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Interpreting Observations of
Physical Systems

KENNETH D. FORBUS

Abstract —An unsolved problem in creating diagnostic expert systems is
generating a qualitative understanding of how the system is behaving from
raw data, especially numerical data taken across time . Yet automating this
critical step is necessary for building the next generation of expert
systems . The theory described provides a means of interpreting observa-
tions made of a physical system across time in terms of qualitative
theories . Importantly, the theory is ontology-independent as well as do-
main-independent in that it only requires a qualitative description of the
domain capable of supporting envisioning and domain-specific techniques
for providing an initial qualitative description of numerical measurements.

The theory is illustrated step by step with two extended examples, one
involving qualitative process theory and the other involving a qualitative
state vector representation of motion. The performance of an implementa-
tion of the theory is also illustrated.

I . INTRODUCTION

INTERPRETING numerical data is an important part of
monitoring, operating, analyzing, debugging, and design-

ing complex physical systems . A person operating a nuclear
power plant or propulsion plant must constantly read and
interpret gauges to maintain an understanding of what is
happening and take corrective action, if necessary . Desig-
ning a new system requires running numerical simulations
(or building models of the system) and analyzing the
results. Diagnosis, especially, requires interpreting behav-
ior, both to see if the system is actually operating correctly
and to determine if a hypothesized fault can account for
the observed behavior.

Currently, a great deal of interest exists in applying
qualitative physics to engineering tasks such as diagnosis
(e .g ., the articles in [2]) . For such efforts to be successful, a
theory about how to translate observed behavior, including
numerical data, into useful qualitative terms is essential
This paper presents such a theory, called ATMI. The
ATMI theory is domain-independent and makes only two
assumptions about the nature of the underlying domain
model . Specifically, it assumes that

1) given a particular physical situation, a graph of all
possible behaviors—an envisionment—may be gen-
erated (perhaps on demand);
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2) domain-specific criteria are available for quantizing
numerical data into an initial qualitative description.

Consequently, the theory should apply to any system of
qualitative physics . The theory is analogous to artificial
intelligence (AI) models of speech understanding (e .g.,
[13]) . In these models the speech signal is partitioned into
segments, each of which is explained in terms of phonemes
and words . Grammatical constraints are imposed between
the hypothesized words to prune the possible interpreta-
tions . In the theory presented here, the initial signal is
partitioned into pieces which are interpreted as possible
particular qualitative states of the system . By supplying
information about state transitions, the envisionment plays
the role of grammatical constraints, imposing compatibil-
ity conditions between the hypotheses for adjacent parti-
tions.

Overview

The foregoing framework suggests a collection of prob-
lems that must be solved by any account of measurement
interpretation.

1) How should the initial data be segmented?
2) How are interpretations constructed for each seg-

ment?
3) How can global constraints be applied to prune the

local interpretations?
4) How should global interpretations be constructed?
5) How should gaps in the initial data be handled?
6) How should recovery from inconsistent data be ef-

fected?
The following theory answers questions 2-5 . Our goal is

to produce a general solution for the problem which can be
instantiated for any particular physics and domain. Conse-
quently, we couch the analysis in an abstract vocabulary
and specify what domain-dependent modules are required
to answer question 1 . We demonstrate how the theory can
be instantiated using extended examples from two differ-
ent domains, represented using two distinct ontologies.
The first example concerns motion through two-dimen-
sional space and is represented using the qualitative state
vector ontology [5], [6], [8] . The second example concerns
state changes in fluids and is represented using qualitative
process theory [7], [10]. Some familiarity with these repre-
sentations would be useful but is not essential . The ATMI
theory has been implemented, and the performance of the
implementation on these examples is demonstrated.
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The next section provides a vocabulary for describing
the initial data and places constraints on the segmentation
process . Section III generalizes the earlier theory of inter-
preting measurements taken at an instant [9] based on
qualitative process (QP) theory and shows how the envi-
sionment can be used to locally prune interpretations of
segments .' Section IV illustrates how global interpretations
are constructed and how even incomplete information can
provide useful constraints on possible future behaviors.
Finally, we discuss the implications of the theory, includ-
ing how it might be extended to handle noisy data and
how we plan to extend the implementation.

II . INPUT DATA AND SEGMENTATION

First we describe the kinds of inputs the theory handles.
For simplicity we will assume a function time, which maps
measurements to real numbers, and assume that the dura-
tion of an interval is simply the difference between the
times for its start and end points . We also assume that the
temporal relationships described in [1] may be applied to
intervals . These relationships include:

Meet( 11 , I2 ) means "I2 starts directly after II ,
with no time in between,"

Starts(I I , I2 ) means "II and I2 start at the same time, "

Finishes(II , I2 ) means "I I and I2 end at the same time ."

We will say

Observable((p), (i) )

when property (p) can be observed in principle by instru-
ment (i) . To say that we can measure the level of water in
a can with our eyes, we would write 2

Observable( A [ Level( C-S(water, liquid, can) )] , eyes) .

To say that some property is, in fact, observable at some
time, we use the predicate Observable-at, which takes a
time as an extra argument . We will say

Measured((p), (v), (t), (i))

to mean that property (p) takes on value (v) at time (t),
as measured by instrument (i) . 3 To say that we measured
the level in the can to be 5 cm 12 s after an experiment

'The term "envisionment" has been used in two distinct senses. In
both cases it means, roughly, "generating all the qualitatively distinct
possible behaviors of a system." However, sometimes it refers to "all
behaviors possible from some given initial state," and sometimes it refers
to "all behaviors for each possible initial state ." We will refer to the first
usage as attainable envisionments, and the second usage as total envision-
ments . In this paper we will only be concerned with total envisionments.

'The first argument in this example uses notation from QP theory ; A
is a function that maps from a quantity to a number representing the
value of that quantity ; Level is a function mapping from individuals to
quantities, and C-S is a function denoting an individual composed of a
particular substance in a particular state, distinguished by virtue of being
in a particular place.

} This definition of Measured is more general than the definition
introduced in the 1983 theory [9] .
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started, we would write, ignoring units,

Measured( A[ Level( C-S(water, liquid, can))],
5, 12, eyes).

For simplicity, we will use these same conventions to
define observations of arbitrary facts by interpreting them
as functions whose range is the set {true, false).

The input of a measurement interpretation problem is a
set of measurement sequences, each consisting of a set of
measurements totally ordered by the times of the measure-
ments . Suppose we are given some "grain" on time st such
that events which occur in durations shorter than st will
not be considered relevant .' Then two types of measure-
ment sequences must be considered:

close : the data are complete in the sense that over
the total interval of interest measurements
are separated by durations no larger than st;

sampled : temporal gaps exist in the data with dura-
tions larger than st.

Given the assumption of a finite "grain size" of analysis,
with close data we are justified in assuming that contigu-
ous segments of the data correspond to successive states of
the system. With sampled data we can only make this
assumption on close subsequences . Regular sequences are
a subclass of close sequences where successive measure-
ments are exactly st apart.

A . Segmenting the Input Data

The first problem is to partition the measurement se-
quences into meaningful pieces . We define a segment of a
measurement sequence to be the largest contiguous inter-
val over which the measured property is constant in some
sense. A symbolic property is constant over an interval if
its value is identical for all measurements within that
interval . Notice that signs of derivatives, as represented in
QP theory, are symbolic properties in this sense.

A numerical parameter is constant over a segment if the
same qualitative value can be used to describe each mea-
surement in the segment . The exact notion of qualitative
value will, of course, depend on the choice of domain
representation and ontology . 5 All that we require for this
theory to be applicable is that algorithms exist for taking
numerical values and producing at least some qualitative
description sanctioned by the representation used . In QP
theory, for example, numerical values can be described in
terms of inequalities, the quantity space representation . If
some domain-specific constants are unknown, such as the
boiling temperature of a particular substance at a certain
pressure, partial information can be delivered . In the worst
case the sign of the derivative can be estimated.

"The problem of instantaneous events will be discussed in Section
IV-A.

5 To be a qualitative representation, some such notion must exist ; the
primary purpose of such representations is to provide quantizations of
the continuous world which form useful vocabularies for symbolic rea-
soning.
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Once a translation to qualitative values has been pro-
vided for numerical parameters, segmentation becomes
simple. However, these segments cannot necessarily be
identified with a single qualitative state . First, the qualita-
tive value may be partial, as noted earlier . Second, a state
transition may leave the measured parameters constant for
some time (possibly forever) . Consider a home heating
system. Suppose you turn the thermostat up past the
ambient temperature . If you cannot hear the furnace firing
or touch a radiator, then you will not know for some time
whether or not the system is actually working. This hidden
transition problem must be taken into account when prun-
ing interpretations, as will be discussed later.

Each segment formed in a measurement sequence covers
a nonempty collection of data, and since the data are
temporally well ordered, a maximum and minimum time
will be associated with each data set. Let the minimum
time be the start time and the maximum time be the end
time. We define two intervals 11 and 12 to be adjacent if
no interval is in between them (by assumption, I1 and I2
cannot overlap). If the minimum distance between the
times of the end points is not greater than st, we will also
say that the intervals Meet, as defined in Allen's time logic.
The function Int will be used to map segments to intervals.

The local information provided by the segmentation of
measurement sequences must be combined to form global
segments, intervals over which the qualitative state of the
system is not obviously different . We define global seg-
ments as follows. Let {MS,} be a collection of measure-
ment sequences, each of which has a segmentation (S i, _1 ).
The global segmentation consists of a set of global seg-
ments (GS k } such that

1) the value of the property measured for each MS . is
constant over GS k ;

2) Starts(Int(GS k ), Int(Si, J D for some Si j , i .e ., the start
time of "ach global segment corresponds to the start-
ing tinL. of some segment in one or more of the
segment measurement sequences;

3) Finishes. : nt(GS k ), Int(S, k )) for some Si, k , i .e ., the
end time of each global segment corresponds to the
end time of some segment in one or more of the
segmented measurement sequences.

The first constraint prevents a global segment from
straddling an obvious qualitative boundary, and the last
two constraints ensu it will span the largest possible
interval where qualitative values are constant . These con-
straints ensure that global segments are good candidates
for explanation by a single qualitative state.

B. Example: The Bouncing Ball World

Our first example is the bouncing ball world, a domain
which highlights several issues involving reasoning about
motion through space. A scenario in this world consists of
a specification of a set of straight surfaces and the initial
position of one or more balls . Geometrically, the balls are
modeled as point masses . A program called FROB was

Fig. 1 . Typical scenario in bouncing ball world . Consists of some
surfaces and one or more balls . FROB accepts both qualitative and
quantitative information about properties of balls and their motions,
checks consistency of information, and can use it to answer questions
about where they can end up and whether or not they might collide.
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Fig. 2. Typical place vocabulary for input scenario of Fig . 1 . Notice
that free space has been explicitly represented by breaking it up into
several pieces, within which motion is easily described . SPACE-REGION'S

(denoted R) are pieces of free space. FREE-BORDER'S (denoted F) mark
borders of space regions that are within diagram . BORDER'S (denoted B)
indicate edges of the diagram. FROB loses all interest in balls which
leave diagram, assuming that they never return. SURFACE'S (denoted S)
indicate the solid surfaces specified by user . To avoid clutter, we will
label elements only as necessary in future diagrams.

implemented to reason about the possible motions of balls,
their eventual fate (e .g., "could this ball be trapped in the
well?"), and whether or not balls could collide [5], [6], [8].
Fig. 1 illustrates a typical scenario of the bouncing ball
world.

The initial diagram is represented as a metric diagram, a
combination of numerical and symbolic information . The
metric diagram provides some of the advantages people
have when reasoning geometrically with a diagram . To
reason about space qualitatively, the initial diagram must
be used to compute a place vocabulary that quantizes the
free space of the diagram into "interesting" pieces, like the
inside of a well . Since all the moving objects in the
bouncing ball world have the same shape, the same place
vocabulary is appropriate for each of them. The particular
principles used to construct place vocabularies in this
world are described in [6] . Here we only note that free
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3

Fig. 3 . How qualitative state vectors are graphically depicted . 1 : (FLY
SR3 (LEFT UP)). 2 : (COLLIDE S11 (RIGHT DOWN)) . 3 : (STOP S13 NIL) . 4:
(CONTINUE S49 uP).

space (and its boundaries) is broken up into nonoverlap-
ping pieces . Let SPACE-REGION, FREE-BORDER, BORDER, and
SURFACE be predicates on places that are true if the place is
a region of free space, a border between two regions of free
space, part of the edge of the diagram, or a piece of a
surface, respectively . Fig. 2 illustrates a typical place
vocabulary.

The state of a ball can be represented quantitatively (i .e .,
by numerical coordinates for its position and velocity) or
qualitatively . The qualitative state vector for motion con-
sists of the type of activity, where it is occurring, and what
direction it is occurring in . The type of activity ranges over
a small set of symbols, such as FLY, COLLIDE, CONTINUE,
and STOP . Location is specified by an element of the place
vocabulary . The direction is specified with respect to the
gravity vertical, i .e . LEFT, UP, (LEFT UP), and so forth . Fig. 3
shows a sampler of qualitative states and how they can be
depicted graphically.

There are two kinds of numerical parameters that can
easily be measured in the bouncing ball world : coordinates
and velocities . Ignoring obstructions, these will always be
observable:

VBEball VtEtime

[ Observable-at( X(b ), eyes, t )

A Observable-at( Y( b ), eyes, t )

A Observable-at( V( b), eyes, t )

A Observable-at(V,,(b),eyes, t)].

Now let us determine the mapping between numerical
and qualitative representations, which will provide the
initial symbolic descriptions. Velocities are the simplest to
parse into qualitative terms ; the sign of the X and Y
components provide a useful qualitative description be-
cause they describe which general direction the ball is
going in. We assume a function direction which maps
vectors into symbolic directions . To quantize coordinates,
assume a function place which, given a pair of X and Y
coordinates, queries the metric diagram to find out what
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Fig. 4. Partitioning numerical data in FROB's world . Translating
numerical data into initial symbolic description is simple in FROB's
world . Particular motion generated by FROB's quantitative module is
shown, along with graphical depiction of segments and global segments
computed from initial symbolic data.

element of the place vocabulary that point lies in . Given
these functions 6 which map from numerical to initial
symbolic information, the algorithm segments the individ-
ual measurements and calculates a global segmentation.
Fig. 4 illustrates.

C. Example : Qualitative Process Theory

Many changes in the physical world can be char-
acterized as the result of physical processes, such as heat
flow, liquid flow, boiling, and motion . Qualitative process
(QP) theory formalizes this intuitive notion of physical
process and provides a qualitative language for differential
equations that preserves distinctions required for causal
reasoning [7], [10].

QP theory provides several types of measurable proper-
ties, including the truth of predicates and relations, the
status of process and view instances, and, of course, infor-
mation about numbers . As mentioned before, measure-
ments of amounts and magnitudes should be segmented
whenever their descriptions in terms of quantity spaces
change. However, as we will see a great deal of informa-
tion can be gleaned from just the signs of derivatives (QP
afficianados will recognize this as the Ds value of a
quantity, which ranges over ( — 1,1,0,1)).

Consider the situation shown in Fig. 5. We have a
beaker that either has some liquid A, some liquid B, or a
mixture of both liquids inside . Suppose we place the
beaker on a stove with a thermometer placed against the
bottom on the inside of the beaker. In this case we can

'Currently, these functions are hand simulated.

DOWN 	,	 uP	 J
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7 Beaker

.+Sensor

1" Burner
Fig . 5 . QP measurement interpretation problem . Suppose beaker on

stove contains only liquid A, only liquid B, or mixture of both . Given
only data from thermometer inside beaker, can we tell what is in there?

always measure the temperature, i .e .,
`d t e time

Observable-at( A [Temperature(inside(beaker))] ,

thermometer, t ).

If we plot the temperature with respect to time, we might
get the graph shown in Fig . 6 .'

If we do not know the numerical values for the boiling
points of liquid A and liquid B, then all we can get from
this graph is the Ds value for temperature as a function of
time. Providing this list of Ds values to the program
results in six segments . Since this is the only property
measured, each segment gives rise to a single global seg-
ment . The program's output is shown in the following:

ATMI: Finding initial segments . ..
1 properties have been measured.

For DS of (T INSIDE-BEAKER):
Start time = 0 .0, End time =11 .7.
117 samples, taken 0.1 time units apart.
Divided into 6 segments.

DS of (T INSIDE-BEAKER) is 1 from 0 .0 to
1 .3000002.

DS of (T INSIDE-BEAKER) is 0 from 1 .4000002 to
2 .1000001.

DS of (T INSIDE-BEAKER) is 1 from 2 .2 to
4.0999985.

DS of (T INSIDE-BEAKER) is 0 from 4.1999984 to
5 .799997.

DS of (T INSIDE-BEAKER) is 1 from 5.8999968 to
8 .499996.

DS of (T INSIDE-BEAKER) is 0 from 8.599997 to
11 .700008.
ATMI : Finding global segments . ..
There are 6 global segments.

III . INTERPRETING SEGMENTS

If the segmentation based on domain-specific con-
straints is correct, a global segment should typically be
explained as the manifestation of a single qualitative state.
A qualitative state consists of a finite number of compo-

This graph was generated by a numerical simulation program ; it does
not represent actual measurements . The numbers were hand translated to
Ds values. This graph represents the common-sense model of many
people ; however, it is only accurate when the liquids vary widely in
volatility and boiling point (see [3], [12]). Examples include solutions of
methanol and water, or ethylene glycol and water. Regrettably, the
suggestion that solutions of water and alcohol (ethanol) follow this
pattern in [11] is incorrect.

Fig. 6. Temperature plotted as function of time . Sample plot of data
that might be generated from experimental situation shown in Fig . 5.

nents, 8 some fraction of which are fixed by the measure-
ment sequences . If every component of the qualitative
state is measured, then there can be only a single interpre-
tation for each segment . Usually, this will not be the case,
and so we must generate the set of qualitative states that
could give rise to the measurements.

The "one look" theory of measurement interpretation
cited previously describes a solution to this problem for
QP theory. We shall now generalize it. Call the states
in the total envisionment which are consistent with the
measurements represented by some global segment its
p-interps . The possible interpretations of each global seg-
ment is exactly this collection of states . As [9] illustrated,
this set may be computed by a dependency-directed search
over the space of possible qualitative states, pruning those
which are not consistent with the measurements . If instead
the total envisionment has been explicitly generated, then
p-interps can be computed by table lookup (the impli-
cations of this fact will be discussed later).

However p-interps are computed, any system of rea-
sonable complexity will give rise to many of them . There-
fore, it is important to prune out inconsistent interpreta-
tions as quickly as possible . Any domain-specific informa-
tion applicable to the one-look case, as described in [9],
could again be useful in this context. However, when we
have close data, we would like to impose "grammatical"
constraints, ruling out those p-interps which cannot possi-
bly be part of any consistent pattern of behavior.

To impose these constraints, we need to refer to the
possible transitions between qualitative states contained in
the total envisionment. We assume that associated with
each qualitative state St is a set of afters which are the set

This would not be true if we were trying to model a system in a
manner that gave rise to an infinite number of parts . We assume such
models can always be avoided.
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of states which can be reached from St via a single
transition . The following assumption is needed to apply
this information.

Simplest Action Assumption : The qualitative states St,

and Ste which describe the behavior of two global seg-
ments S i and S2 which are temporally adjacent in a close
sequence (i .e ., Meet(Int(S I ),Int(S2 ))) are temporal succes-
sors in the total envisionment, i .e ., St 2 E Afters(St 1 ).

In essence, this is a "compatibility constraint" applied
to action . For it to be true, st, our sampling time, must be
small enough so that all important changes are reflected in
the data . The temporal adjacency between Si and S2
implies that any state which serves as an explanation for S i
must have a transition that leads to some state which
explains S2 . Similarly, any state which explains S 2 must
result from some state which explains S i . These facts can
be used locally, via symbolic relaxation, to prune p-interps
as follows:

Given global segments S i , S2 such that
Meets(Int( S i ), Int( S2 )),

For each St, E p-interps(S 1 ),
if-,3Sto E p-interps(S2 ) s .t . Sto E Afters(St l ),
then prune St l from p-interps(S1 )
For each St 2 E p-interps(S2 )

if-,3Sto E p-interps(SI) s .t . St 2 E Afters(Sto),
then prune Ste from p-interps(S2 ).

These rules must be applied to each global segment in turn
until no more p-interps are pruned . Suppose for some
global segment S,, p-interps(S; ) = { } . Then either a) the
data are inconsistent, or b) the simplest action assumption
is violated, either because there is more than one qualita-
tive state required to explain a particular global segment
(the hidden transition problem described previously) or the
sample time st is not small enough.

Suppose the p-interps for a segment are temporally
adjacent, that is, for some St 1 and Ste in p-interps(S), Ste
E Afters(St 1 ) . Since St, and Ste are in the same set
p-interps(S ), they must be indistinguishable with respect
to the measurements provided. This is exactly how the
hidden transition problem arises, and in fact is the only
way it can arise—otherwise, the set of p-interps would be
incomplete . Thus to find hidden transitions, it suffices to
extend the collection of p-interps to include all sequences
of states from the original collection which are temporally
adjacent.

Two points should be made about this pruning al-
gorithm. First, in cases where the measurements are not
very constraining the number of sequences introduced to
solve the hidden transition problem could grow very large.
In the limiting case of no relevant measurements, the set of
p-interps would correspond to the set of all possible paths
and connected subparts of paths through the envision-
ment! We suspect complicated cases could easily arise
when observing a small fragment of a large system with
several loosely connected components . We suggest a scheme
combining pruning with backup for those circumstances,
generating connected p-interp sequences as required .

Second, the algorithm can easily tolerate extra states in
the sets of p-interps, but will be sensitive to missing states.
These properties follow directly from the fact that states
are only pruned when certain other states cannot be found.
This means that gaps in the initial data will show up very
rapidly, without extensive global computations.

A . Example: Bouncing Balls

Given a quantitative state, the differential equations for
motion can be solved to provide predictions of future
states . Similarly, qualitative simulation laws exist which,
given a qualitative state vector, will generate the set of
qualitative state vectors which can arise from it . These
laws can be used to generate attainable envisionments by
applying them recursively to the results obtained by apply-
ing them to an initial state . Generating total envisionments
is a two-step procedure . First, explicitly generate the space
of legal qualitative state vectors by combining the possible
components, such as position and direction . Second, use
the simulation laws to find out what transitions are possi-
ble between the different parts of the qualitative vector
space.

Computing p-interps for the bouncing ball world is
straightforward. As with any domain, the state descrip-
tions which comprise the envisionment can be inverted to
produce tables for rapidly retrieving candidate states cor-
responding to particular observed values . However, the
bouncing ball world is particularly simple . Since the ele-
ments of the place vocabulary in the bouncing ball world
do not overlap, the mapping from measured positions in
the metric diagram to places will be unique . Furthermore,
the type of place and direction uniquely determine the
type of action that occurs . For example, if the ball is at a
surface and its d irection is into the surface, then a collision
is occurring . If its direction is away from the surface, then
the ball is flying. Thus intersecting the states suggested by
these two measurements always yields a single p-interp.
The state path found for the measurements presented
earlier is illustrated as follows.

ATMI: Filtering p-interps . ..
Round 1, 0 p-interps excluded.

1111111111111111
After 0 rounds, 0 p-interps excluded.

ATMI : Finding global interpretations . ..
There is a unique global interpretation:

(SEQ29 SEQ67 SEQ69 SEQ31 SEQ106 SEQ22 SEQ21
SEQ20 SEQ117 SEQ2SEQ52 SEQ57 SEQ8 SEQ50 SEQ48
SEQ6)

The qualitative states are:
SEQ29 : Flying left and down in SREGION3.
SEQ67 : Colliding with SEGMENT9, heading left and down.
SEQ69 : Flying left and up from SEGMENT9.
SEQ31 : Flying left and up in SREGION3.
SEQ106 : Flying through SEGMENT44 going left and up.
SEQ22 : Flying left and up in SREGION2.
SEQ21 : Flying left in SREGION2.
SEQ20 : Flying left and down in SREGION2.
SEQ117 : Passing through SEGMENT41 going left and down.



TABLE I
Ds VALUES AND CORRESPONDING P-INTERPS a

Ds [ T ]

	

State

SI, S4, S5, S7, S8, S10, Sll

S2, S3, S6, S9

a The temperature can only be increasing or
constant, so all the states divide into two classes
for this scenario.

Initial Hypotheses

II
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16
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Fig . 7 . Total envisionment for liquids problem. States in picture are
divided into rows based on what is inside beaker in them . Thick arrow
from burner through beaker indicates heat flow, and small bubbles
indicate boiling . Thin arrow indicates possible transition from state at
tail to state at head . We ignore any gasses produced, any possible
changes in nature of beaker, and any heat transfer to surroundings . We
also assume that boiling temperature of liquid B is less than that of
liquid A, although we will not assume any particular numerical values
for either temperature.

SEQ2 : Flying left and down in SREGIONO.
SEQ52 : Colliding with SEGMENT12, heading left and down.
SEQ57: Flying right and down from SEGMENTI2.
SEQ8 : Flying right and down in SREGIONO.
SEQ50: Colliding with SEGMENT11, heading right and down.
SEQ48 : Flying right and up from SEGMENT11.
SEQ6: Flying right and up in SREGIONO.

B . Example : QP Theory

Consider again the physical situation involving liquids
presented in Fig . 5 . The only processes we will be concerned
with are heat flow to the liquids (if any), heat flow to the
beaker, and boiling. We will ignore any gases that are
produced, the possibility of the beaker melting or explod-
ing, and any heat flow to the atmosphere . While we do not
assume knowledge of the actual boiling points of liquid A
or liquid B, we will assume that the boiling temperature of
liquid B is lower than the boiling temperature of liquid A.
Given these assumptions, Fig . 7 shows the total envision-
ment for the possible configurations of objects.

Since our only available measurement is temperature,
there is a great deal of ambiguity, as indicated by the
p-interp lookup table in Table I . The p-interps for the
global segments described previously, along with the tran-
sitions linking states in adjoining segments, are shown in
Fig. 8 . Allowing the program to apply the pruning rules,

- 11

Fig. 8 . Initial p-interps for QP liquids problem. Each column represents
p-interps found for particular global segment from Fig. 7 . Temporal
ordering of segments runs from left to right . The transitions between
states, indicated by arrows, represent "grammatical" constraints be-
tween them. Any unbroken path of states from left to right constitutes
consistent global interpretation.

we find that after four iterations a unique solution has
emerged :

	

-

ATMI: Finding p-interps . ..
Global Segment 1 has 4 p-interps.
Global Segment 2 has 7 p-interps.
Global Segment 3 has 4 p-interps.
Global Segment 4 has 7 p-interps.
Global Segment 5 has 4 p-interps.
Global Segment 6 has 7 p-interps.

ATMI: Filtering p-interps . ..
Round 1, 21 p-interps excluded.

432111
Round 2, 2 p-interps excluded.

331111
Round 3, 2 p-interps excluded.

3 1 1 .1 1 1
Round 4, 2 p-interps excluded.

111111
Round 5, 0 p-interps excluded.

111111
After 4 rounds, 27 p-interps excluded.

ATMI : Finding global interpretations . ..
There is a unique global interpretation:
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The qualitative states are:
S9: liquid A and liquid B, heat flow to beaker, tempera-

ture increasing.
S10: liquid A and liquid B, heat flow to beaker, liquid B

boiling, temperature constant.
S6: liquid A, heat flow to beaker, temperature increas-

ing .
S7: liquid A, heat flow to beaker, liquid A boiling,

temperature constant.
S2: empty, heat flow to beaker, temperature increasing.
Si : empty, thermal equilibrium, temperature constant.
Even with very little initial data we can conclude from

this result that originally there was a mixture of liquid A
and liquid B in the beaker (S9). The mixture heated up
until liquid B started to boil (S10). After liquid B boiled
away liquid A heated up (S6) and began to boil (S7) . After
liquid A boiled away, the beaker heated up (S2) until it
was the temperature of the source, at which time thermal
equilibrium was attained (Si).

IV. CONSTRUCTING GLOBAL INTERPRETATIONS

Suppose the initial data are a close sequence . Then if the
data are correct, we have a complete collection of initial
hypotheses, and if the simplest action assumption is not
violated (i .e ., we have sufficient temporal resolution so that
nothing is happening "under the table") and the data are
consistent as indicated by a nonnull set of p-interps for
each total segment, then we have an exhaustive set of
possibilities for each segment . Furthermore, the hypotheses
for each segment are temporally " adjacent," i .e ., they are
plausible candidates to follow one another in a valid
description of behavior. Given these assumptions, con-
structing all the consistent global assumptions is simple.

1) Select an element of the p-interps for the earliest
segment.

2) Walk down the after links between p-interps, depth
first.

Each such path is a consistent global interpretation.
However, close data can be hard to come by. Many
physically important transitions occur in an instant. For
example, collisions can happen very fast ; we may see a ball
head into a wall and head out again without actually
seeing the collision . In general, we will have to live with
sparse data . Consequently, we next describe how gaps in
the data can be filled.

A . Filling Gaps in Sparse Data

The foregoing procedure can be modified to work on
sparse data, although more ambiguity, and hence more
interpretations, are likely.

1) Use the procedure on all close subsequences.
2) For each gap between close subsequences, let S I be

the segment which ends at the start of the gap, and let S2
be the segment which starts at the end of the gap.

2.1) Select an element of p-interps(S I ).
2 .2) Walk down the after links through states in the

envisionment, depth first, until an element of p-interps(S2 )

*	 : . . .
X

. . . . :

Fig. 9 . Example involving sparse data . Total envisionment for original
scenario FROB scenario. Suppose we know only that ball was origi-
nally in R3—rightmost space region—and that sometime later ball is
seen in R1—the leftmost space region . Envisionment can be pruned to
reflect constraints imposed by these measurements.

is reached . Each such path is part of a global interpreta-
tion.

Two cases exist where gaps can arise . Gaps can be small
because instantaneous states have been missed, or large
because the sequences are sparse. An example of a large
gap is when we see a glass of water sitting on a table one
day and coming back the next day to find the glass turned
over and a puddle of water on the floor. The procedure
described previously is quite useful for small gaps since
there will be few states (usually one) between S I and S2 .

However, explicitly generating the set of global interpre-
tations for large gaps can lead to combinatorial explosions.
In the worse case the number of interpretations is the set
of all paths through the envisionment . If the envisionment
has cycles, corresponding to oscillations in behavior, the
number of paths can be infinite . An alternate strategy,
which has been implemented for FROB, is described in the
next section.

B. Example: Bouncing Balls

Consider the scenario in Fig. 9 . Suppose all we know is
that the ball was in R3 first, and later is in region R1 . An
infinite number of paths exist through the envisionment
consistent with these measurements, corresponding to all
the ways a ball might bounce around inside a well and
finally bounce out again heading left . Clearly, explicit
generation must be avoided in this case.

FROB uses the envisionment as a "scratch pad" to
represent the consequences of assumptions about motion.
Importantly, the consequences of the ATMI theory can be
cast in this form. In particular, the p-interps indicate at
what places the ball must appear . Recall that the envision-
ment represents all possible behaviors . The effect of any
additional assumptions or data will be to eliminate some
of these possibilities, which can be represented by pruning
the envisionment . Simple algorithms, akin to those used in
garbage collection (see [6] for details), determine the indi-
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algorithms built into FROB can still significantly constrain
the possibilities .

V . DIscussION
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Fig . 10. Sparse measurements can provide useful constraints . Envi-
sionment can be pruned to reflect constraints imposed by measure-
ments . Comparing diagram against Fig . 12 illustrates how many possi-
bilities can be pruned even with sparse data.
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Fig . 11 . Facts about object can provide still more constraint . Suppose
we also find out that ball is inelastic . Then this information, combined
with previous sparse measurements, allows FROB to infer that ball
must not have gone inside well, and never will.

rect consequences of these assumptions . In this case, any
state which cannot be part of a motion that includes the
places which the ball must go through can be pruned.

Returning to our example, notice that any state which is
not attainable from some qualitative state whose place is
R3, by some path which includes some state whose place is
R1, cannot represent a possible motion consistent with this,
data. The temporal relationship between the spatial
measurements implies that in R3 and R1 the ball is always
moving leftwards . FROB automatically makes these
computations, and the possibilities which remain are shown
in Fig . 10.

Suppose we also knew other facts about the ball, for
example, that the ball was inelastic . Such facts can rule out
particular states of motion (in this case, rebounding from a
surface), and the same algorithms can combine these con-
straints with constraints from measurements . When inelas-
ticity is assumed, for example, FROB concludes that the
ball cannot ever be inside the well (see Fig . 11) . While we
do not know exactly what has happened, the pruning

This paper has presented a theory of interpreting
measurements taken across time and has illustrated the
utility of the theory through two extended examples . The
problem it solves is central to qualitative physics since it
provides a way to interpret information about the world in
terms of qualitative physics. For the diagnosis problem
this theory provides a general ability to test fault hypothe-
ses to see if they actually explain the observed behavior.

Importantly, the theory relies on very few assumptions.
As we have demonstrated, the small number of assump-
tions allows the theory to be applied to two very different
representations and domains. The assumptions of a total
envisionment (or the potential to generate it as needed)
and of algorithms which can provide some qualitative
description of numerical parameters are very mild restric-
tions which most systems of qualitative physics can easily
satisfy . No apparent reason exists why this theory cannot
be used with device-centered models, such as [4] and [15],
or discrete-process models, such as [14] and [16] . In fact,
we expect that the constraints on partitioning numerical
data will be the same for both device-centered and pro-
cess-centered ontologies.

An interesting opportunity arises when the particular
physical system is known in advance, as is typically the
case when dealing with engineered systems . Current quali-
tative reasoning programs are often slow, especially when
generating the entire space of possible behaviors while
taking different fault modes into account . However, given
a description of the structure of the system and an ade-
quate qualitative physics, the total envisionment (or several
total envisionments, representing typical fault modes) can
be precomputed and preprocessed to provide a set of state
tables, indexed by possible values of measurements or sets
of measurements . These lookup tables, while possibly quite
large, could make the interpretation process very fast . It
does not seem unlikely that, given fast signal-processing
hardware to perform the initial signal to symbol transla-
tion, special-purpose measurement interpretation programs
which operate in real time on affordable computers might
be written. As qualitative physics progresses, leading to
standardized domain models and fault models, diagnostic
expert systems capable of "reading gauges" for themselves
could be automatically compiled from the structural de-
scription of a system.

Plans for Future Work

While exciting potential applications of this theory exist,
there is still more research to do.

• The current implementation requires regular se-
quences as input. The gap-filling techniques which
generate explicit interpretations for small gaps have
not been implemented . We are extending the imple-
mentation to handle sparse data and fill small gaps .
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• Currently, numerical information is translated into
symbolic terms by hand. We are developing modules
that automatically perform this translation for several
domains, including motion and QP descriptions.

• We are formalizing the envisionment pruning al-
gorithms developed for FROB to form a general-pur-
pose logic of occurrence.

• We are developing a formal theory of measurement
error and will use this theory to develop backtracking
algorithms for handling noisy data. An important part
of solving this problem is identifying domain-depen-
dent constraints, such as continuity, which suggest
how missing data should be filled in. Although some
of these errors should be handled by the gap-filling
techniques described earlier, we expect that, in gen-
eral, some degree of backward communication with
the initial signal-to-symbol processing will be re-
quired.

• We are developing heuristics, analogous to those of
the "one-look" theory [9], to restrict possible interpre-
tations still further . Introducing duration information,
for example, allows the search through the envision-
ment for paths to fill gaps in sparse data to be cut off
when the estimated duration of the path exceeds the
duration of the gap.
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