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Abstract
One of the original motivations for qualitative
physics research was the creation of a computa-
tional account of mental models. For instance, a key
intuition often associated with mental models is that
they are runnable, i.e., there is a sense of deriving
answers via mental simulation rather than logical
reasoning.   This paper examines three explanations
for runnability, and argues that none of them is suf-
ficient.  Instead, a hybrid model combining aspects
of all three is proposed, focusing on the integration
of ideas from qualitative physics with ideas from
analogical processing.  Some psychological impli-
cations of this hybrid model are discussed.

Introduction
An active area of research in cognitive science is

studying mental models (Gentner & Stevens 1983), the
models people use in reasoning about the physical
world1.  Understanding mental models is a central issue
for cognitive science because they appear important in
reasoning about complex physical systems, in making
and articulating predictions about the world, and in
discovering causal explanations for what happens
around us.  Mental models research also offers practi-
cal benefits.  In an increasingly technological society,
understanding the nature of mental models for complex
physical systems and could help people learn better
models which could reduce accidents and improve pro-
ductivity (Norman, 1988).

One of the original motivations for qualitative phys-
ics research was to create a computational account of
such mental models (de Kleer & Brown 1984; Forbus,
1984; Bredeweg & Schut 1991, White & Frederiksen
1990). A key intuition often associated with mental
models is that they are runnable, i.e., there is a sense
of deriving answers via mental simulation rather than
logical reasoning.  One explanation for runnability is
that people are doing qualitative simulation, based on

                                                  
1 Our focus on physical domains and long-term

knowledge structures distinguishes this sense of mental
model from the other standard usage, e.g. Johnson-
Laird (1983).

general, first-principles knowledge of a physical do-
main.  Another explanation is that we use some high-
resolution mental simulation facility.  Yet another ex-
planation is that we are using memories of similar
situations previously observed to construct a story
about what will happen in the current situation.

In this paper we argue that none of these explanations
by itself is adequate to account for human common
sense reasoning. We believe a psychological account of
qualitative reasoning will rely heavily on analogical
reasoning in addition to reasoning from first principles.
We propose a hybrid model, motivated by a combina-
tion of psychological findings and computational con-
siderations.   Aspects of this model have been tested by
computer simulation. We believe that this hybrid ac-
count is more consistent with evidence about human
learning than any of the pure models.

We begin by examining the three “pure” explanations
for runnability. Then we outline our hybrid model and
some of its psychological implications.

Three views of qualitative mental models
We focus on the use of mental models in common

sense prediction tasks, like thinking about what might
happen when filling a cup with coffee.

High-resolution mental simulations
An appealing intuition is that mental model reasoning

is like watching a movie of a physical system with your
mind’s eye.   This intuition has been the basis for pro-
posals that link mental model reasoning with visual
imagery (Funt, 1980; Kosslyn, 1980; Glasgow, 1992;
Hegarty 1992; Gambardella, Gardin, & Meltzer,
1988). Evidence for our visual apparatus being in-
volved in spatial reasoning includes psychological
studies (Kosslyn, 1980), computational necessity ar-
guments (Forbus, 1983; Forbus, Nielsen, & Faltings,
1991), and neuroscience experiments (Kosslyn, 1996).
However, there is evidence that visual processing alone
is insufficient. Hinton (1979) demonstrated distortions
in mental imagery that do not fit within an array model
of imagery, although they are consistent with mixed
symbolic/metric representations.  Schwartz (1996)
summarizes evidence suggesting that several kinds of

Qualitative Mental Models: Simulations or Memories?

Kenneth D. Forbus
The Institute for the Learning Sciences

Dedre Gentner
Psychology Department

Northwestern University
1890 Maple Avenue, Evanston, IL, 60201, USA



Forbus, K. and Gentner, D. 1997.  Qualitative mental models: Simulations or memories?  Proceedings of the Elev-
enth International Workshop on Qualitative Reasoning, Cortona, Italy.

2

knowledge are used in imagery, including physical,
social, and haptic  knowledge.

It seems likely that spatial mental models rely in part
on visual computations.  On the other hand,  we know
of no evidence suggesting that the data needed for
quantitative simulation is available in common sense
reasoning tasks, nor do we know of any evidence that
people have a mental simulation facility capable of
using such information.  Consider predicting the pat-
tern of liquid that will appear on a rug if a half-full cup
of coffee is knocked off a table.  Our visual apparatus
is powerful enough to describe the shape of the pat-
terns that result.  However, we are not capable of pre-
dicting what specific shapes will result in advance.
Solving this problem to a high degree of accuracy in-
volves computational fluid dynamics; it seems quite
unlikely that we are capable of performing such a pro-
digious feat mentally.

First-principles qualitative simulation
In some qualitative physics research, running a men-

tal model is identified with carrying out a qualitative
simulation of the system.  Qualitative reasoning cap-
tures several important properties of mental model rea-
soning, namely
• Handling incomplete and inexact data.  Qualita-
tive information is easily extracted via perception, and
such rough distinctions are more likely to be easily re-
membered than precise details.
• Support for simple inferences.  Simple, everyday
“obvious” inferences can be carried out easily.   For
instance, if nothing is happening, nothing is changing.
• Representation of inexact knowledge.  Qualitative
representations make causal knowledge explicit.  They
provide a vocabulary for expressing partial knowledge
about causal theories and mathematical relationships,
and methods to assemble this partial knowledge on de-
mand for reasoning.
• Representation of ambiguity.  In many everyday
prediction tasks we can imagine several distinct out-
comes.  Qualitative simulations capture this ambiguity.

However, there are two problems with using current
theories of qualitative simulation to account for mental
model reasoning:  excessive branching and exclusive
reliance on generic models.  We discuss each in turn.
Excessive branching Current qualitative simulators
often produce a huge number of possible behaviors
even for relatively simple situations (Kuipers, 1994).
In some applications exploring every possible behav-
ior, i.e., envisioning, is necessary (Shimomura, Tani-
gawa, Umeda, & Tomiyama, 1995; Price, Pugh, Wil-
son, & Snooke, 1995).  But today’s qualitative simula-
tion algorithms tend to make many more distinctions
than necessary for most tasks, leading to unnecessary
complexity in the behaviors they generate (deCoste,
1994).  This makes them seem psychologically implau-

sible, for two reasons2.   First, qualitative simulators
often produce states containing many more distinctions
than people report when considering the same scenario.
Comparisons between derivatives of rates, for exam-
ple, are needed for continuity calculations that rule out
inappropriate state transitions.  But we have never seen
such comparisons mentioned in protocols.   This does
not by itself rule out their use internally. It could be
that certain information is simply underreported in
protocols.  However, these discrepancies are grounds
for asking whether such calculations are psychologi-
cally frequent. Second, the exponential nature of most
qualitative simulation algorithms makes them implau-
sible models for the rapidity of common sense reason-
ing.
Exclusive reliance on generic models The goal of
most qualitative physics research is to build an ideal-
ized physical reasoner, a system that can reason with
sophistication about the physical world in the way that
the best human scientists and engineers do, without
their frailties.  This goal leads to a preference for sys-
tems that maximize generality and generativity.   That
is, the laws of qualitative physics are expressed in do-
main-independent terms, and knowledge of domains is
expressed in situation-independent forms. It seems
likely that people’s mental models include laws and
principles that are at least somewhat domain-
independent, as well as domain knowledge that is
situation-independent.  But there is ample evidence
suggesting that much of what people know about the
physical world and how they reason about it is more
concrete than that (Brown, Collins, & Duguid, 1989).
The exclusive reliance of current qualitative simulation
accounts on first-principles knowledge makes them
implausible candidates for psychological models, ex-
cept perhaps in very narrow ranges of high-expertise
reasoning.

Memory-based reasoning
The third explanation is that running a mental model

of a system corresponds to remembering how that sys-
tem has behaved previously when in similar circum-
stances.  The fact that people store and remember be-
haviors of physical systems is uncontroversial.   How
far memory-based explanations can go in explaining
physical reasoning is still an open question.  A major
issue is generativity: How flexibly can past experiences
be used to make new predictions, and especially pre-
dictions about novel systems and/or configurations?
We believe there are three factors that make memory-
based reasoning more generative than some might oth-
erwise expect.  First, qualitative representations reduce
                                                  

2 We do not know of experiments in the literature that
address these questions: We are arguing based on our
informal observations of people and qualitative simu-
lators.
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differences.  Assuming people store and use qualitative
representations of situations and behavior, then two
situations that vary only in quantitative details will
look identical with respect to the qualitative aspect of
their behavior.  Second, analogical reasoning can gen-
erate predictions for novel situations.  For common
sense reasoning, within-domain analogies (i.e., pre-
dicting what will happen when pouring coffee into a
cup based on previous experiences pouring coffee into
a different cup) should provide  a reliable guide to ac-
tion. Third, multiple analogies can be used to piece
together models for complex systems (Spiro et al
1989).

There is psychological evidence that the same com-
parison processes used for cross-domain analogical
thinking are also used for within-domain comparisons,
in tasks ranging from visual perception to conceptual
change (Gentner & Markman, 1997).  It would be sur-
prising if such processes were not used in common
sense physical reasoning.  However, memory-based
reasoning alone is insufficient to explain our ability to
use general-purpose, domain-independent physical
knowledge – something that we undeniably do, even if
there is disagreement over how much of it people do
routinely and under what circumstances.

Similarity-based hybrid qualitative simulation
None of the pure models are sufficient to account for

the runnability of mental models.  We claim that a hy-
brid model is needed to explain the full range of human
common sense reasoning.  The model of reasoning and
learning in physical domains we propose here differs
from our previous model (Forbus & Gentner, 1987).
We now suspect that the kinds of knowledge and proc-
esses that we previously divided into stages are actu-
ally more tightly interwoven.   Specifically, we now
believe that comparison processes play a central role
throughout the span of expertise.

We begin by first examining what aspects we are
adopting from each of three approaches discussed.
Then we illustrate how predictions can be made in this
hybrid model, providing a sense of “running” a mental
model.

High-resolution mental simulations
We assume that some high-resolution representations

are available for diagrammatic and spatial reasoning
tasks, mainly through facilities shared with our visual
systems. However, we assume that, spatial reasoning
aside, there are no high-resolution mental simulations.
Since assumptions about spatial reasoning are almost
independent of the rest of the model, we ignore this
issue in the rest of the paper.

What Qualitative Physics provides
We assume that people use many of the representa-

tional constructs of qualitative physics when reasoning
about mental models. This includes
• Methods for representing partial information about

numerical values, including signs (de Kleer &
Brown, 1984), ordinals (Forbus, 1984), simple
symbolic vocabularies (Guerrin, 1995), and order
of magnitude relationships (Raiman, 1991; Mav-
rovouniotis & Stephanopoulos, 1988).

• Causal and mathematical relationships capable of
expressing partial knowledge (i.e., direct influences
and qualitative proportionalities from QP theory
and the extensions described in (Bobrow et al
1996))

• Representations for modeling assumptions
(Falkenhainer & Forbus, 1991; Rickel & Porter,
1994)

• Many of the ontologies that have been developed
for specific domains, and multi-domain abstrac-
tions such as physical processes and devices.

We also assume that people encode varying amounts
of detailed information about the values of continuous
properties, in addition to qualitative properties.

We assume that people sometimes use domain-
independent principles of qualitative reasoning and
situation-independent general knowledge of particular
domains.  We also assume that much of people’s
physical knowledge is highly context-specific.  That is,
we assume that many principles of qualitative reason-
ing people use are domain-specific, and that much of
their knowledge about a particular domain is also tied
to situations or classes of situations within that do-
main.  The difference between these may be seen by the
following sequence of states of knowledge, each of
which could be used for prediction, but takes quite dif-
ferent forms:
1. A remembered behavior concerning a specific cup
at a specific time, e.g., more coffee pouring into your
favorite cup leading to it flowing over the top and
spilling on your desk.  The behavior’s description
probably includes many concrete details, such as visual
descriptions of the objects and their behaviors.
2. A remembered behavior concerning a specific cup
at a specific time, including a causal attribution relat-
ing different factors or events, e.g., the overflow was
caused by continuing to pour coffee once the cup was
full.  This attribution might come about by someone
explaining the situation to you, or by analogy with an
explanation given for another situation, or by the ap-
plication of a more general abstraction. Additional
qualitative relations might be included, such as blam-
ing the overflow event on pouring a liquid, with the
rate of overflow depending on the rate of pouring.
3. A generalization that coffee cups can overflow if
you keep filling them up with liquid.  This generaliza-
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tion might be formed by successive comparisons of
very concrete situations, conservatively stripping away
details that are not common across otherwise similar
situations.  Visual properties may be gone, but many
aspects of the descriptions are still very concrete – cof-
fee cups instead of containers, for instance, or even
coffee instead of any liquid.  More qualitative relation-
ships may be included.
4. A generic domain theory of containers, liquids, and
flow that supports limit analysis, e.g., the coffee cup is
a container, the coffee in it is a contained liquid, there-
fore one limit point in the quantity space for the level
of the contained liquid is the height of the cup’s top,
and that a qualitative transition in behavior will occur
when the level (which is rising due to being the desti-
nation of a liquid flow, which is the only thing hap-
pening that is affecting the amount of coffee in the cup)
reaches the height of the top of the cup.

The first state of knowledge represents pure memory.
The last state of knowledge represents the sort of ex-
planation that would be generated by first-principles
qualitative simulators.  They represent extremes on a
continuum of knowledge about the physical world. The
states in between represent what we suspect what
might be very common in human mental models: in-
termediate levels of generalization and explanation,
where partial explanations have been constructed in a
conservative fashion (e.g., generalizing across liquids
but still restricted to coffee cups). They are examples
of what we could call situated rules, pieces of knowl-
edge that are partially abstracted but still partially
contextualized.

 From an applications perspective, situated rules are
the bane of good knowledge engineering practice.
When engineering a domain theory, one strives for gen-
erality and broad coverage.  In that context, the use of
partially abstracted, partially contextualized knowledge
represents a failure of analysis3.  But the situations
faced by knowledge engineers and by human learners
are very different.  Human learning is often very con-
servative, especially when someone knows little about
a domain.  Situated rules provide an intermediate form
of knowledge between concrete/slightly schematized
descriptions of behaviors and the mechanism-based
ontologies of standard qualitative physics.

We conjecture that situated rules are used to express
principles of qualitative physics as well as knowledge
about particular domains.  That is, it seems likely that
there is a range of knowledge about physical reasoning,
varying from concrete rules applicable to a small class
of situations to the kinds of overarching, general prin-
ciples encoded in performance-oriented qualitative rea-
soning systems.  English-speakers commonly use the
phrase “what goes up must come down”, and other
                                                  

3 It violates the no structure in function principle (de
Kleer & Brown, 1984).

language communities have similar expressions.  How
many of those speakers know that, assuming classical
continuity, this statement implies the existence of an
instant of time between going up and going down
where the vertical velocity is zero? There is a large
terrain between knowing nothing and having a broad-
coverage general theory, and that terrain is not empty.

What analogical processing provides
Analogical processing provides several key capabili-

ties:
Robust matching and inference.  Structure-mapping

theory (Gentner, 1983) provides an account of com-
parison processes and their roles in various cognitive
processes that is consistent with a growing body of
psychological evidence (Gentner & Markman, 1997).
These computations have been simulated with SME
(Falkenhainer et al 1989; Forbus et al 1994), which in
turn has been used as a module in other simulations
and in performance systems.   Given two structured
propositional representations as inputs, the base (about
which more is presumably known) and the target, SME
computes a mapping (or a handful of them).  Each
mapping contains a set of correspondences that align
particular items in the base with items in the target,
and candidate inferences, which are statements about
the base that are hypothesized to hold in the target by
virtue of these correspondences. SME can incremen-
tally extend its mappings as more information is added
to the base and/or target.

Integration of multiple types of knowledge.  The
same analogical processes can be used to operate on
rules, concrete descriptions, and abstractions such as
equations and plans (Forbus et al 1994).  In the case of
rules, the base is the rule and the target is the situation
to which the rule is to be applied.  Each mapping cor-
responds to an instantiation of the rule, with the candi-
date inference providing the new information4.

Incremental abstraction and rule generation. SEQL
(Skorstad, Gentner, & Medin, 1988) uses SME in suc-
cessive comparisons of examples to incrementally re-
move irrelevant aspects of a conceptual description and
to automatically generate rules.  We believe that these
processes are applied to behaviors as well, for the con-
struction of prototypical behaviors (Forbus & Gentner,
1986) and situated rules.

Scaleable similarity-based retrieval. MAC/FAC
(Forbus, Gentner, & Law 1995) models similarity-
based retrieval. The MAC stage first uses a simple,
                                                  

4 We think it is unlikely that this rule application
method suffices for all cognitive processes that use
rules; encoding seems to require an additional mecha-
nism, for example.  However, we wish to point out that
the dividing line between rule-based processes and
similarity-based processes may not be as solid as some
might suppose.
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non-structural matcher to filter out a few promising
candidates from a (potentially immense) memory of
structured descriptions.  The FAC stage then evaluates
these candidates more carefully, using a structural
matcher (SME).  The MAC stage lends itself to im-
plementation in parallel (including connectionist)
hardware, and has been tested with a variety of repre-
sentations.

Analogical theory construction.  PHINEAS (Falken-
hainer 1987, 1990) demonstrated that structure-
mapping processes could model several aspects of sci-
entific theory construction, including matching behav-
iors and constructing qualitative domain theories by
elaboration of candidate inferences. We believe that
PHINEAS provides a good working model of some
ways analogy is used in theory construction.  Moreo-
ver, we conjecture that the same processes can be ap-
plied to modeling aspects of learning by instruction
(where the teacher provides the starting correspon-
dences) and within-domain analogical learning (where
overall similarity guides the initial behavior match, and
situation-specific explanations are incrementally gener-
alized by a SEQL-like process).

Making Predictions
Let us see how these pieces might combine to solve a

prediction task.  Let the input be a (partial) description
of a physical situation.   An augmented version of gen-
erate and test could be used to make predictions as
follows:
1. Retrieve similar behaviors (using MAC/FAC).
The candidate inferences from mapping these remem-
bered behaviors onto the observed behavior provide
additional expectations about the current situation, and
hypotheses about the states to follow, based on what
happened in the remembered behavior.  The state tran-
sitions hypothesized in the candidate inferences form
the initial set of predictions.
2. If qualitative simulation rules or procedures are
available for generating new behaviors (either by as-
sociation with this type of task or because they are re-
trieved by MAC/FAC along with the behaviors used in
the previous step), use them to expand the set of pre-
dictions.
3. If qualitative simulation rules or procedures are
available for evaluating the consistency of possible
transitions (from the same sources as the previous
step), use them to filter the set of predictions.
4. If there are multiple predictions remaining, esti-
mate their relative likelihood.  Return the best, or sev-
eral, if others are close to the best.

The first step provides quick recognition of familiar
behaviors.  If the overlap with the current situation is
high and the behavior predicted unique, processing

may stop at this point, depending on task demands5.
The second step augments this recognition by domain-
specific or first-principles consequences.  The third
step provides an opportunity for applying exceptions
and caveats (“if it were overflowing, you would see
coffee coming down the outside of the cup” and
“strong acid dissolves coffee cups”).  In the fourth
step, we suspect that a variety of methods are used to
estimate relative likelihood, ranging from domain-
specific knowledge (“filling a wax paper cup with hot
coffee usually causes it to leak”) to estimates of rela-
tive frequency based on accessibility in memory (“I’ve
never seen a ceramic coffee cup shatter when it was
filled”).

Psychological implications
Qualitative reasoning is not an island; it should use

the same mental processes used in other aspects of
cognition.  Consequently, properties of analogical
processing that have been found in other areas of cog-
nition should appear in reasoning about mental models
as well.  We focus on three predictions next.

Distribution of reliance on memory with expertise
We conjecture that the use of memories in predictions

with experience may vary as a U-shaped curve.  That
is, when little is known, memory use dominates, be-
cause comparison with previously observed behaviors
encoded in perceptual terms are all that is available.
As more is known, memory use may drop in favor of
more abstract representations, such as situated rules.
This may be especially likely in domains where the
learner needs to articulate their models, e.g. situations
where they are collaborating with others.  It may be the
case that as the domain becomes very familiar, memory
use increases again, because the learner has experi-
enced a large number of samples from the distribution
of situations that occur.  The theory-laden vocabulary
learned by this stage may also greatly increases the
frequency of relevant remindings (see below).

Differences in novice/expert retrieval patterns
The usual pattern in similarity-based retrieval (Gent-

ner, Rattermann, & Forbus, 1993) is that retrieval is
heavily based on surface properties (i.e., information
about appearance and attributes of participating ob-
jects) rather than relational properties (i.e., causal ar-
guments or abstract principles).   In experts, however,
the frequency of relational remindings increases (No-
vick, 1988).   A possible explanation for this phenom-
ena is that an expert’s ability to encode phenomena in
theory-laden terms provides additional overlapping
vocabulary that helps the MAC stage find appropriate
                                                  

5 Consider deciding where to put a cup of coffee
down on an uncluttered dining table versus deciding
where to put it down in a very cluttered office.
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matches.  For example, in solving physics problems, it
has been observed that experts sort problems based on
similarity in underlying principle, while novices sort
problems based on similarity in the kinds of objects
involved (Chi, Feltovich, & Glaser, 1981).   Additional
support for this explanation is provided by results sug-
gesting that inducing subjects to encode materials more
deeply increases the proportion of relational remindings
(Faries & Reiser, 1988).   The same phenomena should
be observable in teaching people to make predictions in
novel domains.

Factors that should promote expertise
Research on the role of comparison in development

suggests two ways to speed up learning: progressive
alignment and inviting comparisons with relational
language.

Progressive alignment: (Gentner, Rattermann,
Markman & Kotovsky, 1995) By exposing someone to
a large number of very similar examples, their conser-
vative learning mechanisms are more easily able to
create the abstractions needed for transferable knowl-
edge than if the same examples are interspersed with
very different examples.  Kotovsky and Gentner
showed that experience with concrete similarity com-
parisons can  improve children's ability to detect cross-
dimensional  similarity.  Specifically, 4-year-olds' abil-
ity to perceive cross-dimensional  matches (e.g.,
matching size symmetry with color symmetry) was
markedly improved after experience with blocked trials
of concrete similarity (blocks of size symmetry and
blocks of color  symmetry), as compared to control
groups who received no  training

Inviting comparison with relational language.
(Gentner & Rattermann, 1991)  Giving a learner lan-
guage for expressing a shared relational system can
dramatically improve their ability to learn it via com-
parisons.

For example, Kotovsky and Gentner (in press) taught
4-year-olds labels for the relations of monotonic
change (“more-and-more”) and symmetry (“even”).
During the training task, children learned (with feed-
back) to classify the stimuli as to whether they were
“more-and-more” or “even.” After this training, the
children who were successful in the labeling task
scored far better on a cross-dimensional version of the
task than children without such training.

Applying these results to qualitative mental models
yields three suggestions for how they might be learned
more easily:
1. Show learners many situations varying in quanti-
tative details but with identical qualitative behaviors
before showing them behaviors with a different quali-
tative structure.  For example, someone learning about
heat and temperature might first be exposed to a num-
ber of situations involving only heat flow before
showing them a situation where heat flow is involved in

phase changes, because in the latter the temperature of
the object changing phase remains constant instead of
increasing.
2. Name patterns of behavior (heating, cooling) first,
and then move on to naming the physical mechanisms
underlying them (heat flow, boiling).
3. Teach the compositional primitives of qualitative
physics explicitly, to give learners a richer vocabulary
for expressing their partial but growing knowledge.

Conclusions
Are qualitative mental models simulations or memo-

ries?  Our answer is, some of both.  No “pure” model
provides a sufficient account for the runnability of
human mental models.  We propose instead a hybrid
model, where similarity-based processes of comparison
and abstraction provide the initial organization for
knowledge of a domain, and broader principles of
qualitative reasoning emerge from the accumulation
and analysis of large numbers of examples, aided by
the use of relational language as a focusing device and
an invitation to comparison.   As they emerge, these
principles can be used for more rule-directed reason-
ing, but this augments, not replaces, analogical rea-
soning.  We believe such a hybrid model is necessary
to capture the flexibility of human common sense rea-
soning about the physical world over a broad range of
states of knowledge.  Currently we are exploring this
model further, using a combination of psychological
experimentation and computer simulation.

We would like to close with two points.  First, we
believe that qualitative simulation should not be identi-
fied only with reasoning from first principles using ge-
neric domain theories.  The psychological intuitions
that originally gave rise to the notion of qualitative
simulation might be better served by making its defin-
ing characteristic be the use of qualitative representa-
tions to simulate, even if the predicted behavior is gen-
erated via analogical reasoning or with domain-specific
rules.  Second, we believe that qualitative physics has
much to offer cognitive psychology.  The vocabulary
of qualitative physics (e.g., processes, influences, etc.)
seems well-suited for expressing human beliefs about
physical phenomena.  We believe than an account
combining these representational resources with
analogical processing could provide a deeper under-
standing of human physical reasoning. Qualitative
physics is already proving its worth in real-world ap-
plications.  It can also contribute what might be a key
piece in solving the puzzle of human cognition.
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