history may be related to an envisionment so that general behavioral
constraints (such as assuming classes of behavior must or may not occur)
can be enforced . Sometimes there have been simple terminological con-
fusions, such as de Kleer & Brown (1984) calling their qualitative states
"episodes," or Kuipers (1986) calling his account of history generation a
"deeper semantics" for envisioning . Other aspects, however, are genuinely
problematic and have become fertile areas of research .

Originally, de Kleer (1979, 1984a) claimed that, just as every history
corresponds to a path through the envisionment, so every path through the
envisionment must correspond to a physically realizable history . Kuipers
(1986) shows this is incorrect . The counterexample he uses is shown in
Figure I (this envisionment was generated with QPE). The parameter Z
is a function of position, and should be compared with Z', but is otherwise
unconstrained . By declaring the comparison between Z and Z' as inter-
esting, we will cause a state transition to occur whenever the relationship
between them changes . There are other transitions that will occur owing
to the way motion and acceleration are modeled (see Forbus 1984b for
details) .
To generate a history from an envisionment, begin by selecting a start

state . That state forms what occurs at the first episode in the history, the
duration of the episode being the duration of the corresponding qualitative
state (i .e . either an interval or instant) . If there are no transitions from the
chosen state, then that episode is the end of the history . If there are, select
one of the transitions as representing what actually occurs. Then continue
as before, starting from the state resulting from the transition .

Carrying out this procedure on the envisionment of Figure 1 reveals a
variety of possible histories . For example, the sequence of states S,, S,,
S,, S, O , S13, S, 6, S 19 , S- corresponds to a legal history, as does Sa, S6 ,
S 9 , S12, S15, S, s, S2,, SZ , . Other legal histories correspond to variations

X=0
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Z versus Z'

S2

Figure 1

	

Generating histories from envisionments can be difficult . An envisionment for a
modified spring-block oscillator is shown. The modification consists of an extra parameter
Z which is a function of X and is compared with an arbitrary constant Z' . Each row is
labeled with a picture indicating the general position and velocity of the block in the states
of that row. Each column indicates the relationship Z has with Z' in those states . Arrows
denote locally consistent transitions between states . Circles indicate states that last over an
interval, while squares indicate states lasting only for an instant .
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of these where Z changes in its relationship to Z' within the range of
variation for X . For example, the sequence S,, S6, Sh , S� ,, S�, S,6, S=o,
S_,, corresponds to the case where Z equals Z' when X equals zero .

All of the histories mentioned so far are legitimate . But consider again
the transitions from, say, S6 . Each time around the cycle, one of these
transitions must be chosen . In the algorithm specified, which corresponds
to the original de Kleer claim, each such choice is independent . Thus we
are free to choose another transition the next time we reach S6, which will
give us an illegitimate history . The problem can arise even on a single
cycle; the sequence S3, S6 , S K , S, a, S13, S16, S17, S18, S21, S=, is inconsistent
because the S6 , Sx , S 10 subsequence assumes Z = Z' when X= ZERO,
while the S,6, S 1 ,, 5111, S,, is based on the assumption that Z reaches Z'
before X reaches ZERO. The choices are not in fact independent, and
treating them as such can lead to incorrect predictions .

In this simple case, the solution seems clear : Each choice of transition
implies additional information about the functional relationship between
X and Z. For example, assuming that the transition from S6 to S, occurs
"fixes" a point on the (implicit) graph defining their relationship : in par-
ticular, Z = Z' when X = ZERO. (Assuming that one of the other tran-
sitions occurs requires introducing a new constant related to either X or
to Z, but the principle is the same) . These constraints must then be
respected in successive choices . For example, choosing the transition from
S 1 , to S11 forces the later transition of S16 to S 1 , . However, it is not
straightforward to generalize this technique to all situations .
To summarize : With no information, we can get incorrect predictions .

If we had a fully specified correct quantitative model, there would be no
ambiguity and hence we would always get correct histories . The open
research question right now is, just how much information, and in what
form, suffices to generate histories correctly from envisionments?

This problem arises even without envisionments ; direct history gen-
eration must also take into account constraints imposed by earlier choices .
In QSIM, for example, new named values can be introduced at every step
of the computation, corresponding to the value a quantity takes on in a
particular episode of the history (more on this below) . Since the algorithm
can introduce a new value between any two adjacent previous values, the
number of possible episodes can (and does) grow exponentially without
bound . This means that QSIM also produces incorrect histories . Several
pruning techniques to weed out incorrect histories have been investigated,
including problem-specific constraints (Lee et al 1987), algebraic manipu-
lation (Kuipers & Chiu 1987), and quantitative knowledge (Chiu 1987),
but so far these results have been mixed . [For instance, Struss (1987) points
out several limitations of qualitative mathematics, such as sensitivity to

the form of equations, which indicate that algebraic manipulation of
qualitative equations is often unsafe .]

Both envisionment and direct history generation have their role to play
in the arsenal of qualitative physics . The notion of envisionment is a superb
theoretical tool, providing a simple way to think about classes of behaviors .
Envisioning is a good methodological tool for qualitative model devel-
opment, since it exercises domain theories in obscure cases that the model
builder might otherwise ignore . But envisioning is unlikely to be the desired
solution for quick on-line computation : after all, it corresponds to
explicitly generating the entire problem space for some class of problems!
In such cases history generation, perhaps combined with heuristics, seems
to make sense . The space/time trade-offs in qualitative simulation have
only begun to be explored . One can imagine compiling envisionments off-
line, for example, or the envisionment of a system at a high level of
abstraction being used to guide direct history generation at a lower level .

2.4

	

Temporal Reasoning
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Time plays a secondary role in qualitative simulation ; the relatively crude
distinctions of succession and the classification of duration into instants
or intervals have sufficed so far . However, there has also been much
research on more general questions of temporal reasoning that is also
relevant to commonsense physics . Since some of this work is reviewed by
McDermott (1987), we only touch upon recent developments here. First
we consider developments in temporal formalisms, and then temporal
inference techniques .

Roughly, there are two main camps in AI temporal reasoning work .
The first, the numericists, take 91 as the underlying model of time, and
represent intervals by segments of the real line . The primary advocates of
this approach are Vere (1983), McDermott (1982), and Dean (1986) . Both
McDermott and Dean further use "fuzzy" bounds on duration . Their
intuition is that we often do not know precise durations but can provide
upper and lower bounds for how long something will take . For instance,
we may know that it takes between 3 and 10 minutes to empty or fill our
bathtub, between 5 and 15 minutes to actually take a bath (including
drying off), and between 2 and 5 minutes to get dressed or undressed .
Thus we can estimate how long it will be before the bathroom is free for
someone else to use once we start to take a bath in terms of another
interval, whose lower bound is the sum of the lower bounds and whose
upper bound is the sum of the upper bounds . If we perform each action
serially the time would be between 15 and 45 minutes .
A good planner will realize that the actions of undressing and filling the
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tub maybe carried out in parallel, as may dressing and emptying the tub .
Thus a more realistic bound would be between I 1 and 35 minutes . Clearly
this is a useful inference for a robot to be able to make . However, it
does require knowing a lot of specific duration information to start with .
Furthermore, computing the bounds in more complex examples can
require a great deal of search, since there can be more than one path of
intervals linking two points (Dean & McDermott 1987) .

1 will call the second major camp the relationists . The primary advocates
of this approach are Allen (1984), Vilain (1986), and Ladkin (1987) . The
intuition behind these models is that often what we really care about is the
relationships between intervals, rather than detailed information about
their duration . Returning to the bathtub example, it should be clear that
numerical duration information is not required to express that certain
actions may be done in parallel . We need only say that both filling and
undressing must be over before the bath may begin, and that both emptying
and dressing must be over before someone else can take a bath . While
certain inferences will require duration information-for example, figuring
out whether or not five people sharing one bathroom have enough time
to all take baths before a concert an hour away-relational information
suffices for many inferences .
To be fair, relational systems can have computational problems as well .

Often such systems are designed to make minimal temporal commitments,
by describing the relationship between two intervals as a disjunction of
possibilities (such as BEFORE, AFTER, MEET, DURING, etc) . Processing
occurs via symbolic relaxation (i .e . Waltz filtering) on triples of such
relationships : For instance, if A is before B, and B is before C, then clearly
A is before C . While locally such transitive inferences are cheap (they can
be accomplished by table lookup), in real systems the number of them
tends to grow explosively with the number of intervals in the system, with
much wasted effort (Allen & Koomen 1983) . However, it should be noted
that this computational scheme is not inherent in the relation-based
systems, and schemes involving early commitment and backup may turn
out to be more tractable .

Ultimately, it will be necessary to combine something of both systems
in commonsense reasoners . In constructing intricate plans, for example,
one cares at first only about the rough temporal relationships between
different actions and events . The relational systems provide the means of
sayingjust what one knows, or needs to say, and no more . Precise duration
estimates are irrelevant . However, when seeing ifa plan will actually work,
it may be necessary to resolve the ambiguities that inevitably arise when
using the purely relational system . Duration estimates are appropriate for

3. SPACE AND MOTION
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this . However, just which aspects of each will be required and how they
should interact are areas for future research .

Underlying both camps are a variety of formal models of time, and the
different properties of these formalisms are the focus of much study (e.g .
Hayes & Allen 1987 ; Ladkin 1987) . To date, these efforts have not had
great impact on computational schemes for temporal reasoning, mainly
because the representational and inferential powers in other areas are
sufficiently weak that the subtleties they address are not yet relevant to
current programs . However, the future will be different . The most striking
recent effort is that of Shoham (1987), who elegantly describes a formalism
that captures the common properties of both the Allen and McDermott
formalisms, while cleaning up various problems of each .

Problems of spatial reasoning have tended to be neglected in qualitative
physics . Even now, much of the research in this area is carried out under
the aegis of vision and robotics . This is natural, since spatial reasoning is
intimately connected with these areas . But there are problem-solving
aspects to spatial reasoning as well that we must continue to work on if
we are ever to build complete minds . Here I focus on reasoning about
motion as a premiere example of such a problem . I ignore important
problems such as navigation, manipulator-level planning, and layout prob-
lems, simply because they overlap significantly with robotics . Most of the
projects described here are concerned with reasoning about mechanisms,
such as mechanical clocks and internal combustion engines .
Motion pervades the physical world-things roll, swing, fly, gyrate,

spin, and slide . To understand what happens to a tool that is placed
on an incline, or to understand how mechanical clocks work, we must
understand motion . As in traditional physics, we split our concerns into
qualitative dynamics and qualitative kinematics . Qualitative dynamics
entails organizing, representing, and reasoning with time-varying differ-
ential equations . Qualitative kinematics is the complementary study of the
spatial reasoning required . Clearly, any complete account of commonsense
physics must include both dynamics and kinematics . But while there has
been significant progress in qualitative dynamics, there has been com-
paratively little progress in qualitative kinematics .
Given the importance of the problem, this lack ofprogress is surprising .

Forbus et al (1987) attempt to explain why . They claim that "there is no
purely qualitative, general-purpose kinematics" (their poverty conjecture) .
That is, the types ofvery weak representations used in qualitative dynamics
(partial orders, monotonic functions) do not gracefully extend to higher
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dimensions . Instead, more powerful representations, such as symbolic
algebra or numerical representations, are required as a substrate for quali-
tative spatial reasoning . If true, this conjecture suggests two explanations
for slow progress in the area : (1) searches for a general "pure" qualitative
kinematics are a waste of time, and (2) success requires multiple rep-
resentations, increasing the required research effort .
They introduce the Metric Diagram/Place VocabularI, (MD/PV) model

ofspatial reasoning as an alternative to a purely qualitative representation .
In this model, spatial reasoning requires two related representations . The
metric diagram is a combination of symbolic and quantitative information
that is used as an oracle for simple spatial questions . (The metric diagram
is intended to serve the same role that diagrams and models play in human
spatial reasoning .) The place vocabulary is a purely symbolic description
of shape and space, grounded in the metric diagram . Since the place
vocabulary is computed from the metric diagram rather than provided a
priori, the qualitative representation can be chosen appropriately for the
type of reasoning required .
The earliest example of this model is the FROB program (Forbus 1980,

1981a) . FROB reasoned about the motion of point masses ("balls") in a
2-D world constrained by surfaces described as line segments . FROB's
metric diagram consisted of symbolic descriptions of points, lines, regions,
and other geometric entities containing numerical parameters . The place
vocabulary was a quantization of free space, designed to maximize infor-
mation about gravity and energy . These representations support a variety
of inferences, including predicting the final fate of a moving object and
potential collisions .

It appears that almost all spatial reasoning projects so far fit the MD/PV
model. The particular form of these representations will vary with the
class of problem and architecture . Bitmaps, floating-point numbers, and
algebraic expressions have all been used as the quantitative component of
metric diagrams. Regions of free space and configuration space have been
used as the constituents of place vocabularies . The critical features of the
model are that (a) the place vocabulary exists and (b) it is computed from
a metric representation . These features mean that conclusions may be
drawn even when little information is known (by using the place vocabu-
lary as a substrate for qualitative spatial reasoning) and that new quan-
titative information, such as numerical simulations or perception, can be
assimilated into the qualitative representation .
Almost all workers who tackle spatial reasoning problems invoke the

equivalent of a metric diagram sooner or later . Stanfill (1983) used sym-
bolic descriptions with numerical parameters to reason about simple pis-
tons and bearings . Davis (1988) argues that purely qualitative rep-
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resentations are "too weak" to support reasoning about motion involving
solid objects . Simmons's (1983) system for geological map interpretation
used a combination of qualitative and quantitative simulation to produce
a diagram, which was matched against geometric measurements to deter-
mine ifa hypothesized sequence of geological processes could have caused
the formation .
Three recent projects have focused on reasoning about mechanisms:

Gelsey (1987), Joskowicz (1987), and the CLOCK project (Forbus et al
1987) . I begin by examining Gelsey's program, since it is the most complete
at this writing . Gelsey's program starts with a constructive solid geometry
CAD description as input (his metric diagram) . By computing motion
envelopes and recognizing kinematic pairs, his system computes a place
vocabulary consisting of regions involving interactions between parts . His
program does not provide a dynamical analysis, but summarizes the results
of the local kinematic analyses in terms ofmonotonic functions (see Section
4.2) to analyze composite systems by function composition . The program
is able to analyze a significant fraction of the kinematics of an internal
combustion engine, including cams and crankshaft .
The other two programs take somewhat different approaches to kine-

matic analysis . Faltings's (1986, 1987a,b) theory of place vocabularies for
mechanisms, part of the CLOCK project, quantizes configuration space to
serve as place vocabularies . The configuration space representation was
first used in robotics for motion planning problems (Lozano-Perez 1983) .
The idea of configuration space is to reduce collision problems involving
a moving shape and a collection of fixed shapes into a problem involving
a moving point and a transformed set of obstacles . Roughly, a reference
point is chosen on the moving object, and the obstacles are "grown" so
that when the reference point touches the new configuration-space surface,
the object will be touching the obstacle in physical space .

This representation is natural for reasoning about mechanisms for two
reasons . First, connectivity is the appropriate basis for defining kinematic
state, since forces change when contact relationships change . Second,
Faltings observes that the important distinctions for quantizing shape
must come from pairs of objects, rather than objects in isolation, since it
is the interaction of the objects that determines if they can move or bind .
In a mechanism, each part is constrained to have exactly one degree of
freedom by definition . Thus a two-dimensional configuration space for
each pair of parts that can touch will capture all the ways the pair of
objects can interact for most mechanisms. The place vocabulary for the
entire system is the combination of the place vocabularies for the com-
ponents, hence the dimensionality is equal to the number of parts in
the mechanism . Faltings's program is designed to work with any two-
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dimensional descriptions of objects in terms of line segments and arcs, and
has been tested on a wide range of examples, including gears, ratchets,
escapements, and a mechanical clock (see Faltings 1987b) .
Joskowicz (1987) has proposed to use configuration space for analyzing

mechanisms by recognition, such as determining whether or not two parts
form a lower pair by inspection . (In mechanism theory a "lower pair" is
formed when contact occurs along a surface ; when contact involves a point
or a line, the parts form a "higher pair.") He describes algorithms for
doing so, and rules that could be used to recognize higher pairs . Given these
descriptions, the total possible motions could be computed by constraint
propagation .
The place vocabulary is used for reasoning about motion in two ways-

it provides information about contact relationships, and it describes what
will be reached if movement occurs in a particular direction . To use this
information, qualitative frames of reference must be introduced so that
forces may be imposed and motions described . Nielsen, in his part of
the CLOCK project, chooses reference frames along surface normals of
contacts in order to maximize dynamical information . He has also
developed a qualitative N-dimensional vector notation, using the signs of
these frames of reference . Such vectors are used for representing contact
directions, forces, velocities, and other parameters . These techniques are
part of his qualitative theory of rigid-body statics (Nielsen 1987), which
can determine what directions an object is free to move in . This theory has
been implemented and tested by determining the possible motions ofgears
and escapements, as well as the stability of Blocks World structures .
[Shoham's (1985) formalization of freedoms, which attempts to address
the same issues, is more complex and less useful than Nielsen's, since it
only handles point contact and cannot represent unconstrained objects .]

4. QUANTITY AND EQUATIONS

The use of numbers to represent continuous properties and equations to
represent relationships between properties is the hallmark of traditional
physics . Finding less detailed, but still useful, representations for quantities
and equations has been a principle focus of qualitative physics . Here I
briefly review the representations currently in use, and point out recent
advances .

4.1 Quantity
The simplest representation for numerical values are signs . For example,
we might represent a voltage as being 1 if it is above some threshold, as
being 0 if it equals the threshold, and -1 if it is below threshold . The
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intuitive descriptions of change-"increasing," "decreasing," and "con-
stant"-naturally correspond to the sign of a quantity's derivative . This
representation is the only representation for number used by de Kleer &
Brown (1984) and Williams (1984) . [De Kleer's original work (1979) in
electronics used sign values to stand for changes between two equilibrium
states caused by a perturbation, which is a slightly different interpretation
that is sometimes confused with later work.]

Other theories include signs but also allow stronger representations as
well . The reason is that signs only encode a comparison with a single
reference, and often more references are required (e.g . the phase of a
substance being determined by the comparison between its temperature
and the boiling and melting points for that substance, for the change of
fluid level in a tank depending on the comparison ofthe relative magnitudes
of flows in and out) . The most common representation is inequalities,
introduced in QP theory (Forbus 1981 b) and used in several other systems
(including Simmons 1983 ; Weld 1986 ; Kuipers 1984, 1986) .

Inequalities are useful for two reasons . First, physical processes tend to
start and stop when inequalities change . Flows occur when pressures or
temperatures differ, for instance, and stop when they equalize . Second,
they often allow sums to be disambiguated by reasoning about relative
magnitudes . However, reasoning with inequalities also requires more
sophisticated inference mechanisms than reasoning with signs . For ex-
ample, special inference mechanisms are typically used to apply the laws
of transitivity efficiently (Forbus 1984c, 1986b ; Simmons 1986) . It is also less
intuitive to think of a numerical value as a set of statements as opposed
to a discrete object . The term quantity space is often used to refer to the
set of statements constraining the value of a number . While typically
quantity spaces contain inequalities (including relationship to zero, thus
including signs), recently there have been several useful extensions . For
example, Simmons (1986) augments inequalities with numerical intervals
and algebraic expressions, thus providing a simple way to integrate empiri-
cal bounds . I discuss other extensions below .

4 .1 .1

	

LANDMARKS AND LIMIT POINTS What should a number be com-
pared to? Parameters representing domain-specific boundary conditions
comprise one source of reference values . Examples of such limit points
(Forbus 1981 b) are the boiling temperature of a substance and the fracture
stress of a material . Some comparisons are required owing to the specifics
of a situation, such as a comparison between the rate of flow into and out
of a container . I adopt here the terminology of Kuipers (1986) and refer
to the elements of a quantity space generically as landmark values for the
quantity, whether or not they are limit points .
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Two distinct semantics have been used for landmark values in the
literature . The distinction has often been misunderstood, via a type/token
confusion, and I undertake to clarify it here . I call a description temporally
generic if it refers to a class of temporal behaviors, rather than just a single
behavior . A description of a single behavior I will call temporally, speck.
The script of a play is a temporally generic description, while a videotape
of its performance is temporally specific . Limit points are temporally
generic, as are comparisons between rates, since there are classes of situ-
at ; cns where liquids boil and flows occur . The value of the boiling tem-
p , :rature at 3 p.m . is temporally specific-we are referring to a single
s tuation, and hence a single specific value .
Most systems of qualitative physics use only temporally generic land-

marks . But temporally specific landmarks can be critical for many reason-
ing tasks . For example, it may be crucial for a doctor to compare a patient's
cholesterol level today with the specific cholesterol level last week, not just
with some generic "safe" value . Kuipers QSIM generates such temporally
specific landmarks . These landmarks do not correspond to "discovering"
new limit points, as originally claimed . Rather, they are the equivalent of
a qualitative "strip chart" that describes a specific behavior of a system .
QSIM thus provides an automatic naming facility to support reasoning
about temporally specific values .

Although temporally specific landmarks are essential for some infer-
ences, they introduce a new level of computational complexity . Consider,
for example, a decaying oscillation, such as a ball bouncing up and down,
each time rising only some fraction of the height it reached before . Each
height is a new landmark value . Thus an infinite behavior can sometimes
lead to an infinite number of landmark values, as mentioned in Section 2.3 .
4 .1 .2 ORDER OF MAGNITUDE Sometimes saying that N, is greater than
N, is not enough: One may need to say that N, is so large compared to
N2 that N2 may be ignored . For instance, the effect of evaporation on the
level of a lake may be ignored if the dam holding it has burst . In everyday
life, engineers rely on the ability to distinguish a value that is significantly
out of range from a normal variation . One way to represent such infor-
mation is to extend the range of comparative relationships to include
orders of magnitude . Three such representations, FOG (Raiman 1986),
O[M] (Mavrovouniotis & Stephanopolous 1987), and Davis's (1987)
infinitesimal theory have been developed in qualitative physics . I begin
with FOG and O[M], since they share intended use, and then describe
Davis's system .
FOG introduces three new relationships, in addition to the traditional

order relations . They are :
A << B

	

A is negligible compared to B.

A - B

	

A is very close to B.
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A - B

	

A is the same order of magnitude as B.
Raiman has developed a consistent formalization that captures the

intuitive meaning of these statements, using infinitesimals as a model . The
effect of these relationships is to stratify values into equivalence classes,
thus providing the means to say that values are very different . For example,
in the DEDALE diagnosis system (Dauge et al 1987), this vocabulary is
used to describe the typical relationships between values in component
models .
The O[M] formalism is based on assigning labels to ranges of ratios .

For example, the relationship A - < B (read A is slightly smaller than B)
is true exactly when I AIBI is less than (1 +e), where e is a domain-specific
parameter. This mapping simplifies the laws of the system and potentially
allows a wide variety of quantitative information to be easily incorporated .
O[M] also uses physical units to reduce inferential complexity ; only par-
ameters of the same units may be compared .
The definition of orders of magnitude relations in O[M] in terms of

ranges simplifies the mapping from numerical values, a problem for which
FOG provides little guidance . However, it also allows a large but finite
number of negligible values to add up to something that is significant,
which violates the intuitions underlying such reasoning. This cannot hap-
pen in FOG. The other relative advantages of the two systems remain to
be explored .

Davis (1987) describes another formalism for order of magnitudes
which, like FOG, is based on infinitesimals . He reconstructs a qualitative
calculus to include infinitesimal values for both numbers and as durations
of intervals . Thus he can talk about changes taking infinite (or very short)
time.

4 .1 .3

	

FUZZY NUMBERS

	

D'Ambrosio (1987) extends QP theory by using
linguistic variables, such as "high" and "very high," defining these terms
using fuzzy logic . He also annotates the qualitative equations to indicate
how sensitive a result will be to a change in them . He allows such anno-
tations to be added globally to the domain model, to specific scenarios, to
specific states within a scenario, and within the scope of a single query
(which could be useful in answering "what if" questions) .

4.2 Equations
Every system of qualitative physics includes at least addition and subtrac-
tion, and multiplication is often introduced as well . However, the quali-
tative versions sometimes have different algebraic properties : For example
signs do not form a field . Restricting ourselves to inequalities can lead to
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ambiguities even when an underlying field is assumed . If one only knows
that A is greater than zero and B is less than zero, for instance, then the
sign of A+B cannot be determined . In this case knowing the relative
magnitudes of A and B can provide the answer, but in general inequalities
between algebraic terms are required.

In de Kleer & Brown's (1984) theory, equations constructed from the
basic arithmetic operations but using only sign values are called Con-
fluences. Confluences are solved by propagation of constraints, using
generate-and-test when unresolvable simultaneities occur . Under certain
conditions, Dormoy has shown that sets of confluences can be solved by
a variant of Gaussian elimination (Dormoy & Raiman 1987) . Confluences
have also been used with the FOG formalism, where the comparison is
made between the actual value of a parameter and its nominal value
(Dauge et al 1987) .
Monotonic functions are often used to approximate complicated or

unknown functions with minimal commitment. From mathematics, if
y =f(x) then f(x) is increasing monotonic if whenever x increases, y
increases ; f(x) is decreasing monotonic if whenever x increases, y decreases .
Such functions provide the weakest statement that still allows us to con-
clude that if we increase one quantity, the other will increase (decrease) .
Of course, many functions required in modeling the physical world are
not monotonic . Such functions can be modeled by decomposing them into
monotonic segments . Providing a framework for explicitly describing the
assumptions underlying this decomposition is one of the roles played by
ontology in qualitative physics (see Section 5) .

Several variations of this idea are used in qualitative physics and math-
ematics . For instance, Kuipers uses M + (x, y) to denote an anonymous
increasing monotonic connection between x and y, and M- (x, y) similarly
to denote a decreasing function . QP theory allows partial specification
of monotonic functions through qualitative proportionalities. Formally,
y ocQ+ x indicates y =f(. . . . x . . . . ), where f is increasing monotonic in its
dependence on x . Similarly, y oc Q_ x indicates that the function involved
is decreasing monotonic in x . Qualitative proportionalities allow knowl-
edge of equations to be distributed through a domain model, and auto-
matically composed when needed . For example, sometimes the fluid resist-
ance of a flow path matters and sometimes it doesn't . When it does a
description adding the right ocQ_ can be activated to make this dependence
explicit . However, using this representation requires additional inferential
work, in the form of explicit closed-world assumptions .

Often additional specification of functions is allowed . Correspondences
allow inequality information to propagate across monotonic functions .
Intuitively, a correspondence fixes a point on the curve relating two (or

more) parameters . An example of a correspondence is the fact that the
force exerted by a spring is zero when its length equals its rest length . That

fact, combined with the fact that the force increases monotonically with
length, suffices to infer that if we stretch the spring beyond its rest length
it will exert a positive force . Naming functions allows inequality infor-
mation to be propagated across distinct individuals . Essentially, a cor-
respondence can be established between the corresponding parameters of
two distinct individuals that the function is applied to. For example, if we
see two identical glasses, partially filled with water, and the level of water
is the same in both, we assume the amount of water is the same as well .
Details of these variations can be found in Forbus (1984c) and Kuipers
(1984) .

5 . ONTOLOGY
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Ontological choices are central to qualitative physics because, along with
space and time, they provide the organizational structure for everything
else . Continuous properties are properties of something, and equations
hold as a result of that . Developing the appropriate ontology is usually
the most difficult part of formalizing a domain .

If we are to build a complete qualitative physics, one that covers the
breadth and depth of our commonsense knowledge of the physical world,
we must discover and utilize common abstractions . Generating ad hoc
models for each situation is impractical and unreliable . Two such onto-
logical abstractions, devices and processes, have been widely used in quali-
tative physics, and I review them briefly first . Then I discuss recent progress
in reasoning about substances .

5.1

	

The Device Ontology

System dynamics (Shearer et al 1971) is an engineering methodology that
provides a common set of abstractions which encompass a variety of
domains, including many electrical, thermal, mechanical, and acoustical
systems . This modeling paradigm has been widely used in qualitative
physics as well, the principle advocates being de Kleer (1979, 1984a), de
Kleer & Brown (1984), and Williams (1984) . These theories replace the
quantitative equations of system dynamics with qualitative equations, and
have developed new inference techniques for exploiting these descriptions .
The basic idea is to view a system as constructed from a collection of

devices, such as transistors and resistors . The behavior of a device is
specified by internal laws, often decomposed into distinct states or oper-
ating regions . Each device has some number of ports, and all interaction
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between devices occurs through these ports . To model a particular system,
one builds a network of devices . The device network is then analyzed by
using the combined equations from the devices and interconnections, either
by constraint propagation or symbolic relaxation .
The device ontology has two advantages . First, the fixed network top-

ology provides a substrate for efficient computations . All references within
laws are strictly local, and hence resolving them is straightforward . Second,
since system dynamics is a widely-used traditional engineering meth-
odology, there are generally accepted standards for structural descriptions
(i .e. schematics) and standard quantitative models for many domains
that can be used as a starting point for creating qualitative models . The
translation of such quantitative to qualitative models is not trivial, since
new device states may have to be introduced (see de Kleer & Brown 1984
for details) .
The device ontology has two serious limitations . First, it provides no

guidance for the construction of the network model itself. In some domains
(i .e . electronics) this is not a problem, but in many domains it is . A simple
metal block, for instance, can be modeled as either a mass, spring, or
damper, depending on the conditions around it (see Shearer et al 1971 for
details) . The second disadvantage is that many phenomena do not fit neatly
within the device ontology at all . Two examples include unconstrained
motion and phase changes . In some engineering applications such limi-
tations car. often be overcome, but it is hard to see how to do so for general
commonsense physics .

5.2 Processes

Informally, people often describe changes in the physical world in terms
of processes. Examples include motion, liquid flow, heat flow, boiling,
bending, compressing, and expanding . This notion has been formalized in
qualitative physics as an ontological commitment . Consider a cup under
a faucet . If the faucet is turned on, there will be a process of liquid flow
occurring from the faucet, through the fluid path formed by the space
above the cup, to the cup itself. This liquid flow is not a property of either
the cup, the faucet, the water, or the space above the cup . It is a new type
of entity, with properties of its own, such as the rate of water flow .

In this ontology, processes like liquid flow provide the notion of mech-
anism for physical situations . All changes, ultimately, are assumed to be
caused directly or indirectly by physical processes . A model of a domain
includes a description of the kinds of objects there are, the kinds of
relationships that hold between them, and the kinds of processes that can
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occur . To describe a specific situation, models for each of the parts and
relationships are asserted . Importantly, the modeler does not directly
specify what processes are possible . Instead, the process specifications in
the domain model state the conditions under which they can occur, and
the inference system uses these specifications to generate descriptions of
the possible processes automatically .

This notion ofprocess has been used by several researchers in qualitative
physics, including Forbus (1981b, 1984b), Simmons (1983), Mohammed
& Simmons (1986), Weld (1986), and Schmolze (1986) . Some of these
theories describe the effects of processes continuously over time (such as
QP theory), while others describe processes by the net effect they have over
an interval of time (i .e . Simmons and Weld) . [The earliest attempts to
formalize physical processes in AI preceded qualitative physics . Hendrix
(1973) described processes as STRIPS-like operators augmented with
equations for use in planning . Brown et al (1983) represented processes
as finite-state automata, for instructional purposes . Neither representa
tion used qualitative information, in the current technical sense of the
term .]
The process ontology has several advantages . First, the notion ofprocess

is intuitively appealing for many domains. Objects can come into existence
and vanish, for example, something that is not allowed in the device
ontology . Second, processes provide a simple notion of causality by
imposing a distinction between independent variables (those directly affec-
ted by processes) and dependent variables (those affected as a consequence
of the independent variables changing) . Section 6 examines this issue in
detail . Third, it allows modeling assumptions to be explicitly represented,
allowing programs to take on more ofthe modeling burden . [For example,
the class-wide assumptions informally described by de Kleer & Brown
(1984) can be formally expressed by combinations of individual and pre-
condition specifications in QP theory .]
The process ontology also has disadvantages . First, there are some

domains (like electronics) where the distinction between dependent and
independent parameters changes according to the kind of analysis being
performed . Process descriptions are hard to write for such domains .
Second, the process ontology requires more inference, and the manipu-
lation ofquantified descriptions, to set up the model . And third, the process
ontology has not been formally explored as much as the device ontology .
There is no process-oriented engineering formalism equivalent to system
dynamics, no off-the-shelf models to adapt . However, for commonsense
physical reasoning (and, I would maintain, most engineering domains save
electronics) the naturalness and modeling power of the process ontology
makes it the appropriate choice .
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5.3 Substances

Hayes (1985) identified two ontologies for reasoning about liquids . The
first, the piece of stuff ontology, defines a liquid individual in terms of a
particular collection of molecules . This ontology is well-behaved for many
purposes : If, for example, you pour the water from one glass into another,
it is clear that the same water has moved from one place to another . But
for many purposes this representation is problematic . As Hayes points
out, a river is still a river, despite the fact that the molecules of liquid
that comprise it change continually . To handle such cases he defines the
contained liquid ontology, which individuates liquids by containment . Thus
a river is the same river because it is liquid in the same place. It vanishes
only when the water is all gone . It is straightforward to extend this ontology
to a contained stuff ontology that covers gases and solids as well (Forbus
1984c) .
To date, most work in qualitative physics has used the contained stuff

ontology . But contained stuffs have their limitations as well . Consider a
refrigerator in operation . In the contained stuff view, nothing is moving
in this system-the coolant in the compressor is simply the coolant in the
compressor, exactly the same individual . But if we imagine what happens
to a little piece of stuff, we see a drastically different picture . A little piece
of stuff is in constant motion, flowing around the system . It expands,
becomes vapor, gets compressed, and becomes liquid again . This sense of
change captured by the piece of stuff ontology is crucial for many con-
clusions, both for commonsense and for engineering thermodynamics .

Collins & Forbus (1987) claim that reasoning about pieces of stuff in
isolation is difficult because there is not enough information in a qualitative
representation to establish gradients ; consequently we cannot tell locally
what a piece of stuff should do. They define a specialization of the piece-
of-stuff ontology, called the molecular collection ontology, which solves
this problem by using the contained stuffdescription as a framework . They
define a piece of stuff, MC, which is large enough to have macroscopic
properties yet small enough to never split up when traversing a fluid
system . Where MC goes, and what happens to it in various places, is
determined by the processes occurring to the corresponding contained
stuffs . For any given qualitative state in the contained stuff description,
their program can produce a corresponding envisionment for MC. This
description can be used for several purposes, including figuring out that
the refrigerator is a closed cycle and acts like a heat pump.
Schmolze (1986) includes a representation called granules in his proposal

for a "physics for robots," a formalism intended to verify robot plans .
Granules share some of the defining properties of MC, although he uses

granules to reason by decomposition about the constituents of substances
and identify processes . Unlike MC, his formalism requires numerical
values, thus it will take more data to apply it .
Bunt (1985) has introduced ensemble theor}, to capture the properties

ofcontinuous concepts . His theory includes classical set theory as a special
case, but also includes objects that do not have discrete parts . Thus ensem-
ble theory can represent both continuous and discrete views of mass nouns,
such as water . Raulefs (1987) extends ensemble theory, and proposes
using it for reasoning about mixtures, flows, and chemical reactions . The
approach is promising, but how it works in practice remains to be seen .
The research to date does not exhaust the possibilities for reasoning

about fluid stuffs-the ability to individuate larger pieces that could split
up in a fluid system would be useful for reasoning about contamination,
for example .

6. CAUSALITY

COMMONSENSE PHYSIC'S

Causality has been the subject of innumerable philosophical treatises and is
currently spawning a similar number ofAI papers . There is little agreement
about what it means . Here I examine causality in the restricted domain of
qualitative physics, hoping that by limiting the arena I can say more about
it . I begin by focusing on causal reasoning about quantities, including the
causal ordering proposal by Iwasaki & Simon (1986) . Then I discuss
Shoham's chronological ignorance approach, which proposes an interesting
rigorous definition of causal theory .

6.1

	

Causal Reasoning about Quantities
Forbus & Gentner (1986a) analyze the notions of causal reasoning about
quantities used in qualitative physics in order to isolate some distinctions
that may be useful in understanding human reasoning . Roughly, these
distinctions are : the temporal aspects relating cause and effect (the measure -
ment scenario), whether or not the ontology contains an explicit class of
mechanisms or not, and whether or not the primitives for describing
equations include presuppositions about causality (directed versus non-
directedprimitives) .
They assume that some notion ofmechanism underlies causal reasoning

(see Forbus & Gentner 1986b) . 1n some theories, the notion of mechanism
is tied to particular ontological classes . In QP theory, for instance, pro-
cesses are the source of all changes . In other theories, such as de Kleer
& Brown's confluence theory, the notion of mechanism arises from the
interactions of the system's parts . They assume that flow of information
in the model ofthe system directly mirrors "flow ofcausality" in the world .
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Consider a liquid flow between two containers . In QP theory all changes
would be caused by an instance of the liquid-flow process . In a confluence
model the changes would arise from the interaction of the constitutive
equations .
The influences used in QP theory (and others) to represent equations are

directed primitives . Influences include qualitative proportionalities and
direct influences (I+ and I-) needed to specify derivative relationships . We
might represent the relationship between level and pressure in a contained
liquid WC as :

pressure(WC) oc Q+ level(WC),

where a change in level could cause a change in pressure, but not the
reverse . In confluences (and others), the primitives do not carry a pre-
supposition of causality . Thus we might say

pressure (WC) = level (WC)

but could not tell from this equation which way causality works . Notice
that, at least in this case, there is a clear intuitive direction .
The confluence model relies on an input perturbation for causal analysis ;

the choice of input parameter provides significant constraint on the direc-
tion of propagation (which is interpreted as the direction of causation) in
the system . This constraint is not quite sufficient, since it is necessary to
annotate some parameters as independent, to prevent inappropriate causal
deductions (de Kleer & Brown 1984, p . 73) .

In theories with explicit mechanisms, what is an independent parameter
is determined by what the mechanism directly affects . In QP theory, for
instance, the causal directedness hypothesis (Forbus 1984b) expresses caus-
ality : "Changes in physical situations which are perceived as causal are
due to our interpretation ofthem as corresponding either to direct changes
caused by processes of propagation of those direct effects through func-
tional dependencies." A process directly affects something by supplying
its derivative . (Since it can supply a derivative of 0, the same notion
suffices to impose causality on static situations .) In theories with implicit
mechanisms, some other means ofspecifying independent parameters must
be found . In confluences, for instance, the perturbed parameter and any
annotated parameters are the independent ones.
Now we are in a position to understand Iwasaki & Simon's (1986) causal

ordering proposal : They propose to use directed primitives, similar to
qualitative proportionalities, but without associating a sign of effect (i .e .
oc Q , but not ec Q+ or oc Q _) . The exogenous variables of the system are
used as the independent variables . Given these independent parameters,
the technique of causal ordering will produce a graph of dependencies by
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massaging the quantitative equations describing the system . To get the
direction of change imposed by each connection, they propose to use the
method of comparatire statics, which uses quantitative information to
produce a sensitivity analysis . The end result will be much the same as the
graph of influences that holds for the corresponding situation in a QP
model . The possibility of incorrect causal arguments seems to be avoided
by detecting when the system of equations is underdetermined : It is exactly
in such cases that an assumption must be made, and an external knowledge
source (such as the user) can determine which assumption will lead to
correct arguments .
Whether or not causal ordering is useful in analyzing a particular exam-

ple depends on the availability of two things : a set ofquantitative equations
and knowledge about which variables are exogenous . For many cir-
cumstances equations are available, but for many simple circumstances
(such as boiling) they aren't . Often the available equations are too com-
plicated to use : A high-accuracy differential equation model of a coal-fired
power plant, for instance, can be dozens of pages long . Basing the notion
of causal independence on exogenous parameters limits causal ordering to
creating models of specific systems in specific modes of behavior . The
limitation to specific systems comes from the fact that what is exogenous
often changes when a system becomes part of a larger system . Thus we
cannot carry our analysis of, say, a heat exchanger, intact to the analysis
ofa larger system including it . The limitation to specific modes ofbehavior
comes from the fact that the equations describing a system or object can
change drastically (phase changes in fluids and turbulent versus non-
turbulent flow are two examples) .

While causal ordering satisfies several intuitions about commonsense
reasoning, it also violates several others . For instance, many people make
sophisticated causal inferences about quantities without knowing the for-
mal laws of physics . Thus it does not explain how commonsense physics
comes about . It also does not assign causality in feedback systems ("a
chicken and egg problem"), although such descriptions are common in
informal descriptions of how systems work . There is no reason why it
couldn't ; in classical simulation paradigms such "loops" in the equations
are broken by delay elements (i .e . integration operators), and similar
techniques can be used in qualitative equations (e.g . the QP theory notion
of direct influence) .

I believe that, while the techniques Iwasaki & Simon describe seem to
have only limited usefulness as simulation tools, they could be valuable in
the context of knowledge acquisition . Consider the problem of acquiring
knowledge from textbooks. Two kinds of knowledge must be encoded .
The formal aspects, the equations, must be transformed into qualitative
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laws . The informal aspects, the contents of the text, must be transformed
into the organizational structure (typically ontological) that tells when
these laws are appropriate and useful . Causal ordering and comparative
statics may be useful techniques in translating the formal aspects . When
combined with a system that can induce representations for the informal
parts, we might be able to develop tools to semi-automatically acquire
qualitative models by interacting with human experts .

6.2

	

Chronological Ignorance
Causality is a broad notion, and this breadth has lead some to despair of
saying much about it in general (e.g . Hayes 1979). Others continue to seek
formalisms that provide a broad account ofcausality . An interesting recent
version of the latter is Shoham's logic of chronological ignorance. He
proposes that causal theories take the form

4)AODE](p .

Intuitively, cp is a prediction (the Q indicates that it necessarily holds), cp
are the preconditions that necessarily hold in some time before cp starts,
and O are "disclaimers," which do not prevent the prediction as long as we
are not aware oftheir negation . Shoham demonstrates that by postponing
knowing that things have happened (hence the term "chronological igno-
rance"), theories of this form can provide efficient yet accurate inferences .
An aside : The accuracy issue arises from the phenomena noted by Hanks

& McDermott (1986) . Essentially, all previous systems of nonmonotonic
logic or default reasoning allow solutions that are not intended by their
designers (for details, see McDermott 1987) . Perhaps one of the best signs
that AI is still in its early stages is rampant disagreement among its
practitioners over what is and is not reasonable . McDermott, at least for
a while, appeared convinced the fault lies in logic (McDermott et al 1988) .
Others disagreed . A cynic might say that Hanks & McDermott simply
discovered what anyone who has looked seriously at reasoning about the
physical world has known all along : If you place no constraints on action
and change, and tell your reasoning system to come up with all possibilities,
some of its results will be rubbish . What holds for simple physics is
likely to yield even more bizarre results, given the increased possibilities
engendered by the addition of agency . This cynical view is too strong;
simple and clear demonstrations are all too rare in AI .
Shoham's blend of rigor combined with a concern for algorithmic prop-

erties is refreshing . However, it is far from clear how completely this
account captures our intuitions about causality . For instance, people are
often quite comfortable with simultaneous causation, which his theory
disallows . Shoharn points out that theory provides little guidance for the

7 . REASONING

7 .1

	

Simulating Discontinuous Change

7.2

	

Abstraction in Simulation
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structure of the preconditions and disclaimers . Nevertheless, his approach
seems to be the most promising of the formalisms that attempt to capture
the broader phenomena . Perhaps introducing the ontological notion of
mechanism, which plays such a large role in intuitive explanations ofcausal
phenomena, will provide the necessary abstractions for organizing the
structure of causal theories .

Here I discuss recent progress in styles of reasoning-i.e . extending the
ways qualitative representations can be used . Diagnosis is not discussed,
since an adequate treatment of recent work is beyond the scope of this
article .

Many physical systems exhibit discontinuous behavior . Diodes have oper-
ating regions with fundamentally different behaviors, and devices like
latches and flip-flops are often best viewed as discrete . Most systems of
qualitative physics handle such phenomena because they require all
changes to be continuous . Nishida & Doshita (1987) have developed tech-
niques for reasoning about such systems . Essentially, when faced with a
discontinuous change, they introduce successive "mythical instants," each
of which reduces a difference between the previous state and some new
equilibrium state .

Abstraction is crucial in dealing with complex systems . Often structural
abstractions, such as considering a collection of pipes, valves, burners, and
manifolds as a boiler, can be determined in advance . But abstractions of
behavior must be detected dynamically, during the simulation process .
For example, consider a simulation of a robot moving a mountain of sand
from one place to another using a teaspoon . After looking at the simulation
for just a few iterations, we realize what will happen in the long run,
without waiting for each grain of sand to be moved . Weld (1986) calls this
style of reasoning aggregation.
Weld decomposes aggregation into two problems : detecting repetitions

that can safely be summarized, and generating an appropriate summary .
He has outlined a general framework for solving these problems, using a
QP-like process description to summarize the history generated by a dis-
crete-process simulation . His program has successfully generated simu-
lations and summarizations for simple molecular genetics problems, and



z24 FORBUS

illustrates how the techniques could be used to simulate digital logic circuits
efficiently .
Another kind of abstraction ignores slow changes when reasoning about

quick ones . Kuipers (1987) has developed an extension to QSIM that can
perform such simulation for first-order systems . The idea is to determine
the net effect of fast changes, and replace them with equivalent functional
dependencies in reasoning about slow changes . This technique looks prom-
ising, assuming it can be extended to more complex behaviors .

7.3

	

Qualitative Analytic Solutions
In traditional physics, a set of equations can be solved analytically or
by simulation to derive the behavior of a system . Similarly, qualitative
equations are typically derived from an ontology in order to generate
behavior via qualitative simulation (either envisioning or history gen-
eration ; see above) . Sacks (1985) has developed an analytic technique that
generates qualitative descriptions from traditional equations . His program
begins by generating closed-form expressions for each system parameter .
Next, qualitative solutions are generated for each parameter by composing
generic qualitative descriptions about how the functions in that expression
behave over time . His initial QMR system could solve a variety of systems,
including models of a dampened oscillator and heat dissipation .
One limitation of this approach is that most interesting equations do

not have analytic solutions . Sacks's (1987a) solution is to decompose more
complex systems into piecewise linear approximations, use QMR on each
piece, and reconstruct the global solution from the local solutions . To
support this technique, he has also developed a system that uses a hierarchy
of techniques to manipulate sets of inequality constraints (Sacks 1987b) .
Yip (1987) has a complementary approach to the same problem . Phase

portraits comprise a geometric technique traditionally used in mathematics
to describe complex dynamics . Yip has created a vocabulary of qualitative
descriptions of phase space that formalizes the intuitions mathematicians
bring to bear in understanding such portraits . Given a numerical simul-
ation of a nonlinear system he uses this vocabulary to interpret the par-
ticular behavior, and make predictions about what the other parts ofphase
space must be like . These predictions will ultimately form the basis of
additional numerical experiments .

7.4

	

Interpreting Measurements
Ideally, we would like our programs to gather their own data about the
world . A program that worked in a power plant, for instance, should have
the ability to "read the gauges" to find out what is happening inside the
plant . Forbus (1986a, 1987c) calls this problem measurement interpretation .
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His ATM I theory describes how to interpret measurements taken over a
span of time in terms of qualitative states . This theory is very general . It
requires domain-specific procedures for performing an initial signal/
symbol translation, and (potential) envisionment must exist . An imple-
mentation has been demonstrated that works on multiple ontologies (i .e .
both QP models and FROB models) . However, at this writing it has
only been tested on simulated data without gaps, and does not specify
control strategies for handling noisy data .

7 .5 Planning
Realistic planning requires knowing what the physical world will do, with
and without the planner's actions . Unintended side effects can wreck a
plan, such as failing to consider alternate paths of current flow when
exploiting the steam in your shower for ironing . Sometimes physical pro-
cesses must be enlisted to carry out a plan : Making coffee, for instance,
requires boiling water, which in turn requires heating the water . Yet the
representations used in planning tend to be quite different from those used
in qualitative physics, suggesting that we may have to represent the same
knowledge in two different forms .
Hogge (1987a,b) has developed an alternative : Use a domain compiler

to turn a qualitative physics into a form usable by planners . In particular,
his program takes as input a QP domain model, and produces rules suitable
for a temporal planner. [The planner derives from Allen & Koomen's
(1983) design, adding inference rules and other extensions ; see Hogge
(1987c) for details .] Given a description of liquid flow, for instance, the
domain compiler produces an inference rule describing what it takes to
cause a liquid flow to happen . When these rules are added to other inference
rules and a specification of the actions an agent may take, the planner can
create plans that involve processes as intermediaries . For example, his
planner can figure out that it can fill a kettle by moving it under a faucet
and turning the faucet on, and that it can get boiling water by moving the
kettle to the stove, turning the stove on, and waiting.

While elegant, this approach has several limitations . The large descrip-
tions produced by the domain compiler and the complex inferences
required (especially transitivity) tend to choke the temporal planner . Com-
piling can also produce oversimplified models . For instance, the rules
implicitly assume that any influence they impose on a quantity will actually
succeed in changing that quantity . Thus a planner using these rules might
assume that it can prevent an ocean linear from sinking by bailing with a
teaspoon . Such simplifications are hard to avoid, since the only alternatives
seem to be (a) constructing combinations of influences at domain com-
pilation time, which leads to combinatorial explosions ; or (b) increasing
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the amount of "run-time" QP inferencing that can occur in the planner,
thus violating the domain-independent nature of the planner . At least
some of these limitations could be overcome by teaming the planner with
a simulator, so the initial plan could be compared against the possibilities
and debugged if necessary .

7.6

	

Comparative Analysis
Many problems involve asking how some behavior would be different if
something changed . Weld (1987) calls these comparative anal}~sis problems .
Two techniques have been developed for solving such problems . The first,
differential qualitative analysis, was originally proposed by Forbus (I 984b) .
However, that formulation was both incomplete and flawed . Weld has
developed an elegant formalism for dif ferential qualitative analysis, as well
as algorithms for carrying it out, and has analyzed its limitations . For
example, his system, CA, can figure out that if the mass in a spring-mass
oscillator is made smaller, then the period of the oscillator will decrease .
It does this by using the qualitative equations to figure out how the various
parameters of the history will change as a function of mass, and then
imagining a small mass perturbation . He has also developed a comple-
mentary technique, called exaggeration, which solves comparison prob-
lems by taking some value to the limit. To figure out what happens if the
mass increases, for example, one might imagine the mass to be infinite .
With infinite mass the period of oscillation becomes infinite (this analysis
becomes complicated, and appears to require nonstandard analysis), and
hence one can conclude the period will increase . Exaggeration has its
limitations as well ; Weld observes that it assumes the functions involved
are monotonic .

7.7 Learning
Creating a complete qualitative physics is a Herculean task ; it will become
much easier ifour machines can help . Several workers are tackling different
aspects of this problem . Langley et al (1987) have studied various aspects
of scientific discovery of physical laws . Kokar (1987) describes a meth-
odology for determining limit points using dimensional analysis . Fal-
kenhainer's (1985) ABACUS program uses qualitative proportionalities
as an intermediate representation in inducing equations from numerical
data . Mozetic (1987) describes how hierarchy can be exploited in auto-
matically acquiring qualitative models, demonstrating his techniques with
a model of the heart . Rajamoney & DeJong (1987) tackle the problem of
debugging qualitative theories, providing a theoretical classification of bug
types, including strategies for detecting and fixing them .

Psychological and historical evidence indicates that analogy is a power-
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ful mechanism for learning new models (Clement 1986 ; Gentner 1987a,b) .
Falkenhainer (1987) has demonstrated that such learning is indeed com-
putationally feasible, using his theory of verification-based analogical
learning . His PHINEAS program learns new QP models by analogy . Given
a new behavior, PHINEAS attempts to use its current domain model to
explain the behavior (using the ATMI theory, described above) . If ATMI
succeeds, the current model explains the new behavior and nothing else
occurs . But if ATMI fails, PHINEAS accesses a database of previously
observed behaviors with associated explanations . He performs analogical
matching on the behaviors first, to guide the transfer of a QP model
from an understood domain to explain the new one . [His theory assumes
Gentner's (1983) structure mapping theory of analogy, and uses a cognitive
simulation of that theory (SME) (Falkenhainer et al 1986, 1987) as a
module .] The new model, after some refinement, is then verified to see if
it explains the new behavior by using ATMI once again . PHINEAS has
been tested successfully on a number ofexamples and is undergoing further
augmentation . For example, the envisionment can be viewed as a source
of predictions to be further verified before accepting the new domain
model. By interfacing Hogge's domain compiler (see above), PHINEAS
has demonstrated a rudimentary form of experiment planning.

8 . RESEARCH DIRECTIONS

While there has been great progress in qualitative physics in recent years,
we are far from capturing the full power and range ofhuman commonsense
reasoning about the physical world . Here I indicate some promising lines
of research, and raise some new questions .

Causalit},: Currently no one knows how to assign causality consistently
in mixed (directed and nondirected) systems of qualitative equations . It
will be interesting to see what ontological theories might provide the
appropriate abstractions for use with chronological ignorance .

Reasoning: Davis (1988) argues persuasively that developing non-
differential, conservation-like arguments will greatly extend the reach of
commonsense reasoning systems . For example, to conclude that a dropped
glass will end up on the floor, we do not need to know exactly which
part of it hits the ground first . Davis proposes to solve this problem by
introducing abstract representations for space and paths. The MD/PV
model will be needed to carry out these ideas, since it allows the abstract
representations to communicate with each other and with quantitative
data (the "final fate" computations in FROB worked this way, for a
restricted class of problems) .

I believe Davis is correct about the ubiquity of this kind of inference in
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commonsense reasoning . For example, consider how we think about an
opened bottle of soda going flat . We know the CO_ escapes via bubbles .
We know practically nothing about each bubble individually, nor how
many there are . But we do know that, via some path, the bubbles are
escaping . If we can reach this conclusion, Weld's aggregation technique
can take us the rest of the way . We need to discover the right abstractions
for carrying out such inferences .

Quantities: No doubt other representations, lying between the poverty
ofsigns and the richness of91, remain to be discovered . And no doubt there
will be advances in qualitative representations for time-varying differential
equations as well . But the real frontier is now partial differential equations,
especially quantities that vary by space instead of time. Formalizing these
"spatial quantities" will allow us to describe a vastly wider range of
phenomena than at present .

I believe the problem decomposes into two parts . The first is the for-
malization of partial derivatives in general . While this part may have
many technical obstacles, it seems likely that the current theories can be
gracefully extended in this direction . The second problem appears to me
to be much harder : the problem of choosing what the appropriate axes
and frames of reference are .

Spatial reasoning : The metric diagram/place vocabulary model suggests
that progress in spatial reasoning is strongly linked to progress in quan-
titative representations . Already CAD systems have been used as the
substrate for qualitative reasoning, and it appears likely this trend will
continue .

Integrated systems : The first systems in qualitative physics included
several different representations and styles of reasoning . The focus then
shifted to programs that explored in depth a particular representation
and/or style of reasoning, to provide the experimental tools necessary for
formalization . But the time has come to start building larger experimental
systems again, using the techniques we have developed in isolation as
modules in larger systems, both to evaluate how solid our progress is and
to expose new research issues . Programs like PHINEAS that include
several other systems as modules (QPE, ATMI, SME) are the harbinger
of this trend in qualitative physics research . The wide availability of quali-
tative simulators like QSIM and QPE should accelerate this trend .
Another form of integration crucial to continued progress is the inte-

gration of qualitative dynamics with qualitative kinematics . A full under-
standing of an internal combustion engine, for instance, cannot be gleaned
without understanding how physical processes and geometry interact .

Connections to perception : We view Ullman's (1985) theory of visual
routines in part as a theory of human metric diagrams . Understanding

these routines could lead to improvements in qualitative kinematics, and
the requirements of qualitative kinematics may in turn suggest what spatial
descriptions people might be computing .

Ontology : The device ontology is more or less static ; the action is in the
object/process-centered theories . We need to understand more clearly the
ways space interacts with individuation . I believe a superb challenge for
qualitative physics is to model our commonsense understanding of the
weather: what is a cold front, anyway? Understanding the weather will
require spatial quantities, at least .
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