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Abstract 

An unsolved problem in qualitative physics is generating a 
qualitative understanding of how a physical system is behaving 
from raw data, especially numerical data taken across time, to 
reveal changing internal state. Yet providing this ability to “read 
gauges” is a critical step towards building the next generation of 
intelligent computer-aided engineering systems and allowing robots 
to work in unconstrained envirionments. This paper presents a 
theory to solve this problem. Importantly, the theory is domain 
independent and will work with any system of qualitative physics. 
It requires only a qualitative description of the domain capable of 
supporting envisioning and domain-specific techniques for providing 
an initial qualitative description of numerical measurements. The 
theory has been fully implemented, and an extended example using 
Qualitative Process theory is presented. 

1. Introduction 

Interpreting numerical data is an important part of 
monitoring, operating, analyzing, debugging, and designing complex 
physical systems. A person operating a nuclear power plant or 
propulsion plant must constantly read and interpret gauges to 
maintain an understanding of what is happening and take corrective 
action, if necessary. Designing a new system requires running 
numerical simulations (or building models of the system) and 
analyzing the results. Diagnosis requires interpreting behavior, 
both to see if the system is actually operating correctly and to 
determine if a hypothesized fault can account for the observed 
behavior. All of these problems require the ability to deduce the 
changing internal state of the system across time from 
measurements. 

Currently there is a great deal of interest in applying 
qualitative physics to engineering tasks such as diagnosis (e.g., the 
articles in (Bobrow, 19851). For such efforts to be successful, a 
theory about how to translate observed behavior, including 
numerical data, into useful qualitative terms is essential. This 
paper presents such a theory. The theory is domain independent 
and makes only two assumptions about the nature of the underlying 
domain model. Specifically, it assumes that: 

1. Given a particular physical situation, a graph of all possible 
behaviors - an envisionment - may be generated. 

2. Domain-specific criteria are available for quantizing numerical 
data into an initial qualitative description. 

The theory is analogous to AI models of speech understanding 
(e.g., [Reddy, et. al, 1973]). In these models the speech signal is 
partitioned into segments, each of which is explained in terms of 
phonemes and words. Grammatical constraints are imposed 
between the hypothesized words to prune the possible 
interpretations. In this theory, the initial signal is partitioned into 
pieces which are interpreted as possible particular qualitative states 
of the system. By supplying information about state transitions, 

the envisionment plays the role of grammatical constraints, 
imposing compatibility conditions between the hypotheses for 
adjacent partitions. 

1.1. Overview 

The goal of this theory is to produce a general solution for the 
problem which can be instantiated for any particular physics and 
domain. Consequently we couch the analysis in an abstract 
vocabulary and specify what domain-dependent modules are 
required to produce initial qualitative descriptions. We 
demonstrate how the theory can be instantiated using an example 
involving Qualitative Process theory [Forbus, 1981, 19841. The 
theory has been implemented, and the performance of the 
implementation on these examples is demonstrated. It should be 
noted that the theory and implementation have also been 
successfully applied to a completely different system of qualitative 
physics, the qualitative state vector ontology ([de Kleer, 19751, 
[Forbus, 1980, 1981b]), as described in (Forbus, 19861. 

The next section provides a vocabulary for describing the 
initial data and places constraints on the segmentation process. 
Section 3 generalizes an earlier theory of interpreting measurements 
taken at an instant for QP theory [Forbus, 19831 and shows how the 
envisionment can be used to locally prune interpretations of 

segments. ’ Section 4 illustrates how global interpretations are 
constructed and how gaps in the input data can be filled. Finally 
we discuss planned extensions and some implications of the theory. 

2. Input Data and Segmentation 

First we describe the kinds of inputs the theory handles. We 
assume a function time which maps measurements to real numbers, 
and that the duration of an interval is simply the difference between 
the times for its start and end points. We also assume the temporal 
relationships described in [Allen, 19811 may be applied to intervals 
(i.e., Meet, Starts, and Finishes.) We say 
Observable (Cp>, <I>) 

when property <p> can be observed in principle by instrument <I>. 
To say that we can measure the level of water in a can with our 

eyes we write2 
Observable (A [Level (C-S (water, llquld, can) ) 1 , eyes) 

To say that some property is in fact observable at some time, we 
use the predicate Observable-at, which takes a time as an extra 
argument. 

’ An “envisionment” is, roughly, “the set of all qualitatively distinct possible 
behaviors of a system.” However, sometimes it is used to refer to “all behaviors pos- 
sible from some given initial state” and sometimes to “all behaviors inherent in some 
fixed collection of objects in some configuration, for each possible initial state ” We 
call the first type attarnable envisionments, and the second total envisionments. Here 
we are’only be concerned with total cnvisionments 

’ The first argument uses notation from QP theory; A is a function that maps 
from a quantity to a number representing the value of that quantity, Level is a 
function mapping from individuals to quantities, and C-S is a function denoting an 
individual composed of a particular substance in a particular state, distinguished by 
virtue of being in a particular place. 
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We sav associated with distinct segments of a measurement sequence to be 

The input of a measurement interpretation problem is a set of 
measurement sequences, each consisting of a set of measurements 
totally ordered by the times of the measurements. Suppose we have 
some “grain” on time, St, such that events of duration shorter than 
st will not be considered relevant. (The problem of instantaneous 
events will be discussed in section 4.1.) Then two types of 
measurement sequences must be considered: 

Close: The data is complete, in the sense that over the total 
interval of interest measurements are separated by durations no 
larger than St. 

Sampled: There 
larger than st. 

are temporal gaps in the data whose duration is 

Given an assumption of a finite “grain size” of analysis, with 
close data we are justifictl in assuming that centiguous segments of 
the data correspond to successive states of the system. With 
sampled data wc can only make this assumption on close 
subsequences. Regular sequences are a subclass of close sequences 
where successive measurements are exactly St apart. 

adjacent if there is no interval in between them (by assumption, I, 
and 12 cannot overlap). If the minimum distance between the times 
of the end points is not greater than st, we also say that the 
intervals Meet, as defined in Allen’s time logic. The function Int 
maps segments to intervals. 

The local information provided by the segmentation of 
measurement sequences must be combined to form global segments, 
intervals over which the qualitative state of the system is not 
obviously different. We define global segments as follows. Let 
{MS13 be a collection of measurement sequences, each of which has 
a segmentation <Si 

8 
3. The global segmentation consists of a set 

of global segments <& $ such that 

1. The value of the 
over GSk. 

property measured for each MS1 is constant 

2. Starts (GSk, Int (S l,3>) for some S1 
l 

, i.e., the start time 
of each global segment corresponds to the h arting time of some 
segment in one or more of the segmented measurement sequences. 

3. Finishes (GSk, Int (S-& 1 for some S1 k, i.e., the end 
time of each global segment corresponds to the &d time of some 
segment in one or more of the segmented measurement sequences. 

The first constraint prevents a global stgment fmm straddling 
an obvious qualitative boundary, and the last two constraints 
ensure it spans the largest possible interval where quaitative values 
are constant. Thus global segments are good candidates for 
explanation by a single qualitative state. 

2.1. Segmenting the input data 2.2. QP Example, Part 1 

The first problem is to partition the measurement sequences 
into meaningful pieces. We define a segment of a measurement 
sequence to be the largest contiguous intervaJ over which the 
measured property is “constant”. A symbolic property is constant 
over an interval if its value is identical for all measurements within 
that interval. Notice that in QP theory signs of derivatives are 
symbolic properties in this sense. 

A numerical parameter is constant over a segment if the same 
qualitative value can be used to describe each measurement in the 
segment. The exact notion of qualitative value depends of course on 
the choice of domain representation and ontology.3 All we require is 
that algorithms exist for taking numerical values and producing at 
least some qualitative description sanctioned by the representation 
used. In QP theory, for example, numerical values can be described 
in terms of inequalities, the quantity space representation. If some 
domain-specific constants are unknown, such as the boiling 
temperature of a particular substance at a certain pressure, partial 
information can be delivered. In the worst case, the sign of the 
derivative can be estimated. 

Once numerical parameters are translated to qualitative 
values segmentation becomes simple. However, these segments 
cannot necessarily be identified with a single qualitative state. 
First, the qualitative value may be partial, as noted above. Second, 
a state transit ion may leave the measured parameters constant for 
some time (possibly forever). Consider a home heating system. 
Suppose you turn the thermostat up past the ambient temperature. 
If you cannot hear the furnace firing or touch a radiator, then you 
will not know for some time whether or not the system is actually 
working. This hidden transition problem must be taken into 
account when pruning interpretations, discussed below. 

Many changes in the physical world can be characterized as 
the result of physical processes, such as heat flow, liquid flow, 
boiling, and motion. Q “l’t t ua I a ive Process theory formalizes this 
intuitive notion of physical process and provides a qualitative 
language for differential equations that preserves distinctions 
required for causal reasoning. 

QP theory provides several types of measurable properties, 
including the truth of predicates and relations, whether or not 
different processes are acting, and of course information about 
numbers. Ideally measurements of amounts and magnitudes should 
be segmented whenever their descriptions in terms of quantity 
spaces change. However, as we will see a great deal of information 
can be gleaned from just the signs of derivatives (i.e., the DS value 
of a quantity, which ranges over c-1, 0, 13). 

Suppose we have a beaker that has a built-in thermometer. 
Suppose we also know that the beaker either contains some water, 
some alcohol, or a mixture of both. In this case we can always 
measure the temperature, i.e. 
V t E time 
Observable-at (A [Temperature (Inside (beaker) ) 1 , 

thermometer, t) 
If we plot the temperature with respect to time we might get the 
graph shown in Figure 1.4 

If we don’t know the numerical values for the boiling points of 
water and alcohol, then all we can get from this graph is the DS 

value for temperature as a function of time. Providing this list of 
Ds values to the program results in six segments. Since this is the 
only property measured, each segment gives rise to a single global 
segment. The program’s output is shown in Figure 2. 

Each segment of a measurement sequence covers a non-empty 
collection of data, and since the data is temporally well-ordered 
there will be a maximum and minimum time associated with this 
data set. Let the minimum time be the start time and the 
Ilr:lximum time be the end time. We define two intervals I,, I2 

a To be a qualitative representation some such notion must exist; the primary 
purpoee of such representations ia to provide quantizations of the continuous world 
which form useful vocabularies for symbolic reasoning. 
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Figure 1 - Temperature plotted as tl, function of time 

Figure 2 - Segments and global segments for the QP problem 
Here are the segments and global segments generated by the imple- 
mentation from the data in Figure 1. 
ATMI: Finding initial segments... 
lpropertieshavebeenmeasured. 

For Ds of (T INSIDE-BEAKER) : 
Starttime =O.O, Endtlme=ll.7. 
117 samples, taken O.ltlme units apart. 
Divided Into 8 segments. 

DS 0f (TINSIDE-BEAKER) is 1 fromO.Oto 1.3. 
Ds of (T INSIDE-BEAKER) Is0 froml.4to2.1. 
Ds of (T INSIDE-BEAKER) Is lfrom2.2to4.l.. 
Ds of (T INSIDE-BEAKER) Is 0 from4.2t05.8. 
Ds of (T INSIDE-BEAKER) Is 1 from 5.9 to 8.5. 
Ds of (T INSIDE-BEAKER) 1s 0 from8.6to 11.7. 

ATMI: Findlngglobalsegments... 
There are 6globalsegments. 

8. Interpreting segment5 

If the segmentation based on domain-specific constraints is 
correct, a global segment should typically be explained as the 
manifestation of a single qualitative state. A qualitative state 
consists of a finite number of components,’ some fraction of which 
are fixed by the measurement sequences. If every component of the 
qualitative state is measured, then there can be only a single 
interpretation for each segment. Usually there are several, so we 
must generate the set of qualitative states that could give rise to the 

’ This graph was generated by a numerical simulation program; it does not 
represent actual measurements. The numbers were hand-translated to DS values. 

measurements. 

The “one look” theory of measurement inf c~r.l.~~tation cited 
previously describes a solution to this prol,lcl~, 1’1’r ( :I’ theory. We 
now generalize it. Call the states in the tot:>; 81. i.ioument which 
are consistent with the measurements represt 1 1 t (1 by some global 
segment its p-interps. The possible interpretntions of each global 
segment is exactly this collection of states. As the 1983 paper 
illustrated, this set may be computed via dependency-directed 
search over the space of possible qualitative states, pruning those 
which are not consistent with the measurements. If instead the 
total envisionment has been explicitly generated, then p-interps can 
be computed by table-lookup (the implications of this fact are 
discussed below). 

However p-interps are computed, any system of reasonable 
complexity will give rise to many of them. Therefore it is 
important to prune out inconsistent interpretations as quickly as 
possible. Any domain-specific information applicable to the one- 
look case, as described in the 1983 paper, could again be useful in 
this context. However, when we have close data we can impose 
“grammatical” constraints, ruling out those p-interps which cannot 
possibly be part of any consistent pattern of behavior. 

To impose these constraints we need to refer to the possible 
transitions between qualitative states contained in the total 
envisionment. We assume that associated with each qualitative 
state St is a set of ufters which are the set of states which can be 
reached from St via a single transition. The following assumption is 
needed to apply this information: 

Simplest Action Assumption: The qualitative states St1 and St2 
which describe the behavior of two global segments Sl and S2 
which are temporally adjacent in a close sequence (i.e., 
Meet(Int(Sl), Int(S,>)) are temporal successors in the total 
envisionment, i.e. St2 E Af ters (St11 . 

In essence, this is a “compatibility constraint” applied to 
action. For it to be true st, our sampling time, must be small 
enough so that all important changes are reflected in the data. The 
temporal adjacency between Sl and S2 implies that any state which 
serves as an explanation for S1 must have a transition that leads to 
some state which explains S2. Similarly, any state which explains 
S2 must result from some state which explains Sl. These facts can 
be used locally, via Waltz filtering, to prune p-interps as follows: 

Given global segments Sl, 2 S s.L. Meets (Int (S1) , Int (S2)), 
ForeachStl Ep-interps(S1) andSt2 Ep-lnterps(S2) 

if 13 St0 E p-lnterps (S2) s.t. St0 E Afters (Stl), 
then prune St1 from p-interps (Sl) 

if 13 St0 E p-lnterps (S1) s.t. St2 E Afters (StO), 
then prune St2 from p-lnterps (S2) 

These rules must be applied to each global segment in turn until no 
more p-interps are pruned. Suppose for some global segment S, 
p-lnterps(S) = C). Then either (a) the dataisinconsistent or (b) 
the simplest action assumption is violated, either because there is 
more than one qualitative state required to explain a particular 
global segment (the hidden transition problem described previously) 
or the sample time st is not short enough. 

Suppose the p-interps for a segment include states that are 
temporally adjacent, that is, for some St1 and St2 in p- 
lnterps(S), St2 E Afters(St1). Since Stl*and St2 are in the 
same set p-lnterps(S), they must be indistinguishable with 
respect to the measurements provided. This is exactly how the 
hidden transition problem arises, and in fact is the only way it ca.n 
arise - otherwise, the set of p-interps would be incomplete. Thus to 
find hidden transitions it suffices to extend the collection of p - 

6 This would not be true if our system model contained an infinite number of 
parts. We assume such models can always be avoided. 
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interps to include all sequences of states from the original collectron 
which are temporally adjacent. 

Two points should be made about this pruning algorithm. 
First, in cases where the measurements are not very constraining 
the number of such sequences could grow very large. In the limiting 
case of no relevant measurements, the set of p-interps would 
correspond to the set of all possible paths and connected subparts of 
paths through the envisionment ! We suspect such cases could arise 
when reasoning about a very large system with several loosely- 
connected components while only watching a little piece of it, and 
hence suggest instead a scheme combining pruning with backup for 
those circumstances. 

Second, the algorithm can easily tolerate extra states in the 
sets of p-interps, but will be sensitive to missing states. These 
properties follow directly from the fact that states are only pruned 
when certain other states cannot be found. This means that gaps in 
the initial data will show up very rapidly, without extensive global 
computations. 

8.1. QP example, part 2 

Consider again the physical situation involving liquids 
discussed previously. The only processes we will be concerned with 
are heat flow to the liquids (if any), heat flow to the beaker, and 
boiling. We ignore any gasses that are produced, the possibility of 
the beaker melting or exploding, and any heat flow to the 
atmosphere. While we do not assume knowledge of the actual 
boiling points of water or alcohol, we assume that the boiling 
temperature of alcohol is lower than the boiling temperature of 
water. Given these assumptions, Figure 3 shows the total 
envisionment for the possible configurations of objects. 

Since our only available measurement is temperature there is 
a great deal of ambiguity, as indicated by the p-interp lookup table 
in Figure 4. Allowing the program to apply the pruning rules, we 

Figure 8 - Total Envisionment for liquids problem 
The states in the picture below are divided into rows based on the 
contents of the beaker. A thick arrow from the burner through the 
beaker indicates heat flow, and small bubbles indicate boiling. A 
thin arrow indicates a possible transition from the state at the tail 
to the state at the head. 

Alcohol 
Only 

Water 

OdY 

AkohoV Water 
Miiture 

find that after four iterations a unique solution has emerged (se&\ 
Figure 5). 

Even with very little initial data, we can conclude from this 
result that originally there was a mixture of water and alcohol in 
the beaker (S9). The mixture heated up until the alcohol started to 
boil (SlO). Aft er the alcohol boiled away the water heated up (SB) 
and began to boil (S7). After the water boiled away, the beaker 
heated up (SZ) until thermal equilibrium was attained (Sl). 

4. Constructing global interpretations 

Suppose the initial data is close. Then if it is correct we have 
a complete collection of initial hypotheses, and if the simplest action 
assumption is not violated and that the data is consistent, as 
indicated by a non-null set of p-interps for each total segment, then 
we have an exhaustive set of possibilities for each segment. 
Furthermore, the hypotheses for each segment are temporally 
adjacent, i.e. they are plausible candidates to follow one another in 
a valid description of behavior. Given these assumptions, 
constructing all the consistent global interpretations is simple: 

Figure 4 - Table of Ds values and corresponding P-interps 

31 

1. Select an element of the p-interps for the earliest segment. 

2. Walk down the after links between p-interps, depth first. 

Each such path is a consistent global interpretation. 

However, close data can be hard to get. Many physically 
important transitions occur in an instant. For example, collisions 
can happen very fast; we may see a ball head into a wall and head 
out again without actually seeing the collision. In general we must 
live with sparse data. Consequently, we next describe how gaps in 
the data can be filled. 

4.1. Filling gaps in sparse data 

The procedure above can be modified to work on sparse data, 
although more ambiguity, and hence more interpretations, are 
likely. 

1. Use the procedure above on all close subsequences. 

2. For each gap between close subsequences, let S1 be the segment 
which ends at the start of the gap, and let S2 be the segment 
which starts at the end of the gap. 

2.1 Select an element of p-lnterps (Sl) . 

2.2 Walk down the after links through states in the 
envisionment until an element of p-lnterps (S2) is reached. 
Each such path is part of a global interpretation. 

There are two cases where gaps can arise. Gaps can be small 
because instantaneous states have been missed, or large because the 
sequences are sparse. An example of a large gap is when we see a 
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Figure 6 - Applying Waltz filtering to P-interps 
Here is the program’s operation on the p-interps shown in Figure 4. 
ATMI: Flndlngp-interps... 

Global Segment lhas 4p-interps. 
Global Segment2 has 7 p-lnterps. 
Global Segment3 has 4p-lnterps. 
Global Segment4 has 7 p-lnterps. 
GlobalSegment5has 4p-lnterps. 
Global Segment6 has 7 p-lnterps. 

ATMI: Filterlngp-interps... 
After4rounds, 27p-lnterps excluded. 

ATMI: Finding global Interpretations... 
There Is aunlque global lnterpretatlon: 

(59 SlO S6 s7 s2 Sl) 
The qualitative states are: 
S9: water and alcohol, heatflowtobeaker, 

temperature Increasing. 
SlO: water and alcohol, heatflowtobeaker, 

alcoholbolllng, temperature constant. 
S6: water, heatflowtobeaker. temperature Increasing. 
S7: water, heatflowtobeaker, water bolllng, 

temperature constant. 
52: empty, heatflowtobeaker, temperature Increasing. 
Sl: empty, thermal equlllbrlum, temperature constant. 

glass of water sitting on a table one day and come back the next 
day to find the glass turned over and a puddle of water on the floor. 
The above procedure is quite useful for small gaps, since there will 
be few states (usually one) between Sl and S2. 

However, explicitly generating the set of global interpretations 
for large gaps can lead to combinatorial explosions. In the worse 
case the number of interpretations is the set of all paths through the 
envisionment. If the envisionment has cycles, corresponding to 
oscillations in behavior, the number of paths can be infinite. An 
alternate strategy is to use the envisionment as a “scratchpad”, 
using the measurements to directly rule certain states in or out, and 
using algorithms akin to garbage collection to determme the 
indirect consequences of these constraints. Algorithms to do this 
have been implemented (see [Forbus, 1980]), and have been 
successfully used with the measurement interpretation program (see 
(Forbus, 19861). 

6. Discussion 

This paper has presented a theory of interpreting 
measurements taken across time, illustrating its utility by extended 
example. The theory solves a central problem in qualitative 
physics, and has many potential applications. For example, this 
theory is useful for diagnosis problems because it provides a general 
ability to test fault hypotheses to see if they actually explain the 
observed behavior. Currently we are coding routines to 
automatically perform the signal/symbol transformation for several 
domains and generalizing the implementation to handle sparse data. 

Importantly, the theory relies on very few assumptions. The 
small number of assumptions makes the theory applicable to many 
different representations and domains. The assumptions of a total 
envisionment and of algorithms which can provide some qualitative 
description of numerical parameters are very mild restrictions which 
most systems of qualitative physics can easily satisfy. There is no 
apparent reason why this theory cannot be used with device- 
centered models, such as [de Kleer & Brown, 19841, [Williams, 
19841, or discrete-process models, such as [Simmons, 19831, [Weld, 
19841, or even equation-centered models, ,11ch as [Kuipers, 19841. 
In fact, we expect that the constraints OII \)ilrtitioning numerical 

data will be 
‘~~l’llllities. 

the system that uses continuous 

An interesting opportunilj *r&es when the particular physical 
syslem is known in advance, as is typically the case when dealing 
with engineered :;y::~erns. Current qualitative reasoning programs 
are often slow', clspecially when generating the entire space of 
possible behaviors while taking different fault modes into account. 
However, given a description of the structure of the system and an 
adequate qualitative physics, the total envisionment (or several total 
envisionments, representing typical fault modes) can be 
precomputed and preprocessed to provide a set of state tables, 
indexed by possible values of measurements or sets of 
measurements. These lookup tables, while possibly quite large, 
could make the interpretation process very fast. It does not Seem 
unlikely that, given fast signal-processing hardware to perform the 
initial signal to symbol translation, special-purpose measurement 
interpretation programs which operate in real time on affordable 
computers might be written. As qualitative physics progresses, 
leading to standardized domain models and fault models, diagnostic 
expert systems could be automatically compiled from the structural 
description of a system. 
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