
This paper describes the Structure-Mapping Engine (SME), a
cognitive simulation program for studying human analogical
processing . SME is based on Gentner's Structure-Mapping theory of
analogy, and provides a "tool kit" for constructing matching
algorithms consistent with this theory. This flexibility enhances
cognitive simulation studies by simplifying experimentation .
Furthermore, SME is very efficient, making it a candidate component
for machine learning systems as well . We review the Structure-
Mapping theory and describe the design of the engine . Next we
demonstrate some examples of its operation. Finally, we discuss our
plans for using SME in cognitive simulation studies .

1. INTRODUCTION

ABSTRACT

This paper describes the Structure-Mapping Engine (SME), a
cognitive simulation program we have built to explore the
computational aspects of Gentner's Structure-Mapping theory of
analogical processing . SME is both flexible and efficient. It provides
a 'tool kit" for constructing matchers consistent with the kinds of
comparisons sanctioned by Gentner's theory . A matcher is specified
by a collection of rules. The rules can include strengths of evidence,
and the program uses these weights and a novel procedure for
combining the local matches constructed by the rules to efficiently
produce and weigh all consistent global matches. The efficiency and
flexibility of this matching algorithm suggests it would also be a
viable component for machine-learning systems.

Cognitive simulation studies can offer important insights for
understanding the human mind . Unfortunately, cognitive simulation
programs tend to be complex and computationally expensive (c .f.
(Anderson, 1983 ; Van Lehn, 1983]) . Being complex makes the
relationship between the program and the theory obscure. In
addition, it is harder to make computational experiments and
account for new data if the only way to change the program's
operation is surgery on the code. Being computationally expensive
means performing fewer experiments, and thus exploring fewer
possibilities . There have been several important AI programs that
study the computational aspects of analogy, but they were not
designed to satisfy the above criteria (e .g . Burnstein, 1983 ; Winston,
1980, 1982).

The next section briefly reviews Gentner's Structure-Mapping
theory . Section 3 describes SME's organisation and its novel
matching algorithm. Section 4 illustrates SME's operation on several
examples, and Section 5 describes our plans for future development
and for using it in psychological experimentation .

2. THE STRUCTURE-MAPPING THEORY

The theoretical framework for this research is the Structure-
Mapping theory of analogy (Gentner, 1980, 1982, 1983 ; Gentner &
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Gentner, 1983). This theory describes the set of implicit rules by
which people interpret analogy and similarity. The central intuition
is that an analogy is a mapping of knowledge from one domain (the
base) into another (the target) which conveys that a system of
relations known to hold in the base also holds in the target . The
target objects do not have to resemble their corresponding base
objects. Objects are placed in correspondence by virtue of their like
roles in the common relational structure .

Given collections of objects (b l), (ti) in the base and target
representations, respectively, the tacit rules for constructing the
analogical mapping M can be formalised as follows:*' Objects in the
base are placed in correspondence with objects in the target:

M :

	

bi
__> tI

Predicates are mapped from the base to the target according to the
following mapping rules:

(2) Relations between objects in the base tend to be mapped
across:

e.g . COLLIDE (b 1,b 1 ) -"> COLLIDE(t1,tI)

Attributes of objects are dropped:
e.g. RED (b t) -f> RED (ti)

The particular relations mapped are determined by
syetematieiiy, as defined by the existence of higher-order'
constraining relations which can themselves be mapped:

e.g.CAUSE (PUSH (b l , bI), COLLIDE (bj, bid]

	

-->
CAUSE[PUSH (t1 , t1) , COLLIDE (tl , td ]

For example, consider the analogy between heat-flow and
water-flow. Figure I shows a water-flow situation and an analogous
heat-flow situation.

	

Figure 2 shows the representation a learner

Figure 1 . Two Physical Situations Involving Flow
(adapted from Buckley, 1979, pp 15-25) .

WAnraoorese

so Besides analogy, other kinds of similarity can be characterized by the distri-
bution of relational and attributional predicates that are mapped . In analogy, only re-
lational predicates are mapped. In literal similarity, both relational predicates and
object-attributes are mapped . In mere-appearance matches, it is chiefly object-
attributes that are mapped .

"* We define the order of an item in a representation as follows: Objects and
constants are order 0 . The order of a predicate is one plus the maximum of the order
of its arguments. Thus GREATER-THAN(x, y) is first-order if x and y are objects,
and CAUSE [GREATER-THAN (x,

	

y) .

	

BREAK(x) I

	

is second-order .

	

Examples of
bigher-order relations include CAUSE and IMPLIES.



Water Flow

CAUSE

GREATER

	

FLOW(beaker, vi ad, water, pipe)

B2

	

B3
PRESSURE(beaker) PRESSURE(vial) GREATER

H4
LIQUID(water)
FLAT-TOP(water) Ha Ha

DIAMETER(beaker) DIAMETER(vial)
CLEAR(beaker)

Heat Flow

GREATER

T2

	

T3
TEMPERATURE(coffee) TEMPERATURE(ice cube)

FLOW(ice cube,coffee,heat,bar)
LIQUID(coffee)

FLAT-TOP(coffee)

Figure 2 .
Simplified Water Flow and Heat Flow Descriptions

might have of these situations (simplified for clarity) .
In order to comprehend the analogy "Heat is like water" a

learner must:
(1)

	

Set up the object correspondences between the two domains :

heat --> water, tube --> metal bar,
beaker --> coffee, vial --> ice cube

(2)

	

Discard object attributes, such as CYLINDRICAL (beaker) .
Map base relations such as

GREATER-THAN[PRESSURE(water, beaker),
PRESSURE(water, vial)]

to the corresponding relations in the target domain .
(4) Observe systematicity : i .e ., keep relations belonging to a

systematic relational structure in preference to isolated
relationships . In this example,

CAUSE(GREATER-THAN[PRESSURE(water, beaker),
FRESSURE(water, vial)),

FLOW(water, pipe, beaker, vial))
is mapped into
CAUSE(GREATER-THAN(TEMPERATURE(heat, coffee),

TEMPERATURE(heat,ice cube)],
FLOW(heat, bar, coffee, ice cube))

while isolated relations, such as
GREATER-THAN (DIAMETER (beaker), DIAMETER (vial)]

are discarded .
The systematicity principle is central to analogy . Analogy

conveys a system of connected knowledge, not a mere assortment of
independent facts . Prefering systems of predicates that contain
higher-order relations with inferential import is a syntactic
expression of this tacit preference for coherence and deductive power
in analogy . It is the higher-order relational structure that determines
which of two possible matches is made. For example, suppose in the
previous example we were concerned with objects differing in specific
heat, such as a metal ball-bearing and a marble of equal mass,
rather than temperatures . Then DIAMETER becomes relevant, since
(in a more complete model than we have space for) DIAMETER affects
the capacity of a container, the analog to specific heat .

The Structure-Mapping theory has received a great deal of
convergent theoretical support in artificial intelligence and
psychology . Mthough there are differences in emphasis, there is
widespread agreement on the basic elements of one-to-one mappings
of objects with carryover of predicates (Burstein, 1983 ; Carbonell,
1983 ; Hofstadter,1984 ; Kedar-Cabelli, 1985 ; Reed, 1985; Rumelhart
& Norman, 1981 ; Winston, 1982) . Moreover, all these researchers
have adopted something like the systematicity principle, or a special
case of systematicity . For example, Carbonell focuses on plans and
goals as the high-order relations that give constraint to a system,
and Winston focuses on causality. Also, some models combine a
structure-mapping component, which generates possible
interpretations of a given analogy, with a pragmatic component
which chooses the relevant interpretation (e .g ., Burstein, 1983;
Kedar-Cabelli, 1985).

Empirical psychological studies have borne out the prediction
that systematicity is a key element of people's implicit rules for
analogical mapping . Adults focus on shared systematic relational
structure in interpreting analogy . They tend to include relations and
omit attributes in their interpretations of analogy, and they judge
analogies as more sound and more apt if base and target share
systematic relational structure (Gentner, 1980; Gentner & Landers,
1985 ; Gentner & Stuart, 1983) . Finally, in developmental work we
have found that children are better at performing difficult mappings
when the base structure is systematic (Gentner & Toupin, in press).

Given the existing theoretical and empirical psychological
support, we have decided that cognitive simulation is needed to
allow us to explore the theory still more deeply .

3. THE STRUCTURE-MAPPING ENGINE : DESIGN

Given the descriptions of a base and a target, SME constructs
all syntactically consistent analogical mappings between them . As
noted above, the mappings consist of pairwise matches between
predicates and objects in the base and target, plus a list of predicates
which exist in the base but not the target . This list of predicates is
the set of candidate inferences sanctioned by the analogy. SME also
provides a syntactic evaluation of each mapping . In accordance with
Structure-Mapping theory, no domain information beyond the
representation of the target is used in SME to evaluate the candidate
inferences - that is the job of other modules.

The base and target representations provided to SME are
collections of facts called description groups . Domain objects and
constants are collectively referred to as entities. The construction of
the analogy is guided by match rules which specify which facts and
entities in the base and target might match and estimate the
believability of each possible component of a match . Importantly, to
build a new match function one simply loads a new set of match
rules. These rules are the key to SME's flexibility .

An analogy is processed in three steps. First, all potential
pairings between items in the base and target are constructed and
individually evaluated . Second, all sets of consistent combinations of
these pairings are constructed to form the possible global matches
and their corresponding candidate inference sets. Finally, the global
matches are evaluated syntactically to provide a score . We now
describe these computations in detail .

3 .1 . Step Is Construct local match hypotheses

SME begins by finding for each entity and predicate in the base
the set of entities or predicates in the target that could plausibly
match that item . Plausibility is determined by match hypothesis

constructor rules, which take the form

(MHCrule <condition> <body>)

The body of these rules is run on each pair of items (one from the
base and one from the target) that satisfy the condition and installs
a match hypothesis which represents the possibility of them

COGNITIVE MODELLING AND EDUCATION / 3-3



matching . For example, we state that all predicates whose predicate
name is identical could potentially match with the rule

(Mlicrule (equal-functors? *base-fact* *target-fact*)
(install-MH *base-fact* *target-tact*))

The likelyhood of each match hypothesis is found by running
match evidence rules and combining their results. The evidence rules
provide support for a match hypothesis by examining the syntactic
properties of the items matched. For example, the rule

(HHErule (and (equal (mh-type *HH*)

	

fact)
(equal-functors? (mh-base-item *HH*)

(mh-target-item *MH*)))
(KHevidence *HH* 0 .6 o .o))

states "If the two items are facts and their functors are the same,
then supply 0.5 evidence in favor of the match hypothesis ."* The
rules may also examine match hypotheses associated with the
arguments of these items to provide support based on systematicity .
This causes evidence for a match hypothesis to increase with the
amount of higher-order structure supporting it . We use the
Dempster-Shafer formalism for probabilities (Shafer, 1978) and
combine evidence with a simplified form of Dempster's rule of
combination (Prade, 1983 ; Ginsberg, 1984). By using the simplified
formula we are assuming independence among the match hypotheses,
but this is not a problem because we are only using it to produce
scores for ordering candidates rather than estimating probabilities.

The state of the match between the water flow and heat flow
descriptions of Figure 2 after running these first two sets of rules is
shown in Figure 3. The weights shown in the figure are the support
for each match hypothesis . Internally the program stores a Shafer
interval, consisting of the support for the match and the maximum
plausible support (i .e., one minus the support against it). The water
flow - heat flow analogy is made possible by the program being able
to match predicates with different names, such as matching

Figure 3.
Water Flow - - Heat Flow Match After Running Local Rules

PRESSURE and TEMPERATURE. This behavior is caused by the
particular set of rules we are using. In these rules, relational
predicates such as GREATER are limited to matching predicates
having the same name, while functional predicates such as
TEMPERATURE can match other functional predicates . Note that at
this stage, SME is entertaining a number of matches that will later

* Evidence is attributed to a match hypothesis in the form of two numbers. The
first number corresponds to evidence in favor of the match and the second number in.
dilates evidence against the match. The sum of these numbers must be less than or
equal to one.
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be discarded, such as LIQUID(water) - LIQUID(coffee) and
DIAMETER(vial) - TEMPERATURE ice cube) .

a.2 . Step 2: Global Match Construction
Once the individual match hypotheses have been constructed

and analysed, SME builds a set of analogical mappings between the
base and target. Each mapping is a maximal set of consistent match
hypotheses plus the candidate inferences supported by those
hypotheses. Consistency is enforced by insisting that a match
hypothesis MH is in the analogy only if the mapping includes other
match hypotheses that pair up all the arguments of the base and
target items of MIL The mappings are maximal in that adding
another match hypothesis would lead to a contradiction, as indicated
by a base item being matched to two target items or vice versa.

The key to forming the mappings is constructing the sets of
entity correspondences (called Bmapa). Mappings are constructed in
four steps. First, find all entity justifiers. An entity justifier is a
match hypothesis that directly justifies one or more Emaps, in that
some of its arguments are entities . Second, associate with each
match hypothesis the set of Emaps that it implies . This step is
accomplished by propagating Emaps upwards from entity justifiers.
The set of Emaps that a match hypothesis supports is simply the
union of all Emaps supported by its descendents. Third, create a
collection of globally consistent matches, called Cmaps. Call a match
hypothesis that is not the descendent of any other match hypothesis
a root . Notice that if the Emaps supported by a root are consistent,
then the entire structure under it is consistent. In the simplest case,
the entire collection of descendents may be collected together to form
a globally consistent match. However, if the root is not consistent,
then the same procedure is applied recursively to each descendent .
The result is a collection of sets of match hypotheses, within which
all Emaps are consistent . The final step is to generate all consistent
combinations of these sets, keeping those combinations that are
maximal. This is done by first combining Gmaps which are part of

Gmap #1:

	

( (GREATER ., .- . GREATERTd (FLOW » FLOW)
(PRESSURE., » TEMPERATURE,,)
(PRESSURE., » TEMPERATURET,) )

Emaps: ( (beaker .- . coffee) (vial » ice cube)
(water » heat) (pipe"" bar) )

Weight: 0.9800
Candidate Inferences :

	

( (CAUSE GREATERTI FLOW)

Gmap #2 :

	

{ (GREATER., .» GREATERT:)
(DIAMETER., » TEMPERATURE,,)
(DIAMETER,, .+ TEMPERATURET,) )

Emaps: ( (beaker - coffee) (vial .» ice cube)
Weight: 0.0195

Candidate Inferences:

Gmap #3 : ( (LIQUID .-. LIQUID) (FLAT-TOP .+ FLAT-TOP)
Emaps: ( (water .+ coffee)
Weight : 0.0004

Candidate Inferences:

Figure 4. Gmap Construction

Match Hypothesis
Base Node Tar et Node_ vide ce

GREATER,- GREATERT.mw.N.n 0.650

GREATERokawe GREATER,,.p..ew. 0.550

PRESSURE,.,. TEMPERATURE.." 0.712

PRESSURE,,, TEMPERATURE,. yea 0.712

DIAMETER`..,. TEMPERATURE-e-. 0.712

DIAMETER,,, TEMPERATURE
k, see 0.712

FLOWe.w, FLOW,-, 0.790

FLAT_., FLAT . ..., 0.790

LIQUIDw.w, LIQUID,., . 0.790

vial ice cube 0.932

beaker coffee 0.932
water coffee 0.854
water heat 0.632
pipe bar 0.632



the same base structure (e .g . the Gmap for the pressure inequality
would combine with the Gmap for the flow relation to form a single
Gmap) and then making any further combinations which are
consistent. Figure 4(a) shows how the initial set of Gmaps is formed,
while Figure 4(b) shows the final Gmaps created for the water flow -

heat flow analogy.

Associated with each Gmap is a (possibly empty) set of
candidate inferences. Candidate inferences are base predicates that
would fill in structure which is not in the Gmap (and hence not

already in the target) . In Figure 4(b), for example, Gmap 01 has the
top level CAUSE predicate as its sole candidate inference. If the
FLOW predicate was not present in the target, then the candidate
inferences for a Gmap corresponding to the pressure inequality
would be both CAUSE and FLOW . All candidate inferences must be
consistent with known target facts. In addition, they must be
consistent with the Gmap's structure and supported by some
member of it. For example, GREATER-THAN [DIAMETER (coffee),
DIAMETER (ice cube)] is not a valid candidate inference for the
first Gmap because it does not intersect the existing Gmap structure.

8.8. Step 8s Global Match Selection

Several factors must be taken into account when deciding
which Gmap is the best analogy. We have identified three factors as
particularly important:

The evidence for the individual match hypotheses in the
Gmap.

(2)

	

The candidate inferences sanctioned by the Gmap .

(3) The graph-theoretic structure of the Gmap, e.g ., the number
and relative size of connected components .

Exploring the relative importance of these and other factors is
part of the desiderata for SME, hence we have made the criteria
programmable . Gmap evidence rules, whose form is much the same
as the other kinds of rules mentioned previously, can provide
evidence for a Gmap based on whatever factors are deemed
appropriate. To make an appropriate selection, evidence for Gmaps
is combined under strict adherence to Dempster's rule for combining
probabilities. Thus the set of Gmaps is treated as a set of mutually
exclusive choices, and evidence in favor of one Gmap implicitly
counts as evidence against the others . Dempster's rule automatically
normalizes the weights so that the sum of the weights supporting
each Gmap will always be less than or equal to one. In Figure 4(b),
the Gmap which maps the PRESSURE relation is believed more than
the Gmap which maps the DIAMETER relation. This conclusion is
based on two rules. The first rule simply permits the evidence for a
match hypothesis in a Gmap to count as evidence for that Gmap .
The second rule gives evidence of 0.3 to a Gmap for each candidate
inference it sanctions.

We suspect Gnat the ability to "tune" the criteria for choosing
a Gmap will be important for modeling individual differences in
analogical style and a subject's domain knowledge.

	

For example, a
conservative strategy might favor taking Gmaps with some
candidate inferences but not too many, in order to maximize the
probability of being right.

4. EXAMPLES

The Structure-Mapping engine has been tested on a number of
examples drawn from a variety of domains. We discuss a few
examples to further demonstrate SME's flexibility and generality .
Our first example is taken from Rutherford's analogy between the
solar system and the hydrogen atom . The second example
demonstrates how the program reasons about complicated
descriptions of water flow and heat flow which were generated by a
qualitative reasoning program before the inception of SME.

4.1. Solar System - Rutherford Atom Analogy

The Rutherford model of the hydrogen atom was based on the
well-understood behavior of the solar system. Given the
descriptions shown in Figure 5, the Structure-Mapping engine
constructed three possible interpretations. The most preferred

ATTRA

Solar System

sun,planet) GREATER
_BI

/ \

GREATER
B4

GREATER
T1

Revolve-Aiound(planet,sun)

82
MASS(sun) MASS(planet)

YELLOW(sun)
B6

	

B6
TEMPERATURE(sun) TEMPERATURE(plaaet)

Rutherford Atom

T23
MASS(nucleus) MASS(electrou)

ATTRACT(nucleus,electron)

REVOLVE-AROUND(electron,nucleus)

Figure S. Solar System - Rutherford Atom Analogy

mapping (given a weight of 0.99) pairs up the nucleus with the gun
and the planet with the electron. This mapping is based on the mass
inequality in the solar system playing the same role as the mass
inequality in the atom . It sanctions the inference that the inequality,
together with the mutual attraction of the nucleus and the electron,
causes the electron to revolve around the nucleus. The other major
Gmap (given a weight of 0.01) has the same entity correspondences,
but is based on the solar system's temperature inequality mapping to
the atom's mass inequality . There is much less belief in this
interpretation because the temperature and mass predicates are
different and because this Gmap does not allow any candidate
inferences. The third Gmap is a spurious collection of match
hypotheses which imply that the mass of the sun and planet should
correspond to the mass of the electron and nucleus, respectively .
There is no higher-level structure to support this interpretation and
so the final belief is 1x10"°. This example demonstrates how SME is
able to generate all syntactically plausible interpretations of a
potentially analogous situation . It also show that our rules have a
preference for matching predicates of the same name (e .g. MASS with
MASS), but is able to match predicates with different names (e.g .
TEMPERATURE with MASS).

4.2 . Water Flow - Heat Flow Analogy

The Structure-Mapping engine has applications beyond
cognitive simulation. For example, we could use this program in
conjunction with a qualitative reasoning program to model the way
people use analogy to reason about the physical world. Figure 8 (a)
shows a domain description for water flow which was used in an
actual qualitative reasoning program (Forbus 1984 ; Forbus
Gentner, 1983). Figure 8 (b) shows a greatly reduced version of the
same program's description of heat flow.

As with the earlier, simplified descriptions of water flow and
heat flow, SME was able to make the correct analogical
correspondences, creating all of the possible candidate inferences in
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beat-
flow

Figure 8. Water Flow (a) and Heat Flow (b)

the process. Interestingly, only one consistent interpretation arose.
All other match hypotheses were eliminated because they had no
descendants to support their existence. The candidate inferences
made were the correct ones,,namely that a difference in temperature
and an aligned heat path implies an instance of heat flow and that
the rate of heat flow between two objects is proportional to the
difference in their temperatures.

4.5 . Summary

Space limitations forbid a detailed account of our experiments
to date; we summarize two here. First, we have analysed short
stories described in predicate calculus to compare mere appearance,
surface matches with true analogy. Second, we have begun exploring
a number of match algorithms . For example, one set of rules focuses
on object attributes (mere-appearance matches), thus mimicking
how children tend to treat potentially analogous situations (see
below). These rules, when run on the water flow - beat flow
descriptions of Figure 2, choose the water to coffee correspondence as
the best interpretation due to their surface similarity and fail to
notice the relational structure which implies that the role of water
actually corresponds to the role of heat in the water flow and heat
flow situations.
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s . CONCLUSIONS
SME has significant advantages over more traditional matching

algorithms . Methodologically, the advantage of producing all
possible mappings is that one can easily see syntactically consistent
alternatives to the beat match. Yet SME's matching algorithm is
very efficient, avoiding the extensive backtracking normally
associated with pattern-matching systems.' On our large water flow
- heat flow example, the program took only 0.7 seconds to perform
the entire match on a Symbolics 3840 . This includes everything
from the construction of local match hypotheses to the gathering of
candidate inferences and Gmap construction . The smaller examples
average 0.4 seconds. The current program needs to be expanded to
properly handle predicates which are commutative (e .g . SUM) or take
a variable number of arguments (e.g . AND) . In addition, we would
like to add the ability to introduce new entities when required by the
analogical mapping through the use of Skolem functions.

The results of SME's operation on the examples above provides
suggestive evidence concerning a currently debated issue in analogy.
The question concerns how much a purely syntactic account of
analogy can do . Although many researchers have adopted variants
of the systematicity principle, often specific domain knowledge or
pragmatic information is used as well. For example, Carbonell
(1981, 1983) focuses on plans and goals as the relevant higher-order
relations for analogical mapping. Winston's (1982) system uses
causal relations in its importance-guided matching algorithm.
Winston (personal communication, November 1985] has also
investigated goal-driven importance algorithms . The extreme view
is taken by Holyoak (1985), whose account of analogical mapping
relies solely on the relevance of predicates to the current plan .
Among the claims of these researchers are (1) purely syntactic
information is insufficient to guide analogical mapping and (2) even
if it were sufficient, such a system would be inefficient (e .g .
Burnstein, 1988, p.358). The evidence from SME so far suggests
otherwise, since it generates intuitively plausible answers and does so
rapidly. We intend to explore this issue more fully by using a
variety of examples to see if and when the purely syntactic approach
breaks down . Clearly content knowledge must be invoked at some
point to evaluate whether the candidate inferences from a given
analogy are appropriate . This suggests a model which uses a
context-sensitive, expectation-driven system to evaluate the output
of SME. This extension is compatible with the combination models
proposed by Burstein (1983) and Kedar-Cabelli (1985) .

In addition to tests of the basic algorithm, we plan several
cognitive simulation studies of analogical reasoning and learning .
We mention only one here. Psychological research shows a marked
developmental shift in analogical processing . Young children rely on
surface information in analogical mapping; at older ages, systematic
mappings are preferred (Gentner & Stuart, 1983 ; Gentner & Toupin,
in press; Holyoak, Juin &Biliman, 1985 ; Vosniadou, 1985). Further,
there is some evidence that a similar shift from surface to systematic
mappings occurs in the novice-expert transition in adults (Chi,
Glaser & Reese 1982 ; Larkin, 1985 ; Novick, 1985 ; Reed, 1985 ; and
Ross, 1984).

In both cases there are two very different interpretations for
this analogical shift: (1) acquisition of knowledge; or (2) a change in
the analogy algorithm. The knowledge-based interpretation is that
children and novices lack the necessary higher-order relational
structures to guide their analogizing. The second explanation is that
the algorithm for analogical mapping changes, either due to
maturation or learning . In human learning it is difficult to decide
this issue, since exposure to domain knowledge and practice in
analogy and reasoning tend to occur simultaneously. SME gives us a
unique opportunity to vary independently the analogy algorithm and
the amount and kind of domain knowledge. For example, we can
compare identical evaluation algorithms operating on novice versus

While we have not yet explored this possibility, it appears that a variant or
this matching algorithm could be very useful for connectionist architectures .



expert representations, or we can compare different analogy
evaluation rules operating on the same representation (see summary
above). The performance of SME under these conditions can be
compared with novice versus expert human performance.
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