QPE: Using assumption-based truth maintenance for

qualitative simulation

Kenneth D. Forbus

Qualitative Reasoning Group, Department of Computer Science, University of Illinois,
1304 W. Springfield Avenue, Urbana, Illinois 61801, USA

Efficient qualitative simulators are crucial to continued progress in qualitative physics.
Assumption-based truth maintenance systems (ATMS) were developed in part to simplify writing
such programs. This paper identifies several abstractions for organizing ATMS-based problem-
solvers which are especially useful for envisioning. In particular, we describe the many-worlds
database, which avoids complex temporal reference schemes; how to organize problem-solving
into justify/assume/interpret cycles which successively construct and extend partial solutions; and
closed-world tables, which provide a mechanism for making closed-world assumptions. We sketch
the design of the Qualitative Process Engine, QPE, an implementation of Qualitative Process
theory, to illustrate the utility of these abstractions. On the basis of our experience in developing
QPE and analysing its performance, we draw some general conclusions about the advantages and
disadvantages of assumption-based truth maintenance systems.

Key Words: qualitative simulation, envisioning, assumption-based truth maintenance.

1. INTRODUCTION

Qualitative physics has made substantial progress in
modelling simple situations. But continued progress will
require tackling larger situations, higher fidelity models,
and by building systems which use qualitative simulation
as a module in a larger task. All of these research
directions require substantially more computation. In
fact, existing models often strain current computers.
While advances in hardware technology will provide
some of the needed power, we must also seek better
implementation techniques. This paper describes how the
use of assumption-based truth maintenance in qualitative
simulations can substantially improve performance and
reduce system complexity, without imposing onerous
restrictions.

1.1 Qualitative simulation: The problem

Qualitative simulation programs input a domain
model and a scenario encoded in that domain model, and
produce a description of possible behaviours. Since
qualitative reasoning is fundamentally ambiguous, there
are often several possible behaviours. Envisioning is the
process of generating a description of all possible
behaviours. Representing and reasoning with these
various possibilities 1s complex. One common
simplification is to examine only a single possible
behaviour, often chosen by the user?”-37%. This may
suffice for some tasks, particularly when other sources of
information are available, but often this limitation is
unacceptable. For example, in designing complex
physical systems exploring all behaviours may be
necessary to reveal all failure modes. A behaviour that the
designer did not choose to explore (or that was pruned
from consideration by some heuristic) could hide a
potential catastrophe.

@ Comnutational Mechanics Publications 1988

Envisioning is also an important methodology in
developing new qualitative models of a domain. The
domain model provides a vocabulary for describing a
wide variety of scenarios. For example, a domain model
for thermal control systems should be useful for
describing a wide variety of particular systems. For each
such scenario, the qualitative model should be capable of
generating all the behaviours which are possible under
some particular choice of numerical parameters for the
system*. By exploring the entire space of behaviours
predicted by the model for a variety of examples, we can
gain some confidence that our models are correct.
Consequently, efficient envisioners are essential to
continued progress in qualitative physics.

The more of the modelling burden a theory takes on,
the harder it is to implement. QSIM?28, for example, is
simple, small, and fast. However, it also provides very
little. Its input is a model for a particular scenario, in
terms of qualitative equations. There is no provision for
creating the equations automatically from a structural
description, nor for creating and maintaining a library of
abstract descriptions to simplify building future models.
QSIM was written to explore qualitative mathematics
and landmark introduction, and it is indeed quite useful
for that. However, to develop the kind of wide-coverage
qualitative physics we desire, more powerful
implementations are required.

The device-centred ontology provides more
facilities for the modeller. System dynamics, after all, is a
well-developed methodology in engineering disciplines,
and quantitative models for a number of domains have
been developed which can be translated into qualitative

10,40

* Not all paths through an envisionment necessarily correspond to
physically possible behaviours®®, but this only means that generating
histories from envisionments is more complicated than first thought®.

terms. However, device-centred theories have difficulty
capturing many natural phenomena, such as objects
whose existence can change (e.g., steam appearing and
water vanishing in a boiler), or systems where the
connectivity between parts changes (¢.g., bouncing balls).

A more subtle limitation is that device-centred theories
do not formalize the critical step of moving a description
of objects and relationships in the world to an
appropriate abstract description in models terms. This
limitation is subtle because for many domains of interest
the modelling step is straightforward. Electronic
components, for example, are pretty good approxi-
mations to their idealizations for low frequencies, and
there is a simple one-to-one mapping from real world
objects to the vocabulary of devices. But in many
domains the mapping is not so obvious. A simple metal
plate, for example, can act as a spring, a mass, or a
damper depending on the specifics of its parameters and
the system to which it is connected to®®. In traditional
system dynamics the mapping of real-word objects to
‘devices’ is left to the intuition of the engineer. But
providing an account of such intuitions is one of the goals
of qualitative physics, so theories which do not provide a
means of capturing this expertise fail to address a crucial
aspect of the problem.

Qualitative Process theory!>!® takes on this extra
modelling work. Viewed as the specification of a
modelling language, it provides facilities for building up
general-purpose domain models, which are automatically
instantiated to describe particular scenarios. It includes
interfaces to external representations and ability to make
explicit modelling assumptions'*. These extra abilities
provide additional challenges to the implementor. For
example, an implementation of QP theory must perform
the pattern matching required to find occurrences of
processes and instantiate the relevant time-varying
relationships, such as the potential existence of liquid in a
container. Allowing changes in existence means that the
set of qualitative equations governing the quantities in a
system can vary, so closed-world assumptions must be
made and updated during the course of simulation to
track the relationships between quantities.

Efficient envisioners for a device-centred qualitative
physics have existed for some time®. Can modelling
languages based on Qualitative Process theory be
implemented with similar efficiency? The answer is yes,
but building them has required developing some new
techniques for using assumption-based truth-
maintenance systems in problem-solving. We believe
these techniques are useful for general qualitative
simulation and problem-solving, as well as implementing
QP theory. This paper explains these techniques.

The next section describes the three major
organizational ideas for using an ATMS for qualitative
simulation: the many-worlds database, justify/assume/
interpret cycles, and closed-world tables. Section 3
illustrates these ideas by sketching how they are used in
the design of the Qualitative Process Engine (QPE), our
current implementation of QP theory. Finally, we analyse
QPE’s performance by comparing it to GIZMO, the first

QP implementation, which used a logic-based TMS. At

this writing, QPE is between 7 and 16 times faster than
our previous implementation (according to the setting of
various mode switches, discussed below), providing some
indication that these ideas are useful. Finally, we suggest
some general guidelines for designing ATMS-based

QPE: K. D. Forbus

problem solvers, and outline directions for future
research.

2. ABSTRACTIONS FOR USING AN ATMS

First, we briefly review assumption-based truth
maintenance systems.

2.1 Assumption-based Truth Maintenance Systems

The simple, classical TMS uses horn-clauses for
justifications, labels nodes with IN and OUT (indicating
belief and lack of belief, respectively), and maintains belief
in a node in terms of well-founded support. We call this
kind of system a JTMS. Those which allow justifications
to be based on other nodes not being believed will have
prefix ‘NM’, indicating ‘nonmonotonic’. The ‘fact
garbage collector’ in EL*° and London’s original
dependency system?® are both JTMS’s. Doyle’s'? TMS
was the first NMJTMS. A TMS which labels nodes as
TRUE, FALSE, or UNKNOWN and uses disjunctive
normal form clauses as justifications will be called an
‘LTMS’. The LTMS was invented by McAllester®®-3".
We will mention these again in Section 4, but for now we
focus on the ATMS.

The ATMS is similar to the original JTMS. Associated
with each fact in the problem-solver is a node, with status
of IN or OUT depending on whether or not it is believed.
Justifications take the form of Horn clauses, in that they
have a single consequent and a list of antecedents, all of
which are TMS nodes. The consequent has the status of
IN when all the antecedents have the status of IN.

Unlike justification-based TMS’s, the ATMS stores
with each node the various sets of assumptions under
which that node is believed. Each set of assumptions is
called an environment. The environments under which
some node is believed is called that node’s label.
Assumptions in the ATMS are a primitive datatype,
corresponding to a choice the problem-solver can make.
For the purposes of this paper we will assume that each
assumption corresponds to the choice to believe a
particular node. (The relationships between nodes and
assumptions can be complicated®, but this simple
formulation will do for our purposes.)

Certain nodes can be marked as contradictory.
Installing justifications for these nodes provides a means
of stating logical constraints. Any set of assumptions
which would support a contradictory node must itself be
contradictory. An environment (a set of assumptions)
which is marked as contradictory is called a nogood.
Sometimes we will refer to justifications of contradictory
nodes themselves as nogoods for simplicity, since their
effect is to produce contradictory environments.

Justifications in the ATMS primarily serve to
propagate environments. A node is IN only when it has a
nonempty label, i.c., there is at least one environment in
which the fact corresponding to that node is believed.
Unlike other TMS’s, whether or not a node is IN is
usually unimportant. What typically matters in using the
ATMS is whether or not a fact holds in some particular
context of interest.

Environments provide the ATMS’s notion of context.
The set of assumptions which comprise the environment,
plus their consequences, form a particular context. There
is no need to copy their consequences explicitly, since the
label of the fact can be used to compute whether or not a
fact is in a particular context. A fact is IN in a particular

QPE: K. D. Forbus

environment E only if there is some environment in its
label that is a subset of E.

A choice set 1s an exhaustive collection of alternatives.
The choice sets which comprise a problem-solver’s search
space provide the space of ATMS assumptions. The
subset of environments which support the problem-
solver’s goals can be considered the goal states of the
search space. This mapping simplifies problem-solver
operations. For example, a common operation is
determining how a partial solution might be consistently
extended. In ATMS terms this question can be reduced to
the simpler question of whether or not a particular fact F
is consistent with a particular set of assumptions E. The
answer is ‘yes’ if some environment E; in F’s label can be
consistently combined with E*,

Given a set of choice sets, the process of interpretation
construction* computes all consistent combinations of
them, selecting one assumption from each set. The choices
in each set are assumed to be mutually exclusive and
exhaustive. Thus a simple model for arranging an ATMS-
based problem solver is:

1. Build a network of nodes and justifications.

2. Identify the choice sets which form the ‘basis set’ for
solutions, and assume each individual element.

3. Gather solutions by interpretation construction on
the choice sets.

Alas, this model is too simple to be used for most
problems, and we shall introduce a slightly more complex
organization in Section 2.3. The consumer architecture®
varies from the simple model only in that construction of
nodes and justifications can be interleaved with making
assumptions. The intent of the consumer architecture is to
reduce the ATMS structures to just those which
potentially appear in solutions, by seeing if the
antecedents for a justification could be believed together
before installing the consequent. As described below,
consumers are insufficient (and in many cases inefficient)
since they do not provide enough control for our purposes.

2.2 The many-worlds database

Fully exploiting the notion of environment as
context requires organizing problem-solvers somewhat
differently than for other TMS systems. In particular, it
pays to return to an implicit represenation of time and
situation instead of using more modern notations of
situation-calculus? and histories?>>. Each fact in the
database can be interpreted as a number of statements
about individuals in several possible worlds, rather than
as about individuals at some specific time or in some
specific circumstance. Any particular world, be it different
in time or in some other way, is defined by a particular
environment. What is true in that world is represented by
the set of facts which are the consequences of the defining
environment.

This interpretation can be understood in terms of the
following metaphor. Consider the database as a
description of the physical world. In a JTMS or LTMS
the world is deterministic, although perhaps not totally
determined: to find out if something is true we need only
look at the appropriate TMS node. By contrast, the

* Combining environments consists of taking the union of the sets of
assumptions involved. The result is considered to be contradictory if it
subsumes a set of assumptions already known to be contradictory. See
Ref. 4 for details.

ATMS database is something like a quantum mechanical
wave function. Looking at a particular node, one sees
only possibilities. But probing the database with a
particular environment yields a particular answer, just as
taking a physical measurement provokes the collapse of
the QM wave function. Consequently, we call this
organizational scheme the many-worlds database.

The many-worlds database has clear advantages for
some kinds of problems. First, it eliminates the overhead
of making copies of assertions required by explicit
temporal reference schemes. For example, in QPE we
write

(Left-of Block-A Block-B)
while the same fact represented in GIZMO would be
(Left-of (at Block-A S1) (at Block-B S1))

Describing different times in GIZMO required creating
new assertions; describing different times in QPE requires
only creating new environments. In addition to storage
economy, this increases the advantage of inference
caching provided by the TMS, since the same
justifications serve in the structure of many states. It also
eliminates the complicated pattern-matching that explicit
temporal reference schemes require in order to avoid
creating nonsense assertions, such as fluid paths that exist
between temporally nonoverlapping objects'”-37.

The many-worlds database is essentially the database
interpretation implied in the original conception of the
ATMS?, and is used in de Kleer’s qualitative physics
programs as well as in QPE. However, it has never been
adequately explained as a strategy per se, nor does it
appear to have been widely adopted. For example, it
appears to be simpler than the viewpoint mechanism of
ART or the Worlds mechanism of KEE3*, the two
current commercial systems which use ATMS-like
technology. These mechanisms are closer in spirit to
CONNIVER-style databases®®, using assumptions to
model markers corresponding to assertion and deletion of
facts within particular named contexts. They suffer from
the same limitation, namely having to work backwards
up a tree of contexts in order to find the actual status of a
fact, and the inability to share cached inferences across
time*,

The obvious disadvantage of this scheme is that, since
one cannot name specific situations and times, one cannot
state explicit comparisons between them. Thus one
cannot say that

A[Amount-of(at(Water-in-can,After(boiling)))]
< A[Amount-of(at(Water-in-can, Before(boiling)))]

However, the advantages gained by the many-worlds
database suggest that the best way to overcome this
problem is to support multiple notations, rather than to
force explicit temporal references everywhere. By
constructing registrations**, histories can be described in
terms of occurrences of qualitative states from an
envisionment. Most of the information relevant to a
particular episode of the history can be inherited from

* What these schemes do provide is the ability to retract facts from
contexts. In the many-worlds database contexts are only identified with
environments, so retraction does not make sense.

correspondong qualitative state in the envisionment,
while still using explicit temporal notations for episode-
specfic facts.

2.3 The justify/assume/interpret cycle

Recall that justifications in the ATMS determine the set
of consequences which follow from any environment, and
weed out inconsistent sets of assumptions. A ‘solution’ is
a particular environment and its attendent consequences.
There are a number of ways to construct such
solutions* 1323 A particularly useful technique for
problems where the entire space of solutions is sought,
such as envisioning, is to organize the problem-solver into
Justify/assume/interpret cycles.

A justify/assume/interpret cycle works like this:

1. Begin with an initial set of facts and initial partial
solutions.
2. Until the problem is solved,
2.1 Until the subspace of assumptions is complete,
2.1.1 Justify: Create justifications representing
the conclusions and constraints that
follow from the current set of facts.
2.1.2 Assume: Install assumptions suggested by
the results so far.
2.2 Interpret: Extend the partial solutions, based
on the new conclusions and constraints.

We include the creation of special-purpose
datastructures which contain pointers to ATMS
constructs in the Justify and Interpret phases. The crucial
difference between this organization and the simple
organization discussed in Section 2.1 is the use of iteration
to decompose the problem-solving activities into layers,
each exploiting the partial results of the layer before it.

This scheme further requires that all pertinent
information is provided as input before processing starts.
That is, computations organized in this way shall be
treated as atomic operations when used in a larger
problem-solving system. This stipulation has two
advantages. First, we can dispense with the standard
ATMS consumer architecture and its associated
overhead. Second, it allows us to use a form of negation
by failure. We can know, for nodes representing certain
classes of facts, that by a particular stage of processing
that the labels of these nodes are as large as they will ever
be. (Their labels could shrink, due to environments
becoming nogood as a consequence of other constraints.)
We will call this label the maximal label for the node. If
such a node’s label is empty, for example, then we can
conclude that it is not believed under any circumstance
that will lead to a complete solution, and so not consider
that node further.

The N-queens problem provides a simple example.
Consider an N x N chessboard. The goal is to find all the
possible ways to place N queens on the board so that no
two queens can capture each other. Let the initial facts be
the set of statements about the location of the queen in the
first column. The initial solutions are simply the N
assumptions that the first queen can be legally placed in
each of the N rows. The justify phase of the cycle consists
of constructing statements corresponding to the possible
locations of a queen in the second column, along with the
nogoods which rule out combinations of queen
placements in the first and second columns that would
allow a capture. The assume phase consists of assuming

QPE: K. D. Forbus

that each statement about queen locations in the second
column could hold. The interpret phase of the cycle
extends the solutions by adding to each partial solution
(i.e., the assumptions about queen locations for the first
column) an assumption about the location of the queen in
the second column, filtering out those possibilities which
are inconsistent. The result will be a new set of
environments, each consisting of consistent positions for
a queen in the first column and a queen in the second
column. Carrying out this procedure N times,
constructing nogoods linking each column with all the
previous columns, followed by extending the solution
environments, will generate all solutions to the N-queens
problem.

A single justify/assume/interpret cycle corresponds to
the simple ATMS organization described in Section 2.1.
For complex problems, the simple model results in
grotesque combinatorial explosions during inter-
pretation construction. By decomposing the program’s
operation into several distinct justify/assume and justify/
interpret cycles such explosions can usually be avoided.
The partial solutions from each stage can guide the
construction of justifications, nogoods, and choice sets at
the next stage. Consider, for example, a program which
generates feasible plans for travelling from Urbana to
Palo Alto. The choices in such a plan include the means of
transportation (such as airplane, train, bus, or car) and
the particular path (highway, track, flight number, etc.).
A set of plans can be generated in principle by turning
loose a set of pattern-directed inference rules (as in
AMORD?, RUP*', DEBACLE'") to construct all the
relevant justifications and nogoods, and then using
interpretation construction to find all consistent plans.
However, in practice this technique does not work very
well. Suppose the choice of transportation mode was
made last and that time constraints rule out any solution
but flying. The interpretation construction process has
generated all possible paths by train, bus, and car — an
enormous set of possibilities — when in fact all of these
choices are irrelevant.

The problem can be worse than mere inefficiency
because sometimes the intermediate results of
interpretation construction are larger than can fit in the
address space of the machine, even though the final set of
solutions fits quite comfortably. We call this problem
intermediate interpretation bulge, by analogy with a
similar problem in symbolic algebraic manipulation
systems*.

A uniform problem-solver organization does not
adequately exploit the logical dependencies between the
choices involved in a solution. By breaking the solution
process into distinct phases, the combinatorial explosion
can be abated. In this example, considering the mode of
transportation first would drastically reduce the number
of solutions, since there is no reason to work on any
solutions which assume the mode is any thing but flying.
Similar dependencies appear in most kinds of problem-
solving. In Qualitative Process theory, for example, there
is no reason to calculate the effects of two processes taken
together if they can never consistently be active at the

* In symbolic algebra systems, intermediate expression swell®> refers to
the problem of the size of intermediate expressions growing larger than
can fit in memory, even though the final answer does fit. Usually an
alternate solution path would have yielded the same solution but with
smaller intermediate expressions.

QPE: K. D. Forbus

same time. Although doing this work does not affect the
correctness of the final answer, it is wasted effort.

In general there are two ways to minimize intermediate
interpretation bulge. The first is to minimize the total
number of assumptions (i.., program with ‘Occam’s
machete’). The second is to ensure that nogoods are found
as quickly as possible, so that large environments which
will eventually be ruled out are never created in the first
place. The justify/assume/interpret organization supports
both techniques. By decomposing the assumption-
making part of the computation into distinct justify/
assume cycles, irrelevant assumptions can be avoided. By
decomposing the interpretation phase we can more easily
avoid building large intermediate solutions which will
eventually be thrown away as irrelevant. We have found
empirically that in qualitative physics problems, careful
decomposition of the program into distinct justify/
assume/interpret cycles can mean the difference between a
problem being solved quickly and using little memory,
versus running for hours without finding solutions.

24 Closed-world tables

Closed-world assumptions are ubiquitous in problem-
solving. A detective must figure out who had access to a
bank account in order to solve a case of embezzelment. A
scientist must sort through a mass of observations and
decide which of them form a reasonable basis for theory
generation. In daily life, we all use plausible reasoning to
quickly come to conclusions. In QP theory, closed-world
assumptions are essential to combine partial descriptions
into a complete description of a scenario. An
implementation of QP theory must assume that, for
example, it knows all the influences on a quantity in order
to figure out how it will change.

All of these examples of closed-world assumptions can
be represented in terms of assumptions about set
membership. In particular, we assume that the members
of the set we know about are the only members. Then we
can carry on with whatever computation needs to be
performed. For example, suppose we know that two
processes are directly influencing a quantity Q. If we
assume those two are the only influences and that each
contribution is positive then we can conclude D[Q]>
ZERO*.

Implementing such assumptions in a problem-solver
that allows new information to be added at any time is
tricky, but possible! 7. We can exploit the justify/interpret
cycle organization to simplify this operation. For each
set requiring a closed-world assumption, there is some
stage in the solution process during which all the
information required to determine it is known. That is,
the labels for the statements implying membership will be
maximal, as defined previously. If the set is closed at that
point, only construals of the set (i.e., hypotheses about
the members of the set) which belong to some consistent
solution will be generated.

To carry out this computation we need to cache the
possible members of the set. That information is provided
by closed-world tables. A closed-world table is a
collection of entries whose form is

(antecedents) - {member))

* Some QP notation: A quantity consists of an amount, denoted 4, and
a derivative D, both of which are numbers, under the usual
interpretation. The sign of the derivative is denoted Ds.

Each (member) is a potential element of the set. The
{antecedents) are a set of statements whose conjunction
implies {member) is in the set. Thus if process instance
PI3 introduced a direct influence N1 on Q1, then
((Active(P13)). I +(Q1, N1)) would be in the closed-world
table for the direct influences on Q1. We assume
(implicitly) that the set of members listed in the closed-
world table are the only potential members of the set.

A closed-world table can be used as soon as the labels
for the antecedents are maximal. Since the antecedents
are either elements of choice sets or consequences of some
choice set elements, this means placing the computation
in the justify phase of a cycle which is after the assume
phase of the cycle which establishes the last of the
antecedents. In QPE, for example, the potential sets of
influences may be calculated as soon as all of the
assumptions concerning preconditions and quantity
conditions are made, since these determine which
processes and views are active, which in turn determine
what direct and indirect influences hold.

To construct all of the possible construals of a set
requires systematically computing all consistent
combinations of antecedents. Each particular member-
ship statement is then justified by the union of the
antecedents for the potential elements which are in that
particular construal and the disjunction of the negation of
the antecedents for the potential elements which are not in
that particular construal of the set.

For example, consider the subproblem of figuring out
all the possible ways that the amount of water in
container G of Fig. 1 can change. P, P,, P;, P, are
instances of liquid flow, with their direction indicated by
arrows in the figure. If these processes are the only ones,
then the amount will tend to increase when P, or P; are
occurring, and tend to decrease when P, or P, are
occurring. (Influence resolution is discussed further in
Section 3.6.) The closed-world table for these influences is
shown in Fig. 2.

To solve this problem, we first need to find out which
combinations of P,, P,, P,, P, can be active at the same
time, and hence which combinations of effects actually
occur. Then for each combination we must determine the
net result. This computation is depicted in Fig. 3. When
nothing is happening (i.e., all pressures are equal), the set
of influences is empty. There are four ways for just one
process to be active (a state of affairs that won’t last long,
of course), and in this case each provides just one
influence. The pairs of processes are more constrained:
flows are active when there is a pressure differential, so
clearly P, and P, cannot be active at the same time, nor
can P, and P,. All other pairs of processes are consistent,
so the sets of influences they give rise to become solutions
in turn. Finally, every triple of processes leads to a
contradiction, because it contains one of the pairs of
processes which cannot be active together. No larger
combination can be consistent if the triples are not, so we
can stop generating sets of influences at this stage.

Now consider each construal of the set of influences.
When there are no influences the Ds value is O,
corresponding to no change. The antecedent for this
condition is that none of P, through P, are active. When
all the influences are positive or negative the Ds value
takes on that sign. When the influences are in both
directions the system branches, installing assumptions
about the relative magnitudes of rates. Fig. 4 illustrates
this. Importantly, since the results depend only on the

[o
L

Fig. 1. A subproblem in influence resolution. Each
potential flow process is indicated by a labelled arrow. By

AMOUNT-OF-IN(WATER,LIQUID,G) :
ACTIVE(P,),

contributes I-(AMOUNT-OF-IN(WATER,LIQUID,G),A[FLOW-RATE(P1)]).
ACTIVE(P,),

contributes I+(AMOUNT-OF-IN(WATER,LIQUID,G),A{FLOW-RATE(P3)1).
ACTIVE(P3),

contributes I+(AMOUNT-OF-IN(WATER,LIQUID,G),A[FLOW-RATE(P3)]).
ACTIVE(P,),

contributes I-(AMOUNT-OF-IN(WATER,LIQUID,G),A[FLOW-RATE(P4)]).

Fig. 2. Closed-world table for Amount-of-in(C-S(water,
liquid,G)). The combinations of flow process which can
occur together determine all possible ways the amount of
liguid in G can be changing. By using closed-world
assumptions, we allow a local conclusion to be correctly
applied across an arbitrary number of situations. This
excerpt from a QPE dump for this example shows the
appropriate closed-world table

Step #1: {}
Step #2: {Pl}'r {P2}7 {P3}$ {P4}
Step #3.’ {p17 P3}, {pl, p4}7 {p2ap3}$ {P27 P4}

Step #4: Finished - all larger combinations would subsume nogoods

Fig. 3. Finding consistent sets of influences

information in the closed-world table, we have now
solved this sub-problem for every situation in which
Amount-of(C-S(water,liquid,G)) is directly influenced.
The ATMS ensures this answer will be available in every
context which requires it.

3. THE QUALITATIVE PROCESS ENGINE
In this section we first briefly describe ATMoSphere, the

- - o e - _— . o -
u*;'a‘% o e.,,!y g n, 1“'\‘::\:? '“z.‘,\)\"zﬂ R ;LM? ‘",3“’%
Sl '\::é'.w(" S,) o ‘“.\;""‘V
i, el il fu | 'y
it “aéw o ;"'::"“a ;\sf"@
M & K iy s
o '
by by ‘l\)‘:' &:
iy i s oy
::i“:;i ‘:‘i\?:’p LB ‘w :Nﬁ
iy gl i o i, 'y it Y
g [i) Ty I‘l'\\l
iy oyl W W ‘“:\' h, g
|".’»'“!|h1 iy o] o
oy o , o o
:;L“::) ———— N
i 2 W
= il i3 i 4 Pt DT T 5] tit it '%, “’
e e AR i ol

QPE: K. D. Forbus

H

determining which combinations of flows can be active at
any time, we can compute the derivative of the amount of
liquid in G

inference engine underlying QPE. Then, we describe how
the organizational ideas of the previous section can be
used to efficiently perform the computations sanctioned
by QP theory. We begin with an important sub-problem,
reasoning about inequalities. We then show the flow of
information and processing in QPE by stepping through
a simple example.

3.1 The ATMoSphere language

QPE is built on top of ATMoSphere, a problem-solving
language which provides pattern-directed rules and a
clean interface to the ATMS*. The details of
ATMoSphere are not important here, but understanding
some general features of the language will aid in
understanding subsequent sections.

Inside this ATMS data is organized into variables
which take on values, reflecting its heritage as support for
a constraint language. We maintain this data
orgnaization in ATMoSphere, treating propositions as
functions whose range is the set {: TRUE;:FALSE}. This
convention is useful because equations involving
functional terms are common in qualitative physics (i.e.,
Ds[Q1]= —1). However, general equality reasoning,
especially substitution of equals for equals, is not
supported (unlike RUP3!). In out experience, such
computations are rarely worth the language constraints
required to support them. Users are insulated from this
data model if desired, by appropriate syntaxers and
printers.

ATMoSphere provides pattern-directed antecedent
inference rules, similar to those of RUP3! and
DEBACLE!’, for automatically installing justifications
and nogoods as required. Implementing justify/assume/
interpret cycles requires rules which trigger on facts being
mentioned, rather than being believed (the :INTERN
condition). By using :INTERN rules, we can build a
complete subnetwork of justifications and constraints
first, and then propagate the consequences of
assumptions, and perform interpretation construction on
that subnetwork. ATMoSphere also supports other rule

* ATMoSphere was developed in collaboration with Johan de Kleer of
Xerox PARC.

QPE: K. D. Forbus

{P4}

-1 |~1,0,1‘ -1 I 1 ’-1,0,1‘

{P1, P} {P2, Py}

{P1, P4} l {P2, P}

lActive ‘ O ‘ {P1} | {P2} | {Pa}

EEE

Ds value

Fig. 4. Summary of influence resolution results

strategies, including the standard ATMS consumer
architecture and the implied-by strategy?3. Like
DEBACLE, ATMoSphere also supports integration of
special-purpose datastructures and procedures with the
assertional databases and rules. For critical com-
putations like inequality reasoning this speed-up is
essential.

3.2 Reasoning with inequalities

Efficient reasoning about inequalities is a central
problem in implementing qualitative physics pro-
grams’-17:27:37.40.41 The key inferences required of an
inequality reasoning system concern transitivity, such as:

A>BAB>C=A>C
A>BAB=C=A>C

The standard strategy for reasoning with inequalities is
to create a graph where the nodes are numbers and the
links are inequality relationships. When a query about the
relationship between two numbers is made, a simple
search provides the answer. Typically, a TMS is used to
cache the dependence of the relationship found on other
links in the graph®”-3®. While efficient for problem-solvers
that only examine one state at a time, this scheme requires
modification for an envisioner. Ideally, we want to have
inequality information available incrementally during
our computations, since transitivity is a powerful filter,
but we also want to avoid performing this computation
once per situation, as the consequent reasoning strategy
requires.

We have explored a number of strategies for efficient
inequality processing within an ATMS, and have settled
on an algorithm with certain novel aspects. Suppose there
ultimately will be N numbers. In practice, few of the
potential N? relationships between these numbers are of
interest. Pairs of numbers which are ‘interesting’ will be
mentioned at some point in an inequality relationship by
the problem-solver. Consequently, an efficient inequality
algorithm should not introduce ordering relationships
between pairs of numbers which have not already been
deemed of interest by the problem solver. Since
inequalities are a substantial portion of the fabric from
which qualitative states are woven, many of these
inequalities will be assumptions. We want to find out
quickly which combinations of them are inconsistent,
since such combinations cannot be part of any state. This
suggest a forward-chaining, incremental algorithm.

Whenever a pair of numbers is mentioned in some
inequality relationship, we build a compound link which
contains representations for all possible relationships
between that pair of numbers. In other words, associated
with each link are ATMS nodes corresponding to the pair
of numbers being >, <, =, or |. (In QP theory objects
and their properties can have limited temporal extent, i.e.,
they can ease to exist. N, | N,, read ‘N, is unrelated to
N,’,indicates that the quantity of which N, or N, belongs

to does not exist.)

The key observation is that every inference involving
transitivity occurs in cycles in this graph of links. Given a
new pair of interesting numbers, we incrementally install
the consequences of transitivity involving the pair by (a)
finding every cycle in the graph of links which includes
this new link, and (b) installing a set of justifications
which enforces transitivity in each newly-found cycle. The
set of justifications consists of concluding some
relationship for a link in the cycle based on consistent
combinations of relationships from the other links in the
cycle. For instance, consider the cycle A—>B— Co A,
When this cycle is first created, the consequences shown
at the beginning of this section will be among those
installed*.

Since all transitivity consequences of a new number
pair are installed antecedently, queries are free, which
simplifies subsequent computations. We have explored a
wide variety of ATMS-based transitivity algorithms, and
this has given us the best results to date.

3.3 QPE: Input, output, and organization

QPE takes two inputs, a domain model and a
particular scenario described in terms of that model. For
concreteness, we will use the scenario depicted in Fig. 5.
Here, a container called Can is connected thermally to a
heat source Stove via a heat path Burner. The only kind of
substance is water, which can be in either the liquid or gas
state. Notice that we have not specified any equations or
processes. It is part of QPE’s job to generate those, based
on the domain model. We will say more about this
procedure below. The output is an envisionment,
consisting of a set of situations and transitions between
them. An attainable envisionment consists of all states
that can be reached by some set of transitions from a
distinguished initial state, and a total envisionment
consists of the union of attainable envisionments from
every possible initial state. A situation is a qualitative
state representing some class of behaviours. Each
situation is represented as an ATMS environment. The
facts which hold in that situation are simply the facts
implied by the environment.

QP theory provides a set of basic deductions which can
be woven together to perform particular tasks. The
simplest way to generate histories given an initial state,
for instance, is

1. Find what processes and views are active in the
current situation.

2. Resolve influences to determine Ds values.

3. Perform limit analysis to determine what transitions
are possible.

4. Select one of these transitions as corresponding to the
next state.

5. Until finished, go to 1.

Attainable envisionments may be generated by
carrying out the same procedure, but by exploring all
transitions and ‘collapsing’ states which look identical
into single states. This in fact is the algorithm used in
GIZMO!’. This algorithm is inadequate for generating
total envisionments. In total envisionments there is no
distinguished initial state. Every state consistent with the
given scenario must be generated. For example, if the

* The number of justifications installed per cycle can be greatly reduced
by either using < & > or equivalently by using negation.

ss; Background information
(assext! ’(substance water)) ; "water” is a substance

(assert! ’(state liquid)) ; “liqguid” is a state

(assert! ’(state gas)) ; ”gas” is a stale

s5; Describe the objects

(assert! ’(Container Can))) “Can” is a container.

(assert! ’(Heat-Source Stove))) ; “Stove” is a heat source.
(assert! ’(Heat-Path Burner)) ; “Burner” is a heat path.
;;; Relationships between them - bidirectional thermal contact

(assert! ’(Heat-Connection Burner Stove (c-s water gas can)))

(assert! ’(Heat-Connection Burner Stove (c-s water liquid can)))

Fig. 5. A QPE scenario

purpose of the envisionment is to support measurement
interpretation®®, determining the initial state is part of the
problem, so we cannot start with an attainable
envisionment.

Total envisioning requires a different organization, and
it turns out this re-organization gains us considerable
efficiency. For instance, in the algorithm above influences
are resolved on each quantity once per situation. But, as
we saw earlier in Section 2.4, many of these inferences rely
on tightly constrained subsets of a total solution. Thus the
ATMS techniques described here allow us to resolve each
quantity once for whatever patterns of influence exist, and
‘inherit’” that solution whenever it is consistent,
independently of the number of total solutions. This
significantly reduces the computational complexity of
envisioning,.

QPE is organized as a collection of several justify/
assume/interpret cycles. Each cycle adds a new kind of
information to the solutions, i.e., the situations and
transitions table. The broad steps are:

Expanding the scenario model.

Installing initial assumptions.

Resolving unambiguous influences.
Constructing initial situations and Sclasses.
Resolving ambiguous influences.
Performing limit analysis.

AR

Next we outline how each step works, showing how the
organizational ideas interact to make an efficient
envisioner.

34 Expanding the scenario model

As mentioned above, QP theory takes on more
modelling work than other theories of qualitative physics.
Thus a QP implementation must determine what parts of
the given domain model to apply to the initial description
of the scenario. This involves ascertaining what
individual views are applicable, what instances of
processes exist, and installing their enabling conditions
and direct consequences. We call this step expanding the
scenario model.

To understand how this step works requires describing
how domain models are implemented. The QP modeller
writes descriptions like those of Figs 6, 7, and 8. Forms
like defview and defprocess are automatically

QPE: K. D. Forbus

transformed into two ATMoSphere intern rules. The first
rule finds instances of views or processes of that type,
creating named descriptions (such as PI3) to stand for
particular instances. The second rule installs the
consequences and constraints associated with instances of
that type, such as the conditions under which it is active
and what follows from that. (Other forms, like defentity,
define type predicates. A complete listing of domain
model constructs can be found in the QPE Manual®*.)

The many-worlds database interpretation allows a
single process or view instance to be used for every
situation, rather than re-running rules to determine for
each new situation what instances occur. The primitives
in these descriptions (such as arithmetic operators and
qualitative proportionalities) are expanded at rule
compilation time by a syntaxer to allow various internal
actions to be hidden from the modeller. For instance,
several actions are required to instantiate a oc , . First, it

(defentity physob
;;; Random physical objects have several continuous properties
(quantity (Amount-of ?self)) s; amount of it there is
(quantity (Heat ?self)) ;s internal energy
(quantity (Temperature 7self)) ;s other standard thermo parameters
(quantity (Pressure ?self))
(quantity (Volume ?self))
s5i There are a few state-independent relationships
(Qprop (Temperature ?self) (Heat 7self))
(not (less-than (A (Amount-of 7?self)) ZERO))

(not (less-than (A (Temperature ?7self)) ZERD)))

Fig. 6. Defining types of objects. A physob is a generic
physical object, with various thermodynamical properties

(defview (Contained-Stuff (C-S 7s ?st ?c))

Individuals ((?c¢ :type container)
(?s :type substance)
(7st :type state))
Preconditions ((Can-Contain-Substance ?c 7s ?st))
;; A paper cup can contain water, bul not sulpheric acid
QuantityConditions ({greater-than (A (Amount-of-in 7s ?st 7c))
ZERQ))
;7 The can has a non-zero amount of that substance in that slate
Relations ((there-is~unique (C-S ?s 7st ?c))
; Exists only when this view active
(Q= (amount-of (C-S ?s ?st ?c)) ; Define its amount
(amount~of~in 7s 7st ?c))
(physob (C-S ?s 7st 7c))))

; It 1s a physod

Fig. 7. Defining time-varying relationships. QP theory
provides individual views to describe properties that
change over time. This view defines fluid stuffs that are
individuated by location

QPE: K. D. Forbus

(detprocess (Heat-Flow ?src ?dst ?path)
Individuals ((?src :conditions (Quantity (Heat ?src)))
(7dst :conditions (Quantity (Heat ?dst)))
(?path :type Heat-Path
sconditions
(Heat-Connection 7path ?sxrc ?dst)))
Preconditions ((heat-aligned 7path))
;i No thermal insulators
QuantityConditions ((greater-than (A (temperature ?src))
(A (temperature 7?dst))))
;i Must be @ temperature difference

Relations ({quantity flow-rate) ; Local quantity

(@= flow-rate (- (temperature ?src) ; Constraint on flow rate

(temperature 7dst))))
Influences ((I+ (heat ?dst) (A flow-rate))
; Acts 1o increase heat of destination
(I- (heat ?src) (A flow-rate))))

; Acts to decrease heat of source

Fig. 8. A process description. Here is the definition o
heat flow used by QPE in this example ‘

must be justified on the basis of the antecedents of the
description in which it appears. In the case of processes,
for instance, the antecedent will be an assertion that the
process is active. Furthermore, a provision is made to add
an entry at run time to the closed-world table of indirect
influences for the quantity constrained by that ocy,.
Similarly, each inequality mentioned in a domain model
must be expanded into (a) justifications which force that
inequality to hold when the antecedents hold, (b) an entry
into tables of choice sets maintained by QPE to define
situations, and (c) a form which causes the transitivity
graph to be updated, if necessary. The syntaxer is data-
driven, and thus provides a facility for user-supplied
extensions to QPE*,

The assertions and justifications installed in this step
are part of the justify phase of the first justify/assume
cycle, within the first justify/assume/interpret cycle. All
possible process and view instances have been found, and
all of their direct consequences and constraints have been
installed. In our example, there are 30 inequalities in the Q
state and 4 entries in the table of preconditions. Two view
instances and three process instances have been found, as
shown in Fig. 9%**,

3.5 Creating the initial assumptions

Perhaps the most important choice in organizing an
ATMS-based envisioner is selecting which types of
assumptions will comprise a situation. There are several
strategies which might be used with QP theory. For
instance, one might base situations on assumptions about

* For instance, John Collins has used the parser to implement products
and ratios in terms of qualitative proportionalities and
correspondences.

** The domain model used here for illustration is very simple, and does
not represent many of the consequences of containment. For example,
boiling temperature is assumed to be constant, and the possibility of the
can bursting is not considered.

the existence of objects and the status of views and
processes. There are two problems with this alternative.
First, it is not invertable — while a process must be active if
all of its preconditions and quantity conditions hold, it is
inactive if any of them fail to hold. Ergo in this
representation we could not distinguish between
situations which differ only in which conditions make
some process or view inactive. Second, in subsequent
processing we will need to introduce inequality
assumptions (c.g., relative rates and derivative
comparisons), so assumptions about existence and status
assignments are insufficient.

The alternative used in QPE is to make preconditions
and quantity conditions the assumptions which comprise
the bulk of a situation. Typically, having assumed these
completely fix the status of processes and views. We calla
QP model well-conditioned when a set of inequalities and
preconditions always suffices to establish the status of
processes and views. It is possible to write ill-conditioned
QP models, since quantity conditions can include the
status of processes and views. However, we have yet to
find a case where well-conditioned models are not
sufficient, and so we restrict QPE to these. GIZMO
operated under the same restriction®.

QPE distinguishes several kinds of preconditions. If the
modeller guarantees that choices of other preconditions
and inequalities will suffice to determine the validity of all
predicate instances of a certain kind, the modeller can
declare that predicate computable. Suppose Touches
((stuff >, {port)) holds just when the contained liquid
{stuff’y touches the portal { port) in its container. Under
the right modelling assumptions we can define Touches in
terms of the relationship between the height of < port)
and the level of {stuff>, in which case we would declare
Touches as a computable predicate. Also, the modeller
can declare choice sets which QPE must explore. For
instance, to force QPE to look at all the states of a
particular kind of valve, the modeller can say

(Choices (State valve) (Open Closed))

QPE would then ensure that every situation assumes

---- View and Process Instances ----

View instances:

VIO = CONTAINED-STUFF(WATER,CAN,GAS)

VI1 = CONTAINED-STUFF(WATER,CAN,LIQUID)

Process instances:

PIO = HEAT-FLOW(C-S{WATER,GAS,CAN),STOVE,BURNER)

PI1

it

HEAT-FLOW(C-S(WATER,LIQUID,CAN),STOVE,BURNER)
PI2 = BOILING(WATER,CAN,C-S(WATER,LIQUID,CAN),PI1)

Fig. 9. View and process instances for the example

* Extending QPE to ill-conditioned models seems straightforward. At
minimum, it would require expanding the choice sets which define
solutions as the union of all preconditions, quantity conditions,
existence predications, and the statuses of views and processes. Since
these choice sets are highly redundant, many more nogoods would be
created and efficiency would suffer. I suspect the temporal inheritance
algorithm would also have to undergo changes, but this is not obvious.

either that the valve is open or that it is closed.

The union of all inequalities mentioned in the
envisionment (i.e., the contents of every possible quantity
space) is called the Qstate. The rules derived from the
domain model automatically construct tables of
preconditions and quantity conditions for the current
scenario during model expansion. This step makes each
entry of these tables into an assumption*. By simply
creating these assumptions the ATMS propagates them
through justifications to update labels. Assuming well-
conditioned models, the labels for the nodes
corresponding to the status of views and processes are
now maximal. We do not have situations yet, of course,
since we have not yet performed interpretation

construction to ascertain which complete combinations.

of choices are consistent. However, we do have enough
information to use the closed-world tables associated
with influence resolution, which we do next.

3.6 Resolving unambiguous influences

Recall that influence resolution computes the Ds values
for each quantity. Some quantities are directly influenced
by processes, when I and/or I~ relationships involving
them hold*. In this case, D[Q] equals the sum of the
influences. For instance, in our example the heat flow
instance PI1 directly influences Heat(C-S(water,liquid,
can)) and Heat(stove), each by A[flow-rate(PI1)]. Some
quantities are indirectly influenced, in that they are
functions of other quantities which are themselves
influenced. Functional dependencies are expressed in QP
theory by qualitative proportionalities (the operators oc .
and oc,_). Both operators only provide partial
information about the function relating two quantities;
for instance, Temperature(?c) oc,. Heat(?c) indicates
that the function which determines Temperature(?c) is
increasing and monotonic in its dependence on Heat(?c),
but does not indicate what the function is in detail or what
else it may depend upon. Consequently, closed-world
tables must be used for indirect influences as well.
Quantities which are neither directly nor indirectly
influenced are said to be uninfluenced.

Influences cannot always be successfully resolved.
Conflicting indirect influences, for instance, cannot be
resolved within basic QP theory since we do not know the
underlying function. But in most cases resolution is
straightforward, so we take care of these cases first. We
defer handling ambiguous cases until after the initial
situations are constructed, for reasons described in
Section 3.8.

Part of the procedure for resolving direct influences was
demonstrated in Section 2.4. Closed-world tables
describing all direct influences for each quantity are
constructed as a side-effect of expanding the domain
model, and this same procedure is carried out for indirect
influences as well. The conditions for a quantity being
uninfluenced are established by taking the union of the

* Assuming all possible preconditions is the default mode of operation
for QPE. There is also a language for declaring particular preconditions
to hold or not, so that the user (or other programs) can choose to explore
only particular subsets of the total envisionment. Also, a debugging
mode is proposed for asserting all preconditions as true, rather than
assuming them.

* By definition, I+ and I— are only found in the influences fields of
processes. This means processes are ultimately the cause of all
dynamical changes in the model.

QPE: K. D. Forbus

negation of the antecedents in these tables. Uninfluenced
quantities, by assumption, have a Ds value of 0. Should
both direct and indirect closed-world tables for a quantity
Q be empty, Ds[Q]=0 is asserted as universally true.
Should the quantity not exist at some time, we say
Ds[Q]=1.

As noted above, in QP theory direct influences
combine by addition. This means that in some cases
information about the relative magnitude of rates can
allow otherwise ambiguous direct influences to be
resolved. For instance, suppose that there are two flows
into a container and two flows out. If we assume that each
flow out is individually bigger than each flow in, then we
can conclude that the sum of the out-flows is larger than
the sum of the inflows, and hence the net effect is Ds=1.
The computation for resolving direct influences can be set
up to make these assumptions about relative rates.
However, this is not always profitable. As the number of
direct influences goes up, for instance, the percentage of
cases in which pairs of inequality assumptions suffice to
resolve the ambiguity drops rapidly. Consequently, QPE
has several modes for handling ambiguous direct
influences.

The simplest mode is to do nothing, in which case the
normal constraint satisfaction process described in
Section 3.8 handles the problem. The problem with this
mode is that for some purposes the situation descriptions
computed are not detailed enough. The obvious
consequence is that you don’t know when a particular
collection of assumptions about rates would resolve the
ambiguity without further inferential work. The more
subtle consequence is that transitions involving rates can
no longer be detected, since the inequalities involving
rates must be explicitly mentioned before limit analysis
will consider the possibility that they will change.

The second mode introduces sum quantities for each
case of ambiguous direct influences. One sum quanity
represents the net positive effect and the other represents
the net negative effect. Each is qualitatively proportional
to the positive and negative influences, respectively. These
quantities replace old sets of direct influences, and an
assumption concerning their relative magnitude is
installed to distinguish between the possible outcomes.
The qualitative proportionalities enable transitions
between these assumptions to be detected; if in a case
where the net positive effect was assumed to be larger, the
positive influences are decreasing and the negative ones
are increasing or remaining constant, then eventually the
effects will cancel.

The third mode provides the most detailed answers,
and is the most expensive computationally. All potential
relationships between each pair of opposing direct
influences are assumed, and that pair is added to the
Qstate. The combinations of assumptions which result in
an unambiguous answer are found by a simple
modification of the algorithm outlined in Section 7.2.7 in
the MIT Report'”. This algorithm worked quite well
when reasoning within a single state, since the inequality
information is either known or not. But making these
extra assumptions is quite expensive. Suppose there are N
positive direct influences and N negative direct influences
on a particular quantity. The N2 inequality assumptions
will be created, each of which becomes part of the
constituents of state, and hence increases the cost of most
subsequent operations. Empirically, we have found that
the amount of detail produced by this mode is almost

QPE: K. D. Forbus

never useful, but it is provided for completeness.

3.7 Constructing initial situations

The previous step comprised a second justify/assume
subcycle, since (depending on the mode) we interleave
adding justifications with additional assumptions. Now
the stage is set for the first interpretation phase, which
constructs the initial set of ‘solutions’, i.e., situations. The
choice sets include the alternatives for each precondition
and quantity condition. Any inequality assumptions
made in the course of the previous influence resolution
step are included as well.

Standard ATMS interpretation construction routines
are used to build all consistent combination of
alternatives from these choice sets. FEach such
combination forms an environment which is, by
definition, a situation. The consequences of these
environments include the situation’s process structure
(i.e., the set of active processes), the view structure
(similarly defined) and the unambiguous results of
influence resolution.

It is useful to impose additional structure on the set of
situations. We define an Sclass to be a set of situations
which are identical with respect to what objects exist in
them, process structure, view structure, and Ds values.
Sclasses divide the set of situations into equivalence
classes, whose elements differ only in inequalities or
preconditions. Sclasses are useful for two reasons. First,
they provide a natural summarization of the
envisionment — the differences between members of an
Sclass are irrelevant for many inferences. Second,
resolving ambiguous influences requires making
assumptions, and as the next section demonstrates, this
can be done more efficiently for the whole Sclass at once.

Situations are partitioned into Sclasses by finding
collections with common objects, process structure, and
view structure. These commonalities ensure that the
influences which hold are identical for each situation in
the Sclass. Consequently, the known Ds values are cached
with the Sclass, and any quantities whose Ds values are
ambiguous are noted.

3.8 Resolving ambiguous influences

When all Ds values are known, Sclass is said to be r-
complete'”. This step extends all Sclasses which have
unknown Ds values into r-complete Sclasses. Basically,
we do this by extending the incomplete situations with
assumptions about the unknown Ds values. Since these
assumptions are not independent, it is more efficient to
add them in an order determined by direction of
functional dependency: If Q, depends on Q;, for example,
then Q, should be examined after Q,, since an assumption
about Ds[Q,] may fix Ds[Q,]. This suggests sorting the
quantities by functional dependency®. Since the same set
of influences hold for every situation in an Sclass (i.c., the
set of influences is determined by the view and process
structures), this sorting step can be done just once for each
Sclass. In fact, the process of generating r-completions is
simply a slightly more clever version of interpretation
construction, using the initial situations for the initial
solutions and not adding an assumption if the Ds value

* QP theory places two restrictions on the graph of influences believed
at any time, which ensure this-ordering is always well-defined'. First,
the set of qualitative proportionalities is always loop-free. Second, no
quantity may be directly and indirectly influenced at the same time.

was fixed by some previous choice. The situations which
result are sorted into new Sclasses and are indexed under
the old Sclass as it r-completions.

3.9 Limit analysis

Limit analysis identifies potential state transitions and
determines their consequences. State transitions are
heralded by changes in ordering relationships between
numbers; their potential occurrence is described by limit
hypotheses. These potential transitions must be filtered
carefully, to ensure that they lead to consistent states and
that physical properties such as continuity are preserved.
In QP theory these tests can require subtle measures,
since objects can have finite temporal extents.

Suppose A[Q,] and A[Q,] are compared as part of the
quantity conditions for some process instance, or to
resolve an ambiguous direct influence. In addition to
being marked as something to assume, during model
expansion the comparison between their derivatives is
noted as a property of interest. The reason is that limit
hypotheses can be detected by examining the derivative
comparison; for example, if A[Q,]> A[Q,] and D[Q,] <
D[@Q,], then eventually A[Q,]=A4[0,].

Typically the derivative comparison will already be
known as a consequence of the Ds values, but some
derivative comparisons in some situations may not be
known. Before limit analysis begins it is crucial to ensure
that each important derivative comparison is known in
every situation, which happens by extending situations as
necessary with assumptions about derivative
comparisons. These extensions complete the interpret
phase of the first justify/assume/interpret cycle. The result
is a collection of completely specified situations,
organized into Sclasses. The rest of limit analysis consists
of a second justify/assume/interpret cycle to determine
the set of transitions linking these states.

A limit hypothesis LH is the conjecture that a
particular set of inequality relationships will change in a
certain way. LH is applicable to a situation S, if the initial
state of the inequalities mentioned in LH hold in S;. Each
application of an LH denotes a potential state transition.
The first step in finding limit hypotheses is to find single-
change limit hypotheses, i.e., those involving only a single
inequality. This can be accomplished by iterating over
each assumed relationship between quantities in the
Ostate, seeing which of the combinations of amount and
derivative relationships that lead to a potential transition
are consistent. This determines if the change is locally
possible. Next this combination of inequalities is tested to
see if they are part of any situation. If they are, then a limit
hypothesis is created for this combination, since we are
assured that it will be applicable to at least one situation.

The previous step is carried out one per scenario. The
next step is to combine the single-change hypotheses to
create limit hypotheses corresponding to multiple
simultaneous changes*. Continuing in the ‘once per
scenario’ spirit, the obvious algorithm to construct limit
hypotheses corresponding to multiple simultaneous
changes is to combine all consistent combinations of
single-change limit hypotheses. Unfortunately, this
algorithm turns out to be a disaster for most real
problems. Many combinations of limit hypotheses are

* A common misconception is that such transitions are ‘unlikely’ and
can be ignored. When two pairs of numbers are functionally related,
often simultaneous transitions must occur.

LHO: A[TBOIL(WATER,CAN)] > A{TEMPERATURE(C~S(WATER,LIQUID,CAN))] +—v

1

LE1: ALFLOW-RATE(PI1)] > ZERO ++ =

LH2: A(TEMPERATURE(STOVE)] > A[TEMPERATURE(C~-S(WATER,LIQUID,CAN))] +—s

LH3: A[FLOW-RATE(PIO)] > ZERD +— =
LH4: A[TEMPERATURE(STOVE)] > A[TEMPERATURE(C-S(WATER,GAS,CAN))] »— =
LHS: A[AMOUNT-OF-IN(WATER,LIQUID,CAN)] > ZERO +~— =

LH6: A[AMOUNT-OF-IK(WATER,GAS,CAN)] = ZERO +—— >

Fig. 10. Single-change limit hypotheses

locally consistent, but not applicable to any situation.
Consequentely, the best next step is to find the applicable
single-change limit hypotheses for each situation, and
combine them to form consistent multiple-chage limit
hypotheses. Clearly, any such hypotheses will be
applicable without further testing. It is useful to keep a
global cache of multiple-change limit hypotheses, both to
speed up the generation process and to ‘uniquize’ them
across situations for more coherent explanations.

The creation of limit hypotheses and their assignment
to situations completes the justify phase of the second
justify/assume/interpret cycle. The interpret phase
consists of determining which limit hypotheses
correspond to legal state transitions. For every LH
applicable to each S, this test consists of two steps. First,
the new situation S; that results from assuming that LH
occurs in S; is generated. This is a temporal inheritance
problem, and since QPE uses a variant of the algorithm
described elsewhere!®, we will only describe how the
ATMS has allowed us to simplify the algorithm.

Roughly, we ‘subtract’ from the set of situation
assumptions those for which LH conjectures a change,
and ‘add’ in the new inequalities that LH conjectures.
Complications arise from allowing objects to have finite
temporal extent (i.e., changes in existence can occur). For
example, if steam appears in the can, all relationships
involving its properties (such as comparing its
temperature to that of the stove) must change from
unrelated to something else. If all the water boils away, all
of the relationships its quantities participate in become
unrelated. The consistent sets of these possibilities is
generated by interpretation construction. Since we have
generated all consistent situations in advance, any result
of this process which is not already known as a situation
environment can be ruled out.

Even with these constraints, it is still possible for
interpretation construction to produce more than one
possible next state. The final filter is to select the state
which is ‘closest’ to the previous state. This intuition is
applied quite literally, by counting the number of
assumptions in common between the candidates and the
previous state, and picking the candidate with the most in
common. Since the candidates differ only in whether or
not certain individuals exist (assuming well-conditioned
models), this always results in a unique answer.

It should be noted that constructing these possibilities
and performing this filtering without an ATMS requires
very complicated bookkeeping. In GIZMO, for example,
this computation was carried out by carefully making and
retracting assumptions in a ‘scratchpad’ database. Each
such operation can cause propagation through a
substantial part of the justification database, which in
turn can lead to thrashing. No such propagation is

QPE: K. D. Forbus

required in the ATMS implementation.

What we have done so far is compute §; given §; and
LH. Just because S;and S; are themselves consistent does
not mean that LH constitutes a consistent transition
between them. The transition must be tested to ensure
that it does not violate continuity. This test compares the
inequalities which hold between each pair of numbers in
the Qstate before and after the transition. If some
inequality jumps’ from < to > or from > to <, then
continuity is violated and the transition is ruled out.
Combinations of amount and derivative relationships are
tested as well, to ensure that the mean value theorem is
respected.

QPE contains two additional mode switches for
experimenting with different varieties of continuity. The
tests above hold for all switch settings. The first switch
forbids any transition in which one pair of numbers
becomes unequal at the same time another pair of
numbers becomes equal. This implements a consequence
of classical continuity, namely that all transitions from
equality take an instant and all transitions to equality
require an interval of time*. The second switch allows
discontinuous changes from equality by weakening the
mean value law, as was done by Williams*°. For instance,
the transition from

A[Q,]=A[Q,]1 AD[Q,]1=D[Q,]

to

A[Q,]> A[Q,]1 ~D[Q,]>D[Q,]

is allowed. The underlying intuition is that such
transitions correspond to changes from an unstable
equilibrium. (This switch sometimes interacts in odd ways
with changes of existence, earning it the nickname of the
‘spontaneous generation’ switch.)

Extra work is required to ensure that continuity is not
violated when changes in existence occur. Suppose we
have two containers on a level surface connected by a
pipe. If water is flowing from one to the other, the flow will
be stopped when the pressures equalize. Limit analysis
will also hypothesize that the source container may run
out of water. If the water always existed, this transition
would be ruled out since it violates continuity. (In any
reasonable model, the pressure will be a function of the
amount, and running out of water corresponds to a
change in the pressure in the source from being greater
than the pressure in the destination to being less than it.)
However, without extraordinary measures this violation
would not be detected since the water in the projected
situation has vanished, taking its quantities with it! QPE
solves this problem by performing special tests when a
potential transition involves a vanishing quantity.
Basically, it re-computes the standard continuity tests
while temporarily suspending the QP laws governing the
relationship between existence and quantities. This is
accomplished easily in the ATMS by including with each
situation the explicit assumption that these laws hold. To
suspend this assumption simply requires subtracting it
from the situation and inserting its negation instead.

* QP theory explicitly deviates from classical continuity, assuming an
infinitesimal model for numbers. Transitions to equality where the two
numbers differ only by an infinitesimal amount are assumed to take only
an instant.

QPE: K. D. Forbus

Water

i ol
1

= Boiling

w = Heal flow

Fig. 11. The total envisionment for the boiling example

After the inconsistent transitions have been weeded
out, all remaining transitions are examined using the
Equality Change Law!® to calculate the situation’s
duration. Each Sclass is examined to determine if the
situations which comprise it last for an instant or an
interval of time. If both kinds of situations occur, the
Sclass is split. At this point, the envisionment is complete.
The total envisionment for the example is shown in
Fig. 11.

3.10 Current status

The first version of QPE (QPE v.1) was finished in
March, 1986!°. QPE v. 1 was used to develop a variety of
domain models, and was used as a module in research on
planning?®, measurement interpretation®®, reasoning
about alternate ontologies!, and learning'®. Our
experience with this version uncovered various bugs and
limitations, as well as suggesting some valuable additions.

QPE v.2 incorporates many improvements over QPE
v.1, in addition to bug fixes. For instance, we have added
optional extra consistency tests and a ‘flight recorder’ for
debugging purposes, and augmented our graphical

5} /_

N,

......... y 58

/

display system to show graphs of inequalities and
influences as well as envisionments. We finished QPE v.2
in November, 1987. It has been tested with a variety of
domain models since then, and has been successfully as a
component in several projects! 422, Although we are still
tuning its performance, we basically consider it finished.
A formal complexity analysis of the algorithms in QPE
v.2 is in progress.

3.11 Performance

Here we demonstrate the value of our ATMS
techniques in two ways. First, we compare QPE’s
performance with GIZMO, the first implementation of
QP theory. Second, we comment on how various factors
affect the program’s performance.

3.11.1 Comparison to GIZMOQO

Comparing programs is difficult, and hence a number
of caveats are in order. GIZMO was designed as a
conceptual tool to explore QP theory. Roughly, every
occurrence of what would be an application of universal
instantiation in a natural deduction system gave rise to a

Example GIZMO QPE v.2

Run time | Situations | Sec/Sit | Run time | Situations | Sec/Sit
Two containers 231 3 77 33 6 5.5
Boiling 210 6 35 43 19 23
Three Containers 131 14 81 148 32 46
Four Blobs 3176 89 36 801 159 5
Sec/Sit: 57 435

Fig. 12. QPE and GIZMO performance figures. The
mode switches for QPE v.2 are set to approximate
GIZMQO’s operation. Since GIZMP produces attainable
envisionments and QPE produces total envisionments we
must normalize their vesults. Here we divide the
performance on each example by the number of situations
produced, and average this number over several examples to
provide an index of performance. By this measure, QPEv.2
is roughly 13 times faster than GIZMO

distinct node in the underlying logic-based TMS. Thus a
typical conclusion in GIZMO might depend on 250
assumptions, only three of which are specific to the
particular situation. Clearly this is not the most efficient
implementation strategy for a production program. But
as a tool for exploring theories having these assumptions
explicitly available is invaluable, since it makes it easier to
distinguish debugging the theory from debugging the
program. QPE, on the other hand, was designed to be a
‘production’ program. It is designed to make as few
assumptions as possible, and to minimize the number of
justifications generated.

Fig. 12 shows comparative run times on several of the
original GIZMO examples!’. All data reported here was
generated on the same Symbolics 3670, with 24MB of
RAM and 200MB of virtual memory, running Symbolics
Lisp Release 6.1. In these runs ambiguous direct
influences were resolved using sum quantities, as
described in Section 3.6. Simply comparing run times is
not an accurate measure of performance, since GIZMO
generates only those situations that can arise from a given
particular initial state (i.e., attainable envisionments)
whereas QPE generates all situations possible from all
initial states (i.e., total envisionments), typically a much
larger number. Consequently we also show the number of
situations produced, and normalize by dividing the run
time by the number of situations. This number is averaged
to produced a rough index of performance for each
program. As these results indicate, in this mode QPE v.2
is, on average, a respectable 13 times faster than GIZMO.

Two additional comments should be made about these
figures. First, the original GIZMO run time reported!’
were from a Symbolics 3600 with only 4MB of RAM and
a slower disk. On that machine, GIZMO averaged 240
seconds/situation. Increasing the amount of RAM by a
factor of six improved performance by a factor of four.
Thus we can generate envisionments about 55 times faster
than we could in 1984. QPEv.2 is also more
space:efficient; we can now produce envisionments that
GIZMO could never do.

3.11.2 Factors affecting performance
There are two sources of problem complexity. One is
simply how large the descriptions are: The number of

QPE: K. D. Forbus

objects, quantities, process and view instances, etc. The
other factor is how many inequality assumptions are
introduced in the course of envisioning. This is a property
of how constrained the model is. For example, in certain
modes if QPE cannot deduce the sign of a rate, it creates
explicit assumptions for each alternative. Multiple
simultaneous direct influences also can cause extra
assumptions to be added (see Section 3.6), as can lack of
knowledge of derivative comparisons (see Section 3.9).
Empirically, the number of additional assumptions
introduced during the analysis has a major impact on
performance. Fig. 13 illustratess how QPE v.2’s
performance varies when varying the modes which
introduce assumptions. The degradation from additional
assumptions can be quite severe. For example, QPE adds
seven assumptions during influence resolution in the

three containers problem, and two additional
Table 1 QPE v.2
Run time | Situations | Sec/Sit
Two Containers 33 6 5.5
Boiling 43 19 2.63
Three Containers 149 32 4.66
Four Blobs 200 135 1.48
Table 2 QPE v.2
Run time | Situations | Sec/Sit
Two Containers 33 6 5.5
Boiling 43 19 2.26
Three Containers 148 32 4.625
Four Blobs 801 159 5.04
Table 3 QPE v.2
Run time | Situations | Sec/Sit
Two Containers 34 6 5.67
Boiling 49 19 2.59
Three Containers 703 44 16

Fig. 13. How mode switches affect performance. QPEv.2
contains several switches which control what classes of
assumptions are introduced, and consequently affect both
the detail of the answer and performance. The first table
shows performance with no additional assumptions, the
second table adds assumptions about sums of direct
influences, and the third adds assumptions about specific
pairs of opposing direct influences as well

QPE: K. D. Forbus

comparison assumptions about derivatives of rates
during limit analysis. These nine assumptions add 12
more situation to the envisionment, but increase the
computation time by a factor of four! The degradation is
even more severe for the four blobs problem, which had
run for hours and generated over 5200 situations before
the machine was halted manually.

There are two factors at work here. First, combinations
of introduced assumptions tend to be relatively
unconstrained. After all, they were introduced exactly to
make up for ambiguity in the state directly implied by the
model. Fortunately, the growth is fairly restrained in
reasonable models. In the worst case, N extra inequality
assumptions could make the envisionment grow by a
factor of 4V, Second, the runtime increases more rapidly
than the growth of the envisionment because the ATMS
still has to compute new nogoods for the inconsistent
combinations of these new assumptions.

We have found several strategies for avoiding these
performance problems. First, constrain quantities,
especially rates, as much as possible when building
.domain models. Second, generate low-resolution
envisionments whenever possible. Third, when high-
resolution envisionments are needed they can be
generated by successive refinement: Use a low-resolution
envisionment to determine what subspace of the
behaviours are interesting, and then generate a high-
resolution description of just that subspace by including
additional assumptions about behaviour.

4. CONCLUSIONS

We have described QPE, a new implementation of
Qualitative Process theory with substantially improved
performance (between 7 and 16 times faster than
GIZMO, depending on the desired degree of resolution in
the answer). We believe that QPE v.2 provides a valuable
tool for building the next generation of qualitative models
and reasoning systems.

Based on our experiences with QPE we offer several
observations on using an ATMS in building problem-
solvers. The advantages are:

1. Speed: By allowing most deductions to be done
independent of specific situations, the ATMS can
provide significant performance improvements.
Instead of drawing conclusions once per situation,
inferences can be made for sub-contexts and woven
together to form complete solutions.

2. Program simplicitly: Simplifying the interpretation of
facts by avoiding explicit temporal references and by
providing the ability to explicitly manipulate
assumptions allows programs to be substantially
smaller and cleaner. For example, QPE consists of
just over 5000 lines of code, while GIZMO is just over
15000 lines*.

However, there can also be significant disadvantages in
using an ATMS:

1. Justifications must be written carefully. Too few
justifications cause combinatorial explosions during
interpretation construction. Installing too many

* Both figures ignore user-interface code. GIZMO included a simple
generator of English descriptions which we eventually plan to make
available with QPE. QPE includes better graphical debugging tools as
well as a window-oriented query system.

justifications leads to vast inefficiencies in the ATMS.
Unlike a logic-based TMS, where rapid prototyping
is facilitated by allowing the user to assert arbitrary
propositional logic statements, the user of an ATMS
must very carefully lay out the way in which each
domain fact is to be used and specify which facts are
to serve as assumptions. An ATMS which used
disjunctive normal form for clauses instead of horn
clauses, if it can be made to run efficiently, could help
overcome this limitation.

2. Intermediate interpretation bulge: While, in theory,
interpretation construction is order-independent, in
practice considering choices in different orders leads
to dramatic performance differences. Early
experiences with QPE v.1 showed that choosing the
wrong order could slow performance by a factor of 6,
or even make the machine run out of memory. A
useful heuristic used in both versions of QPE is to
order the choice sets by logical dependency.

4.1 Future work

While we are still tuning QPE v.2 to improve
performance, the basic program is stable and we are
moving on to other problems and extensions. Some of
these extensions include:

® Support for defining new sets in domain models:
Currently there is no facility for defining domain-
dependent sets, such as the set of contents in a
container or the set of forces on an object. The
mechanism of closed-world tables appears general
enough to handle such sets, assuming that
conventions for when to close the sets can be
established. We plan on first implementing a version
where the modeller specifies when the set must be
closed, and examine how this facility is used toward
providing QPE with the ability to make these
decisions automatically.

® 4 portable Common Lisp version: While QPE v.2 is
written in Common Lisp, it still assumes the
Symbolics user interface. We are expunging all
Symbolics-specific parts of the code, banishing them
to a separate interface package. The core program
will be ‘source-portable’, in that the same source
should compile on any machine running a reasonably
complete Common Lisp. A character-oriented
generic interface is being built, as well as new
graphical interfaces for Symbolics, TI Explorers, and
Lucid Common Lisp on IBM RT’s. We intend to
make the portable version publically available for
research purposes. A manual is in progress, as well as
a tutorial on domain modelling.

® Domain analysis tools: We are identifying several
classes of bugs in qualitative models, such as
underconstrained inequalities and undeclared
quantities and relationships, which can easily be
detected by cross-reference and simple static analysis.
We plan on developing tools to isolate and flag such
problems in order to speed model development.
Brian Falkenhainer has written the first version of
such a system which, although simple, has turned out
to be extremely useful.

® An implementation-independent modelling language:
While QP theory places many constraints on a
modelling language, it is not itself a fully specified
modelling language per se. We are beginning to

develop an implementation-independent formal
modelling language for expressiing domain models,
so that researchers can begin to accumulate
knowledge bases that can be used with any
implementation of QP theory.

ACKNOWLEDGEMENTS

Several of the ATMS reasoning techniques described
here, and the ATMoSphere problem-solving language,
were developed in collaboration with Johan de Kleer.
Several of the algorithms were developed in collaboration
with John Collins, with lots of kibbitzing by Brian
Falkenhainer. John Collins, Dennis DeCoste, Brian
Falkenhainer, John Hogge, Barry Smith, Gordon
Skorstad have all suffered through alpha testing of QPE,
uncovered many bugs, and provided useful advice,
encouragement, and in some cases, code. John Hogge’s
ZGRAPH display system has significantly sped the
development of QPE.

This research was supported by the Office of Naval
Research, Contract No. N00014-85-K-0225, by an NSF
Presidential Young Investigator Award, and an
equipment grant from IBM.

REFERENCES

1 Collins, J. and Forbus, K. Reasoning about fluids via molecular
collections, Proceedings of AAAI-87, July 1987
2 de Kleer, J Causal and teleological reasoning in circuit
recognition, MIT AI Lab. Technical Report No. 529, September
1979
3 de Kleer, J. Choices without Backtracking, AAAI-84, Austin,
Texas, August 1984
4 de Kleer, J. An assumption-based truth maintenance system,
Artificial Intelligence, 1986, 28
5 de Kleer, J. Problem solving with the ATMS, Artificial
Intelligence, 1986, 28, 197-224
6 de Kleer, J. Extending the ATMS, Artificial Intelligence, 1986, 28
7 de Kleer, and Brown, J. A qualitative physics based on
confluences, Artificial Intelligence, 1984, 24
8 de Kleer, J., Doyle, J., Steele, G. and Sussman, G. Explicit
control fo reasoning. In Artificial Intelligence: An MIT
Perspective: Volume 1,(Eds P. Winston and R. Brown), The MIT
Press, Cambridge, Mass., 1979
9 de Kleer, J. Causal and teleological reasoning in circuit
recognition, MIT Al Lab. Technical Report No. 529, September
1979
10 de Kleer, J. and Brown, J. A qualitative physics based on
confluences, Artificial Intelligence, 1984, 24
11 de Kleer, J. and Williams, B. Back to Backtracking: Controlling
the ATMS, AAAI-86, Philadelphia, Pennsylvania, August 1986
12 Doyle, J. A truth maintenance system, Artificial Intelligence,
1979, 12(3), 231-272
13 Falkenhainer, B. An examination of the third stage in the
analogy process: Verification-based analogical learning,
Proceedings of IJCAI-87, August 1987
14 Falkenhainer, B. and Forbus, K. Setting up large-scale

15
16
17
18
19

20

21

22

23
24
25
26
27
28

29

30
31

32

33
34

35

36

37

38

39

41

QPE: K. D. Forbus

qualitative models, Proceedings of AAAI-88, August 1988
Forbus, K. Qualitative reasoning about physical processes,
1JCAI-7, Vancouver, BC, August 1981

Forbus, K. Qualitative Process theory, Artificial Intelligence,
1984, 24

Forbus, K. Qualitative Process theory, MIT Al Lab. Technical
Report No. 789, July 1984

Forbus, K. The problem of existence, Proceedings of the
Cognitive Science Society, 1985

Forbus, K. The Qualitative Process Engine, Technical Report
No. UIUCDCS-R-86-1288, December 1986

Forbus, K. Interpreting observations of physical systems, IEEE
transactions on systems, man, and cybernetics, May/June 1987,
Vol. SMC-17, No. 3

Forbus, K. The logic of occurrence, Proceedings of IJCAI-87,
Milan, Italy, 1987

Forbus, K. Introducing actions into qualitative simulation,
UIUC Department of Computer Science technical report, in
preparation

Forbus, K. and de Kleer, J. Focusing the ATMS, Proceedings of
AAAI-88, August 1988

Forbus, K. The QPE manual, Technical report in preparation
Hayes, P. The naive physics manifesto. In Expert systems in the
microelectronic age, (Ed. D. Michie), Edinburgh University
Press, 1979

Hogge, J. Compiling plan operators {rom domains expressed in
Qualitative Process theory, Proceedings of AAAI-87, July 1987
Kuipers, B. Common sense causality; deriving behavior from
structure, Artificial Intelligence, 1984, 24

Kuipers, B. Qualitative Simulation, Artificial Intelligence,
September 1986, 29

London, P. E. Dependency networks as a representation for
modelling in general problem solvers, Rep. No. TR-698,
Computer Science Department, University of Maryland, 1978
McAllester, D. An outlook on truth maintenance, MIT AI Lab.
Memo No. 551, August 1980

McAllester, D. Reasoning utility package user’s manual: version
one, MIT Al Lab. Memo No. 667, April 1982

McCarthy, J. and Hayes, P. Some philosophical problems from
the standpoint of artificial intelligence, Machine Intelligence 4,
Edinburgh University Press, 1969

McDermott, D. and Sussman, G. The CONNIVER reference
manual, MIT AI Lab. Memo No. 259, Cambridge, May 1972
Morris, P. and Nado, R. Representing actions with an
assumption-based truth maintenance system, AAAI-86,
Philadelphia, Pennsylvania, August 1986

Moses, J. Algebraic simplification: A guide for the perplexed,
Communications of the ACM, August 1971, 8(14)

Shearer, J., Murphy, A. and Richardson, H. Introduction to
System Dynamics, Addison-Wesley Publishing Company,
Reading, Massachusetts, 1967

Simmons, R. Representing and reasoning about change in
geologic interpretation, MIT Artificial Intelligence Lab. TR-749,
December 1983

Simmons, R. Commonsense arithmetic reasoning, AAAI-86,
Philadelphia, Pennsylvania, August 1986

Stallman, R. and Sussman, G. Forward reasoning and
dependency-directed backtracking in a system for computer-
aided circuit analysis, Artificial Intelligence, October 1977, (9),
135-196

Williams, B. Qualitative analysis of MOS circuits, Artificial
Intelligence, 1984, 24

Weld, D. The use of aggregation in qualitative simulation,
Artificial Intelligence, October 1986, 30(1)

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16

