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Abstract Understanding descriptions of physical phenomena starts 

with the identification of continuous parameters that are 
involved in the physical processes. Descriptions of 
physical phenomena typically contain abundant references 
to physical quantities. The extraction of information about 
continuous parameters is therefore an essential step in 
building models of physical processes (Kuehne, 2003). 

People can learn about the physical world from textbooks 
and develop an understanding of physical phenomena from 
simple descriptions. As part of our ongoing investigation of 
the extraction and representation of knowledge about 
physical processes found in natural language text, we 
describe a natural language system that captures information 
about instances of physical processes from paragraph-sized 
descriptions through a deep semantic interpretation process 
as a set of interconnected frame structures. 

 We have previously shown that natural language 
descriptions of physical phenomena can contain abundant 
QP-relevant information (Kuehne & Forbus, 2002). If one 
looks carefully at the descriptions of physical processes, 
given either as a concrete example or as generalized 
knowledge, one can identify parts of the natural language 
description that correspond to certain elements of QP 
Theory. In the same context, we have also proposed that 
QP theory can provide a knowledge representation 
language for aspects of natural language semantics 
concerned with continuous parameters and continuous 
causation. We have outlined a representational scheme that 
recasts the theoretical framework of QP theory in terms of 
frame semantics. QP frames use a representational scheme 
that is compatible with the notions of frames and frame 
elements in FrameNet (Baker, Fillmore, & Lowe, 1998; 
Fillmore, Wooters, & Baker, 2001). They form an 
intermediate representational layer between the natural 
language input and the representations that can be used in 
qualitative reasoning, e.g. model fragments in CML 
(Falkenhainer et al., 1994).  

Introduction 
When people read descriptions of physical phenomena in 
textbooks they usually have certain expectations about the 
information and mentally construct appropriate models of 
the described phenomena. This construction is an 
idiosyncratic process, because the readers need to interpret 
the author’s description, building their own model of it. 
Readers have to use their background knowledge to 
eliminate potentially ambiguous interpretations and to fill 
gaps left by the natural language description. In other 
words, reading about physical processes involves 
interpreting the text by constructing a model. In the best 
case, it is an exact reconstruction of the author’s intended 
model of the process. 
 QP theory (Forbus, 1984) concerns the structure of a 
class of physical theories, and has been successfully used 
in a variety of reasoning systems (Forbus, 1996).  The 
hypothesis is that many mental models of physical 
phenomena can be expressed in this formalism.  QP theory 
has been used to develop a wide range of models of 
phenomena, including economics, ecology and medicine 
in addition to physical models.  This makes it an excellent 
candidate for a component in a larger system of natural 
language semantics. 

 In this paper we describe a natural language system that 
captures QP-relevant information from descriptions of 
instances of physical processes.  It uses a deep semantic 
interpretation process and represents the contents as a set 
of interconnected QP frame structures. The system 
combines the results of our previous work, it is fully 
implemented, and has been tested on a dozen paragraph-
sized natural language descriptions (Kuehne, 2004). We 
begin with an overview of the system and its individual 
components. A detailed example illustrates the 
interpretation process, followed by a comparison of the 
information captured in terms of QP frame structures with 
a manually constructed process model. Finally, we discuss 
a number of problems that we encountered in using the 
system to capture QP-relevant information from natural 
language text and plans for future work. 

 The fact that humans can learn about the physical world 
from textbooks and other sources leads to a number of 
interesting questions about the connections between our 
conceptual understanding of the physical world and how it 
is reflected in natural language. If students can learn from 
simple descriptions of physical phenomena, can the 
knowledge included in these texts be extracted to 
automatically construct models of the underlying physical 
processes? 
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Holmback, & Hoard, 1998), logic representations of 
operating procedures (Fuchs & Schwitter, 1996), and 
knowledge-based machine translation (Mitamura & 
Nyberg, 1995). 
 To facilitate the interpretation of the input material, we 
have designed QRG Controlled English (QRG-CE) as a 
controlled language for describing physical phenomena in 
a readable, yet less ambiguous subset of English. While 
QRG-CE does not impose any restrictions on the lexicon 
and allows multiple word meanings, it uses grammatical 
restrictions to reduce syntactic ambiguity.  QRG-CE 
includes the syntactic realizations of QP theory concepts in 
natural language (Kuehne & Forbus, 2002) as grammatical 
rules.1 
 The parser is a modified version of the publicly 
available parser described in (Allen, 1995). Its bottom-up 
parsing algorithm constructs an interpretation of a sentence 
in a compositional manner, starting from terminal nodes. 
Using a best-first parsing technique, it attempts to 
maximize the length of phrases and sentence structures it 
can handle. The parser supports partial parsing, i.e. even 
when no syntactic analysis of the entire input sequence is 
possible, the parser generates interpretation for phrases 
and individual words. Information such as the semantic 
data for a node is ‘moved up’ to the phrase head when new 
phrases are constructed from constituent nodes by using 
feature percolation. Depending on the number of possible 
syntactic analyses, i.e. distinct parse trees, the resulting 
interpretation can consist of one or more sets of 
expressions. The parser itself produces a general semantic 
interpretation based on the grammar rules for the 
controlled language and general semantic information 
retrieved from the background knowledge base. The 
background knowledge base consists of a subset of the 
Cyc Knowledge Base (Lenat & Guha, 1989). The resulting 
interpretation does not contain any QP frame structures 
                                                 
1 As of May 2004, 19 out of 107 rules in our controlled grammar contain 
support for QP-relevant content. This information is used in the 
interpretation process that follows the syntactic analysis of the input 
descriptions.  



 

yet, but it includes supporting information about QP-
specific patterns. Moreover, the general semantic 
interpretation data can contain a certain degree of 
ambiguous information, which requires a semantic 
interpretation process to eliminate the remaining ambiguity 
and produce the best possible interpretation of a sentence. 
This includes the disambiguation of multiple word 
meanings and enforcing the preference for domain-specific 
constructs.  

 
A QP-specific semantic interpretation step then constructs 
QP frame structures from the disambiguated general 
semantic information via sets of forward-chaining rules 
(Forbus & de Kleer, 1993). For example, the following 
rule recognizes a possessive relation between two objects, 
as in the noun phrase ‘the temperature of the brick’.  
 
(rule ((:true (possessiveRelation ?owner ?thing) 
              :var ?pr) Ambiguous conceptual information included in the 

general semantic interpretation data is resolved by a word-
sense disambiguation module. For example, the semantic 
information attached to the noun ‘bar’ can include the 
concepts corresponding to ‘drinking establishment’ and 
‘unit of pressure’. Based on evidence such as contextual 
information and domain-specific constraints, the word-
sense disambiguation process will prefer one concept over 
another. Using third-party resources such as the Cyc KB 
contents, we have to deal with inconsistencies such as 
missing entries, non-aligned argument structures and 
erroneous part of speech information. The system employs 
a word-sense disambiguation module that uses an 
evidence-based approach to collect and weigh different 
types of evidence supporting individual word senses. 

       (:true (isa ?thing ?qtype) 
              :var ?isqtype 
              :test (quantity-type-p ?qtype))) 
   (let ((?qframe (make-frameid ‘QuantityFrame))) 
      (rassert! 
       (:implies (:and ?pr ?isqtype) 
         (:and (isa ?qframe QuantityFrame) 
               (entity ?qframe ?owner) 
               (quantityType ?qframe ?qtype)))))) 
 
The rule instantiates the appropriate expressions for a 
Quantity frame, if its conditions are met. Note that the rule 
only generates slot expressions for the entity and the 
quantity type. This is the minimal information required for 
the instantiation of a quantity. Other rules can add further 
slot information, e.g. about the sign of derivative to the 
Quantity frame. This technique allows the interpreter to 
build frame information in a incremental fashion, even 
across multiple sentences. 

Support for a particular word sense falls into four major 
categories: tests for task-specific evidence, tests for 
contextual restrictions, tests based on preferences in the 
knowledge base, and user preferences. Task-specific 
evidence is based on the relevance of a concept for the 
domain in which the system is operating. For the 
interpretation of physical phenomena, the system is 
looking for information that relates a concept to a known 
quantity type, a physical process, or domain-specific 
terminology. For example, the knowledge base contains 
the concepts Hot, Hot-Spicy and GoodLooking for the 
adjective ‘hot’. The concept Hot is preferred over its 
competitors because it refers to a quantity type. Selectional 
restrictions are used as contextual evidence if a concept 
fits the slot of an expression in which it is used. If the 
predicate emptiesInto requires one of its arguments to be 
a ‘stream’, the concept River is considered more relevant 
than DataStream because it matches the selectional 
restrictions for the argument slot. Since the knowledge 
base can contain inconsistencies, slot restrictions cannot be 
used as a hard constraint.  Preferences for certain word 
senses are based solely on the organization of the KB 
contents, e.g. the preference for specializations over their 
superclasses and are treated as weak evidence with lower 
weights. Finally, user preferences gathered from previous 
manual word sense disambiguation can be counted as 
evidence.2  

 The system can process paragraph-sized descriptions of 
process instances by merging frame information. Similar 
to the construction of QP frames for individual sentences, 
the interpreter uses forward-chaining rules to detect 
mergeable frames. As a final step, the semantic 
interpretation process identifies all QP frames belonging to 
a particular physical process and creates the appropriate 
PhysicalProcess frame structures. 

The following section uses a multi-sentence description 
of a classic QP scenario to illustrate how information 
about the underlying physical process can be captured by 
the semantic interpreter in terms of QP frames. The 
process frame information is then compared against a 
hand-coded model for the same description. 

Example: Fluid flow between two containers 
Here is how a classic QR example, a fluid flow between 
two containers, can be described in our controlled 
language:  
 
(1)    A pipe connects cylinder c1 to cylinder c2. 
(2)    Cylinder c1 contains 5 liters of water. 
(3)    Cylinder c2 contains 2 liters of water. 
(4) Water flows from cylinder c1 to cylinder c2, 

because the pressure in cylinder c1 is greater than 
the pressure in cylinder c2. 

                                                 
2 The system can be run in a manual training mode, in which the user 
picks the appropriate word sense. The choices are recorded and can be 
used in the automatic disambiguation process. However, for the example 
presented in this paper and in (Kuehne, 2004) the system did not use user-
specific training data. 

(5) The higher the pressure in cylinder c1, the higher 
the flowrate of the water. 
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Two more quantity frames are generated for the flowrate. 
Note that the system creates two quantity frames for a 
flowrate. Although the flowrate mentioned in sentence 6 
should be identical with the previously mentioned flowrate 
(indicated by the fact that they both refer to the same 
entity, flow3606), the system does not merge these frames 
because their signs of derivative are different. The two rate 
frames are linked by an unmergeableFrames relation. 
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Frame q3608 (QuantityFrame) 
  Entity: flow3606 

enerated for the amounts of 
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  QType:  Rate 
  Sign:   Positive 
 
Frame q3605 (QuantityFrame) 

tityFrame)   Entity: flow3606 
  QType:  Rate 

Fn (LiquidFn Water))   Sign:   Negative 
 
A single OrdinalRelation frame is created for the different 
levels in the cylinders, because the comparison in (4) is 
directional. The sentence explicitly states that the level in 
C1 is greater than the level in C2. The interpreter can also 
construct OrdinalRelation frames for implicit comparisons. 
For example, for the flow of heat from a hot object A to a 

tityFrame) 

Fn (LiquidFn Water)) 

          
es and their frame elements can be 



 

 (isa flow3606 Translation-Flow) 
 
(isa c1 Container) [QuantityFrame 3609] 
(isa c2 Container) [QuantityFrame 3603] 
 
(> (pressure c1) (pressure c2)) 
 
[QuantityFrames q3608 and q3605] 
 
(qprop (flowrate flow3606) (pressure c1)) 
(qprop- (flowrate flow3606) (pressure c2))
 
(I- (water c1)) (flowrate flow3606)) 
(I+ (water c2)) (flowrate flow3606)) 

(defModelFragment waterflow 
  :subclass (flow) 
  :participants ((src :type contained-stuff) 
                 (dst :type contained-stuff) 
                 (con :type path) 
  :conditions ((connects con src dst) 
               (> (pressure src) (pressure dst)) 
  :quantities ((flowrate :dimension rate-dimension)) 
  :consequences ((Qprop+ (flowrate :self)  
                         (pressure src)) 
                 (Qprop- (flowrate :self)  
                         (pressure dst)) 
                 (I- (water src) (flowrate :self)) 
                 (I+ (water dst) (flowrate :self)))) 

Figure 3: Manually constructed model for comparison 

 cool object B the interpreter generates two OrdinalRelation 
frames for  (> (temp A) (temp B)) and (< (temp B) 
(temp A)). 

Frame ii3597 (IndirectInfluenceFrame) 
  Constrained: q3608 
  Constrainer: q3607    Sign:        Positive 

Frame or3599 (OrdinalRelationFrame)  
  Quantity1: q3607 Frame ii3600 (IndirectInfluenceFrame) 
  Quantity2: q3602   Constrained: q3605 
  Relation:  greaterThan   Constrainer: q3602 
   Sign:        Negative 

The transfer of water between the two cylinders is 
captured by a QuantityTransfer frame, which identifies the 
amount of water in cylinder C1 as the source and the 
amount of water in C2 as the destination quantities of the 
flow. Since no explicit rate is mentioned yet, the semantic 
interpreter instantiates a default Quantity frame for the 
rate. The information from the QuantityTransfer frame is 
then used to generate the appropriate DirectInfluence 
frames for the flow. 

 
The resulting PhysicalProcess frame includes the frame for 
direct and indirect influences as consequences and the 
OrdinalRelation frame as a condition. 
 

Frame pp3614 (PhysicalProcessFrame) 
  Type: 
    Translation-Flow 
    PhysicalProcess 
  Participants: 
    c2      c1 Frame qt3580 (QuantityTransferFrame)   Conditions:   Source: q3609     or3599   Dest:   q3603   Consequences:   Rate:   q3605     di3586      ii3597 Frame di3586 (DirectInfluenceFrame)     ii3600   Constrained: q3603     (toLocation flow3606 c2)   Constrainer: q3605     (fromLocation flow3606 c1)   Sign:        Positive     di3585    Status: Frame di3585 (DirectInfluenceFrame)     Active   Constrained: q3609    Constrainer: q3605 

A comparison of the contents of process frames with the 
information contained in hand-coded models is useful for 
the evaluation of the semantic interpretation results 
produced by our system. Figure 3 shows a model fragment 
for a water flow process and the data for instantiation of 
the two-container example.4  

  Sign:        Negative 
 
The information about the qualitative proportionalities 
described in (5) and (6) leads to the instantiation of two 
IndirectInfluence frames, capturing the influence of the 
pressure in the cylinders on the flowrate of the water. The 
interpretation of (5) includes a Quantity frame for the 
flowrate of water, which is merged with the default rate 
frame instantiated by the previous sentence. The flowrate 
is mentioned again in (6), but since it has a different sign 
of derivative, the quantity information is not merged with 
the previous rate frame. 

The interpretation data generated by our system captures 
most of the information contained in the model fragment 
and the scenario definition. The PhysicalProcess frame for 
                                                 
4 Corresponding pieces of information in the model fragment and the 
interpretation data are juxtaposed and color-coded. 
 

 



the water flow includes both of the cylinders as 
participants as well as the direct and indirect influences 
and the ordinal relationship between the different levels as 
a condition. The third participant in the model fragment, 
the pipe, is missing in the PhysicalProcess frame. The pipe 
is only indirectly involved in the actual flow process as a 
connection between the two cylinders. The interpretation 
data contains expressions for a connection event that 
captures this relationship. However, the description does 
not explicitly mention the connection as a condition for the 
flow process, and the expressions are therefore not 
associated with the PhysicalProcess frame. 

The two flowrate frames as an internal quantity of the 
model fragment is also present in the information extracted 
from the process description, captured by two rate 
quantities associated with the flow event. Although the 
two rate frames are marked as unmergeable in the 
interpretation data for the described instance of a physical 
process, the frames should be merged in the generation of 
abstract model fragment information. We will address this 
point in a future extension to our system. 

For consequences of the process, the interpreter 
generates the appropriate QP frames for the direct 
influences and includes them in the PhysicalProcess frame. 
Note that information about the two indirect influences in 
sentences 5 and 6 is symmetric. This information has to be 
explicitly stated, since the interpreter does not conjecture 
additional frame data from partial or incomplete 
descriptions.  

Incomplete information, such as implicit world 
knowledge or assumptions, is a common phenomenon in 
descriptions of physical processes. For example, human 
readers easily assume that an unblocked connection 
between the two cylinders is necessary for the flow. 
Authors also try to avoid repetitions and leave out parts 
that are similar or symmetrical to others, as in (5) and (6). 
The readers are required (and usually able) to ‘fill in’ these 
parts based on their background knowledge. While this 
technique might work for a human reader, it poses a much 
greater challenge for a computer system. Nevertheless, by 
accumulating a number of different descriptions of the 
same processes, the information missing in individual 
descriptions might be added and a more complete general 
model could be constructed from individual descriptions 
through a generalization process (Kuehne, Forbus, 
Gentner & Quinn, 2000).5  

Interpretation issues 
As the example illustrates, missing information in the 
description and incomplete background knowledge are the 
two main causes for incomplete models. Writers of 
textbooks and popular science literature often assume 
                                                 
5 This assumes that there is complementary information between different 
descriptions, as well as sufficient overlap to make them similar to each 
other. 

some familiarity with basic world knowledge. The author 
can therefore leave out some parts of the descriptions and 
expect the reader to ‘fill in the blanks.’ A similar 
assumption cannot yet be made when the text of a single 
description is processed by an automated system.  

Some grammatical limitations of the controlled 
language make the rewriting process slightly complicated. 
Among them are the missing support for coordinated 
conjunctions, as in ‘the water and the oil are flowing 
though the pipe’, compound nouns (‘water vapor’), 
passive constructs, such as ‘the ball is placed in the box’, 
and the support for different verb tenses, temporal 
ordering (‘after’), and measures (‘daily’, ‘percent’). This 
kind of information is currently lost in the rewritten text, 
but overcoming these limitations are planned future 
extensions to the system. 

Difficulties are also caused by the fact that proper nouns 
and terminology need to be defined in the lexicon before 
the parse is attempted. If a proper noun is not defined, it 
will either be treated as a label, if it appears together with a 
common noun in a noun phrase, or as an unknown word, 
which will most likely prohibit the construction of a 
complete parse tree for the current sentence. The first 
outcome can be used as an interesting workaround for the 
requirement of prior definitions. The proper noun can be 
used as variable in conjunction with a common noun, e.g. 
‘the man Joe’ instead of just ‘Joe’. In this case, the 
interpretation process will treat ‘Joe’ as an instance of the 
concept man and associate all the relevant semantic 
information from the knowledge base with it, i.e. (isa Joe 
AdultMalePerson). Special cases of undefined but 
frequently encountered words are compounds such as 
‘relative humidity’ or ‘heat engine’. These terms are 
defined in the lexicon as hyphenated entries, such as ‘heat-
engine’ or ‘relative-humidity’.  It should be noted that 
interpreting compound noun phrases is notoriously 
difficult (cf. Wisniewski & Love, 1998) and this would be 
a problem that is quite likely to require learning 
conventional interpretations. 
 To find out how extensive the problem of undefined 
proper nouns and the lack of domain-specific vocabulary 
is, we have analyzed a representative part of the corpus 
material for words not covered by our lexicon. The Sun Up 
to Sun Down part (Buckley, 1979) of our corpus contained 
93 missing words (out of a total of 3,319 words, or 2.8%) 
that were not part of the COMLEX 3.1 lexicon data  
(Macleod, Grishman, & Meyers, 1998) used by our parser. 
More than half of these words (53, or 56.38%) were 
hyphenated compounds, such as ‘house-heating’ or ‘water-
filled’. The remaining missing entries were mostly place 
names and adjectives such ‘Australia’ or ‘Irish’, and 
technical terms such as ‘absorber’ or ‘biomass’.    

While missing lexical entries manifest themselves 
primarily in incomplete parses, a major limitation that 
often prevents a successful semantic analysis of the input 
text is the link between the lexicon used by the parser and 
the list of lexical items defined in the Cyc KB. While the 



 

parser lexicon contains 86,297 expanded entries based on 
39,533 unique entries in the COMLEX data, the Cyc 
lexicon defines merely 16,552 instances of the collection 
EnglishWord.6 Even if the same word is defined in both 
lexicons, orthographic differences can still prevent a 
successful mapping. 

Another common source of problems are unconnected 
lexical entries and undefined concepts in the knowledge 
base. Lexicon entries are unconnected if some lexical 
information is missing that would be required for finding 
the appropriate concept, such as missing part of speech 
data or denotational information. We have encountered 
several instances in which a lexicon entry and appropriate 
concept definitions existed in the knowledge base but were 
not linked. In other cases, part of speech information was 
omitted for a word sense, preventing a successful lookup 
of semantic information for a word.  

For some lexicon entries the knowledge base does not 
contain any defined concept at all, i.e. no denotational 
information is associated with a particular word in the 
lexicon. The result is the same as for unconnected lexical 
entries, i.e. no concept or semantic information can be 
retrieved from the knowledge base.  

Underdefined concepts are less problematic. Even if a 
concept can be retrieved for a particular lexical entry, we 
have often found no attached semantic information. For 
nouns, adjectives, and adverbs this usually is not a real 
problem, as long as the concept is tied correctly into the 
ontology. However, for verbs and prepositions the 
additional semantic information is important, since it ties 
different pieces of information within a sentence together 
during the construction of phrase nodes when keywords in 
the semantic data are replaced by discourse variables. For 
nearly half of the 2062 words7 occurring in Sun Up to Sun 
Down our knowledge base did not contain any semantic 
information (Table 1). 

 

Table 1: Semantic information  
for the Sun Up to Sun Down text 

 
This leads directly to another set of problems. In a few 
cases, the semantic information in the knowledge base 
showed inconsistencies, such as reversed argument 

structures, wrong frame keywords, and incorrect part of 
speech information. These inconsistencies are rare and 
easy to correct, but they are difficult to detect in advance.  

The interpretation process can also fail when the general 
semantic interpretation data contains expressions that are 
not recognized by the frame building rules as relevant for 
the instantiation of a particular QP frame. In such cases, 
new rules have to be added to the existing set. 

Conclusions 
As the example has illustrated, the correspondences 
between natural language and QP theory can be used to 
extract relevant information from simple paragraph-sized 
descriptions of instances of physical processes. QP theory 
is used in the interpretation to capture information about 
the underlying processes. The frame data is comparable to 
the information for the QP constituents that one would 
expect in manually constructed models. 
 The system makes use of the correspondences between 
natural language and QP theory in form of grammatical 
and interpretation rules. The results of this analysis were 
used in the development of our controlled language for the 
natural language input descriptions and the interpretation 
rules for in the generation of QP frame structures. It is 
important to note that the controlled language and the 
interpretation rules are domain-independent and intended 
to be applicable to any scenario that fits within the 
framework of QP theory.  
 Traditionally, models have been built by hand, based on 
a detailed analysis of the domain and requiring in-depth 
knowledge of the modeling language (see Kuipers & 
Kassirer (1984) for an example). Our goal is to allow 
domain experts specify their models as natural language 
text descriptions. Although the interpretation process 
requires more explicit and detailed descriptions than those 
usually found in unrestricted natural language text, we 
believe that the information captured as QP frames can be 
used as first cut representation to build more complete 
models through further refinement.  
 The next steps of our work will include such 
refinements of the semantic interpretation process and its 
rules and syntactic patterns, as well as a more flexible 
controlled language for descriptions. We are currently 
designing a module that translates the captured 
information (QP frames and scenario data) into model 
fragments. Furthermore, we plan to move beyond 
descriptions of instances of processes by including general 
information about physical phenomena. This information 
can come from two different sources: controlled language 
descriptions, similar to those of concrete instances, and 
generalized knowledge acquired from instances through an 
abstraction process (Kuehne, Forbus, Gentner, & Quinn, 
2000).   

Type Entries % 
Underspecified 1012 49.1 
Semantic information 
without a single concept 

 
66 

 
3.2 

Single concept 598 29.0 
Multiple concepts 386 18.7 
Total 2062 100 

                                                 
6 These numbers are based on Cyc knowledge base version 576, October 
2003 

 Another important aspect is the availability of additional 
semantic information. As the previous section has shown, 

7 The list of words included the root lexicon entries, i.e. no inflected 
forms, for every available part of speech. 

 



less than half the words in the COMLEX lexicon are 
covered by the knowledge base, and semantic information 
exists for only a fraction of them. Since descriptions of 
physical processes often contain domain-specific 
terminology, the lack of semantic information becomes an 
increasing problem. Although outside the scope of our 
current project, addressing these knowledge engineering 
issues is an important step towards the use of large 
knowledge bases for deep semantic NLP.  
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