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1 Introduction

Qualitative physics is concerned with representing and reasoning about the
physical world . The goal of qualitative physics is to capture both the common-
sense knowledge of the person on the street and the tacit knowledge underlying
the quantitative knowledge used by engineers and scientists . The area is now a
little over ten years old, which, at least measured in the span of AI, is a long
time . So it makes sense to step back and try to systematize the work in the
field and describe the current state of the art.

I'll start by describing what qualitative physics is, why one should be
doing it, and where it came from . Then I'll sketch the current state of the art,
at least the part that is now fairly stable . Then I'll describe what I think lies
around the comer, including some pointers to recent work and some interac-
tions between qualitative physics and other fields . Finally, I'll describe some
open problems, each of which will probably require quite a few inspired Ph.D .
theses to crack.

Qualitative physics is growing rapidly, and thus any survey is likely to be-
come quickly dated. For example, several problems which were described as
virgin territory when this material was presented at AAAI-86 have now been at
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least partially explored. Nevertheless, I think the general framework for under-
standing the area that was presented then remains sound, and so I have re-
mained faithful to that organization .

2 Why Qualitative Physics?

Consider what we need to know about the physical world to make coffee . We
know that to pour coffee from the pot into a cup requires having the cup under
the spout of the kettle, and that if we pour too much in, there will be a mess on
the floor. We know all this without knowing the myriad equations and numeri-
cal parameters required by traditional physics to model this situation.

Suppose we were going to build a household robot that, among other du-
ties, made coffee . We might start by using traditional physics to model the sit-
uation . Immediately several problems arise . There are few formal axiomatic
theories of physics . The formal aspects of physics, the equations, do not by
themselves describe when they are applicable . What, for example, is the equa-
tion for the cup? There isn't one, per se, but rather various aspects of the cup
potentially participate in several different equations describing "what happens"
in the world. Many everyday physical phenomena, such as boiling, are not
easily described by a single equation. And even when equations exist, people
who know nothing about them can often reason fluently about the phenomena.
So equations cannot be necessary for performing such reasoning .

But suppose for a moment that we had such a set of equations . Could we
use them? Realistic equations rarely permit closed-form, analytic solutions.
Even when they do, the high computational complexity of symbolic algebraic
means it's not the sort of computation you want going on inside a robot en-
gaged in real-time activity . An alternate route is numerical simulation . By
plugging in numerical values, we could generate a very precise description of
what will happen . But such simulations require immense computational re-
sources. Worse vet, it assumes the existence of a complete set of accurate
values for all input parameters . Typically we just don't have such accurate in-
formation, thus forcing us to search a space of parameters corresponding to the
ranges the various input parameters may take . This increases the amount of
computation even more, making numerical simulation infeasible .

Even if numerical simulation were technologically feasible, by say shirt-
pocket supercomputers, or by allowing rough approximations, it still would be
insufficient for our robot. First, we still need to interpret the output of the
simulation . A list of numerical state parameters is not the most perspicuous
representation of an event. Second, any run of a numerical simulator provides a
specific set of predictions about what the system being simulated will do. This
will suffice for some tasks, but not for all . Often we want to characterize the
possibilities that might occur, with some guarantee of completeness . For in-
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stance, a fault-tree analysis of a power plant that captured only a small fraction
of the failure modes of the system would be inappropriate. With numerical
simulations it is often hard to tell when one has captured all of the possible be-
haviors. i In many situations one needs a rapid and rough estimate of what is
possible, rather than a very precise prediction based on many unsupported as-
sumptions . A robot pouring coffee should be cognizant of the possibility of
overflow, and not spend its time calculating just how big the resulting puddle
might be .

These problems are not specific to making coffee ; they hold more gener-
ally whenever one tries to reason about the physical world. To summarize,
these problems are:

The moaehng problem : How does one map from real-world objects to the
abstractions of one's physics?

The resolcalon problem : Carrying out numerical simulations requires
more detail than is often available . Reasoning techniques that can exploit
low resolution, partial information are required for commonsense
reasoning .

3 .

	

The narrowness problem : Traditional simulation provides precise answers
given a particular set of assumptions . Many reasoning problems require
knowing alternative possibilities, rather than a single projection .

At first these problems may seem surprising . Physics, one of the crowning
successes of the scientific method, has been carried .on for hundreds of years.
But consider : Physicists already have commonsense theories of the world.
Their zoal is to create models capable of more precise explanations . With few
exceptions, the focus of formalization lies with building new models that have
significantly better predictive and explanatory power than our implicit com-
monsense models. Qualitative physics arises from the need to share our intui-
tions about the physical world with our machines .

There are many potential applications of qualitative physics . As argued
elsewhere [Gentner and Stevens, 1983 : de Kleer and Brown, 1984; de Kleer,
1984j, the tacit knowledge of engineers and scientists rests on this shared
framework. If we are to build programs that capture this expertise, we must un-
derstand the foundation qualitative physics provides . We will return to this
point after briefly summarizing the essence of qualitative physics.

It is said that if the angular increment in the simulation of the aerodynamic propenies of the
Boston John Hancock building had been halved, the fact that the building's windows would tend
to pop out in high winds could have been predicted . Instead, it was discovered empirically .
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2.1 The Essence

The key to qualitative physics is to find ways to represent continuous proper-
ties of the world by discrete systems of symbols . One can always quantize
something continuous, but not all quantizations are equally useful . One way to
state the idea is the relevance principle : The distinctions made by a quanti=a-

tion must be relevant to the hind of reasoning performed (Forbus,- 1984b] .
The idea is simple, but few quantizations satisfy it. Rounding to fewer sig-

nificant digits, replacing numbers by arbitrary intervals, using simple symbolic
groups like -A7 7 , v~ .~V TA-77 , and fuzzy logic do not satisfy it . Signs generally
do, since different things tend to happen when signs change (balls fly up and
then down, different kinds of things can happen if the level of coffee in a cup
is rising versus falling) . Inequalities do, since processes tend to start and stop
when inequalities change (heat flows occur when there is a temperature differ-
ence, boiling occurs when the liquid's temperature reaches its boiling point) .

Good quantizations allow more abstract descriptions of state, which in turn
make possible more concise descriptions of behavior . If our state parameters
are elements of n, there are potentially an infinite number of states . Replacing
state parameters by floating-point numbers makes the number of potential
states finite, but still numbering in the billions for many systems . In the quanti-
zations of qualitative physics there may be as few as a dozen, or a hundred, or
in some cases thousands . Each state in a qualitative physics typically corre-
sponds to many states in a traditional description, each distinguished by having
the same "meaningful behavior pattern" occurring in them.

Abstraction is a two-edged sword. While these abstract state descriptions
succinctly capture possible behaviors, they tend not to prescribe exactly which
behavior will occur. By themselves they typically cannot, for we have thrown
away just that information required to settle such questions. Thus qualitative
simulations tend to be ambiguous . Often such answers suffice, e .g ., if a house-
hold robot cannot imagine any way for the house to burn down as a con-
sequence of its plan to cook supper, then its plan is reasonably safe . However,
if a house fire is a possibility, more knowledge must be invoked. The ability or
qualitative physics to represent this ambiguity explicitly is beneficial, since it
provides a signal to indicate when more detailed knowledge is required .

A central goal of qualitative physics is to achieve a degree of systematic
coverage and uniformity far in excess of today's knowledge-based systems. In
today's expert systems, knowledge is encoded about a particular domain for a
particular purpose . Instead of continuing to build such systems, qualitative
physics strives to create wide-coverage, multi-purpose domain models . By

wide-coverage, we mean that there is some large but precisely characterizable
set of systems that can be described by the domain model . It is assumed that
every model for a specific system is built by instantiating appropriate elements
of the domain vocabulary in appropriate ways. This will reduce the amount of



hand-crafting required for new programs and will hopefully lead to "off the
shelf" knowledge bases .

By multi-purpose, we mean that a domain model (or a model for a specific
situation) can be used for more than one inferential task . Characterizing these
sryles of reasoning is another goal of qualitative physics . These styles of rea
soning include qualitative simulation . interpreting measurements, planning,
comparative analysis, and others . Developing domain-independent characteriza-
tions of these styles will hopefully lead to generic algorithms that can be used
as modules in a variety of larger systems .

2.2 Potential Applications
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To turn robots loose in unconstrained environments, we must teach them quali-
tative physics. Often we must enlist physical processes to carry out our plans .
For example, if I want to make coffee in the moming, I need to use the stove
to make boiling water. This requires filling the kettle, putting the pot on the
stove . turning the stove on, and waiting for it to boil . One could imagine writ-
ing a little expert system to do this . It wouldn't take many =_ -_ ~-E_N rules to
express this particular procedure . However, if you lived in my house you
would prefer a robot to be reasoning from first principles . '11 iy stove is a little
unusual : The surface that contains the burners retracts into the wall, under the
oven. When the stove is retracted, the burners are directly under the electrical
wiring for the oven. Having been designed in the 50's, it has no safety cutoff
switch . Turning the burner on when the stove is retracted, or retracting the
stove when the burner is still hot, is likely to burn the house down. It is doubt-
ful that the designer of the 1--T-;-_N rules could have taken my stove into ac-
count, so I would be very nervous about turning such a machine loose in my
house . And houses are fairly stereotyped, consider such machines loose in a
construction site . Clearly, such robots will need some form of qualitative
physics

But qualitative physics has many other potential applications as well . The
subject matter of many expert systems includes aspects concerned with the
physical world, particularly in the sciences and engineering. Diagnosis and de
sign are two obvious examples . As remarked above, qualitative physics identi-
fies the "tacit knowledge" that engineers and scientists use to ground the
for-mal:sms they learn in school and on the job .

Consider for example the problem of building an intelligent tutoring sys-
tem for propulsion systems . Figure 1 shows a simplified layout of a Navy pro-
pulsion system . Distilled water is fed into the boiler, heated by oil-fired
burners, and turned to steam. The system operates at very high temperature and
pressure (950' F, 1200 psi) to increase the amount of energy transferred per
pound of steam. The steam is heated in the superheater, to impart even more
energy . (By the time it leaves the superheater in a shipboard system, it is
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travelling faster than the speed of sound .) Here is a hard problem that instruc-
tors routinely ask about this situation: Suppose the feedwater temperature in-
creases, as might occur when travelling in a warmer part of the ocean. What
happens to the temperature at the superheater outlet?

This is a complicated situation, and most of us haven't had a lot of ex-
perience with it, so it hardly qualifies as commonsense physics. Yet qualitative
reasoning suffices to answer it . In fact . qualitative reasoning is crucial : While a
few numerical values have been provided, many critical ones have not, includ-
ing how much the feedwater temperature rises! Here is the solution, according
to instructors at the Navy Surface `'Warfare Officer's school in Newport, Rhode
Island . The water coming into the boiler is now hotter . The boiling will occur
at the same temperature, so this means that the amount of heat that must be
added to get a piece of water to boil is reduced . This means the water will boil
sooner, which means the rate of steam production increases . Assuming a con-
stant load, this means the steam spends less time in the superheater . Since the
amount of heat transferred to the steam in the superheater is a function of the
time it spends in the superheater, and the starting temperature of the steam is
the same, less heat is transferred. Thus the steam temperature at the super-
heater outlet falls when the feedwater temperature rises.

The ability to make these subtle, yet human-like, deductions makes quali-
tative physics an excellent candidate for a knowledge component in intelligent
tutoring systems [Forbus and Stevens, 1981 ; Forbus, 1984a] and plant moni
tors . For example, Figure ? shows an explanation generated by one of my pro-
grams a long time ago, as part of the STE.,k's1ER system . The valve shown is a
spring-loaded reducing valve, and it converts 1200 psi steam to 12 psi steam at
constant pressure, for a wide range of loads. The important thing to notice is
that the terns of the explanation are those which are easily understood by
human students and operators. No numerical values were used to generate
these conclusionsjust a very simple qualitative physics .2

Qualitative physics also has many potential applications in other aspects of
engineering [Forbus, 1987b] . Consider a really smart mechanical design as-
sistant that could generate a description of possible behaviors before detailed
parameters were chosen . Suppose the desired behavior exists in the space of
behaviors predicted by a qualitative simulation . Then the design effort proceeds
by choosing parameters to force the desired behavior, and not the alternatives,
to occur. If the desired behavior is not even possible, then it is clear that the
design must be changed, even without more details . It does not take detailed

The physics used was the early de Kle:r and Brown physics . which pro~ , ided only perturbation
analysis, not full dynamical reasoning . The limitations of this approach inspired my own qualita-
tive process theory (and their confluences theory) .
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Figure 1 . `,,e SWOS 7,rcbiern . Given ; ;,at the tempera:-;re of the feedwater is
increasing, w7-,at is the temoera:ure at the Super heater cutlet? Instructors at the
Navy Surface Warfare O iicer's Schiecl say this is o^,e of :Ire hardest problems
students are given, yet i ; can oe answered with purely ,,;a ; ta:ive reasoning .

Figure 2. Q-aiitative cnysics can be used in inte!hgent '-tcring systems
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nume^cal simulation to ascertain, for example, that a pendulum is not a good
oscillator to use in a wristwatch .

3 The Past

We will not attempt a complete historical survey or time line of qualitative
physics. Instead, we will describe three early efforts, the "pre-history" of the
area, that provide a background for making later work easier to understand .

Qualitative physics arose from attempts to build programs that could solve
textbook physics and math problems . The earliest systems (S712DENT [Bobrow,
1968], CAus [Charniak, 1968], NIECHO [Bundy et al ., 1979], ISSAC [Novak,
1976]) attempted to capture the full breadth of the problem, from parsing the
initial problem description in natural language to generating diagrams . These
programs could solve a variety of problems, but it was quickly discovered that
the equations (explicit or implicit) were insufficient to solve most problems .
Consider Figure 3 from the description of Charniak's CARPS program. To set
up the equations properly required interpreting the phrase "approaching the
dock," which here means the distance along the top of the water.

The easy answer, of course, is that more knowledge is needed. But what
kind? de Klee. was the first person to characterize the relevant kind of knowl-
edge . His work on the NEWTON program marked the beginning of qualitative
physics . N-Ew7ON was designed to solve problems concerning a single point
mass sliding on a surface (see Figure 3) .

A BARGE WHOSE DECK IS 10 FT BELOW THE LEVEL OF A DOCK IS BEING DRAWN IN
BY MEANS OF A CABLE ATTACHED TO THE DECK AND PASSING THROUGH A RING
ON THE DOCK . WHEN THE BARGE IS 24 FT FROM AND APPROACHING THE DOCK AT
3/4 FT,SEC HOW FAST IS THE CABLE BEING PULLED IN?

Make a sketch of this situation for yourself . Most all people will draw

24 FT

10 FT

Clearly when we say APPROACHING THE DOCK we mean at the level Of the boat .
Once again information of gravity would lead to this result .

Figure 3 Commonsense knowledge is needed to solve textbook problems .
In extending STUDENT's techniques to handle calculus problems, Charniak
found that more world knowledge was needed to properly interpret these
problems .
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Figure 4 An example from NEWTON . de Kleer's NE'NTON used a combination
of qualitative and algebraic techniques to reason about a point mass moving on
a surface .

"w"h°n face with a problem . N-Ew70N would begin by creating an envi-
sia~nment, an explicit representation of all the different possible behaviors of
the system. Figure 5 shows the envisionment for the problem in Figure 3 .
There are two things to note about this envisionment . First, in standard simula-
tions there is a unique next state. In a qualitative simulation there can be more
than one next state, due to the lack of resolution in the qualitative description.
Second, the envisionment alone suffices to answer many questions about this
domain. For example, if asked whether or not the mass could fly off segment

.. going to the right, ti-EwiON could answer "no," because no description
snatching that behavior can be found in the envisionment . To paraphrase de
K eer, an intelligent problem solver has to be able to answer stupid questions,
and preferably with less work than it takes to answer subtle questions.

To answer more subtle questions, NEw70N performed algebraic manipula-
tion . Consider the problem of determining conditions that will prevent the can
from flying off when it enters the right side of the track . There is a qualitative
ambiguity in what happens after state sl, one branch corresponding to the cart
flying off and the other branch to the cart sliding back . -EwSON used this qual-
itative ambiguity to index into a knowledge base of equations, which was then
manipulated to derive an appropriate inequality .

The next event in the prehistory of qualitative physics was the Pat Hayes'
Naive Physics Manifesto [Hayes, 1985] . This paper achieved wide informal
circulation in 1978, and had a major impact . In particular, Hayes' notion of
histories is cenual to qualitative physics. Figure 6 illustrates a fragment of the
history for a liquid being poured from a container onto a table top. The basic
idea of ;histories is that events should be represented as spatially bounded, but
temporally extended, pieces of space-time . It is assumed that histories which
do not intersect do not interact .
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ENVISIONMENT

Figure 5. An Envisionment for a NEWTON problem .

Mere Contain

	

Emptying

Time

Horizontal

Figure 6 An example of Haves' notion of histories .
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Histories were designed to solve several problems with the situation cal-
culus, especially the Frame Problem. Situation calculus provides no spatial
boundaries for an event . In fact . the situation calculus describes what happens
her-ween events of some kind (such as the actions taken by an imaginary robot),
not what happens during those events . This leads to several well-known prob-
lems . Such as being forced to change situations whenever anything happens
anywhere in the entire universe of discourse . There are two advantages to his-
tcr es . Their being temporally extended means it is easier to talk about what is
happening during some action (assuming appropriate temporal representations) .
7Heir being spatially bounded means that descriptions can be evolved locally,
thus eliminating the requirement of global simulation (see [Haves, 1979 ; For_
bu:s, 198*b; Williams, 1986] for details) .

While several aspects of Haves' naive physics enterprise have been
adopted enthusiastically in the qualitative physics enterprise, several have not .
F ,-)r instance . Haves argued that implementation was an "unnecessary distrac
tion ." In qualitative physics, testing ideas via computer implementation is
vi-:ed as essential . As our models -row more complex, carrying out proofs by
hand is burdensome. With abstruse mathematical constructs it is easy to main-
tain rigor, but with commonsense matters it is all too tempting to relax one's
vigilance . Carefully written programs are superb bookkeepers, keeping one's
theories honest . Furthermore, as discussed below, there are several styles of
reasonirg that use such knowledge . Identifying these problems and developing
computational techniques to solve them is a worthwhile endeavor in its own

The third piece of prehistory is my FROB program [Forbus, 1980, 1981a]
which reasoned about motion through free space . de Kleer's "roller-coaster"
world vas essentially one-dimensional, with the simulation halting whenever
ii, c cart left the surface . FROB worked with a true two-dimensional world, rea-
soning about balls bouncing around on surfaces (see Figure 7) . The user could
specify a scenario by drawing a diagram to specify the surfaces and introduce
bails . 'The more information the user provides, the more FROB refines its de-
scr:pt :ons . For example, F2OB used a constraint language to determine, in con-
it:nctior, with the diagram, the consequences of any numerical parameters pro

In addition to carrying out numerical analyses, FROG could answer ques-
t ic,nQ Il"where will this ball end up eventually?" and "can these two balls
co li de :"' In all cases, FROG used minimal information to answer the question .

FOB's spatial reasoning worked by calculating a qualitative vocabulary of
piL:cJS from the surfaces in the diagram . Combined with symbolic descriptions
of activity (such as : L'~ and

	

and velocity (e .g .,

	

(?=: ~' J?) ), these
places provided the framework for qualitative spatial analysis . Consider the
pr "ablem of determining whether or not the two balls in Figure 8 will collide .
To collide, two balls must be in the same place at the same time . If all we
knov, is that both balls are going to the left, then they might collide, since the
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union of the places they might be overlap . But if we also assume that :R.z)
never gets to s31, then a collision is ruled out, since the two balls can never be
in the same place.

Metric Diagram

-> > 'Motion-Summary-for b1)

FOR G0364
THE BALL WILL EVENTUALLY STOP
IT IS TRAPPED INSIDE (WELLO)
AND WILL STOP FLYING AT ONE OF (SEGMENT 11)
NIL

Figure 7 rROB reasoned about motion through space.
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S17 SR1 S31

"GEORGE"

S13

S12

Metric Diagram

- > > (collide ? fred george)
(POSSIBLEATS EGMENT SO SEGMMNT 17 SEGMENT 13 SREGION)
- > > (cannot-be-at fred segment 31)
(SEGMENT31)
UPDATING ASSUMPTIONS FOR (> > INITIAL-STATE FRED)
CHECKING PATH OF MOTION AGAINST ASSUMPTIONS
->(collide? fred george)
NQ
-> >(what-is (> >state initial-state fred)
(> >STAT E INITIAL-STATE FRED) = (FLY (SREGION3) (LEFT))
NIL
- > > (what-is (> >state initial-state george))
(> >STATE INITIAL-STATE GEORGE) = (FLY (SREGION) (LEFT))
NIL

Figure 8 Collision problem .
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FROB advanced the state of the art in several ways. First, it demonstrated
that Haves' notion of histories was indeed useful . There was perhaps more
numerical information in FttoB's histories than in Hayes' original conception,
but they are histories nonetheless . Second, FROB was based on a theory of spa-
tial reasoning that divided the problem into two parts, using a diagrammatic
representation to provide quick answers to a class of geometric questions, and
a qualitative description of places computed from the diagram . Third, it dem-
onstrated that qualitative ambiguities could be resolved by numerical calcula-
tion, just as NEWTON demonstrated that symbolic algebra could resolve them .
And finally, the notion of envisionments was generalized from the trees used in
NEWTIOti to full graphs . This allows many properties of the behavior, such as
final states and oscillations, to be characterized by properties of the envision-
ment graph (e.g ., end states and cycles) rather than by explicit nodes as in
N-=WT0N.

At this point we draw our pre-historic retrospective to a close . NEWTON
and FROB were organized around using a combination of qualitative and quanti-
tative techniques to solve particular classes of problems. It became clear
around this time that simply understanding the nature of qualitative repre-
sentation was a full-time effort, and that a domain-independent, general qualita-
tive physics could exist . Research effort turned to finding such a physics-or,
more correctly, understanding the space of such systems of physics-and we
now turn to this exploration .

4 The State of the Art

Work in qualitative physics may be roughly divided into three areas : qualita-
tive dynamics, qualitative kinematics, and styles of reasoning . In traditional
physics,

Dynamics deals with the causes of motion, as opposed to kinematics,
"". hich deals with its geometric description, and to statics, which deals with
the conditions for the lack of ;notion [Considine, 19831 .

Dynamics is used generically to describe the study of forces on systems
(e.g ., fluid dynamics), and typically includes statics . Hence qualitative dynam-
ics is concerned with what causes systems to change over time, ignoring
geometry except as a source of boundary conditions .

Qualitative kinematics is concerned with the spatial reasoning required by
commonsense physics . Not all commonsense spatial reasoning is qualitative
kinematics---counterexamples include navigation, spatial planning, and control
ling arm motions . Carrying the distinction between dynamics and kinematics
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into qualitative physics is not an arbitrary choice, as we will argue in Section

Styles of reasoning, of course, concern how to exploit the knowledge of
qualitative physics. There is no direct analog in traditional physics, except inso-
far as physicists and educators have attempted to formalize their problem-solv-
in(7 methods in order to teach them more readily . But studying styles of reason-
ing is ::rucial for qualitative physics, since representation without reasoning is
an idle exercise .

4.1 Qualitative Dynamics

Qual tative dynamics studies how physical systems change . It addresses the
problem; of how to represent differential equations qualitatively, and how to or-
aanize such knowledge in a usable form . We be-in by surveying qualitative
representations for numbers and time-varying differential equations . Ontologi-
c .?1 issues are discussed next, since providing a formalism for organizing
knnowledge is a central job of qualitative physics . Finally we take a brief look
at two other issues, the role of continuity and how such equations are given
causal interpretations, since these topics are often misunderstood.

But before we start: A variety of notations have been used in qualitative
physics. While terminology differences can be bewildering to the uninitiated,
and standardization has been suggested ([Bobrow, 1984], p. 5), it is doubtful
that the situation will improve soon . In fact, two facts suggest that stand-
ardization is not an urgent issue. First, there is already significant overlap . Sec-
ond, the lack of a single standardized notation has not seemed to retard pro-
aress in traditional mathematics, in which there are still over six different nota-
tions for derivatives, despite its being hundreds of years older than qualitative
physics . w'e will sometimes point out variations, but will not attempt a
complete concordance.

4 .1 .1 Numbers Three representations for number have proven useful so far
in gual :tative physics : signs, inequalities, and orders of magnitude. We de-
scribe :ach in turn .

Signs Reducin ; numbers to signs is the simplest qualitative representation for
number [de Kleer, 1979b, 1984b ; Williams, 1984] . For example, we might say
that the !evel of water in a container is -1, 0, or 1, depending on whether or
not the '.evel is lower, the same as, or higher than a desired height . If the com-
parison s chosen carefully, we can satisfy our desiderata of capturing relevant
distinctions while not introducing irrelevant ones.

Signs of derivatives form a natural indicator of change [Forbus, 1981b ; de
Kleer, -1984b ; Williams, 1984] . We will use the notation of qualitative process
(QP) theory and denote the sign of the derivative of a quantity Q by Ds[Q] . If



the sign of the derivative is -1, then the quantity is decreasing, if 0 then it is
constant, and if 1 then it is increasing . Since change is intuitively important,
and the direction of chance determines what boundary conditions might
change. signs carry critical information about derivatives .

The earliest use of signs in qualitative physics was de Kleer's QUAL, pro-

gram [de Kleer, 1979a], where signs were interpreted as the difference between
an original equilibrium value and the new equilibrium value reached as the re
sult of a perturbation (the incremental qualitative value (IQ) interpretation) .
The semantics of this representation were slightly problematic : For example, it
was not clear what the IQ value should be if the system went through several
behavioral states before settling into an equilibrium value .

The major advantage of the sign representation is simplicity . We are
taught the method of substitution very early in mathematics, and sign values
provide a concrete object that may be "plugged in" to qualitative equations of
whatever form . However, signs alone are often not enough . Consider the prob-
lem of figuring out what might happen if we have three tanks F, G, and H with
pipes hooked up between them. Given some initial level of water in each, we
turn on all the valves in the pipes between them. To determine how the water
would fiow requires comparing the pressures in the tanks that are linked to-
gether .

A sign value encodes a comparison of a magnitude with a single reference
value. Suppose tank G is connected by pipes to both F and H . Clearly no sign
representation of pressure will suffice for the pressure in G, since we must
compare the pressure with two reference values, the pressures in F and G . The
fact that these reference values are themselves changing is yet another compli-
cation . It seems counterintuitive to say that the value of pressure in G is chang-
ing simply because the pressure in F is changing .

One representational "trick" sometimes suggested to work around these
problems, albeit unnaturally, is to rewrite a quantity as a constellation of signed
quantities . For example, a given quantity Q might be represented by new quan
tities Q1 . . . Qn , one for each comparison Q is involved in . This does violence
to the notion of quantity . Furthermore, it makes the number of pseudo-quanti-
ties needed to describe a quantity vary with the situation, rather than with the
type of object . The next section describes a more natural representation for
such circumstances .

Inequalities Comparing the value of a quantity with several other parameters
is a common occurrence in physics . For example, to determine the phase of a
piece of stuff, one determines the relationship of its temperature to the boiling
temperature and freezing temperature of that substance for the appropriate con-
ditions (such as pressure) . Worse yet, the parameters that it makes sense to
compare a value with can change as conditions change . For example, if we dis-



cover a leak in tank G in the previous example, we should also consider the re-
lationship between the pressure at the leak and the surroundings .

These considerations suggest collecting a set of inequalities to describe a
quantity . This set of inequalities is called its quantity space [Forbus, 1981b] .
Inequalities makes sense for several reasons . First, they provide a means to
partition numerical values, and thus express boundary conditions for behavior.
For example, when two objects in thermal contact are at different temperatures,
there will be a heat flow from the object with higher temperature to the object
with lower temperature . Second, a quantity can participate in any number of in-
equalities, thus providing the variable resolution we desire . Third, if numbers
are combined by addition, inequality information often suffices to determine
the sign of the outcome . If, for instance, there is flow into a tank and flow out,
the relative magnitudes of the flows determine whether the level of the tank is
rising or falling .

Here is a simple quantity space that describes the temperature of water W
in a pot on the stove.

Tfree=e -y TW
/. Tstove

\~ Tboil

A simple quantity space. The significant relationships involving the temperature
of a piece of water (Tw) can be expressed as inequalities . Here, the
temperature is above freezing (Tfreeze) and less than the temperature of the
stove and its boiling temperature.

'The arrows represent inequalities, with the quantity at the head of the
arrow being greater than the quantity at the tail of the arrow. Thus W is
warmer than freezing, and cooler than both its boiling temperature and the
temperature of the stove . Imponantly, quantity spaces need not be complete-
notice that in this diagram we do not know the relationship between the
temperature of the stove and the boiling point of W. The ability to represent
this ambiguity allows us to accumulate partial information, and detect when
more information is required .

What should a number be compared to? One source of quantity space ele-
ments are parameters representing domain-specific boundary conditions . An
example of such limit points are the boiling temperature of a substance or the
fracture stress of a material [Forbus, 1981b] . Some comparisons are required
due to the specitics of a situation, such as a comparison between the rate of
tlow into and out of a container . We will adopt the terminology of [Kuipers,
1986] and refer to the elements of a quantity space generically as landmark

for the quantity, whether or not they are limit points .
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Landmarks versus limit points Two distinct semantics have been used for
landmark values in the literature . The distinction has often been misunderstood,
via a type/token confusion, and we undertake to clarify it here . We call a de-
scription temporally generic if it refers to a class of temporal behaviors, rather
than just a single behavior . A description of a single behavior we will call tem-

porally specific . The script of a play is a temporally generic description, while
a videotape of its performance is temporally specific . Limit points are tem-
porally generic, as are comparisons between rates, since there are classes of sit-
uations where liquids boil and flows occur. The value of the boiling tempera-
ture at 3 PM is temporally specific-we are referring to a single situation, and
hence a single specific value.

Most systems of qualitative physics use only temporally generic land-
marks . But temporally specific landmarks can be critical for many reasoning
tasks : For example, it may be crucial for a doctor to compare a patient's
cholesterol level today with the specific cholesterol level last week, not just
with some generic "safe" value. Kuipers' QSI'~i generates such temporally
specific landmarks . These landmarks do not correspond to "discovering" new
limit points, as originally claimed. Rather, they are the equivalent of a qualita-
tive "strip chart" that describes a specific behavior of a system . QSIM thus pro-
vides an automatic naming facility to support reasoning about temporally
specific values .

Although temporally specific landmarks are essential for some inferences,
they introduce a new level of computational complexity. Consider for example
a decal ing oscillation, such as a ball bouncing up and down, each time rising
only some fraction of the height it reached before . Each height is a new land-
mark value . Thus an infinite behavior can sometimes lead to an infinite number
of landmark values (see Section 4 .3 .2) .

The quantity space is now a standard feature of qualitative physics
[Kuipers, 1984, 1986 ; Simmons, 1983 ; Weld, 1986] . It addresses the resolution
problem by providing the ability to incrementally accumulate information
about a number. thus simplifying the modeling task . However, manipulating
sets of statements describing a value is more complicated than treating values
as atomic objects, as the sign representation allows . Quantity space implemen-
tations require efficient application of the laws of transitivity, typically ob-
tained by separate inferential mechanisms [Forbus, 1984c ; Simmons, 1983 ;
Forbus, 1988] .

Several useful variations of the quantity space have been developed . For
instance, Kuipers requires quantity spaces to be totally ordered [Kuipers,
1984], which simplifies the representation into a collection of intervals. Sim
rxmons (1986] augments inequalities with numerical intervals, thus providing a
simple way to integrate empirical bounds.



Orders of magnitude Sometimes saying that Nt is greater than N2 is not
enough : One may need to say that Nt is so large compared to N2 that N2 may

be isnored . For instance, the effect of evaporation on the level of a lake may
be ignored if the dam holding it has burst . In everyday life, engineers rely on
the ability to distinguish a value that is significantly out of range from a nor-
mal variation . One way to represent such information is to extend the range of
comparative relationships to include orders of magnitude. Three such repre-
sentatiens. FOG [Raiman, 1986], O(M] [Mavrovouniotis and Stephanopolous,
1987], and Davis' infinitesimal theory [Davis, 1987] have been developed in
cualitative physics . We begin with FOG and O[:,,t] since they share intended use,
and then describe Davis' system .

introduces three new relationships, in addition to the traditional order
re'.at ;ons . They are :

Raiman has developed a consistent formalization that captures the intuitive
meanin, of these statements, using infinitesimals as a model . The effect of
these relationships is to stratify values into equivalence classes, thus providing
the means to say that values are very different . For example, in the DEDALa di-
: no .sis system [Dauge et al ., 1987], this vocabulary is used to describe the
t ;.pical -elaiionships between values in component models.

The o[ml is based on assigning labels to ranges of ratios . For example, the
re ationshio

L:3
L 4 ;

A < < B : ,-1 is negligible compared to B.
A - B : A is very close to B .
.-~ - _> : A is the lsame order of magnitude as B.

.4 - < B

	

(read .4 is slightly smaller than B)

is tree ~ :actl~when

~e
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.~hcre e is a. domain-specific parameter . This mapping simplifies the laws of
the s.~~tem and potentially allows a variety of quantitative information to be
. :sily Incorporated . O[ul also uses physical units to reduce inferential complex-

only parameters of the same units may be compared .
7":;e definition of orders-of-magnitude relations in o(Ntl in terms of ranges

simphiies the mapping from numerical values, a problem for which FOG pro-
vides little guidance . However it also allows a large but finite number of negligi
lrle valu~-s to add up to something that is significant, which violates the intuitions
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underlying such reasoning . This cannot happen in FOG . The relative advantages
of the two systems remain to be explored .

Davis [1987] describes another formalism for orders-of-magnitude which,
like FOG, is based on infinitesimals . He reconstructs a qualitative calculus to in-
clude infinitesimal values for both numbers and as durations of intervals . Thus
he can talk about changes taking infinite (or very short) time.

4.1 .2 Equations Equations are the hallmark of physics . Just as qualitative
physics restricts the accuracy to which numerical values are known, the notions
of equations developed in qualitative physics are also typically weaker . These
weaker constraints can better capture partial knowledge and simplify inference,
.hug addressing the resolution problem .

Arithmetic operations Every system of qualitative physics includes at least
addition and subtraction . Multiplication is often introduced as well. While the
operations are familiar, the effects of weakening the values they are performed
on has profound consequences . First, ambiguities can arise, even with complete
initial information . If one only knows that .4 is greater than zero and B is less
than zero, for instance, then the sign of .A - B~cannot be determined. In this
case knowing the relative magnitudes of .4 and B can provide the answer, but
in general . algebraic inequalities are required . But since most qualitative values
do not form a field, algebraic manipulations must be performed with care .

In [de Kleer and Brown, 1984], equations invclving sign values are called
confuences . Confluences are solved by propagation of constraints, using
generate and test when unresolvable simultaneities occur . Under certain condi
tions, Dormoy has shown that sets of confluences can be solved by a variant of
Gaussian e'.imination [DorTnoy and Raimen, 1987] . Confluences have also been
-,: ;>ed with the FOG formalism, where the comparison is made between the ac-
tual value of a parameter and its nominal value [Dauge et al ., 1987] .

Monotonic functions One of the weakest statements that can be made about
the relationship between two quantities is that when one increases . the other
tends to increase . This level of knowledge is captured by monotonic functions,
which are used as a primitive in several s,.,stems of qualitative physics and
mathematics . tilonotonic functions provide a means of approximating compli-
cated or unknown functions with minimal commitment.

If v

	

_ri then f(.r) is increasing monotonic if whenever r increases, y in-
creases . f(.~) is decreasing monotonic if whenever x increases, y decreases .
Often there is no reason to name the function involved, so various notations for
anonymous unctions have been developed . For example, Kuipers [1984, 1986]

uses

	

y) to denote an increasing monotonic connection between r and v,
and

	

to denote a decreasing function .
QP theory allows the partial specification of monotonic functions through

qualilalive proporlionalities . Formally, y aQ, r indicates Y = f( . . ., .r, . . .),



where I_ ts some function which is increasing monotonic in its dependence on r, .
Similarly, y aQ+ x indicates that the function involved is decreasing monotonic

in r . To determine the complete specification of functional dependence in any
part ;cular situation requires a closed-world assumption .

The advantage of qualitative proportional ities is composability ; the knowl-
ed~Je of a function can be decomposed and distributed appropriately through a
representation, to be assembled as needed by the reasoning system . Foryex
am pie, parameters may be selectively ignored (such as the effect of pipe re-
sistant :- on the rate of liquid flow, if the fluid is moving very slowly) by "turn-
in ~j off' the description that contributes them to the function . Qualitative pro-
portionalities can also be used to express intermediate hypotheses in a learning
system . For example, ABACUS [Falkenhainer, 1985] searches for them as the
firs'. step in finding equations to describe numerical data . The disadvantage is
that ambiauities arising from them cannot be settled by just inequality informa-
t c :i . Consider for instance

aQ_ A n C art B n Ds[A] = Ds[B] = I
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No additional sign or inequality information suffices to determine Ds[C], un-
like subtraction or multiplication .

VVe have found it useful to allow two other kinds of information to be
specified about monotonic functions . First, correspondences are introduced to
propa ate inequality information . Intuitively, a correspondence fixes a point on
the c :;rve relating two (or more) parameters . For instance, when a spring is at
its rest length it exerts no force . Suppose the force is aQ_ its length (i .e .,
stretching it produces a force that tends to make it return to its rest length) .
7n--se two facts together allow us to deduce that if we push a spring to be
shorter than its rest length, we will cause it to exert a positive force (i.e ., push
against us) . A detailed discussion of correspondences can be found in [Forbus,
198-=h : Kuipers . 1986] . Second, functions can be named, so that inequality in-
:~orrta:ion can be propagated across distinct individuals [Forbus, 1984b] . For
:_lc, the function that determines the pressure of a contained liquid in
t=s of its level is the same for all containers, and hence information about
di,fLrences in level can be mapped into differences in pressure .

Of' course, many functions required in modeling the physical world are not
monotonic . Such functions can be represented by decomposing them into mon-
otonic se,_, menu . Providing a framework for explicitly describing the assump
tions underlying this decomposition is one of the roles played by ontology in
c:ualitanve physics .

3A !an .ua e for framing more complete hypotheses about functional dependence is descr-ibed in

(Forbus, y198-tbl . Section 5 .3 .
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4.1 .3 Ontology Ontological choices are central to qualitative physics. Along
with space and time, ontology provides the organizational structure for every-
thing else . Continuous properties are properties of something, and equations
hold as a result of that . Usually developing the appropriate ontology is the
most difficult part of formalizing a domain.

If we are to build a complete qualitative physics, one that covers the
breadth and depth of our commonsense knowledge of the physical world, we
must discover and utilize common abstractions . Generating an ad hoc model
for each scenario is impractical and unreliable . Two such ontological abstrac-
tions, devices and processes, have been widely used in qualitative physics. We
describe them here, after briefly reviewing a simple precursor .

4.1 .4 Qualitative State Vectors The qualitative state vector ontology was
the earliest used in qualitative physics. It was the ontology used in both NEW-

, [de Kleer, 197/5, 19i9a], and FROG [Forbus, 1980, 1981a] . The idea is to
decompose system behavior into segments, each described by a list of symbols.
This symbolic state vector contains two types of elements :

1 .

	

.A quantization of the traditional state variables .

2 .

	

Asymbolic description of the type of activity .

In traditional physics, we might state informally what kind of system we
are reasoning about (say, a ball bouncing on a surface), describe the initial
values for the state parameters, and state what equations will be used to de
scribe the different things a ball can do (7/ .e ., fly through space and collide with
surfaces) . In the corresponding qualitative description, we would quantize posi-
tion into symbolic places, velocities into symbolic directions, and add a symbol
for the type of behavior. For example, we might say a ball is in R_G_0No,

going ('~ .._ . t;?) , and _L'~ina (see Figure 9) .

,,1 4
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Figure 9 An example of qualitative state vectors.

1 . (FLY REGION3 (LEFT UP))
2 . (COLLIOE SI1 (RIGHT 00'`I)
3 . (STOP S13 NIL)
4 . (CONTINUE S49 (UP))
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The need for the first class of constituent is obvious, since some repre-
sentation of state variables is needed to capture the behavior. The second type
explicitly describes that which is left implicit in the traditional representations .
Roughly, the symbolic description of activity should change whenever the
quantitative equations traditionally used to describe the behavior will change .
Since we do not have equations, we must provide instead a set of qua1itarive
sim.u ::tion rules . These rules take a state and produce the set of states which
can occur next . As mentioned previously, more than one state may be possible
due to the coarse grain of the representation . The particular content of the rules
is highly domain-specific, but typically a small set of rules suffices for each
class of behavior . (Haves' conception of reasoning with histories by "gluing
them together" tits within this framework as well .)

The qualitative state vector representation has three useful properties. First,
it is quite natural . The notion of state is central in any account of physics,
traditional or qualitative . Second, it is very compact . Each state can be suc
cinctly described by a short list of symbols, and hence envisioning is very
cheap. T'.nird, it provides an easy means to combine dynamic and kinematic
representations, something which~is more difficult with the other ontologies .

The difficulty with this ontology is that it lacks composability . To describe
a complex system directly is often too difficult . Instead, one decomposes it into
smaller parts, models each of those parts and the relationships between there,
and then combines these models into a model of the whole system . The advan-
tages of such modular approaches are well known ; the pieces can often be re-
used to describe vet more systems . But we have placed little constraint on the
actual contents of states and simulation laws, and so we have no methodology
for combirirl them .

For example, suppose we wish to combine the states in NEWTON and FtOB .

Each simulation stops when it reaches conditions that make the other appro-
priate, so one might imagine using the union of their simulation laws to more
full% describe the behavior of a point mass . But not all combinations are so
simple . If we glue the point mass onto a stick that is attached to a pivot (thus
cr;~atm ,.? a pendulum), both sets of laws are simply wrong. Each new condition
we add requires reorganizing our vectors and simulation laws in some ad hoc
fashion .

Haves' axioms for liquids do not escape this problem, either . First, Haves
himsclf , points out there are many cases where his theory cannot make predic-
tion. (,, uch as pouring water into a leaky cup) . Second, adding new phenom
ena, such as solutions, would require wholesale reorganization of the theory .
No theory is completely composable. of course . What we seek is an organizing
princ p e, a methodology that simplifies combination as much as possible . Pat-
terns of history combinations (or, equivalently, tables of qualitative simulation
laws) are not constrained enough .
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In traditional physics, composability is arranged by sharing parameters .
The equations for distinct pans are combined by identity of names in some
cases, and by new equations describing the relationship between the parts in
others . Qualitative versions of such theories thus require both a qualitative rep-
resentation of equations, and an organizing structure to place them in . This
generative power is exactly what is required to provide composability . The
other two ontologies exploit this idea .

4 .1 .5 The Device Ontology System dynamics [Shearer et al ., 1971] is an
engineering methodology which provides a common set of abstractions that
encompass a variety of domains, including many electrical, thermal, mechani-
cal, and acoustical systems . This modeling paradigm has been widely used in
qualitative physics as well, the principle advocates being de Kleer and Brown
[de Kleer, 1979b ; de Kleer and Brown, 1984 ; de Kleer, 1984a] and Williams
[198-1] . These theories replace the quantitative equations of system dynamics
with qualitative equations, and have developed new inference techniques for
using these descriptions .

The basic idea is to view a system as constructed from a collection of dev-
ices, such as transistors and resistors . The behavior of a device is specified by
internal laws, often decomposed into distinct states or operating regions . Each
device has some number of ports, and all interaction between devices occurs
through these ports. To model a particular system, one builds a network of
devices . The device network is then analyzed by using the combined equations
from the devices and interconnections, either by constraint propagation or sym-
bolic relaxation .

Consider, for example, the bipolar transistor common emitter amplifier in
Figure 10 . The catalog of domain devices will include descriptions of transis-
tors and resistors, and descriptions of what parameters are shared when termi
nals are connected together . A typical conclusion (but not the only kind) that
can be reached with this description is how the circuit might respond to a
change in input. This reasoning is accomplished by "perturbing" a declared
input parameter, and using the laws associated with devices and interconnec-
tions to propagate effects through the system . For instance, suppose the input
volta,2e increased . This will cause the base-emitter current to increase, which
(due to the way transistors work) will cause the collector-emitter current to in-
crease . This in turn will cause the collector voltage to drop, which will in turn
cause the output voltage to go down.

This example has been deliberately simplified ; detailed descriptions can
easily be found in the literature (see [de Kleer and Brown, 1984 ; Williams,
1984]) . However, it illustrates two important properties of this ontology . First,
once a model is created, most inferential work occurs by local propagation
within the model . Such antecedent reasoning is easv to control and can be
made to work very efficiently . Second, we have assumed chat flow of informa-



Chanter 7 Qualitative Physics

	

263

t.vn i : the model of the system directly mirrors flow of causalirv in the world .
The ramifications of this assumption are discussed in Section 4 .1 '.7 .

One additional complexity that bears mention is that devices can have
scares . corresponding to different modes of a device . For example, a valve may

or

	

Each device state is characterized by
a different set of la ,.k , s (see Figure 11) . The state of a device is invariably predi-
cated on the qualitative) value of a numerical parameter .

1
-
he device ontology has three advantages. First, the fixed network to-
nrovides a substrate for etticient computations . All references within

Laws an-1 strictly local, and hence resolving them is straightforward . This sim-
plifies implementation . Second, composability is maintained by having all in-
formation transfer_ed through local connections . Given a correct catalog of
device models and interconnections, one could in principle model an arbitrarily
c,~mpi~.x system by connecting together the corresponding device models.

third advantage is that system dynamics is a widely used traditional
em-,In ee7na methodology . Conseouentlv, there are generally accented standards
for st-.:ctural descriptions (i .e ., schematics) and standard quantitative models
for man :~ domains which can be used as a star-,ing point for creating qualitative
models . The translation of such quantitative to qualitative models is not trivial,
since new device states may have to be introduced (see (de Kleer and Brown,
198-1 ; for details) . However, most of the ontology can be inherited from system
dynamics intact, thus simplifying the modeler's task and providing greater con-
fidence in the result .

;::oever, there are two serious disadvantages to this ontology . First, the
devic :° ontology provides no guidance for the construction of the network
mode! itself. This is not a problem in some domains, such as electronics, where
the mapping from objects and relationships in the world is straightforward . In
manufacturing electronic components, great care is taken to ensure that the
physical objects perform much like their idealizations, within reasonable limits .
But f ,r most domains this aspect of the modeling process is problematic .

Co :aider . for example, the block shown in Figure 12(a) . If the block is sit-
tinz o ;i a tabie and x,e push it, then we probably want to model it as an ideal-
izyd mass . But If Ae push it while it is resting against a wall, then xe will
proba :i ,. .pant to model it as an idealized spring (albeit very stiff) . if we im-
merse the block in water and push on it, then we will probably model it as an
idealized damper. Thus we see that the same physical object can be modeled
by th-,° rjis , : nct abstract devices, depending on the conditions in the system .

The advice given in system dynamics texts is to figure out how the object
beha% es, and then select the runt device model. This advice is fine for human
ernginee :s,

	

since their goal

	

is to produce quantitative analyses

	

and they pre
sumabi : already have some idea of the system's qualitative behavior . But the
goal or yyualitative physics is :o produce precisely those qualitative descriptions
of behavior, and hence we are left in the position of needing the answer before
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Figure 10 An example of the device ontology .

Figure 11 A device model for a valve . This simple model of a valve is drawn
from Confluences. A refers to the area of the valve, relative to some maximum
area Amax . P refers to the pressure across the valve, while Q refers to the flow
rate of gas through the valve.

Figure 12 System dynamics doesn't capture modeling assumptions

Acts like a

	

Acts like a

	

Acts like a
mass spring damper

S Late Condition

OPEN: [A = Amax] [P] = 0
PARTIALLY-OPEN: [0 < A < Amax] [P] = [Q]

CLOSED : [A = 0] [Q] = 0



we can compute it . Consequently, the standard device ontology fails to
completely address the modeling problem, since it does not formalize the criti-
cal task of model creation .

The second disadvantage is that, in many cases, the device ontology is un-
natural . Consider the situations in Figure 13 . We can consider the water in the
pot on the stove (Figure I3(a)) to be an object . If the water boils, this object
will decrease in size until it vanishes . It is hard to think of this system as a col-
lection of devices, since the reasoning requires "clipping" a device out of the
network '~ hen the water vanishes . Such changes in the network topology lie
outside the device formalism . Similarly, the bouncing ball in Figure 13(b) il-
lustrates that what an object interacts with can chance drastically . It is difficult
to see arty elegant representation for this system in the device ontology .
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Figure 13 System dynamics cannot model many interesting systems .

4 .1 .6 Processes Informally, people often describe changes in the physical
world in te=s of processes . Examples include motion, liquid flow, heat flow,
boiling, bending, compressing, and expanding . This notion has been formalized
in quaiit--tive physics as an ontological commitment. Consider a cup under a
faucet . If the faucet is turned on, there will be a process of liquid flow occur-
ring from the faucet, through the fluid path formed by the space above the cup,
to the cup itself . This liquid flow is not a property of either the cup, the faucet,
the water, or the space above the cup . It is a new type of entit:, with properties
of its. o , .~,n . such as the rate of water flow.

In this ontology, processes like liquid flow provide the notion of mecha-
ni:yrn for ph% sical situations . All changes, ultimately . are assumed to be caused
directl,, or indirectly by physical processes . A model of a domain includes a
deltaiptiCr1 of the kinds of objects there are, the kinds of relationships that hold
betu;een them, and the kinds of processes that can occur . To describe a specific
situation, models for each of the parts and relationships are asserted . Impor-
tantlt, th= mode!er does not directly specify what processes are possible in
ea~:h ' situaticr~ . instead, the process specifications in the domain model state the
conditions under which they can occur, and the inference system uses these
specifications to automatically generate descriptions of the possible processes .
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This notion of process was introduced by qualitative process (QP) theory
[Forbus, 1981b, 1984b], and has been used , in various forms by several re-
searchers in qualitative physics, including Simmons [198 .:], Weld [1986], ti-lo
hammed and Simmons [1986], and Schmolze [1986] . Some of these theories
describe the effects of processes continuously over time (such as QP theory),
while others describe processes discretely by the net effect they have over an
interval of time [Simmons, 1983 ; Weld, 1986] . (The earliest attempts to for-
rnalize physical processes in AI preceded qualitative physics . Hendrix [19731
described processes as STRIPS-like operators augmented with equations for
use in planning . Brown, Burton, and Zdybel [1973] represented processes as
finite-state automata, for instructional purposes . Neither representation used
qualitative information, in the current technical sense of the term.)

Figure 1 * illustrates a simple model of liquid flow expressed in QP theory .
The individuals specification provides a form of quantification . An instance of
a process is said to exist for every combination of objects in a scenario that
matches the individual specifications . The preconditions and quantity condi-
tions together dete-,line when the process is active . Roughly, quantity condi-
tions can be inequalities and whether or not other processes are active, and pre-
conditions are external conditions . =-for example, means that all
valves in the path are open. .A QP model can predict that pressures will change,
but not that a sailor may walk by and close a valve .

The relations Field describes what holds when the process is active . This
field can declare local quantities and constraints, as well as information rele-
vant to external representations (such as appearances) . Here, the local quantity
_,cw-=a_e is introduced and is declared to be equal to the difference in pres-
sures . Together with preconditions, the relations field provides a means of in-
terfacing QP theory to other representations .

The direct effects of a process are specified by the influences field . Every
process must have at least one direct influence, and only processes can have
direct influences . Direct influences, noted by 1-- and 1-, specify the derivative
of their first argument . Here, the amount of liquid in the source will tend to
decrease, and the amount of liquid in the source will tend to increase . Like
qualitative prooortionalities, direct influences must be composed to compute
the total derivative by making closed-world assumptions . But unlike qualitative
proporionalities, where no commitment is made to the method of combination,
direct influences are additive . So if we knew that in fact some other process
were influencing the amount at the destination (an instance of liquid flow
corresponding to a leak, say), then by knowing the relative flow rates we could
predict how the amount of water in the destination will actually change. (This
solves the problem with Hayes' leaky cup, mentioned earlier.)

The process ontology has several advantages. First, the notion of process is
intuitively appealing for+ many domains . Objects can come into existence and
vanish, for example, something that is not allowed in the device ontology . Sec-



ond, processes provide a simple notion of causality by imposing a distinction
between independent variables (those which are directly affected by processes)
and dependent variables (those which are affected as a consequence of the in-
dependent variables changing) . The next section examines this issue in detail .

The third advantage of the process ontology is that it allows explicit repre-
sentation of modeling conditions and assumptions, via the individuals and pre-
conditions fields . This means the program can take on more of the modeling
burden . Instead of demanding a complete initial description, a program using
the process ontology can "fill in" the user-supplied description of a particular
sziuation with the kinds of processes that can occur. Potentially, this flexibility
provides considerable power. For example, the class-wide assumptions de-
scribed informally in [de Kleer and Brown, 1984] can be formally expressed
ov combinations of individuals and preconditions specifications in QP theory .

Of course, nothing comes for free-the process ontology also has some
disadvantages . First, in some domains (like electronics) the distinction between
dependent a ,,d independent parameters changes according to the kind of analy
sis byin :_, performed. Process descriptions are very hard to write for such cases.
Second, tire process ontology requires more inference, and the manipulation of
-uanti -d descriptions, to set up the model. This complicates the design of
progr2--s using the process ontology, and often results in longer run times .
And tb :tr,e process ontology has not been formally explored as much as the
device ontology, There is no process-oriented equivalent engineering formalism
to system dynamics, no off-the-shelf models to adapt.

Process

	

Liquid-Flow(?src ?sub ?dst ?path)

individuals :

	

?src a container

7dst a container

?sub a substance
?path a fluid-path,

Connects(?path,?src,)dst)

r' " econditions : Aligned(?path)

CCuantityConditions : A(Pressure(C-S(7sub,liquic.,?src))I

AIPressure(?dst)J

Paiancns :

	

Quantity(flow-rate)

flow-rate = Pressure(C-S(?sub,lgiuid,?src))
- (ressire)?dst)

~r: ;luences :

	

I * (Amount-of-in(?sub,liquid,?dst),Alflow-rate])

I-(Amount-of-in(?sub,liquid,?src),Alflow-rate!)

Figure 14 A description of liquid flow .
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4.1 .7 Other Issues .A common misconception is that the different theories
described in the literature are merely notational variants for "the" qualitative
physics, or that eventually only one theory will be proven to be "right." Such a
view ignores the rich variety of the phenomena we are trying to model (from
the patchy, incomplete theories constructed on the fly by the person on the
street to the integrated, broad theories formulated explicitly by world-class en-
aineers and scientists) and the range of potential applications we are addressing
(from student modeling in intelligent tutoring systems to monitoring process
plants to scientific discovery) .

As the earlier sections indicate, there are a variety of choices for repre-
sentations of quantity, equation, and ontology . Different combinations of these
choices correspond to different systems of qualitative physics . I claim the best
way to view research in qualitative physics is to think of it as describing this
space of possible theories and their properties . By understanding the alterna-
tives and trade-offs . we can select the best combination of choices for particu-
lar purposes .

The next two issues apply this viewpoint to two controversial issues in the
current state of the art : continuity and causality .

Continuity Continuity is a formal way of enforcing the intuition that things
change smoothly . A simple consequence of continuity, respected by all systems
of qualitative physics, is that, in changing, a quantity must pass through all in-
termediate values . That is, if A < B at time tt then it cannot be the case that at
some later time t? that A > B holds, unless there was some time t; between tl

and ,2 such that A = B.
This law has consequences for computing state transitions, since changing

inequality relations (or just comparisons with zero, in the case of sign repre-
sentations) herald state transitions . If X > Y and D[X] < D[Y], for instance,
then the relation between X and Y could change to = . Similarly, if X = Y and
the same relationship held between their derivatives, then the relationship
would change to < .

The details of computing state transitions are the same for all the existing
theories, with one exception-how long these transitions will take . The second
kind of transition, changes from equality, everyone agrees will occur in an in
stant . The First kind of transition, in every theory right now but QP, always
La-kes an interval of time . In QP theory it takes an interval of time if the differ-
ence is finite, but only an instant if the difference is infinitesimal .

Invoking infinitesimals is an unusual step . The motivation is to capture the
commonsense intuition that "if you kick something only for a moment, you can
kick it back quickly," a kind of symmetry in duration . If you influence a quan
tity away from equality for only an instant, one should be able to push it back
in an instant . In my first implementation of QP theory, GLZM0, this model
caused cycles of behavior whose states only lasted for an instant (called stut-



ter) . These c' cles couid then be merged into single states, expressing a chang-
ing equilibrium [Forbus, 1984b] . Unfortunately, in at least some of the ex-
amples studied the instant-instant transitions were violating continuity on
der.vatives, and a more accurate implementation (QPE) fails to show stutter . At
this point it is not clear whether or not stutter will always be ruled out by such
constraints," and whether or not it will appear in "natural" models .

The more general question is, are infinitesimal models useful? Or should
%vt simply adopt classical continuity universally? There are two arguments for
con :=1112 to pursue alternatives to classical continuity . The first is that in
iinitesimal models are proving their worth in other areas of qualitative physics
(see Section -1" .1 .1 and [Weld, 1987]) . The second is that classical continuity
alone is inadequate to model the full range of phenomena in qualitative phys-
ics . Impulses, for instance, are pan of every engineer's vocabulary . Yet they
violate classical continuity, by allowing instantaneous transitions to equality .
Other similar phenomena ,have been explored recently by Nishida and Doshita
1119,37 ; . Continuity, while significantly tamed through the efforts of a few
hundred years of :mathematics and physics, still has some unexplored territory .

Causality By any account, causality remains unruly, even after a long history
of in IA recent public exchange between de Kleer and Brown and
Iwasaki and Simon in the Al Journal unfortunately may have shed more heat
than light on the matter . At the risk of unleashing yet more rhetoric, I will at-
tempt to clarify the issues here .

The necessar; framework to understand these issues appears in [Forbus
and Gentner, 1986b], where Dedre Gentner and I analyze the various notions
of causal reasoning about quantities used in qualitative physics . The goal of
that anal;. sis is to isolate some distinctions that may be useful in understanding
human reasoning . Roughly, these distinctions are : the temporal aspects relating
cause and effec : (the measurement scenario), whether or not the ontology con-
tains an explicit class of mechanisms or not, and whether or not the primitives
for describing equations include presuppositions about the direction of effect
(direcrea versus nor-a,airectea primitiVes) . The second two factors will be the
most relevant for his discussion.

V" . 2 assume that some notion of mechanism underlies all causal reasoning
is~fe ;Forhus and Gentner, 1986a]) . However, accounts differ in their constraal
of ::hat mechanisms are . In e.vplicit-mechanism theories, the notion of mecha
nism i .,~ ti?d to paricular ontological classes . For example, in QP theor,
prod=sses ht. mechanism : they are the source of all changes . In implicit-
r~ec:h~:n sm theories, such as de Kleer and Brown's confluence theory, the no-
tion of m~c'-anism arises from the interactions of the system's parts . They

l, ,cn- .h 2 a.,e :orbiddlen . but longer sequences look plausible .
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assume that flow of information in the model of the system directly mirrors
"flow of causality" in the world. To see the differences, consider a liquid flow
between two containers. In QP theory all changes would be caused by an in-
stance of the liquid-flow process . In a confluence model the changes would
arise from the interaction of the constitutive equations .

The difference between directed and non-directed primitives can be il-
lustrated again by comparing QP theory and Confluence theory . The influences
used in QP theory (and others) to represent equations are directed primitives .
Influences include qualitative proportionalities and direct influences (I+ and ;-)
needed to specify derivative relationships . We might represent the relationship
between level and pressure in a contained liquid we as:

pressure(WC) a.2+ level(WC)

indicating that a change in level could cause a change in pressure, but not the
reverse . In Confluences (and others), the primitives are non-directed since they
do not cam- a presupposition of causality . Thus we might say

pressure(WC) = level(WC)

but would be equally willing to say a change in pressure causes a change in
level as the reverse . Notice that, at least in this case, there is a clear, intuitive
direction .

Any causal analysis must determine which way the primitives in its repre-
sentation are to be used . In theories with explicit mechanisms, what is an inde-
pendent parameter is determined by what the mechanism directly affects . In
QP theory, for instance, the causal directedness hypothesis [Forbus, 1984b] ex-
presses causality :

Changes in physical situations which are perceived as causal are due to
our interpretation of them as corresponding either to direct changes caused
by processes or propagation of those direct effects through functional de-
pendencies .

A process directly affects something by supplying its de^vative . (Since it can
supply a derivative of 0, the same notion suffices to impose causality on static
situations .)

By contrast, in theories with implicit mechanisms, some other means of
specif;, ing independent parameters must be found . For example, the confluence
model critically relies on an input perturbation for causal analysis . The choice
of input parameter provides significant constraint on the direction of propaga-
tion (which is interpreted as the direction of causation) in the system. This con-
straint is not quite sufficient, since it is necessary to annotate some parameters
as independent, to prevent inappropriate causal deductions ([de Kleer and
Brown. 198-*], page 73) .
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Now we are in a position to understand the causal ordering proposal of

Iwasaki and Simon [1986] : They propose to use directed primitives, similar to

qualitative proportional ities, but without associating a sign of effect (i .e ., ctc ,
but not c~~ or a)-) . The exogenous variables of the system are used as the in-

dependent variables . Given these independent parameters, the technique of

causal ordering will produce a graph of dependencies by manipulating the
quantitative equations describing the system . To get the direction of change im-

posed by each connection, they propose to use the method of comparative stat-

ics, which uses quantitative information to produce a sensitivity analysis . The

end result will be much the same as the graph of influences that holds for the

corresponding situation in a QP model. The possibility of incorrect causal argu-

ments seems to be avoided by detecting when the system of equations is under-

determined : It is exactly in such cases that an assumption must be made, and

an external knowledge source (such as the user) can dote:-mine which assump-

tion xill lead to correct arguments .
"vVhether or not causal ordering is useful in analyzing a paricular example

depends on the availability of two things : a set of quantitative equations and

know ledge about which variables are exogenous . For many circumstances

equations are available, but for many simple circumstances (such as boiling)

then, aren't . Often the available equations are too complicated to use: A high-

accuracv differential equation model of a coal-fired power plant, for instance,

can be dozens of pages long . Basing the notion of causal independence on exo-

genous parameters limits causal ordering to creating models of specific systems
in specific modes of behavior . The limitation to specific systems comes from

the fact :hat what is exogenous often changes when a system becomes part of a

larger system . Thus we cannot cam, our analysis of, say, a heat exchanger . in-

tact t0 the analysis of a larger system including it . The limitation to specific

modes of behavior comes from the fact that the equations describing a system

or object can change drastically (phase changes in fluids and turbulent versus
non-turbulent flow are two examples) .

',;Vhile causal ordering satisfies several intuitions about commonsense rea-

son r,?, it also violates two others . First, since it requires quantitative equations,

it cannot explain how commonsense physics comes about-after all, people

rcason causally about quantities long before they can do symbolic algebra . Sec-

o^d . it also does not assign causality in feedback systems ("a chicken and egg

problerl," [I%kasaki and Simon . 1986]) . although such descriptions are common

in info=,al descriptions of how systems work .

J_
7ner° is no obvious reason why it couldn't ; in classical simulation paradicms such "loops" in

the ~ncuations are broken by delay elements (i .e . . integration operators) . and similar tecriniques can
u~e1 in qualitative equations le .a_ the QP theory notion of direct influence) .
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I believe that, while the techniques Iwasaki and Simon describe seem to
have only limited usefulness as simulation tools, they could be quite valuable
in the context of knowledge acquisition. Consider the problem of acquiring
knowledge from textbooks. Two kinds of knowledge must be encoded. The
formal aspects, the equations, must be transformed into qualitative laws. The
informal aspects, the contents of the text, must be transformed into the organi-
zational structure (typically ontological) that tells when these laws are appro-
priate and useful . Causal ordering and comparative statics may be useful tech-
niques in translating the explicit, formal knowledge of a domain. By combining
these techniques with a system that can induce representations for the implicit
knowledge, we might be able to develop tools to semiautomatically acquire
qualitative models by interacting with human experts.

4 .2 Qualitative Kinematics

There has been significant progress in qualitative dynamics . Several repre-
sentations for ontology, number, and equations have been explored, a number
of successful programs developed to test these ideas, and there are high expec-
tations of future progress . Unfortunately, the same cannot be said for qualita-
tive kinematics . This section explores why, and describes some progress made
since the original survey talk upon which this essay is based.

To begin with, we must refine what we mean by qualitative kinematics .
1,Ve exclude problems like navigation, manipulator-level planning, and layout
design simply because they overlap to a greater degree with robotics and en
gineering problem solving than with qualitative physics per se . By qualitative
kinematics I mean the spatial reasoning aspects of qualitative physics . Ex-
amples include reasoning about motion, the geometry of fluid flow, the shape
of charge distributions, and so forth. Most efforts have focused on the simplest
of these, reasoning about motion . And recently, significant progress has been
made on reasoning about mechanisms, in the classical sense-°ears, transmis-
sions, mechanical clocks, and the like .

I mentioned before that the dividing line between "prehistory" and the pre-
sent in qualitative physics lay in the decision to explore purely qualitative rep-
resentations . This tactic was reasonably successful in qualitative dynamics. I
claim this hasn't happened in spatial reasoning because it cannot be done. We
conjecture that there is no purely qualitative kinematics (the poverny conjecture

[Forbus et a] ., 19871) .
This idea takes some explaining . Consider FROB . It did some fairly sophis-

ticated spatial reasoning, including understanding collisions and the notion of
being trapped in gravity wells. But to arrive at this understanding took a metric
diagram, which contained a significant amount of quantitative information.
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Thus ; 03 itself is not purely qualitative . 5 But in fact purely qualitative repre-
sentations suffice for a surprising number of inferences about dynamics . Sadly,
it just doesn't seem to be the case for qualitative kinematics.

The poverty conjecture is based on three arguments . First, no one to date
has developed a purely qualitative kinematics . For example, I've spent years
trying; to develop one, and I've talked to a number of other people who have as
well, "i ith little success .

Naturallv, this is a weal - argument . Ne_ation by `allure is rarely safe scien-
nticallv . and part of my motivation for making this conjecture is the hope that
someone w ill succeed in proving me wrong'. But the second argument makes
me skeptical . Much of the power of qualitative dynamics comes about from
partial orders . Time, as Allen [198-1] showed, can be nicely modeled in terms
of L mpo.-al relations where transitivity provides significant constraint . In-
equalities, while individually weak descriptions, combine via transitivity to
Yield often powerful conclusions . But these are both one-dimensional prob-
?errts . T -lere is a result in dimension theory which states that partial orders
dor.'t ~, ork for higher dimensions . Try it yourself: Create a vocabulary of spa-
tial relationships between 2D figures like .-kilen's relationships for time, such as

and so for -"h . You'll find the only entries in a
~ransitiviiy table for such relationships that provide significant constraint are
those which impose a partial order (in this case, and With the
others(e.g_about anything is possible .

while: stronger, this second argument still does not clinch the matter . After
all, there might be some other powerful idea, some new formalism that will

prcv ide the "right" quantization for shape and space independent of an initial
quantitative description . But the third argument is that we have no reason to
think that such a formalism necessarily exists, because people appear to per-
form poorly at spatial reasoning without the "moral equivalent" of a diagram .
T'nere is a large literature on the psychology of visual imagery, and while it

must be interpreted with care, it seems to indicate that some kind of quantita-
tive information plays an important role in human spatial reasoning. In addition
to i .l .aye r, people resort to sketches, models, looking at the obiect itself, and
so sh:0R . Ae harness our perceptual apparatus in service of spatial
;easo :".in~,

T -tis apparent reliance on aerceotual apparatus motivated r--RoB's metric di-

agram, and ue b": lieve that this model can be extended productively into a
general rTlodel for qualitative kinematics (the MD-PV model (Forbus et al .,

6 l,I

	

d%narmcs worked that way, there would be no qualitative simulators per se . In-
stead, ~c --Du!d aPxavs have to provide numerical simulation routines and lots of numerical para-
mete-s ,o -e : any ;;r°dic,,ions . (Or use symbolic algebra-as mentioned earlier, not every symbolic
des=pticn is a,uaiitauvc, and this is a good example .)

As ;ho ,,vn prcviouslv, useful qualitative descriptions for space can be compared from quantita-
tive grits---tut :ht coai m this argument is to avoid using a metric aiacram altogether .
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1987]). By this account, spatial reasoning requires at least two representations .
The first is a metric diagram, which includes quantitative information and can
answer geometric questions by some form of calculation or measurement . The
metric diagram attempts to describe the functionality of the visual system in
human spatial reasoning . One operation that can be done with a metric diagram
is computing a place vocabulary, which quantizes space by some relevance cri-
teria . Figure 15 shows how this model was instantiated in FROG .

Figure 15 FROB illustrated the MD/PV model of spatial reasoning . This picture
illustrates what is "under the hood" in FROB . The metric diagram provides a
means of communicating with the user, a means of answering quantitative
spatial queries, and a substrate for computing a qualitative description of
space . The first step in computing this place vocabulary is to ascertain the solid
regions, where free space isn't . Next, it breaks up the free space into regions,
in a way that simplifies the description of possible motions . These regions plus
symbolic descriptions of their connectivity form FRCS's place vocabulary .
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It seems that all spatial reasoning projects to date fit the MD/PV model
fairly For example, the (earlier) natural language understanding program
by Waltz and Boggess [1979] used a metric diagram in constructing models of
sentenc°_s like " .A fly is on the table." Geoff Hinton [1979] developed an ele-
aant theory of ima<ze^,~ that used a mixture of propositional and numerical rep-
resentations to °_xplain phenomena that simpler theories based on array repre-
sentations cannot explain . In reasoning about geological processes, Simmons
[1983] zompared quantitative calculations with a diagram to check the correct-
ness of qualitatively plausible histories . Stanfill [1983] used symbolic descrip-
tions v, ith numerical parameters to reason about simple pistons and bearings .
Davis [ 119871 argues that purely qualitative representations are "too weak" to
support reasoning about motion involving solid objects .

4 .2.1 Reasoning About Mechanisms There has been renewed interest in
spatial reasoning recently, particularly in understanding mechanisms . Gelsey
t 1987' uses a constructive solid geometry CAD description as his metric dia-
gram, and computes motion envelopes to , recognize kinematic pairs . The place
`o<:abulary, in his system consists of regions that involve interactions between
parts . Joskowicz [19871 has proposed to analyze single interactions in a mecha-
nism by recognition, describing kinematic pairs by patterns in configuration
space . i;Configuration space was first used in robotics for motion planning
problems, see [Lozano-Perez, 1983]) .

In our own CLOCK project, Faltings [ 1986, 1987a, 1987b] has developed a
general theory of place vocabularies for mechanisms . Faltings observes that the
important distinctions for quantizing shape must come from pairs of objects,
rather than objects in isolation, since it is their interaction that determines
,,Vhether or not a pair of objects will move together or bind . In mechanisms,
each pert has only one degree of freedom, so a configuration space for a pair
of objects is two-dimensional . The place vocabulary for an entire mechanism
(such as a clock) is the combination of the place vocabularies for the pairs of
pal- :s . Faltings also observes that symbolic algebra can be used to parameterize
place ~ Ocdbularies, thus increasing the potential for their use in mechanical de-
si?-i . Falltings's theory has been tested by an implementation on a wide range
c,f examples, including gears, ratchets, escapements, and the complete set of
kinematic pairs for a mechanical clock [Faltings, 1987b] .

OC course . Faltings's theory only solves half of the problem : It describes
'.;hat ccntact re!ationships are possible, and what might be reached if move-
ment occurs in a particular direction . To integrate this information with a quali
tative ~ ., namics r.qui-°s imposing reference frames in order to describe forces
and motions . Nielsen, in his part of the CLOCK project, has developed a theory
of qualitative vectors and reference frames . Such vectors are used for repre-
sent ;ng contact directions, forces, velocities, and other parameters . He has used
these techniques in a qualitative theory of rigid-body statics [Nielsen, 1987],
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which can determine what directions an object is free to move in as well as
what movement will occur. This theory has been implemented and has success-
fully answered questions about the stability of Blocks World structures, in ad-
dition to gears and escapements.

4.3 Styles of Reasoning

The purpose of representation is reasoning . This section describes some of the
styles of reasoning that have been explored in qualitative physics to date . Be-
cause there has been confusion about the relationship between envisioning and
other forms of qualitative simulation, this issue is discussed in detail . I will ig-
nore diagnosis, since an adequate treatment is well beyond the scope of this
survey .

4.3 .1 Qualitative Simulation The result of a standard numerical simulation
is a list of state vectors, each vector representing the system being simulated at
some particular ,t . Qualitative simulations differ from numerical simulations in
two respects . First, time is individuated by the occurrence of interesting events,
rather than some regular, fixed increment. Second, the reduced precision of
qualitative representations often requires branching to represent alternate
possible futures.

It is important to note that some qualitative simulators do not produce
specific histories at all! This is a subtle point that is often misunderstood. A
history describes a specific behavior of an object . While a history is (at least
potentially) infinite, it typically consists of only a finite number of distinguish-
able episodes . Referring back to Section 4.1 .1, we say that two episodes are
distinguishable exactly when they differ in some limit point (i .e ., temporally
generic landmark) . The implication is that each episode can be described as an
occurrence of one of a finite set of abstract qualitative states . This assumes
there are a finite number of properties, and a finite number of values for each
property, and hence only a finite number of combinations of these properties .
Similarly, for any finite collection of objects we can define qualitative states
that describe consistent collections of every possible distinguishable episode
for each object .

Qualitative states can be defined without recourse to histories. In fact, the
notion of qualitative state was developed earlier than histories, as Section 3 in-
dicates . The graph formed by the collection of all qualitative states of a system
and the transitions between them is called an envisionment . The notion of envi-
sionrnent is due to de Kleer [1975] . The process of constructing an envision-
rnent, envisioning, was the first method of qualitative simulation . Roughly,
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each hatory corresponds to some path through the envisionment, but the con-
verse ;s not true, as we will see shortlv .

A funher distinction between envisioners is whether they start from a
given initial state or from all possible states . The former are said to produce
auaina^,,~, envisionments . the latter total envisionments. Total envisionments
are usually larger than attainable envisionments, but are more useful for certain
tasks . .A number of envisioners of each type have been built for different theo-
nes . ti~°~7oti [de Kleer, 1975] and FROB [Forbus, 1980] both produced attain-
able envisionments for different kinds of motion problems. QUAL [de Kleer,
1979b] produced attainable envisionments for electronics, while ENVISION pro-
duced ;oral envisionments for system-dynamics-like models (see Section 4.1 .5)
For qualitative process (QP) theory, GIZ1,IO [Forbus, 1984c] produced attainable
envisicrrmer.ts, while QPE [Forbus, 1988] produces total envisionments.

See °ral programs produce histories directly . FROB, for instance, used a
constraint.-based numerical simulation to generate histories . In several impor-
tant arch-rations, histories are specified as part of the description of a problem,
as in inte`rated circuit fabrication [Mohammed and Simmons, 1986] or hv-
pothesized on the basis of other knowledge [Simmons, 1983] . Kuipers's QSILI

system,, of course, venerates histories directly .

4.3 .2 Envisioning Versus History Generation The relationship between
envisionments and histories is more subtle than first suspected, and is still
being explored . Some aspects are clear; for instance, I've defined a logic of oc-
currer : c: [Forbus, 1987a] that specifies how a history may be related to an en-
vis or.me :,t so that general behavioral constraints (such as assuming classes of
behavior must or may not occur) can be enforced . Sometimes there have been
simple t=inological confusions, such as de Kleer and Brown [1984] calling
their qualitative states "episodes," Kuipers (1986] calling his account of history
generation a "deeper semantics" for envisioning, or Collins and Forbus [1987]
callim~ their `tc envisioning a history. Other aspects, however, are genuinely
problem :tic and have become fertile areas of research .

1r, a correct envisionment, every possible history can be expressed as a
path . properties of the graph correspond to important behavioral dis-
tinctior;s . F~:~r example, states with no transitions from them represent final
states cr the system, and cycles correspond to oscillations .

Ori~:i :,allv, de Kleer [de Kleer and Brown, 1984; de Kleer, 1984a] claimed
that, j~.}s : as (-.,Cry history corresponds to a path through the envisionment, so
every path through the envisionment must correspond to a physically realizable
his :or~ Kuipers [1986] shows this is incorrect . The counterexample he uses is
shov.r, i~-, F! ,zure 16 (this envisionment was generated with QPE [Forbus,
1988], . The parameter Z is a function of position, and should be compared
with Z ' . but is otherwise unconstrained . By declaring the comparison bet ,.veen
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Z and Z ' as interesting, we will cause a state transition to occur whenever the
relationship between them changes . There are other transitions that will occur
due to the ,vay motion and acceleration are modeled (see [Forbus, 1984c] for
details) .

To generate a history from an envisionment, begin by selecting a start
state . That state forms what occurs at the first episode in the history, the dura-
tion of the episode being the duration of the corresponding qualitative state
(i .e ., either an interval or instant) . If there are no transitions from the chosen
state, then that episode is the end of the history . If there are . select one of the
transitions as representing what actually occurs . Then continue as before,
starting from the state resulting from the transition .

Carr-~ , irng out this procedure on the envisionment of Figure 16 reveals a
variety of possible histories . For example, the sequence of states St, Sa, S7,
S10, S13, S16, S19, S22 corresponds to a legal history, as does S3, S6, S9, S12,
S15, Sts, Set, S2;. Other legal histories correspond to variations of these where
Z changes in its relationship to Z ' within the range of variation for X. For ex-
ample, the sequence S3, S6, S8, S10 . S13, S16, S2o .S= : corresponds to the case
where Z equals Z' when X equals zero .

All of the histories mentioned so far are legitimate . But consider again the
transitions from, say, S6 . Each time around the cycle, one of these transitions
must be chosen . In the algorithm specified, which corresponds to the original
de Kleer claim, each such choice is independent . Thus we are free to choose
another transition the next time we reach S6, which will give us an illegitimate
history . The problem can arise even on a single cycle: the sequence S3, S6, Ss,
S10, S13, S16, S17, S18 .S21, Sea is inconsistent because the S6, S8 S10 sub-
sequence assumes Z = Z ' when X = ..E F. :, while the S16, S17, S18, S21 is
based on the assumption that Z reaches Z 'D before X reaches zzFc. The
choices are not in fact independent, and treating thern as such can lead to in-
correct predictions .

In this simple case, the solution seems clear : Each choice of transition im-
plies additional information about the functional relationship between X and Z.
For example, assuming that the transition from S6 to S8 occurs "fixes" a point
on the (implicit) graph defining their relationship : in particular, Z = Z' when .f
_ ..~ . .~ . (Assuming that one of the other transitions occurs requires introducing
a new constant related either to X or to Z, but the principle is the same .) These
constraints must then be respected in successive choices . For example, choos-
ing the transition from S12 to S11 forces the later transition of S16 to S17 "
However, it is not straightforward to generalize this technique to all situations .

To summarize: With no information, we can get incorrect predictions . If
we had a fully specified correct quantitative model, there would be no ambigu-
ity and hence we would always get correct histories . The open research ques
tion right now is, just how much information, and in what form, suffices to
Crenerate histories correctly from envisionments?
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Fs-1

Z versus Z'

Fs-z Fs-3

H

Figure 15 Generating histories from envisionments can be difficult . An
envisionment for a modified spring-block oscillator is shown below . The
modification consists of an extra parameter Z which is a function of X and is
compared with an arbitrary constant Z'. Each row is labelled with a picture
indicating the general position and velocity of the block in the states of that
row . Each column indicates the relationship Z has with Z' in those states .
Arrows denote locally consistent transitions between states . Circles indicate
states that last over an interval, while squares indicate states lasting only for an
instant .
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This problem arises even without envisionments ; direct history generation
must also take into account constraints imposed by earlier choices. In QSim, for
example, new named values can be introduced at every step of the computa
tion, corresponding to the value a quantity takes on in a particular episode of
the history (more on this below) . Since the algorithm can introduce a new
value between any two adjacent previous values, the number of possible epi-
sodes can (and does) grow exponentially without bound. This means that QSIN4

also produces incor7ect histories . Several pruning techniques to weed out incor-
rect histories have been investigated, including problem-specific constraints
[Lee et al ., 1987], algebraic manipulation [Kuipers and Chiu, 1987], and quan-
titative knowledge [Chiu, 1987], but so far these results have been mixed. (For
instance, Struss [1987] points out several limitations of qualitative mathemat-
ics, such as sensitivity to the form of equations, which indicate that algebraic
manipulation of qualitative equations is often unsafe .)

Both envisionment and direct history generation have their role to play in
the arsenal of qualitative physics . The notion of envisionment is a superb
theoretical tool, providing a simple way to think about classes of behaviors .
Envisioning is a good methodological tool for qualitative model development,
since it exercises domain theories in obscure cases that the model builder might
otherwise ignore . But envisioning is unlikely to be the desired solution for
quick on-line computation : After all, it corresponds to explicitly generating the
entire problem space for some class of problems! In such cases history genera-
tion, perhaps combined with heuristics, seems to make sense. The space/time
trade-offs in qualitative simulation have only begun to be explored . One can
imagine compiling envisionments "offline," for example, or the envisionment
of' a svstem at a high level of abstraction being used to guide direct history
generation at a lower level .

4.3 .3 Recognition Engineers are good at explaining how things work.
Often, this occurs by recognition "Oh, it's a proportional-action controller"-
thev redescr-ibe the system in terms drawn from a functional vocabulary . This
functional vocabulary appears to help organize their knowledge for several pur-
poses . In diagnosis, symptoms might be computed by comparing current be-
havior against the standard behavior stored with the functional description . In
design, a functional vocabulary provides an intermediate goal that constrains
the search space . T"te designer might decide what combination of functional
blocks would achieve her purpose, and then figure out how to implement this
functionality with the available components . Capturing this ability to map from
srrucrure to function was an early focus of qualitative physics .

The most successful work in this area is still that of de Kleer [1979b,
1984a], who originally pointed out the problem as well . His theory is that to
perform recognition, engineers first figure out how the system behaves, and
then use that description of behavior to "retrieve" into a functional vocabulary .



A transistor circuit that behaves in a particular manner, for instance, might be
recognizable to an engineer as a "common-emitter amplifier ." One elegant
aspect of de Kleer's work was how he constrained the result of qualitative
simulation . The simulation proceeded by determining how the system would
respond to "poking" its input. He noted that any sensible engineer wouldn't in-
c?ude parts that didn't help the circuit perform its function . Thus, any inter-
pretation of the circuit's behavior that did not include every component could
be naled out on teleological grounds . In almost all of the electronic circuits he
examined, this principle sufficed to rule out all but one interpretation .

~fhile this work was one of the early successes of qualitative physics, little
has been done by way of follow-up . What is needed is the formalization of rich
functional vocabularies, and this problem has received little attention . Recent
wor "; by Chandaeskaran [Sembuaamoorthy and Chandrasekaran, 198-*] and
Do% le [1986, can be viewed in this, light .

4 .3 .4 Measurement Interpretation Ideally, we would like our programs
to gather their own data about the world . A program that works in a power
plant . for instance, should have the ability to "read the gauges" to find out
what is happening inside the plant . This isy the problem of measurement inter-
pretation . My ATti1I theory [Forbus, 1986a, 1987c] describes how to interpret
measurernents taken over a span of time in terms of qualitative states . This
theor, is very general, requiring only domain-specific procedures for perform-
ing an initial signal/symbol translation and that an envisionment (potentially)
exists . An implementation has been demonstrated that works on multiple on-
tolcgies (i .e ., both QP models and FROB models) . However, at this writing it
has oni ~ been tested on simulated data without gaps, and does not specify con-
trol for handling noisy data .

Yet a different kind of measurement interpretation was studied by Sim-
mons in the GORDIUS program [Simmons, 1983] . The specific problem he
addressed was evaluating whether or not a hypothesized sequence of geological
evens could account for the strata at a particular place . Knowing how the
se uenc :: came about is important economically, since some sequences will re-
sult in cil as a byproduct and others won't . A map built up out of well
measur°menu represents the final state of this behavior . The program accumu-
1at- -, constraints or, the size and shapes of maps that could result from the pro-
posed histor-,, and checked the actual map to see if it was consistent with these
ccns . . ai n a .

5 The Frontier
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Tr:e pre, loos sections examined where qualitative physics came from, and
where it is now . I have cried to paint a coherent picture of the state of the art .
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indicating the alternatives that have been explored and where substantial pro-
gress has been made. But no survey is complete without looking at the boun-
daries : areas which right now are relatively unexplored, and are thus fertile
ground for new investigations .

5.1 The Near Future

I'll begin by describing some areas that are likely to see rapid progress . It
would surprise me to not see significant advances in these areas in the next
three years or so .

5.1 .1 Improved Domain Models A central activity of qualitative physics
is developing a variety of models for physical phenomena and engineered sys-
tems . However, building good domain models is very difficult, and even with
good tools takes much longer than one would expect . Nevertheless, the next
few years should see significant advances in the kinds of physical phenomena
that we can represent . For example, initial forays into reasoning about granu-
larity and composition [Bunt 1985 ; Schmolze, 1986; Raulefs, 1987] may pro-
vide tools for reasoning about nonrigid objects . I suspect that progress in mod-
eling powders and clays will require developing more sophisticated geometric
representations to describe deformations, sheer, stress planes, and the other
constructs of materials science . In modeling fluids, we still do not have a good
theory of mixtures that describes exactly how different stuffs affect each other
inside a container . An especially fertile ground is chemistry, which is interest-
ing both industriaily and intellectually, since it requires integrating discrete
structures and geometry with reasoning about continuous systems .

5.1 .2 Implementations I expect that implementations will steadily improve
in performance and storage economy-we haven't been building qualitative
simulators for very long, after all, and are still discovering the right techniques .
This trend, combined with the rising tide of improvements in computer tech-
nology, suggests that the range of problems we can tackle will continue to ex-
pand .

As we understand styles of reasoning better, the kinds of programs used in
qualitative physics will become more diverse as well. Problems like design, for
instance, require a detailed accounting of how different proper-Lies of the com
ponents and their interconnections relate to proper-ties of the behavior pro-
duced. Keeping track of these justifications, especially in the presence of feed-
back, is a difficult problem . w'illiams's [1986] temporal constraint propagator
TCP is the First system that does this correctly . Widespread application of these
techniques should improve the sophistication possible in qualitative analyses .

One of the advantages of envisioning is that it postpones worrying about
control issues . Alas, such issues cannot be put off forever . Solving problems by
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explicitly generating the entire search space simply is not a viable long-range
alternative . Notice that history generation, per se, is not the answer- these ap-
proaches are already plagued with control problems, since they can lead to in-
finite descriptions of behavior. (In fact, a resource limit is often imposed for
control purposes.) An attractive alternative is to generate generic qualitative
states by heuristic search, applying the standard AI techniques to minimize ef-
fort . This subset of the envisionment can then be used as a framework for con-
strained generation of temporally specific landmarks, if needed.

Of course, this is just one alternative . Another idea is to decompose a
complex system (such as a power plant) into a collection of semi-independent
pieces. produce envisionments for each of the pieces, and glue them together as
needed to provide a description of the whole plant . A few theoretical ideas
have been proposed for such decompositions (e.g ., the notion of p-component
in [Forbus . 1984b]), but the bulk of the work remains to be done .

Another control issue that must be faced concerns domain models which
are potentially infinite . Consider this simple model: An object consists of a set
of parts, each of which is itself an object . This simple recursive structure will
kill every existing qualitative simulator in which it can be stated (it cannot
ever .be stated in most), and hence such models have been avoided. However,
such descriptions are sufficiently useful that techniques for controlling their in-
s .antiation should be explored.

5 .1 .3 Ontological Shifts It is unlikely that we have exhausted the space of
ontolo~:ical choices. Furthermore, not much is known about the relationship be-
t .veen various ontelogies . For example, aside from a few rules of thumb, we
cannot precisely characterize when to use a devic°_-centered ontology instead of
a process-centered ontology .

In examining human reasoning, it seems ontological shifts occur in the
course of solving a single problem . Recall the SWOS problem from Section
2 . 2 . '~1ost people implicitly use two distinct ways of looking at fluids to solve
this pr-cbl~t :n . To °stablish directions of flow and the fac,. of boiling required
iookir;g at "the stuffs" in different parts of the system-the water in the boiler
is tur;;in<_ into steam, the loxer pressure in the load means there will be a flow
of stearn from the boiler through the superheater, and so on. To figure out how
the temperature actually changed, however, required thinking of a little piece
of stuff travelling through the system .

Early on . Hayes (1985] identified these ideas as the contained liquid on-
tolc- . , and piece o1 stu!4 ontology, respectively . Most qualitative physics work
has used the contain,-: :: liquid ontology . Recently John Collins and I developed
a specialization of the piece of stuff ontology, the molecular collection on-
tology, to capture the kind of reasoning engineers do about thermodynamic cy-
cles . The idea is to define a little piece of stuff, .c . which is lame enough to
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have macroscopic properties yet small enough never to split up when tra-
versing a fluid system .

How is an t-;c envisionment generated? Since qualitative representations
are not detailed enough to provide local gradients, what hlc does is computed
from an envisionment generated using a contained stuff ontology. We suspect
this is exactly the kind of ontological shift occurring in examples like the
SWOS problem .g

Even considering fluids, many ontological questions remain open. For ex-
ample, what other specializations of Hayes' piece of stuff ontology are useful?
Spatially extended pieces of stuff appear essential to modeling mixing and
weather patterns-how are they to be individuated and combined? I am sure
that as we attempt to build more sophisticated domain models, we will uncover
many new ontological issues, many of them revolving around spatial reasoning .

5 .1 .4 Hypothesizes One particularly interesting potential application is a
kind of monitoring task, using a module I call a hypothesizer . 9 The goal is to
merge measurement interpretation with explanation in order to improve plant
operations and fault management.

Suppose you have someone controlling a large, complicated system, such
as a production line in a chemical plant, and some condition arises that must be
dealt with. Operators in such circumstances will often seize upon the first
theory they generate about what is going on, and stick with it even in the face
of contradictory data . Imagine a program that could critique an operator's
theory. Such a program, if done properly, could have two benefits . First, it
would force the operator to be explicit about his theory of what is wrong. Sec-
ond, the program could compare the consequences of the theory with measure-
ments, point out discrepancies, and suggest further experiments and modifica-
tions . Besides being used for diagnosis, it would not surprise me if this kind of
module became one of the first applications of qualitative physics . Providing
human-understandable explanations is the forte of qualitative physics, after all .

5 .1 .5 Planning Realistic planning requires knowing what the physical world
will do, with and without the planner's actions . How can we best use qualita-
tive physics in planning?

One way is to transform the domain model into something the planner can
use . Hogge's domain compiler [Hogge 1987a, 1987b] takes as input a QP
domain model, and produces rules suitable for a temporal planner . (The plan
ner derives from [Allen and Koomen, 1983], adding inference rules and other
extensions-see [Hogge, 1987c] for details .) Given a description of liquid

8 Techniques for comparative analysis in [lVe!d . 19871 provide another piece of the puzzle . It is
not known at this writing if tocether these techniques are sufficient to solve the SWOS problem .
9 ;dike Williams of IntelliCorp calls it a "Doubting Thomas" system .
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flcyw, for instance, the domain compiler produces an inference rule describing

what it takes to cause a liquid flow to happen. When these rules are added to

other inference rules and a specification of the actions an agent may take, the

planner can create plans which involve processes as intermediaries, such as

filling a kettle by moving it under a faucet and turning it on.
While elegant, this approach requires more research to live up to its pro-

mise . The large descriptions produced by the domain compiler, and the com-

plex inferences required (especially transitivity), tend to choke the temporal

planner . Compiling can also produce oversimplified models . For instance, the

rules implicitly assume that any influence they impose on a quantity will actu-

ally succeed in changing that quantity . Trnus a planner using these rules might

assume ~that it can prevent an ocean liner from sinking by bailing with a

teaspocn . Such limitations do not appear impossible to overcome, and no doubt

there arc other valuable approaches to be explored as well .
There is also a second kind of planning problem that I think ultimately is

aoir^ to be extremely important, yet has received little attention to date-the

problem of procedure generation . When you design a new engineering system,

you don't just design the object, you have to develop procedures for operating

it, for maintaining it, for diagnosing problems with it . If we are trying to get

our computers to help us design complex systems, we need to find ways to

have them generate such procedures automatically . If the design system knew

the kinds of actions the system operators can take and their limitations, its out-
put could include not just the blueprint, but the operations manual, the main-
tenance manual, and the diagnosis manual (or expert systems that provided the

same scr, ice) . Furthermore, safe operation could be posted as an explicit con-

st-aint on the design of the plant .

5 .1 .6 Connections with Traditional Physics Understanding the kind of

reasoning scientists and engineers do was the original motivation for qualitative

physics . To fully capture what they are doing, we must extend qualitative phys-
ics in the direction of traditional 'physics . This section describes two exciting

recant efforts in this area .
In traditional physics, a set of equations can be solved analytically or by

sirr.ulat on to derive the behavior of a system . Similarly, qualitative equations

are t .picall ;derived from an ontology in order to generate behavior via quali-

t_aive simulation (either envisioning or history generation, see above) . Sacks

[19S_5] has developed an analytic technique that generates qualitative descrip-

tionsfrom traditional equations . His initial Q',,tR system could solve a variety of

s ,,steri,s, including models of a dampened oscilla ".or and heat dissipation . One

Iirnita ",ion of this approach is that most interesting equations do not have ana-

P. tic solutions . Sacks's [ 1987] solution is to decompose more complex systems

mte piecewise linear approximations, use QNIR on each piece, and reconstruct

the zlobal solution from the local solutions .
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Yip [1987] has a complementary approach to a similar problem . Phase
portraits are a geometric technique traditionally used in mathematics to de-
scribe complex dynamics . Yip has created a vocabulary of qualitative descrip
tions of phase space that formalizes the intuitions mathematicians bring to bear
in understanding such portraits . Given a numerical simulation of a non-linear
system . he uses this vocabulary to interpret the particular behavior, and make
predictions about what the other pans of phase space must be like . Ultimately,
these predictions will form the basis of additional numerical experiments .

W illiams [19881 has developed an elegant formalism that combines quali-
tative and quantitative algebra . Potentially, this theory could greatly extend the
range of qualitative reasoning.

5 .1 .7 Learning Creating a complete qualitative physics is a herculean task ;
it will become much easier if our machines can help. Several workers are tack-
ling different aspects of this problem . Langley, Simon, Bradshaw, and Zytkow
[1987] have studied various aspects of scientific discovery of physical laws. So
far, their work has focused on equational and discrete symbolic (as opposed to
qualitative) models. Kokar [1987] describes a methodology for determining
limit points using dimensional analysis . Falkenhainer's ABACUS [Falkenhainer,
1985] program uses qualitative proportionalities as an intermediate repre-
sentation in inducing equations from numerical data . Mozetic [19871 describes
how hierarchy can be exploited in automatically acquiring qualitative models,
demonstrating his techniques with a model of the heart . Rajamoney and De-
Jong [19S7] have tackled the problem of debugging qualitative theories, pro-
viding a theoretical classification of bug types, including strategies for detect-
ing and fixing them .

At Illinois we are taking two different approaches to understanding learn-
ing in physical domains . The first is psychological, Dedre Gentner and I are
combining QP theory and her Structure-Mapping theory of analogy [Gentner,
1983, 1987, 1988] in an attempt to account for experiential learning in physical
domains [Forbus and Gentner, 1986a]. We suspect the kinds of representation
and reasoning explored by qualitative physics to date actually appear rather late
in human learning, with two other stages postulated for both computational rea-
sons and to explain certain psychological findings. Right now we are exploring
these ideas through both cognitive simulation (using sefE, a cognitive simula-
tion of Gentner's analogy theory [Falkenhainer et al ., 1986, 1988]) and psy-
cholozical experiments .

The other approach, the Automated Physicist project, is being carried out
in collaboration with Jerry DeJong . The idea is to build a series of machine
learning systems that learn by experimentation and observation and by solving
textbook problems . The dream behind the AP project is to build a sort of
"Sherlock Holmes" of physics-it it begins by sitting back in its armchair and
trying to explain reported behavior in the physical world . If it can explain a re-
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pore no learning takes place. But if it cannot, then it tries to fix its model . Our
ultimate goal is to have a program which designs and builds its own experi-
mental apparatus, analyzes real data, and so forth .

The first such programs are due to Falkenhainer and Rajamoney . Falken-
hainer's PHL\EAS program has demonstrated how QP models can be learned
with his theory of verijication-based analogical learning [Falkenhainer, 1987) .
Given a new behavior, PHINE.-~s attempts to use its current domain model to ex-
plain the behavior . If it cannot, PHIN7E .-,s accesses a database of previously ob-
ser. ed behaviors with associated explanations . An important aspect of PHINEAS

is that it performs analogical matching on the behaviors first, to guide the
transfer of a QP model from an understood domain to explain the new one .
The new model is tested to see if it can explain the observations . Often, the
model has to be "fixed up" in various ways. Rajamoney's ADEPT system pro-
vides exactly the right functionality, since it has the ability to generate potential
improvements and the conceptual specifications of experiments required to de-
cide between there . The two programs have been successfully linked and tested
on several examples [Falkenhainer and Rajamoney, 1988] .

I would tike to finish with a set of open problems . While we will make signif-
cant progress on these problems in the near term, they are sufficiently deep and
tough not to yield to shoe assaults . I suspect each of them will take a few
generations of Ph .D . theses to solve .

5.2.1 Spatial Quantities There are no doubt other representations lying be-
tween the poverty of signs and the richness of SR that remain to be discovered .
And no doubt there will be advances in qualitative representations for time-
varving differential equations as well . But the real frontier is now partial differ-
ential equations, especially quantities that vary by space instead of time .
Formalizing these spatial quantities will allow us to describe a vastly wider
rar.v e of phenomena than at present . These phenomena include the flow over
an airplane wing, the distribution of electric fields due to a distribution of
charges, and the stresses on different parts of a bridge .

I suspect the problem decomposes into two parts . The first is the formali-
zation of partial derivatives in general . While this part may have many techni-
cal obstacles, it seems likely that the current theories can be gracefully ex
tender in this direction . The second problem appears to me to be much harder :
the problem of choosing the appropriate axes and frames of reference to
simplify computations and produce perspicuous results .

5 .2.2 What Kinds of Numbers Are There? Imagine

	

what

	

we

	

know
about the space of representations for number . Let sign values be at the top and
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elements of i-R be at the bottom, so that increased height corresponds to in-
creased degree of abstraction . Inequalities are high in this structure, almost up
to sign values . Floating point numbers and other simple truncations of `3Z lie
toward the bottom. You may choose for yourself where to put the order of
magnitude formalisms that have been developed recently . The question is, what
else is in there? How many different representations for number remain to be
developed, and what do they look like?

It would not surprise me if several more useful representations of number
were developed . Some, like fuzzy numbers [D'Ambrosio, 1987], will be im-
ported from other branches of AI and mathematics . A better understanding of
the tradeoffs and systems that integrate several types of numerical reasoning
(like [Simmons, 1986]) are necessary .

5 .2 .3 What Kinds of Functions Are There? A related question is, what
sort of functions are there? Traditional physics relies heavily on the analytic

functions, i.e ., combinations of polynomials, trigonometric functions,
and so on . These lie at the most precise end of an abstraction continuum . At
the other end are qualitative proportional ities, where a closed world assumption
is required to even determine what parameters affect a given quantity . How
many representations for functions remain to be developed?

I suspect the answer is very few, much fewer than for numbers . Functions
and algebras have been well explored by mathematicians for a long time, and
while we may harvest a few new things from their efforts, I doubt there will be
much because the class of analytic functions is so large . But it is an empirical
question .

5 .2 .4 Large-Scale Organization of Qualitative Models Almost all

	

of
the models we have built to date are quite simple (on the order of 300 or so
axiom-equivalents) compared to the scope of human commonsense or expert
knowledge of the physical world . Building such a massive knowledge base will
be impossible on an ad hoc basis . Ontology provides one source of organizing
principles, but there are no doubt others .

Hierarchy plays an important role in organizing many other AI knowledge
bases, and it is likely to do so in qualitative physics as well . N13-king qualitative
simulations work with multiple levels of detail is an important problem (see
[Weld, 1986; Kuipers, 1987] for some initial forays) .

At least two other organizational ideas appear necessary as well . First, we
need to formalize the idea of structural abstractions, the conceptual objects
used in our representations, as distinct from their real-world counterparts . This
separation is needed in order to provide an input language for systems that is
reasonably independent of the theoretical commitments of a particular model . It
is seductive to consider a transistor as identical to our model of it, and as long
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as we limit our analysis to a particular frequency range this conflation does
little harm . But more sophisticated reasoning about circuits, and any considera-
tion of almost any other engineering domain (e.g ., fluid systems, thermal sys-
tems, motion) requires more work to map from a relatively neutral description
of the physical system to the kind of model used for a particular level of analy-
sis .

The second organizational tool is a language of simplifying assumptions .
Rather than build distinct models for different purposes, we should instead use
explicit assumptions to turn off and on different pans of a model . For instance,
in reasoning about thermodynamic cycles one often invokes a "steady-state as-
sumption-the amount of fluid in each part of the system remains constant,
despite flows . Human engineers constantly use assumptions like this to drasti-
cally reduce the number of possible states, making analysis of complex systems
more feasible . Our models will have to be designed in a way that allows our
programs to do the same . We have recently developed some conventions for
representing such assumptions in QP theory, and tested them on a large multi-
grain, multiple perspective model of a Navy propulsion plant [Falkenhainer and
Forbus, 1988] . These conventions are a solid first step . but much research re-
mains.

As qualitative physics becomes ready for widespread application, we will
face the same kinds of validation issues now confronting other kinds of expert
systems . Most engineering disciplines have validation procedures in place, and
standards on the quality of model that must be used for a particular level of
safety desired . We will have to fit qualitative models into such schemes, some-
how .

5 .2 .5 Integration with Vision and Robotics Vision and robotics are, in
principle, closely tied to qualitative physics . Qualitative physics can tell a robot
where something might go if it is dropped, and what it has to do in order to
boil water . As mentioned in the introduction, some form of qualitative physics
will be needed by robots that work in unconstrained environments (although in
aeneral the useful representations may be more like protonistories and the
c .usal corpus [Forbus and Gentner, 1986a] than like the current state of the
art) . But qualitative physics also needs vision and robotics . The poverty conjec-
ture suggests that advances in spatial reasoning and vision will help drive qual-
itative kinematics . For instance, Ullman's theory of visual routines [Ullman .
1985] car, be viewed as a theory of human metric diagrams . Knowing what the
visual system computes can suggest what primitives are likely to be useful, and
conversely, knowing the computational requirements of qualitative kinematics
may in turn suggest what spatial descriptions people might be computing . Eric
Saud [ 198";] has in fact proposed an "information rich spatial representation,"
using the various representations postulated for human vision to support spatial
reasoning .
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5.2.6 A Complete Qualitative Physics Today qualitative dynamics and
kinematics are typically pursued in isolation . Integrating them is crucial to
building a complete qualitative physics. A full understanding of an internal
combustion engine, for instance, cannot be gleaned without understanding how
physical processes and geometry interact . Efforts like the CLOCK project are a
step, but just a first step, in this direction .

And, finally, of course, there is the ultimate coal . The holy grail of qualita-
tive physics is a complete set of models, spanning the space of all the physical
domains people know, able to characterize human models from the person on
the street up to the best experts, capable of supporting efficient application pro-
grams, and so forth. Like traditional physics, we will probably never get there .
But we will certainly learn interesting things on the way.

Acknowledgments

I would like to thank Johan de Kleer, Dedre Gentner, Paul Nielsen, John Col-
lins, Brian Falkenhainer, and Ernie Davis for useful comments and discussions.
Support for this work has come from the Office of Naval Research (Contract
No. N00014-85-K-0225, Contract No. N00014-85-K-0559), and the National
Aeronautics and Space Administration (Contract No. NASA-NAG-9137) .

References

:kllen, J ., 198' . Towards a general model of action and time . Artificial Intel-

ligence 23(2).
Allen . J . and Koomen, J ., 1983 . Planning using a temporal world model . In

Proceedings of IJC.41-83, Karlsruhe, West Germany . San Mateo: Morgan
Kaufmann Publishers .

Bobrow, D., 1968 . Natural language input for a computer problem-solving sys-
tem . Semantic Information Processing, M. Minsky, ed . Cambridge, Mass . :
MIT Press.

Bobrow, D ., ed ., 1984 . Qualitative Reasoning About Phlysica1 S.ysrems . Cam-
bridge, Mass. : MIT Press .

Brown, J ., Burton, R . and Zdybel, F., 1973 . A model-driven question-answer-
incy system for mixed-initiative computer-assisted instruction . IEEE Trans-
actions on SYstems, Van, and Cybernetics, SMC-3(2) .

Bundv, A., Bvrd, L . Luger, G., Mellish, C ., Milne, R. and Palmer, M., 1979 .
MECHO : A program to solve mechanics problems . Working Paper 50, De-
partment of Artificial Intelligence, Edinburgh University .


