
Jitter in Self-Explanatory Simulation

Brian A. Kyckelhahn Kenneth D. Forbus
Qualitative Reasoning Group

Department of Computer Science
Northwestern University

1890 Maple Avenue
Evanston, IL 60201

{kyckelhahn, forbus}@northwestern.edu
http://www.qrg.northwestern.edu/

Abstract

Self-explanatory simulators combine qualitative and
quantitative models to produce results that have both
numerical behaviors and explicit qualitative causal structure.
A problem that can arise in such simulations is jitter, a back
and forth changing of a comparison that at first glance appears
to be an unnatural artifact of the simulation. Jitter can be a
serious problem because it slows simulators down and can
even cause crashes due to memory exhaustion. We discuss a
technique that uses a data structure to dynamically detect and
eliminate jitter.

1. Introduction
Self-explanatory simulators [Forbus & Falkenhainer, 1990;
Amador etal 1993; Iwasaki & Low, 1993; Erignac, 2000]
combine the explanatory power of qualitative
representations with the power of numerical simulation.
This makes them especially useful in education, where the
causal explanations they provide can facilitate a student
understanding how the principles of a domain lead to the
behavior that they are observing [Forbus, 1996, 1997]. In
making self-explanatory simulators for middle-school
curricula, we discovered an interesting problem that can
arise with such simulators that we call jitter. Jitter
manifests itself as a rapid switching back and forth between
partial qualitative states. Jitter drastically increases the size
of the qualitative behavior description, in the worst case
leading to a state transition every two simulator steps. This
is problematic for two reasons. First, the conciseness of
qualitative behavior summaries is lost. Second, the extra
memory load imposed by constructing such large qualitative
descriptions can, and has, caused simulators to crash in
classroom settings.

This paper describes the jitter problem and a solution we
have developed for it. We begin by reviewing the relevant
ideas of self-explanatory simulators. Section 3 examines
the causes and meaning of jitter. Section 4 discusses
solutions to problems similar to jitter. Section 5 describes
an approach for dynamically removing jitter during
simulation. Section 6 reflects on the issues involved.

2. Review of Self-Explanatory Simulation
Self-explanatory simulator compilers are members of a

class of simulators and analysis tools that combine

qualitative and quantitative information (cf. Kay, 1998 or
Biswas et al 1997). Self-explanatory simulator compilers
exploit qualitative reasoning to automatically build
simulations. That is, the conceptual analysis provided by
qualitative reasoning identifies the relevant phenomena for
the system being simulated. For each entity and process,
mathematical models are drawn from the domain theory to
describe it quantitatively. The conditions under which the
qualitative models are applicable are translated into
conditions that govern which aspects of the potentially
possible mathematical models are used at any particular
time. A major tradeoff in creating self-explanatory
simulators is when reasoning should occur. The
compilation strategy [Forbus & Falkenhainer, 1994] does as
much reasoning as possible when the simulator is being
created, to enable the runtime systems to be as compact and
efficient as possible. The interpreter strategy [Amador etal
1993; Iwasaki & Low, 1993; Erignac, 2000] dynamically
formulates new models during simulation, to minimize the
time from the creation of the model to running a simulation.
We believe that the jitter problem can occur with either
strategy, and indeed can potentially occur with any mixed
qualitative/quantitative simulation strategy, although we
focus in the rest of this paper on compiled self-explanatory
simulators for concreteness.

SIMGEN Mk3 is a self-explanatory simulator compiler
that can produce simulators containing thousands of
parameters in polynomial time [Forbus & Falkenhainer,
1994]. The run-time system it produces is based on a static
analysis of the scenario model, which has been instantiated
from a domain theory containing both qualitative and
quantitative model fragments. The modeling language is
essentially qualitative process theory [Forbus, 1984] with
quantitative extensions. Potential limit hypotheses are
identified during the qualitative analysis, without qualitative
simulation, by identifying the quantity conditions of
instantiated model fragments. The qualitative description of
runtime behavior is generated from a set of concise histories
for Boolean parameters that represent the status of the
model fragments in the scenario model. At any specific
time during the simulation the set of active model fragments
can thus be identified. The simulator includes a structured
explanation system [Forbus, 1997] generated from the
qualitative analysis of the scenario model that encodes the
dependencies between causal relationships and model

fragments. Thus at any simulated time the runtime system
can ascertain the exact causal structure that held during that
time.

To ensure that this qualitative description is accurate, the
simulator run-time checks for transitions (using the limit
hypothesis information) at every simulation clock tick. The
odds of exactly hitting a transition to equality are nearly
zero, of course. Consequently, when the runtime system
detects that it has stepped over a transition point, it does a
binary search in simulated time to find the exact time of the
transition, and makes that the next time-step. This
guarantees that the qualitative explanation is complete,
without any gaps.

The only costs of executing a self-explanatory simulator
compared to a traditional numerical simulator are (a) the
cost of transition-testing and the search process to find the
exact transition time and (b) the concise history it builds up
to enable the complete reconstruction of the causal account
for any simulated time. The transition-testing and searching
are comparable to what is required for any simulator where
the equations governing the system change over time. The
concise history requires allocating a new record for each
Boolean that changes state. In most simulations this is not
an issue, since the number of state changes is proportional
to the qualitative complexity of the behavior, independent of
the particular time-step chosen for the simulation. Jitter, as
the next section indicates, changes things.

3. Jitter: Its cause and meaning
Jitter occurs when a quantity rapidly changes back and forth
at a limit point. Consider a quantity Q with a limit point L
in its quantity space. Suppose further that there are two
processes P1 and P2 directly influencing Q. Let us say that
P1 is always active, and providing a negative influence on
Q. P2, on the other hand, is active exactly when Q < L, and
supplies a positive influence on Q. Consider the case where
P1’s effect on Q is always less than P2’s effect, and Q starts
below L. Under the dominating influence of P2, Q will rise
until it reaches L, at which point Q will no longer be
influenced by P2. Q will then begin to drop. But once it
drops, P2 is again active, driving Q back to L. And the
cycle continues, with a new transition every few simulation
time-steps. This is an abstract description of jitter.

We encountered jitter periodically in building self-
explanatory simulators, but generally only when particularly
extreme ranges of parameters were used in a small handful
of models. To our knowledge, it never caused problems in
our fielded simulators1 until we attempted to field an
ecosystem simulator for our Mars Survival Station middle-
school curriculum [Forbus et al 2004]. The idea of the Mars
Survival Station is that students have to create an ecosystem
that can sustain a crew of astronauts for two years, in case
they are stranded. They could choose from a variety of
plants and animals, which were modeled as populations

1 We give them away on our web site, so we have no means of
tracking what users do with them, except for volunteered reports.

with particular predation relationships between them,
caloric values of prey species, etc. in a reasonably general
manner.2 This simulator exhibited jitter with a vengeance.
The Java-based runtime would routinely crash by running
out of memory, providing an intensely frustrating
experience for students.

The ecosystem simulation provides an excellent concrete
example of the abstract pattern described above. In this
simulation, all the plants and animals live in a dome.
Consider the case where the only animals in the dome are
chickens, the only plants are wheat, and the chickens eat the
wheat. Say that, initially, the number of chickens is small
enough so that they don’t consume many wheat plants, and
the wheat plants soon reproduce enough to occupy the entire
floor space of the dome. At this point, the wheat cannot
continue reproducing at the same rate, because they have no
place to grow. Those wheat plants that die do so because
they are eaten by chickens. As is often the case, the domain
modeler did not know the rate at which the wheat would, in
reality, reproduce under these conditions. Instead, the
equation for the reproduction rate of plants specifies that
when there is no more space available in the dome for them
to reproduce into, they stop reproducing. That is, there is a
quantity condition on reproduction that the amount of
available area in the dome is greater than zero. Therefore,
the number of wheat plants will decline during the next time
step of the simulation because they are not reproducing.
Moreover, the negative influence of predation remains in
effect. This frees up floor space in the dome. The wheat’s
reproduction process then becomes active again, and soon
the floor space will be entirely occupied by the wheat.
Figure 1 shows the SIMGEN plot of the number of wheat in
a simulation exhibiting this behavior, and Figure 2 shows a
close-up view of a small portion of the jittering region.

Figure 1: Number of wheat in a jittering simulation.

2 Since students had the option of including large predators such as
tigers in their ecosystem, we modeled the caloric value of humans.
This had an unfortunate interaction with the modeling assumption
that humans are omnivores, which required some special-purpose
modeling to work around.

Figure 2: Close-up view of a portion of Figure 1 illustrating

the jittering of wheat.

Each simulator state in Figures 1 and 2 is marked with a
‘+’. The states between local minima and maxima exist
because, although the dominant process has become active
at each of them, the derivative of the number of wheat is
calculated using the value of reproduction rate from the
previous time step due to the causal structure of the domain
model. A simplified diagram of the causal structure in the
ecosystem domain model pertinent to the jittering wheat and
chicken system is shown in Figure 3. Dashed arrows point
from processes to those quantities that appear in the quantity
conditions of those processes, while solid arrows indicate
influences between two quantities. The influenced quantity
is at the head of the arrow.

Figure 3: Causal diagram of jittering ecosystem simulation.

Is jitter an oscillation? Yes and no. There is a sense in

which the description above is perfectly reasonable as an
explanation of what is happening in the system. However,
that kind of explanation seems to belong to a lower level of
abstraction that is normally implicit in the qualitative
description of behavior since it relies on quite fine-grained
distinctions in time.

Comparing jitter to normal oscillation provides some
interesting insights. Consider a normal second-order
system, such as a spring-block oscillator. This is easily
distinguishable from jitter because of the pattern of
excursions on both sides of the limit points of the system. A
closer comparison is a system such as a neon bulb oscillator,

made up of a battery, capacitor, resistor, and neon bulb. The
neon bulb is connected across the terminals of a capacitor,
which in turn is hooked up in series to a battery via a
resistor. Neon bulbs have a voltage at which they conduct,
Vf, and a lower voltage (the “quenching voltage”) at which
they cease conducting, Vq. Upon connecting the battery to
the circuit, the capacitor conducts and begins collecting
charge. The bulb does not start conducting until the voltage
across it has reached Vf. Upon reaching that voltage, the
bulb acts as a resistor until the capacitor is discharged to the
point where the voltage across it is Vq. The bulb stops
conducting, and the cycle begins again as the capacitor
builds up charge. The waveform of voltage across the
capacitor, VCAP, of such a system are shown in Figure 4.
Sawtooth oscillators such as this more closely resemble
jitter because of their abrupt changes. However, unlike
jitter, an oscillator will take a reasonable number of time-
steps for each transition.

Figure 4: Neon bulb oscillator waveform.

Intuitively, the distinction between jitter and true

oscillation comes down to whether or not the changes, if
considered as real, constitute activity at a time-scale below
the focus of attention for the simulation. A strong case for
jitter not being real can be made on the basis of violation of
continuity implied, but unfortunately, such violations are
standard fare for systems with discontinuous effects.

Given that jitter is a problem, how can it reliably be
detected? To be sure, there are particular categories of
causal structures that result in jitter. However, we believe
that predicting when during a simulation jitter will occur is
impossible.

To see this, consider, for example, an ecosystem
simulation in which there are relatively few wheat plants
initially, and the wheat is soon eaten to extinction by the
chickens. At the start of this simulation, the state is
qualitatively the same as the example whose results are
shown in Figure 1. Numerical information about the rates
of reproduction and death for wheat and the number of

chickens and wheat plants are needed to determine whether
the number of wheat plants will jitter. Even with this
information, scenarios can be imagined that allow jitter to
be predicted only for a very small length of time in the
future. Say, for example, that we added carnivores, such as
wolves, to the simulation where the initial number of wheat
was small. The initial rate of wheat reproduction might still
be small compared to its death rate, but the wolves could be
great enough in number to eat the chickens to a large
degree. Consequently, the wheat could grow to occupy the
entire floor space of the dome and then begin to jitter. In
other words, the initial states of two simulations may be
qualitatively identical – the same processes and influences
are active – and yet one will produce jitter and the other
won’t.

In some cases, it may be possible to rewrite small portions
of either or both of the qualitative and quantitative models
and at least lessen the frequency with which jitter occurs,
while still remaining faithful to the system’s true behavior.
However, while in some simulations jitter may not represent
a desired behavior of the system, it is a product of the
domain theory. Therefore, any technique for lessening the
drawbacks of jitter should be careful to retain this fidelity.

4. Related solutions
While we know of no previous attempts to analyze or solve
the jitter problem, solutions to related problems exist.

Some researchers of hybrid systems have described a

problem closely related to related to jitter called the Zeno
phenomenon, in which an infinite number of transitions
between qualitative states can occur in a finite amount of
time [Johansson, 1999]. Johansson etal proposed a
regularization technique, which involves adding a small
perturbation to the hybrid automata representing the system,
that makes the system non-Zeno. This perturbation can take
spatial, temporal, or dynamical forms. Qualitative
simulators such as SIMGEN are alleviated from having to
deal with the problem of Zeno phenomena, which may be
present in the domain models they simulate, because they
impose a finite time step on the calculation of the values of
model variables. Only when a limit point is skipped in the
evolution of the system does the simulator roll back the
clock and create a new simulator state at a time earlier than
that dictated by the step size.

Another related problem is that of chatter, which is
intractable branching of qualitative states. Chatter arises
because a variable is constrained only by continuity of its
derivative [Fouché and Kuipers, 1991]; when the qualitative
value is unknown, chatter occurs. Solutions to the chatter
problem have included chatter box abstraction [Clancy and
Kuipers, 1993] and dynamic chatter abstraction [Clancy and
Kuipers, 1997], among others. Both chatter box abstraction
and dynamic chatter abstraction involved the creation of a
new qualitative state, which would be an attractive solution
to the jitter problem. However, jitter seems to be harder to
detect, as discussed in Section 5, as the problem with jitter

is not a lack of constraints on variables; both the qualitative
and quantitative states are known when jitter occurs.
Therefore, determining when the system would enter and
exit such a state is problematic.

The next section describes a solution to the problem of
jitter.

5. Dynamic correction of jitter
The most direct solution to jitter is to detect it during a
simulation and filter it out. The algorithm we present here
monitors all quantities involved in limit hypotheses, i.e.
those quantities that may exhibit jitter. It does this by
instantiating a jitter filter data structure, call it JQ, for each
quantity Q involved in a comparison in the simulation. For
example, in the ecosystem simulation there will be a JQ for
tracking the number of chickens, since it is compared to
zero. Even if a parameter participates in multiple
comparisons, only one JQ will be instantiated for it. After
observing the quantity for the time necessary to detect jitter,
it updates the elements of the concise history for the time
period it has observed. By postponing the creation of the
concise history until the jitter detector has finished
analyzing a given time period, we preclude ourselves from
having to modify the same period later because of jitter.

As the simulation runs, the transition finder detects new
limit hypotheses. These limit hypotheses are passed as
input to the appropriate JQ, which stores the new limit
hypothesis it has just received from the transition finder, the
current limit hypothesis, and the limit hypothesis it
previously held. The JQ’s determine that a comparison is
jittering after recording a pattern of a comparison changing
values between two limit hypotheses for several times. The
new, current, and previous limit hypotheses of a JQ
themselves form, conceptually, a queue; a new limit
hypothesis is pushed onto the new slot of this queue only if
it is different from the current one. Therefore, the current
limit hypothesis will always be different from the new and
previous ones.

Each JQ also records the amount of simulated time it has
held a particular limit hypothesis. If the JQ has the same
limit hypothesis for more than some amount of time, the
jitter detection algorithm declares that the comparison is not
jittering. This amount of time is a parmeter, which we shall
call tLH-max, that can be set. In practice, we think that tLH-
max should be some small multiple of the time step. When
the dominant influence on a jittering parameter is relatively
large, the parameter will quickly re-establish the quantity
condition that de-activated the dominant process. The
dominant process will then, in these cases, be inactive for
only one or two time steps before the parameter returns.
The number of times a comparison must switch from one
limit hypothesis to another before being declared jittering is
dictated by another system parameter, which we shall refer
to as NJmin. A sequence of Limit Hypothesis A, Limit
Hypothesis B, Limit Hypothesis A can be seen as a jitter
wave, and NJmin is the minimum number of transitions, or
half waves.

The jitter detecting algorithm is run on each JQ at every
iteration of the simulator, including those inserted by the
transition finder. The psuedocode for the algorithm is given
in Listing 1. The algorithm works as follows. First, it
checks that the JQ has not gone from equality with one limit
point to equality with another, regardless of whether the
parameter spent time in the space inbetween. It is possible
for the parameter to skip the space inbetween two limit
points, because, from the perspective of any individual
comparison, no transition has been skipped. For example,
say that we have a JQ for the voltage across the capacitor in
a simulator for the neon bulb oscillator. The limit
hypotheses found by the transition finder as the voltage
across the bulb reaches Vf, and then drops to Vq, will be:
(voltageCAP, <, =, Vq), (voltageCAP, =, <, Vq), (voltageCAP, >,
=, Vf). The first of these indicates, for example, that the
voltage across the capacitor was less than but is now equal
to the quenching voltage. Note that the second and third of
these could occur at the same instant, or, if the rate of
voltage drop were small enough, at different time steps. If
they occur at the same instant, the function calling
Jitter-Detector will set the new limit hypothesis of
the JQ to the one in which a transition to equality occurs, so
that equality-to-equality transitions can be detected.
Regardless, the jitter detecting algorithm sees that
voltageCAP has gone from equality with Vq to equality with
Vf, and that these limit points are not the same. At that
point it determines that the parameter is not jittering. The
tcorrect field of the JQ is set here so that a record of when the
JQ started jittering is kept; this variable is set in anticipation
of jittering. It would be more difficult to set it after it were
known that the parameter were jittering.

If the test for an equality-to-equality transition fails, the
jitter detector algorithm then tests that the new limit
hypothesis is equal to the previous limit hypothesis, i.e. that
before the current one, and different from the current one.
These three limit hypotheses constitute one wavelength of
the jitter cycle. The time-at-switch field of the JQ indicates
when the JQ switched to its current limit hypothesis, and is
used to verify that the JQ has not had that same limit
hypothesis for greater than the maximum amount of time,
tLH-max. The JQ records, in NJ, the number of transitions of
limit hypotheses consistent with a jittering pattern it has
seen. Once NJmin have been seen, the comparison is said to
be jittering. Note that NJ is compared with NJmin – 1 in this
first “else if” block. This is because NJmin is updated after,
rather than before, the conditions are checked. Finally, the
return variable LH is set to the new limit hypothesis of the
JQ to indicate to the calling function what the jittering limit
hypothesis is.

The second “else if” block corresponds to the case where
the pattern of limit hypothesis transitions seen so far is
consistent with a jittering comparison, but fewer than NJmin
transitions have been seen. This includes the case where the
first limit hypothesis “wave” has just been seen. In this
case, it may be true that there is no previous limit hypothesis
in the JQ, in which case the NJ of the JQ will be 0. For this

condition, the function returning-LH checks that the current
and new limit hypotheses of the JQ are symmetric (as are
(voltageCAP, <, =, Vq) and (voltageCAP, =, <, Vq), for
example). The jitter detector is able to determine which
quantity condition causes the dominant process(es) to be
deactivated for any given jitter cycle; it is simply the one
that is true at the center of the first wavelength. We will call
this the dominant quantity condition. Upon seeing the first
wave, we know that the dominant quantity condition is the
one that is true in the “after” statement of the current limit
hypothesis of the JQ. In the chicken and wheat example, the
dominant process, wheat reproduction, is deactivated when
the available space in the dome equals 0, therefore, equality
of the available space in the dome with 0 is the dominant
quantity condition.

The third “else if” block corresponds to those cases where
a limit hypothesis transition has not occurred, but the pattern
of limit hypotheses seen so far may or may not be consistent
with a jittering parameter. In these cases, no action should
be taken. The final “else” block corresponds to the case
where the parameter is definitely not jittering. Here, we
reset the NJ, previous limit hypothesis, and tcorrect fields.
Finally, a separate “if” block updates the time-at-switch,
previous-LH, and current-LH fields of the JQ if necessary.

Jitter-Detector(JQ, time)
LH := none

if equality-to-equality(JQ)

previous-LH(JQ) := none
NJ(JQ) := 0
tcorrect(JQ) := time

else if (new-LH(JQ) ≠ current-LH(JQ) and
new-LH(JQ) = previous-LH(JQ) and
time – time-at-switch(JQ) ≤ tLH-max and
NJ(JQ) ≥ NJmin – 1)

LH := new-LH(JQ)
else if (new-LH(JQ) ≠ current-LH(JQ) and

time – time-at-switch(JQ) ≤ tLH-max and
(new-LH(JQ) = previous-LH(JQ) or

(NJ(JQ) = 0 and returning-LH(JQ)))
if NJ(JQ) = 0

dominant-LH(JQ) := current-LH
NJ(JQ) := 2

else
NJ(JQ) := NJ(JQ) + 1

else if (new-LH(JQ) = current-LH(JQ) and
time – time-at-switch(JQ) ≤ tLH-max)

else
NJ(JQ) := 0
previous-LH(JQ) := none
tcorrect(JQ) := time

if new-LH(JQ) ≠ current-LH(JQ)
 time-at-switch(JQ) := time
 previous-LH(JQ) := current-LH(JQ)
 current-LH(JQ) := new-LH(JQ)

return(LH)

Listing 1: Jitter-Detector psuedocode.

Each boolean episode is predicated on zero or more

quantity conditions. In our implementation, there is a queue
of values for each of these quantity conditions. At each

iteration of the simulation, the values of the quantity
conditions upon which boolean episodes are predicated are
calculated and put onto queues, independently of the
operation of the jitter-detector. Each value in a queue
represents the value of the quantity condition at a particular
time during the simulation. These queues allow the jitter
detector to observe a jittering comparison for the longest
amount of time it might take to detect a jittering
comparison, (tLH-max · NJmin), before calculating the final
value of the boolean episode. When the jitter detector
indicates that a comparison is jittering, the system finds all
of those queues for quantity conditions that are derived from
that comparison. The jitter detector has, in tcorrect(JQ), the
time of the oldest value in the queue that was calculated
while the parameter jittered. Another queue contains the
simulated times at which all of the values in all of the
queues were calculated. Since a new value is pushed onto
every queue at every step of the simulator, and only then, all
queues are the same length, and every element of any queue
was calculated at the same time as any other element in the
same position of any other queue. Therefore, the system has
all of the information it needs to re-calculate the appropriate
values in the queues of quantity conditions whose
comparisons are jittering. The re-calculation is simple;
those quantity conditions equal to the dominant quantity
condition are given the value true, and the others are given
the value false.

After the amount of time governed by tLH-max and NJmin
has passed, the front of each queue of values is removed and
the value of the episode is calculated. The most recent
process episode of the history is extended if the two values
are the same, or a new episode is created if they are
different.

Consider, for example, the wheat and chicken ecosystem
simulation. The wheat reproduction process is represented
by a boolean episode, and associated with that episode is a
queue representing the value of the quantity condition
“available space in the dome is greater than 0”, as well as a
queue for the quantity condition “number of wheat is greater
than 1”. Say that, after new values are added onto the
queue, the jitter detector indicates that the comparison
between available space in the dome and 0 is jittering.
Figure 5 illustrates the steps of the calculation of the value
of the boolean episode for this example. In this case, NJmin
of the JQ is 5, in other words, once 5 appropriately-formed
half wavelengths have been seen, the jitter detector declares
the comparison to be jittering. Remember that, in the case
that the wheat has grown to the full capacity of the dome
and the chicken are eating it, the dominant condition is
“available space in the dome is equal to 0”. Therefore, the
new value for this “available space” quantity condition is
“false”. The jitter filter replaces the existing values in the
queue with this new value for the time over which the
jittering pattern was observed, which happens to include the
entire queue. Finally, the value of the episode at time 10.0
is calculated using the first items in the two queues and
stored in the history.

Note that it may be more intuitive to the user to give the
boolean episode a special value, rather than true or false,
indicating that an equilibrium had been reached. This
change could be quite easily implemented.

Figure 5: Example sequence of steps taken in calculating
values for the boolean episode of the wheat reproduction

process.

Empirically, we have found that this jitter filter does
indeed produce a more accurate record of events during a
simulation. In simulators where jitter occurs, jitter filtering
improves performance as well as explanation clarity, since
many fewer Boolean episodes are created. For example, in
the chicken and wheat simulation, the jitter filter
successfully replaces all of the boolean episodes for the
wheat reproduction process in the plateau region of Figure
1, of which there were originally 80, with two episodes.
The latter of these two is simply an “edge effect” and exists

only for the final time step. In simulators where jitter does
not occur, the jitter filter incurs a slight runtime penalty and
an extra storage cost, dependent on the size and number of
the queues. These, in turn, depend on the tLH-max and NJmin
parameters, and on the number of times new states are
introduced before regularly scheduled time steps by the
transition finder.

Another drawback of our solution is the fact that it relies
on two parameters to identify jitter. Recall that one of these,
tLH-max, indicates the maximum amount of time a jittering
comparison can stay at a given limit hypothesis. We have
seen that tLH-max can vary across simulations. If these
parameters are set incorrectly, our system will incorrectly
identify a jittering system as not jittering, or a system that is
not jittering as jittering.

Jitter is such a slippery problem that it can at times be
difficult to judge when a parameter is jittering and when it is
not. If the influence exerted by the subordinate process
increases, it may cause the jittering parameter to take longer
to return to the limit point around which it jitters. For
example, we ran a simulation similar to the one having only
chicken and wheat, in which the number of wheat jitters
after fully occupying the floor space of the dome. We
increased the maximum allowable density of chickens per
square meter so that the chickens are able to eat the wheat
until there are no more of them, at which point the chickens
rapidly die off. A close-up view showing the region where
the number of wheat was dislodged from the jittering state is
shown in Figure 6. Notice that the amount of time during
which the number of wheat is less than the maximum
allowed by the available space in the dome increases with
time, thereby making it difficult to say at what point the
jitter stops. Because the time a jittering comparison stays at
any limit hypothesis can vary, tLH-max is valuable as a
maximum threshold beyond which the person running the
simulation is willing to allow the simulation to run unaltered
by the jitter filter.

Figure 6: Number of wheat dislodged from the jittering
state.

6. Discussion
Ultimately, jitter seems to be an undesirable consequence of
making simulation models that are more explicit that usual.
The ability to make intricate distinctions unfortunately
sometimes leads to them being made inappropriately. In
some cases, the jitter filtering algorithm we developed can
eliminate it dynamically. This work suggests three open
questions:
1. Is there some general, well-grounded guidance for how

to set the jitter filter parameters?
2. Is there a formal method for always identifying via

static analysis or by a parameter-free method at
runtime, when jitter will occur?

3. While jitter arises in the context of self-explanatory
simulators, we suspect that the problem is more general
than that, and can affect any hybrid
qualitative/quantitative simulation scheme that has
conditionally applicable models. This is of course an
empirical question.

Acknowledgments
This research was supported by the National Science
Foundation under the REPP program.

References
Amador, F., Finkelstein, A. and Weld, D. Real-time self-

explanatory simulation. Proceedings of AAAI-93.
Biswas, G., Kapadia, R., and Xudong W. Combined

Qualitative-Quantitative Steady State Diagnosis of
Continuous-valued Systems. IEEE Transactions on
Systems, Man and Cybernetics, vol. 27, PART A, no. 2,
pp. 167-185, 1997.

Clancy, D. and B. Kuipers. Behavior abstraction for
tractable simulation. Proceedings from the Seventh
International Workshop on Qualitative Reasoning, May
1993.

Clancy, D. and B. Kuipers. Dynamic chatter abstraction: a
scalable technique for avoiding irrelevant distinctions
during qualitative simulation. Proceedings from the 11th
International Workshop on Qualitative Reasoning about
Physical Systems (QR-97), June 1997.

Erignac, C. 2000. Interactive semi-qualitative simulation.
Proceedings of the 14th international workshop on
qualitative reasoning (QR2000), Morelia, Mexico. June,
2000.

Forbus, K. D. (1984). Qualitative Process Theory. Journal
of Artificial Intelligence, 24, 85-168.

Forbus, K. Self-Explanatory Simulators for Middle-School
Science Education: A Progress Report. Proceedings of
QR96.

Forbus, K. Using qualitative physics to create articulate
educational software. IEEE Expert, 12(3), May/June
1997.

Forbus, K., Carney, K., Sherin, B. and Ureel, L. To appear.
VModel: A visual qualitative modeling environment for
middle-school students. To appear in Proceedings of the
16th Innovative Applications of Artificial Intelligence
Conference, San Jose, July 2004.

Forbus, K. and Falkenhainer, B. Self-explanatory
simulations: An integration of qualitative and quantitative
knowledge, Proceedings of AAAI-90.

Forbus, K. D., & Falkenhainer, B. (1994). Polynomial-time
Compilation of Self-Explanatory Simulators. Proceedings
of the Eighth International Workshop on Qualitative
Reasoning, Nara, Japan.

Fouché, P. and Kuipers, B. Towards a Unified Framework
for Qualitative Simulation. In Proceedings of the Fifth
International Workshop on Qualitative Reasoning about
Physical Systems, 295-301, 1991.

Iwasaki, Y. & Low, C. Model generation and simulation of
device behavior with continuous and discrete changes.
Intelligent Systems Engineering, 1(2), 1993.

Johansson, K., Egerstedt, M., Lygeros, J., and Sastry, S. On
the regularization of Zeno hybrid automata. Systems and
Control Letters, 38:141-150, 1999.

Kay, H. SQSIM: a simulator for imprecise ODE models.
Computers and Chemical Engineering, 23(1):27-46,
1998.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

