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Efficient qualitative simulators are crucial to continued progress in qualitative physics .
Assumption-based truth maintenance systems (ATMS) were developed in part to simplify writin g
such programs. This paper identifies several abstractions for organizing ATMS-based problem -
solvers which are especially useful for envisioning . In particular, we describe the many-world s
database, which avoids complex temporal reference schemes ; how to organize problem-solvin g
into justify/assume/interpret cycles which successively construct and extend partial solutions ; and
closed-world tables, which provide a mechanism for making closed-world assumptions . We sketch
the design of the Qualitative Process Engine, QPE, an implementation of Qualitative Proces s
theory, to illustrate the utility of these abstractions . On the basis of our experience in developin g
QPE and analysing its performance, we draw some general conclusions about the advantages an d
disadvantages of assumption-based truth maintenance systems .
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1 . INTRODUCTIO N

Qualitative physics has made substantial progress in
modelling simple situations . But continued progress wil l
require tackling larger situations, higher fidelity models ,
and by building systems which use qualitative simulatio n
as a module in a larger task . All of these researc h
directions require substantially more computation . In
fact, existing models often strain current computers .
While advances in hardware technology will provide
some of the needed power, we must also seek bette r
implementation techniques . This paper describes how the
use of assumption-based truth maintenance in qualitativ e
simulations can substantially improve performance and
reduce system complexity, without imposing onerous
restrictions .

1 .1 Qualitative simulation: The problem
Qualitative simulation programs input a domain

model and a scenario encoded in that domain model, and
produce a description of possible behaviours . Since
qualitative reasoning is fundamentally ambiguous, ther e
are often several possible behaviours . Envisioning is the
process of generating a description of all possibl e
behaviours . Representing and reasoning with these
various possibilities is complex. One common
simplification is to examine only a single possible
behaviour, often chosen by the user 2 ' ,3 ' ,4o This may
suffice for some tasks, particularly when other sources o f
information are available, but often this limitation i s
unacceptable . For example, in designing complex
physical systems exploring all behaviours may b e
necessary to reveal all failure modes . A behaviour that th e
designer did not choose to explore (or that was prune d
from consideration by some heuristic) could hide a
potential catastrophe .
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Envisioning is also an important methodology in
developing new qualitative models of a domain . The
domain model provides a vocabulary for describing a
wide variety of scenarios . For example, a domain model
for thermal control systems should be useful for
describing a wide variety of particular systems . For eac h
such scenario, the qualitative model should be capable of
generating all the behaviours which are possible under
some particular choice of numerical parameters for th e
system* . By exploring the entire space of behaviour s
predicted by the model for a variety of examples, we ca n
gain some confidence that our models are correct .
Consequently, efficient envisioners are essential t o
continued progress in qualitative physics .

The more of the modelling burden a theory takes on ,
the harder it is to implement . QSIM 28 , for example, i s
simple, small, and fast . However, it also provides ver y
little . Its input is a model for a particular scenario, i n
terms of qualitative equations . There is no provision fo r
creating the equations automatically from a structura l
description, nor for creating and maintaining a library o f
abstract descriptions to simplify building future models .
QSIM was written to explore qualitative mathematics
and landmark introduction, and it is indeed quite usefu l
for that . However, to develop the kind of wide-coverag e
qualitative physics we desire, more powerful
implementations are required .

The device-centred ontology 10 ° 40 provides mor e
facilities for the modeller . System dynamics, after all, is a
well-developed methodology in engineering disciplines ,
and quantitative models for a number of domains hav e
been developed which can be translated into qualitative

* Not all paths through an envisionment necessarily correspond t o
physically possible behaviours2B , but this only means that generating

histories from envisionments is more complicated than first thought 9 .



terms . However, device-centred theories have difficulty
capturing many natural phenomena, such as object s
whose existence can change (e .g ., steam appearing and
water vanishing in a boiler), or systems where the
connectivity between parts changes (e .g ., bouncing balls) .

A more subtle limitation is that device-centred theorie s
do not formalize the critical step of moving a descriptio n
of objects and relationships in the world to an
appropriate abstract description in models terms . This
limitation is subtle because for many domains of interest
the modelling step is straightforward . Electronic
components, for example, are pretty good approxi-
mations to their idealizations for low frequencies, and
there is a simple one-to-one mapping from real world
objects to the vocabulary of devices . But in many
domains the mapping is not so obvious . A simple metal
plate, for example, can act as a spring, a mass, or a
damper depending on the specifics of its parameters an d
the system to which it is connected to 36 . In traditional
system dynamics the mapping of real-word objects t o
`devices' is left to the intuition of the engineer . But
providing an account of such intuitions is one of the goal s
of qualitative physics, so theories which do not provide a
means of capturing this expertise fail to address a crucia l
aspect of the problem .

Qualitative Process theory15 ' 16 takes on this extr a
modelling work . Viewed as the specification of a
modelling language, it provides facilities for building u p
general-purpose domain models, which are automaticall y
instantiated to describe particular scenarios . It includes
interfaces to external representations and ability to mak e
explicit modelling assumptions 14 . These extra abilities
provide additional challenges to the implementor . For
example, an implementation of QP theory must perform
the pattern matching required to find occurrences o f
processes and instantiate the relevant time-varyin g
relationships, such as the potential existence of liquid in a
container . Allowing changes in existence means that th e
set of qualitative equations governing the quantities in a
system can vary, so closed-world assumptions must b e
made and updated during the course of simulation t o
track the relationships between quantities .

Efficient envisioners for a device-centred qualitativ e
physics have existed for some time 9 . Can modelling
languages based on Qualitative Process theory b e
implemented with similar efficiency? The answer is yes ,
but building them has required developing some ne w
techniques for using assumption-based truth -
maintenance systems in problem-solving . We believ e
these techniques are useful for general qualitativ e
simulation and problem-solving, as well as implementin g
QP theory . This paper explains these techniques .

The next section describes the three major
organizational ideas for using an ATMS for qualitativ e
simulation : the many-worlds database, justify/assume /
interpret cycles, and closed-world tables . Section 3
illustrates these ideas by sketching how they are used i n
the design of the Qualitative Process Engine (QPE), ou r
current implementation of QP theory . Finally, we analyse
QPE's performance by comparing it to GIZMO, the firs t
QP implementation, which used a logic-based TMS . At
this writing, QPE is between 7 and 16 times faster tha n
our previous implementation (according to the setting of
various mode switches, discussed below), providing som e
indication that these ideas are useful . Finally, we sugges t
some general guidelines for designing ATMS-based
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problem solvers, and outline directions for future
research .

2 . ABSTRACTIONS FOR USING AN ATMS

First, we briefly review assumption-based trut h
maintenance systems .

2.1 Assumption-based Truth Maintenance Systems
The simple, classical TMS uses horn-clauses fo r

justifications, labels nodes with IN and OUT (indicatin g
belief and lack of belief, respectively), and maintains belie f
in a node in terms of well-founded support . We call this
kind of system a JTMS . Those which allow justifications
to be based on other nodes not being believed will hav e
prefix `NM', indicating `nonmonotonic ' . The `fact
garbage collector' in EL 39 and London's original
dependency system29 are both JTMS's . Doyle's 12 TMS
was the first NMJTMS . A TMS which labels nodes as
TRUE, FALSE, or UNKNOWN and uses disjunctiv e
normal form clauses as justifications will be called an
`LTMS'. The LTMS was invented by McAllester 30 ' 3 1

We will mention these again in Section 4, but for now w e
focus on the ATMS .

The ATMS is similar to the original JTMS . Associate d
with each fact in the problem-solver is a node, with status
of IN or OUT depending on whether or not it is believed .
Justifications take the form of Horn clauses, in that the y
have a single consequent and a list of antecedents, all of
which are TMS nodes . The consequent has the status of
IN when all the antecedents have the status of IN .

Unlike justification-based TMS's, the ATMS stores
with each node the various sets of assumptions unde r
which that node is believed . Each set of assumptions is
called an environment . The environments under whic h
some node is believed is called that node's label .
Assumptions in the ATMS are a primitive datatype ,
corresponding to a choice the problem-solver can make .
For the purposes of this paper we will assume that each
assumption corresponds to the choice to believe a
particular node . (The relationships between nodes an d
assumptions can be complicated 6 , but this simple
formulation will do for our purposes . )

Certain nodes can be marked as contradictory .
Installing justifications for these nodes provides a mean s
of stating logical constraints . Any set of assumption s
which would support a contradictory node must itself b e
contradictory. An environment (a set of assumptions )
which is marked as contradictory is called a nogood .
Sometimes we will refer to justifications of contradictor y
nodes themselves as nogoods for simplicity, since their
effect is to produce contradictory environments .

Justifications in the ATMS primarily serve t o
propagate environments . A node is IN only when it has a
nonempty label, i .e ., there is at least one environment in
which the fact corresponding to that node is believed .
Unlike other TMS's, whether or not a node is IN i s
usually unimportant . What typically matters in using the
ATMS is whether or not a fact holds in some particular
context of interest .

Environments provide the ATMS's notion of context .
The set of assumptions which comprise the environment ,
plus their consequences, form a particular context . There
is no need to copy their consequences explicitly, since th e
label of the fact can be used to compute whether or not a
fact is in a particular context . A fact is IN in a particular
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environment E only if there is some environment in it s
label that is a subset of E .

A choice set is an exhaustive collection of alternatives .
The choice sets which comprise a problem-solver's search
space provide the space of ATMS assumptions . The
subset of environments which support the problem-
solver 's goals can be considered the goal states of th e
search space . This mapping simplifies problem-solver
operations. For example, a common operation i s
determining how a partial solution might be consistentl y
extended . In ATMS terms this question can be reduced to
the simpler question of whether or not a particular fact F
is consistent with a particular set of assumptions E . Th e
answer is `yes' if some environment Et in F's label can b e
consistently combined with E* .

Given a set of choice sets, the process of interpretation
construction 4 computes all consistent combinations of
them, selecting one assumption from each set . The choices
in each set are assumed to be mutually exclusive an d
exhaustive . Thus a simple model for arranging an ATMS -
based problem solver is :

1. Build a network of nodes and justifications .
2. Identify the choice sets which form the `basis set' fo r

solutions, and assume each individual element .
3. Gather solutions by interpretation construction o n

the choice sets .

Alas, this model is too simple to be used for mos t
problems, and we shall introduce a slightly more comple x
organization in Section 2 .3 . The consumer architecture s
varies from the simple model only in that construction of
nodes and justifications can be interleaved with makin g
assumptions . The intent of the consumer architecture is to
reduce the ATMS structures to just those whic h
potentially appear in solutions, by seeing if the
antecedents for a justification could be believed togethe r
before installing the consequent . As described below ,
consumers are insufficient (and in many cases inefficient )
since they do not provide enough control for our purposes .

2.2 The many-worlds database
Fully exploiting the notion of environment a s

context requires organizing problem-solvers somewha t
differently than for other TMS systems . In particular, it
pays to return to an implicit represenation of time and
situation instead of using more modern notations o f
situation-calculus 32 and histories 25 . Each fact in th e
database can be interpreted as a number of statement s
about individuals in several possible worlds, rather than
as about individuals at some specific time or in som e
specific circumstance . Any particular world, be it different
in time or in some other way, is defined by a particular
environment . What is true in that world is represented b y
the set of facts which are the consequences of the definin g
environment .

This interpretation can be understood in terms of th e
following metaphor . Consider the database as a
description of the physical world . In a JTMS or LTM S
the world is deterministic, although perhaps not totall y
determined: to find out if something is true we need onl y
look at the appropriate TMS node . By contrast, the

* Combining environments consists of taking the union of the sets of
assumptions involved . The result is considered to be contradictory if i t
subsumes a set of assumptions already known to be contradictory . Se e
Ref. 4 for details .

ATMS database is something like a quantum mechanica l
wave function . Looking at a particular node, one see s
only possibilities . But probing the database with a
particular environment yields a particular answer, just a s
taking a physical measurement provokes the collapse o f
the QM wave function. Consequently, we call thi s
organizational scheme the many-worlds database .

The many-worlds database has clear advantages fo r
some kinds of problems . First, it eliminates the overhead
of making copies of assertions required by explici t
temporal reference schemes . For example, in QPE we
write

(Left-of Block-A Block-B)

while the same fact represented in GIZMO would be

(Left-of (at Block-A Si) (at Block-B Si) )

Describing different times in GIZMO required creating
new assertions ; describing different times in QPE require s
only creating new environments . In addition to storage
economy, this increases the advantage of inference
caching provided by the TMS, since the same
justifications serve in the structure of many states . It also
eliminates the complicated pattern-matching that explicit
temporal reference schemes require in order to avoi d
creating nonsense assertions, such as fluid paths that exis t
between temporally nonoverlapping objects t ' ,3 '

The many-worlds database is essentially the database
interpretation implied in the original conception of th e
ATMS3, and is used in de Kleer's qualitative physic s
programs as well as in QPE . However, it has never been
adequately explained as a strategy per se, nor does i t
appear to have been widely adopted . For example, i t
appears to be simpler than the viewpoint mechanism of
ART or the Worlds mechanism of KEE 34, the two
current commercial systems which use ATMS-lik e
technology . These mechanisms are closer in spirit to
CONNIVER-style databases 33 , using assumptions t o
model markers corresponding to assertion and deletion o f
facts within particular named contexts . They suffer fro m
the same limitation, namely having to work backwards
up a tree of contexts in order to find the actual status of a
fact, and the inability to share cached inferences across
time* .

The obvious disadvantage of this scheme is that, since
one cannot name specific situations and times, one canno t
state explicit comparisons between them. Thus one
cannot say that

A[Amount-of(at(Water-in-can,After(boiling))) ]

< A[Amount-of(at(Water-in-can,Before(boiling))) ]

However, the advantages gained by the many-world s
database suggest that the best way to overcome thi s
problem is to support multiple notations, rather than t o
force explicit temporal references everywhere . By
constructing registrations 21 , histories can be described i n
terms of occurrences of qualitative states from an
envisionment . Most of the information relevant to a
particular episode of the history can be inherited from

* What these schemes do provide is the ability to retract facts fro m
contexts . In the many-worlds database contexts are only identified with
environments, so retraction does not make sense .
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correspondong qualitative state in the envisionment ,
while still using explicit temporal notations for episode-
specfic facts .

2 .3 The justify/assume/interpret cycle
Recall that justifications in the ATMS determine the set

of consequences which follow from any environment, and
weed out inconsistent sets of assumptions . A `solution' i s
a particular environment and its attendent consequences .
There are a number of ways to construct such
solutions4 ' r1,23 A particularly useful technique fo r
problems where the entire space of solutions is sought ,
such as envisioning, is to organize the problem-solver into
justify/assume/interpret cycles .

A justify/assume/interpret cycle works like this :

1. Begin with an initial set of facts and initial partial
solutions .

2. Until the problem is solved ,
2 .1 Until the subspace of assumptions is complete ,

2 .1 .1 Justify : Create justifications representing
the conclusions and constraints tha t
follow from the current set of facts .

2 .1 .2 Assume : Install assumptions suggested by
the results so far .

2 .2 Interpret : Extend the partial solutions„ base d
on the new conclusions and constraints .

We include the creation of special-purpose
datastructures which contain pointers to ATM S
constructs in the Justify and Interpret phases . The crucial
difference between this organization and the simpl e
organization discussed in Section 2.1 is the use of iteratio n
to decompose the problem-solving activities into layers ,
each exploiting the partial results of the layer before it .

This scheme further requires that all pertinen t
information is provided as input before processing starts .
That is, computations organized in this way shall be
treated as atomic operations when used in a large r
problem-solving system . This stipulation has two
advantages. First, we can dispense with the standar d
ATMS consumer architecture and its associate d
overhead . Second, it allows us to use a form of negatio n
by failure. We can know, for nodes representing certain
classes of facts, that by a particular stage of processin g
that the labels of these nodes are as large as they will eve r
be. (Their labels could shrink, due to environment s
becoming nogood as a consequence of other constraints . )
We will call this label the maximal label for the node. If
such a node's label is empty, for example, then we ca n
conclude that it is not believed under any circumstanc e
that will lead to a complete solution, and so not conside r
that node further .

The N-queens problem provides a simple example .
Consider an N x N chessboard . The goal is to find all th e
possible ways to place N queens on the board so that n o
two queens can capture each other . Let the initial facts b e
the set of statements about the location of the queen in th e
first column. The initial solutions are simply the N
assumptions that the first queen can be legally placed in
each of the N rows . The justify phase of the cycle consist s
of constructing statements corresponding to the possibl e
locations of a queen in the second column, along with th e
nogoods which rule out combinations of queen
placements in the first and second columns that woul d
allow a capture . The assume phase consists of assuming

that each statement about queen locations in the secon d
column could hold . The interpret phase of the cycl e
extends the solutions by adding to each partial solutio n
(i .e ., the assumptions about queen locations for the firs t
column) an assumption about the location of the queen i n
the second column, filtering out those possibilities which
are inconsistent . The result will be a new set of
environments, each consisting of consistent positions fo r
a queen in the first column and a queen in the secon d
column . Carrying out this procedure N times ,
constructing nogoods linking each column with all the
previous columns, followed by extending the solution
environments, will generate all solutions to the N-queen s
problem .

A single justify/assume/interpret cycle corresponds t o
the simple ATMS organization described in Section 2 .1 .
For complex problems, the simple model results i n
grotesque combinatorial explosions during inter-
pretation construction . By decomposing the program 's
operation into several distinct justify/assume and justify /
interpret cycles such explosions can usually be avoided .
The partial solutions from each stage can guide th e
construction of justifications, nogoods, and choice sets a t
the next stage . Consider, for example, a program which
generates feasible plans for travelling from Urbana t o
Palo Alto . The choices in such a plan include the means o f
transportation (such as airplane, train, bus, or car) and
the particular path (highway, track, flight number, etc .) .
A set of plans can be generated in principle by turnin g
loose a set of pattern-directed inference rules (as in
AMORD B , RUP 31 , DEBACLE 17) to construct all the
relevant justifications and nogoods, and then usin g
interpretation construction to find all consistent plans .
However, in practice this technique does not work ver y
well . Suppose the choice of transportation mode was
made last and that time constraints rule out any solution
but flying . The interpretation construction process has
generated all possible paths by train, bus, and car — a n
enormous set of possibilities — when in fact all of thes e
choices are irrelevant .

The problem can be worse than mere inefficiency
because sometimes the intermediate results o f
interpretation construction are larger than can fit in th e
address space of the machine, even though the final set o f
solutions fits quite comfortably . We call this problem
intermediate interpretation bulge, by analogy with a
similar problem in symbolic algebraic manipulation
systems* .

A uniform problem-solver organization does no t
adequately exploit the logical dependencies between the
choices involved in a solution . By breaking the solution
process into distinct phases, the combinatorial explosion
can be abated . In this example, considering the mode o f
transportation first would drastically reduce the numbe r
of solutions, since there is no reason to work on an y
solutions which assume the mode is any thing but flying .
Similar dependencies appear in most kinds of problem -
solving. In Qualitative Process theory, for example, ther e
is no reason to calculate the effects of two processes take n
together if they can never consistently be active at th e

* In symbolic algebra systems, intermediate expression swell35 refers t o
the problem of the size of intermediate expressions growing larger than
can fit in memory, even though the final answer does fit . Usually an
alternate solution path would have yielded the same solution but wit h
smaller intermediate expressions .
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same time . Although doing this work does not affect th e
correctness of the final answer, it is wasted effort .

In general there are two ways to minimize intermediat e
interpretation bulge . The first is to minimize the tota l
number of assumptions (i .e ., program with `Occam' s
machete ' ) . The second is to ensure that nogoods are found
as quickly as possible, so that large environments whic h
will eventually be ruled out are never created in the first
place . The justify/assume/interpret organization support s
both techniques . By decomposing the assumption-
making part of the computation into distinct justify/
assume cycles, irrelevant assumptions can be avoided . By
decomposing the interpretation phase we can more easily
avoid building large intermediate solutions which wil l
eventually be thrown away as irrelevant . We have foun d
empirically that in qualitative physics problems, carefu l
decomposition of the program into distinct justify /
assume/interpret cycles can mean the difference between a
problem being solved quickly and using little memory ,
versus running for hours without finding solutions .

2.4 Closed-world table s
Closed-world assumptions are ubiquitous in problem -

solving . A detective must figure out who had access to a
bank account in order to solve a case of embezzelment . A
scientist must sort through a mass of observations an d
decide which of them form a reasonable basis for theor y
generation . In daily life, we all use plausible reasoning to
quickly come to conclusions. In QP theory, closed-worl d
assumptions are essential to combine partial description s
into a complete description of a scenario . An
implementation of QP theory must assume that, fo r
example, it knows all the influences on a quantity in orde r
to figure out how it will change .

All of these examples of closed-world assumptions can
be represented in terms of assumptions about se t
membership . In particular, we assume that the member s
of the set we know about are the only members . Then we
can carry on with whatever computation needs to b e
performed . For example, suppose we know that tw o
processes are directly influencing a quantity Q . If we
assume those two are the only influences and that each
contribution is positive then we can conclude D[Q] >
ZERO* .

Implementing such assumptions in a problem-solve r
that allows new information to be added at any time i s
tricky, but possible" . We can exploit the justify/interpre t
cycle organization to simplify this operation . For eac h
set requiring a closed-world assumption, there is som e
stage in the solution process during which all th e
information required to determine it is known . That is ,
the labels for the statements implying membership will be
maximal, as defined previously . If the set is closed at that
point, only construals of the set (i .e ., hypotheses abou t
the members of the set) which belong to some consistent
solution will be generated .

To carry out this computation we need to cache th e
possible members of the set . That information is provide d
by closed-world tables . A closed-world table is a
collection of entries whose form i s

(<antecedents> . <member> )

* Some QP notation : A quantity consists of an amount, denoted A, an d

a derivative D, both of which are numbers, under the usual

interpretation . The sign of the derivative is denoted Ds .

Each <member> is a potential element of the set . The
<antecedents> are a set of statements whose conjunction
implies <member> is in the set . Thus if process instanc e
PI3 introduced a direct influence N1 on Q1, then
((Active(P13)) . I + (Q1, N1)) would be in the closed-world
table for the direct influences on Q1 . We assume
(implicitly) that the set of members listed in the closed -
world table are the only potential members of the set .

A closed-world table can be used as soon as the labels
for the antecedents are maximal . Since the antecedents
are either elements of choice sets or consequences of som e
choice set elements, this means placing the computatio n
in the justify phase of a cycle which is after the assume
phase of the cycle which establishes the last of th e
antecedents . In QPE, for example, the potential sets o f
influences may be calculated as soon as all of the
assumptions concerning preconditions and quantity
conditions are made, since these determine whic h
processes and views are active, which in turn determin e
what direct and indirect influences hold .

To construct all of the possible construals of a se t
requires systematically computing all consisten t
combinations of antecedents . Each particular member -
ship statement is then justified by the union of th e
antecedents for the potential elements which are in tha t
particular construal and the disjunction of the negation of
the antecedents for the potential elements which are not i n
that particular construal of the set .

For example, consider the subproblem of figuring ou t
all the possible ways that the amount of water i n
container G of Fig . 1 can change . P,, P2 , P3, P4 are
instances of liquid flow, with their direction indicated b y
arrows in the figure. If these processes are the only ones ,
then the amount will tend to increase when P 2 or P 3 are
occurring, and tend to decrease when P, or P 4 are
occurring. (Influence resolution is discussed further in
Section 3 .6 .) The closed-world table for these influences i s
shown in Fig . 2 .

To solve this problem, we first need to find out whic h
combinations of P,, P2 , P3, P4 can be active at the sam e
time, and hence which combinations of effects actually
occur . Then for each combination we must determine the
net result . This computation is depicted in Fig . 3 . When
nothing is happening (i .e ., all pressures are equal), the set
of influences is empty . There are four ways for just on e
process to be active (a state of affairs that won't last long ,
of course), and in this case each provides just one
influence . The pairs of processes are more constrained :
flows are active when there is a pressure differential, s o
clearly P i and P 2 cannot be active at the same time, no r
can P 3 and P4. All other pairs of processes are consistent ,
so the sets of influences they give rise to become solution s
in turn . Finally, every triple of processes leads to a
contradiction, because it contains one of the pairs o f
processes which cannot be active together . No larger
combination can be consistent if the triples are not, so w e
can stop generating sets of influences at this stage .

Now consider each construal of the set of influences .
When there are no influences the Ds value is 0 ,
corresponding to no change . The antecedent for thi s
condition is that none of P i through P 4 are active . When
all the influences are positive or negative the Ds value
takes on that sign . When the influences are in bot h
directions the system branches, installing assumptions
about the relative magnitudes of rates . Fig . 4 illustrate s
this . Importantly, since the results depend only on the
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Fig . 1 . A subproblem in influence resolution . Each
potential flow process is indicated by a labelled arrow . By

determining which combinations of flows can be active a t
any time, we can compute the derivative of the amount of
liquid in G

AMOUNT-OF-IN(WATER,LIQUID,G) :

ACTIVE(P 1 ) ,

contributes I-(AMOUNT-OF-IN(WATER,LIQUID,G),A[FLOW-RATE(P1)]) .

ACTIVE(P2 ) ,

contributes I+(AMOUNT-OF-IN(WATER,LIQUID,G),A[FLOW-RATE(P2)]) .

ACTIVE(P3 ) ,

contributes I+(AMOUNT-OF-IN(WATER,LIQUID,G),A[FLOW-RATE(P3)]) .

ACTIVE(P4 ) ,

contributes I-(AMOUNT-OF-IN(WATER,LIQUID,G),A[FLOW-RATE(P4)]) .

Fig. 2 . Closed-world table for Amount-of-in(C-S(water,
liquid,G)) . The combinations of flow process which ca n
occur together determine all possible ways the amount of
liquid in G can be changing . By using closed-world
assumptions, we allow a local conclusion to be correctl y
applied across an arbitrary number of situations . Thi s
excerpt from a QPE dump for this example shows th e
appropriate closed-world table

Step #1 : { }

Step #2: {P1 }, {P 2 }, {P 3 }, {P4 }

Step #3: {P1 , P 3 }, {P 1 , P4 }, {P 2iP 3 }, {P 2 , P 4 }

Step #4 : Finished - all larger combinations would subsume nogood s

Fig. 3 . Finding consistent sets of influence s

information in the closed-world table, we have no w
solved this sub-problem for every situation in whic h
Amount-of(C-S(water,liquid,G)) is directly influenced .
The ATMS ensures this answer will be available in ever y
context which requires it .

3 . THE QUALITATIVE PROCESS ENGIN E

In this section we first briefly describe ATMoSphere, the

inference engine underlying QPE. Then, we describe how
the organizational ideas of the previous section can be
used to efficiently perform the computations sanctione d
by QP theory . We begin with an important sub-problem ,
reasoning about inequalities . We then show the flow of
information and processing in QPE by stepping through
a simple example .

3.1 The ATMoSphere languag e
QPE is built on top of ATMoSphere, a problem-solving

language which provides pattern-directed rules and a
clean interface to the ATMS* . The details of
ATMoSphere are not important here, but understanding
some general features of the language will aid i n
understanding subsequent sections .

Inside this ATMS data is organized into variables
which take on values, reflecting its heritage as support for
a constraint language . We maintain this data
orgnaization in ATMoSphere, treating propositions a s
functions whose range is the set { :TRUE ; :FALSE}. Thi s
convention is useful because equations involvin g
functional terms are common in qualitative physics (i .e . ,
Ds[Q1] = — 1). However, general equality reasoning,
especially substitution of equals for equals, is no t
supported (unlike RUP31 ) . In out experience, such
computations are rarely worth the language constraint s
required to support them. Users are insulated from thi s
data model if desired, by appropriate syntaxers and
printers .

ATMoSphere provides pattern-directed antecedent
inference rules, similar to those of RUP 31 and
DEBACLE 17 , for automatically installing justification s
and nogoods as required . Implementing justify/assume /
interpret cycles requires rules which trigger on facts bein g
mentioned, rather than being believed (the :INTERN
condition). By using :INTERN rules, we can build a
complete subnetwork of justifications and constraint s
first, and then propagate the consequences of
assumptions, and perform interpretation construction on
that subnetwork . ATMoSphere also supports other rule

* ATMoSphere was developed in collaboration with Johan de Kleer of
Xerox PARC .
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strategies, including the standard ATMS consumer
architecture and the implied-by strategy23. Like
DEBACLE, ATMoSphere also supports integration o f
special-purpose datastructures and procedures with the
assertional databases and rules . For critical com-
putations like inequality reasoning this speed-up i s
essential .

3 .2 Reasoning with inequalities
Efficient reasoning about inequalities is a centra l

problem in implementing qualitative physics pro-
grams7,17,27,37,40,41 The key inferences required of a n
inequality reasoning system concern transitivity, such as :

A>BAB>C=A> C

A=BAB=C= A= C

A>BAB=C=A> C

The standard strategy for reasoning with inequalities is
to create a graph where the nodes are numbers and th e
links are inequality relationships . When a query about th e
relationship between two numbers is made, a simpl e
search provides the answer . Typically, a TMS is used t o
cache the dependence of the relationship found on other
links in the graph 17 ' 38 . While efficient for problem-solvers
that only examine one state at a time, this scheme requires
modification for an envisioner . Ideally, we want to have
inequality information available incrementally during
our computations, since transitivity is a powerful filter ,
but we also want to avoid performing this computatio n
once per situation, as the consequent reasoning strateg y
requires .

We have explored a number of strategies for efficien t
inequality processing within an ATMS, and have settled
on an algorithm with certain novel aspects . Suppose ther e
ultimately will be N numbers . In practice, few of th e
potential N 2 relationships between these numbers are of
interest . Pairs of numbers which are `interesting' will b e
mentioned at some point in an inequality relationship b y
the problem-solver . Consequently, an efficient inequalit y
algorithm should not introduce ordering relationship s
between pairs of numbers which have not already bee n
deemed of interest by the problem solver . Since
inequalities are a substantial portion of the fabric fro m
which qualitative states are woven, many of thes e
inequalities will be assumptions . We want to find ou t
quickly which combinations of them are inconsistent ,
since such combinations cannot be part of any state . This
suggest a forward-chaining, incremental algorithm .

Whenever a pair of numbers is mentioned in som e
inequality relationship, we build a compound link whic h
contains representations for all possible relationships
between that pair of numbers . In other words, associated
with each link are ATMS nodes corresponding to the pai r
of numbers being > , <, _, or (In QP theory objects
and their properties can have limited temporal extent, i .e . ,
they can ease to exist . AT, ,. N 2 , read 'N I is unrelated to
N 2 ', indicates that the quantity of which N, or N 2 belongs

to does not exist . )
The key observation is that every inference involvin g

transitivity occurs in cycles in this graph of links . Given a
new pair of interesting numbers, we incrementally instal l
the consequences of transitivity involving the pair by (a)
finding every cycle in the graph of links which include s
this new link, and (b) installing a set of justification s
which enforces transitivity in each newly-found cycle . The
set of justifications consists of concluding som e
relationship for a link in the cycle based on consisten t
combinations of relationships from the other links in th e
cycle . For instance, consider the cycle A B HC HA.
When this cycle is first created, the consequences show n
at the beginning of this section will be among thos e
installed* .

Since all transitivity consequences of a new numbe r
pair are installed antecedently, queries are free, which
simplifies subsequent computations . We have explored a
wide variety of ATMS-based transitivity algorithms, an d
this has given us the best results to date .

3.3 QPE : Input, output, and organizatio n
QPE takes two inputs, a domain model and a

particular scenario described in terms of that model . For
concreteness, we will use the scenario depicted in Fig . 5 .
Here, a container called Can is connected thermally to a
heat source Stove via a heat path Burner . The only kind o f
substance is water, which can be in either the liquid or ga s
state . Notice that we have not specified any equations o r
processes . It is part of QPE's job to generate those, based
on the domain model . We will say more about thi s
procedure below . The output is an envisionment ,
consisting of a set of situations and transitions between
them. An attainable envisionment consists of all state s
that can be reached by some set of transitions from a
distinguished initial state, and a total envisionment
consists of the union of attainable envisionments fro m
every possible initial state . A situation is a qualitative
state representing some class of behaviours . Each
situation is represented as an ATMS environment . The
facts which hold in that situation are simply the fact s
implied by the environment .

QP theory provides a set of basic deductions which can
be woven together to perform particular tasks . The
simplest way to generate histories given an initial state ,
for instance, i s

1. Find what processes and views are active in the
current situation .

2. Resolve influences to determine Ds values .
3. Perform limit analysis to determine what transition s

are possible .
4. Select one of these transitions as corresponding to the

next state .
5. Until finished, go to 1 .

Attainable envisionments may be generated by
carrying out the same procedure, but by exploring all
transitions and `collapsing' states which look identical
into single states . This in fact is the algorithm used i n
GIZMO17 . This algorithm is inadequate for generatin g
total envisionments . In total envisionments there is n o
distinguished initial state . Every state consistent with th e
given scenario must be generated . For example, if the

* The number of justifications installed per cycle can be greatly reduce d
by either using

	

& . or equivalently by using negation .

Active

Ds value

{ }

0

{P,} {P 2 } {P3} {P 4 } {P 1 , P 3 }

1, 0, 1

{P,, P4 } {Py, 1,3 )

1

{PS , P 4 }

1,0, 1

Fig . 4 . Summary of influence resolution results
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, ;; Background informatio n

(assert!

	

'(substance water)) , "water" is a substance

(assert!

	

'(state liquid)) ; "liquid" is a state

(assert!

	

'(state gas)) , "gas " is a state

; ; ; Describe the object s

(assert!

	

'(Container Can))) , "Can" is a container.

(assert!

	

'(Heat-Source Stove))) "Stove" is a heat source .

(assert!

	

'(Heat-Path Burner)) ; "Burner" is a heat path .

;; ; Relationships between them - bidirectional thermal contact

(assert! '(Heat-Connection Burner Stove (c-s water gas can)) )

(assert! '(Heat-Connection Burnes" Stove (c-s water liquid can)) )

Fig. 5 . A QPE scenario

purpose of the envisionment is to support measurement
interpretation20 , determining the initial state is part of th e
problem, so we cannot start with an attainabl e
envisionment .

Total envisioning requires a different organization, an d
it turns out this re-organization gains us considerabl e
efficiency . For instance, in the algorithm above influence s
are resolved on each quantity once per situation . But, a s
we saw earlier in Section 2 .4, many of these inferences rely
on tightly constrained subsets of a total solution . Thus the
ATMS techniques described here allow us to resolve eac h
quantity once for whatever patterns of influence exist, an d
`inherit' that solution whenever it is consistent ,
independently of the number of total solutions . This
significantly reduces the computational complexity of
envisioning .

QPE is organized as a collection of several justify /
assume/interpret cycles . Each cycle adds a new kind of
information to the solutions, i .e ., the situations and
transitions table . The broad steps are :

1. Expanding the scenario model .
2. Installing initial assumptions .
3. Resolving unambiguous influences .
4. Constructing initial situations and Sclasses .
5. Resolving ambiguous influences .
6. Performing limit analysis .

Next we outline how each step works, showing how th e
organizational ideas interact to make an efficient
envisioner .

3 .4 Expanding the scenario mode l
As mentioned above, QP theory takes on more

modelling work than other theories of qualitative physics .
Thus a QP implementation must determine what parts o f
the given domain model to apply to the initial descriptio n
of the scenario . This involves ascertaining what
individual views are applicable, what instances of
processes exist, and installing their enabling condition s
and direct consequences . We call this step expanding the
scenario model .

To understand how this step works requires describin g
how domain models are implemented . The QP modelle r
writes descriptions like those of Figs 6, 7, and 8 . Form s
like defview and defprocess are automatically

transformed into two ATMoSphere intern rules . The first
rule finds instances of views or processes of that type ,
creating named descriptions (such as PI3) to stand fo r
particular instances . The second rule installs the
consequences and constraints associated with instances o f
that type, such as the conditions under which it is activ e
and what follows from that . (Other forms, like defentity ,
define type predicates . A complete listing of domain
model constructs can be found in the QPE Manual 24)

The many-worlds database interpretation allows a
single process or view instance to be used for every
situation, rather than re-running rules to determine for
each new situation what instances occur . The primitives
in these descriptions (such as arithmetic operators and
qualitative proportionalities) are expanded at rule
compilation time by a syntaxer to allow various interna l
actions to be hidden from the modeller . For instance,
several actions are required to instantiate a oc Q+ . First, i t

(defentity physob

;;; Random physical objects have several continuous propertie s

(quantity (Amount-of ?self))

	

;; amount of it there is

(quantity (Heat ?self))

	

;; internal energy

(quantity (Temperature ?self))

	

;; other standard thermo parameter s

(quantity (Pressure ?self) )

(quantity (Volume ?self) )

, ;; There are a few state-independent relationships

(Qprop (Temperature ?self) (Heat ?self) )

(not (less-than (A (Amount-of ?self)) ZERO) )

(not (less-than (A (Temperature ?self)) ZERO)) )

Fig. 6 . Defining types of objects . A physob is a generic
physical object, with various thermodynamical properties

(defview (Contained-Stuff (C-S ?s ?st ?c) )

Individuals ((?c :type container )

(?s :type substance )

(?st :type state) )

Preconditions ((Can-Contain-Substance ?c ?s ?st) )

;; A paper cup can contain water, but not sulpheric acid

QuantityConditions ((greater-than (A (Amount-of-in ?s ?st ?c) )

ZERO) )

; ; The can has a non-zero amount of that substance in that stat e

Relations ((there-is-unique (C-S ?s ?st ?c) )

; Exists only when this view activ e

(q= (amount-of (C-S ?s ?st ?c))

	

; Define its amoun t

(amount-of-in ?s ?st ?c) )

(physob (C-S ?s ?st ?c))))

	

; It is a physo b

Fig. 7 . Defining time-varying relationships . QP theory
provides individual views to describe properties tha t
change over time . This view defines fluid stuffs that are
individuated by locatio n
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(defprocess (Heat-Flow ?arc ?dst ?path )

Individuals ((?src :conditions (Quantity (Heat ?src)) )

(?dst :conditions (Quantity (Heat ?dst)) )

(?path :type Heat-Pat h

:condition s

(Heat-Connection ?path ?src ?dst)) )

Preconditions ((heat-aligned ?path) )

;; No thermal insulators

QuantityConditions ((greater= than (A (temperature ?src) )

(A (temperature ?dst))) )

;; Most be a temperature differenc e

Relations ((quantity flow-rate)

	

; Local quantit y

(Q= flow-rate (- (temperature ?src)

	

; Constraint on flow rate

(temperature ?dst))) )

Influences ((I+ (heat ?dst) (A flow-rate) )

; Acts to increase heat of destinatio n

(I- (heat ?src) (A flow-rate))) )

; Acts to decrease heat of sourc e

Fig. 8 . A process description . Here is the definition of
heat flow used by QPE in this exampl e

must be justified on the basis of the antecedents of th e
description in which it appears . In the case of processes ,
for instance, the antecedent will be an assertion that th e
process is active . Furthermore, a provision is made to ad d
an entry at run time to the closed-world table of indirec t
influences for the quantity constrained by that cc Q + .
Similarly, each inequality mentioned in a domain mode l
must be expanded into (a) justifications which force tha t
inequality to hold when the antecedents hold, (b) an entry
into tables of choice sets maintained by QPE to defin e
situations, and (c) a form which causes the transitivity
graph to be updated, if necessary . The syntaxer is data -
driven, and thus provides a facility for user-supplie d
extensions to QPE* .

The assertions and justifications installed in this ste p
are part of the justify phase of the first justify/assum e
cycle, within the first justify/assume/interpret cycle . Al l
possible process and view instances have been found, an d
all of their direct consequences and constraints have bee n
installed . In our example, there are 30 inequalities in the Q
state and 4 entries in the table of preconditions . Two view
instances and three process instances have been found, a s
shown in Fig . 9** .

3 .5 Creating the initial assumptions
Perhaps the most important choice in organizing an

ATMS-based envisioner is selecting which types of
assumptions will comprise a situation . There are severa l
strategies which might be used with QP theory. For
instance, one might base situations on assumptions abou t

* For instance, John Collins has used the parser to implement product s
and ratios in terms of qualitative proportionalities and

correspondences .

** The domain model used here for illustration is very simple, and doe s
not represent many of the consequences of containment . For example,
boiling temperature is assumed to be constant, and the possibility of th e

can bursting is not considered .

the existence of objects and the status of views an d
processes. There are two problems with this alternative .
First, it is not invertable — while a process must be active i f
all of its preconditions and quantity conditions hold, it i s
inactive if any of them fail to hold . Ergo in thi s
representation we could not distinguish betwee n
situations which differ only in which conditions make
some process or view inactive . Second, in subsequent
processing we will need to introduce inequalit y
assumptions (e .g ., relative rates and derivative
comparisons), so assumptions about existence and status
assignments are insufficient .

The alternative used in QPE is to make preconditions
and quantity conditions the assumptions which comprise
the bulk of a situation . Typically, having assumed these
completely fix the status of processes and views . We call a
QP model well-conditioned when a set of inequalities an d
preconditions always suffices to establish the status o f
processes and views . It is possible to write ill-conditioned
QP models, since quantity conditions can include th e
status of processes and views. However, we have yet t o
find a case where well-conditioned models are not
sufficient, and so we restrict QPE to these . GIZMO
operated under the same restriction* .

QPE distinguishes several kinds of preconditions . If the
modeller guarantees that choices of other precondition s
and inequalities will suffice to determine the validity of al l
predicate instances of a certain kind, the modeller can
declare that predicate computable . Suppose Touches
(<stuff>, < port) holds just when the contained liquid
<stuff> touches the portal < port> in its container . Under
the right modelling assumptions we can define Touches i n
terms of the relationship between the height of < port >
and the level of <stuff>, in which case we would declar e
Touches as a computable predicate. Also, the modelle r
can declare choice sets which QPE must explore . For
instance, to force QPE to look at all the states of a
particular kind of valve, the modeller can sa y

(Choices (State valve) (Open Closed))

QPE would then ensure that every situation assume s

---- View and Process Instances --- -

View instances :

VIO = CONTAINED-STUFF(WATER,CAN, GAS )

VI1 = CONTAINED-STUFF(WATER,CAN,LIQUID )

Process instances :

HEAT-FLOW(C-S(WATER,GAS,CAN),STOVE, BURNER )

HEAT-FLOW(C-S(WATER,LIQUID,CAN),STOVE,BURNER )

BOILING(WATER,CAN,C-S(WATER,LIQUID,CAN),PI1 )

Fig . 9 . View and process instances for the example

* Extending QPE to ill-conditioned models seems straightforward . At
minimum, it would require expanding the choice sets which defin e
solutions as the union of all preconditions, quantity conditions ,
existence predications, and the statuses of views and processes . Since
these choice sets are highly redundant, many more nogoods would b e
created and efficiency would suffer . I suspect the temporal inheritance
algorithm would also have to undergo changes, but this is not obvious .

PIo

PI 1

PI2



either that the valve is open or that it is closed .
The union of all inequalities mentioned in th e

envisionment (i .e ., the contents of every possible quantit y
space) is called the Qstate . The rules derived from the
domain model automatically construct tables of
preconditions and quantity conditions for the current
scenario during model expansion . This step makes each
entry of these tables into an assumption* . By simply
creating these assumptions the ATMS propagates them
through justifications to update labels . Assuming well -
conditioned models, the labels for the nodes
corresponding to the status of views and processes ar e
now maximal. We do not have situations yet, of course ,
since we have not yet performed interpretatio n
construction to ascertain which complete combinations ,
of choices are consistent . However, we do have enough
information to use the closed-world tables associate d
with influence resolution, which we do next .

3 .6 Resolving unambiguous influence s
Recall that influence resolution computes the Ds value s

for each quantity . Some quantities are directly influenced
by processes, when I + and/or I - relationships involving
them hold* . In this case, D[Q] equals the sum of the
influences . For instance, in our example the heat flow
instance PI1 directly influences Heat(C-S(water,liquid ,
can)) and Heat(stove), each by A[flow-rate(PI1)] . Som e
quantities are indirectly influenced, in that they are
functions of other quantities which are themselves
influenced . Functional dependencies are expressed in Q P
theory by qualitative proportionalities (the operators cc Q +
and cc Q _ ) . Both operators only provide partia l
information about the function relating two quantities ;
for instance, Temperature(?c) cc Q + Heat(?c) indicate s
that the function which determines Temperature(?c) i s
increasing and monotonic in its dependence on Heat(?c) ,
but does not indicate what the function is in detail or what
else it may depend upon . Consequently, closed-world
tables must be used for indirect influences as well .
Quantities which are neither directly nor indirectl y
influenced are said to be uninfluenced .

Influences cannot always be successfully resolved .
Conflicting indirect influences, for instance, cannot b e
resolved within basic QP theory since we do not know th e
underlying function . But in most cases resolution i s
straightforward, so we take care of these cases first . We
defer handling ambiguous cases until after the initia l
situations are constructed, for reasons described in
Section 3 .8 .

Part of the procedure for resolving direct influences wa s
demonstrated in Section 2 .4 . Closed-world tables
describing all direct influences for each quantity ar e
constructed as a side-effect of expanding the domai n
model, and this same procedure is carried out for indirec t
influences as well . The conditions for a quantity being
uninfluenced are established by taking the union of th e

* Assuming all possible preconditions is the default mode of operation

for QPE . There is also a language for declaring particular precondition s

to hold or not, so that the user (or other programs) can choose to explore
only particular subsets of the total envisionment . Also, a debugging
mode is proposed for asserting all preconditions as true, rather tha n
assuming them .

* By definition, I + and I — are only found in the influences fields of

processes . This means processes are ultimately the cause of al l

dynamical changes in the model .
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negation of the antecedents in these tables . Uninfluenced
quantities, by assumption, have a Ds value of O. Should
both direct and indirect closed-world tables for a quantit y
Q be empty, Ds[Q] = 0 is asserted as universally true .
Should the quantity not exist at some time, we sa y
Ds[Q] _ .J. .

As noted above, in QP theory direct influence s
combine by addition . This means that in some cases
information about the relative magnitude of rates can
allow otherwise ambiguous direct influences to be
resolved . For instance, suppose that there are two flow s
into a container and two flows out . If we assume that each
flow out is individually bigger than each flow in, then we
can conclude that the sum of the out-flows is larger tha n
the sum of the inflows, and hence the net effect is Ds = 1 .
The computation for resolving direct influences can be se t
up to make these assumptions about relative rates .
However, this is not always profitable . As the number o f
direct influences goes up, for instance, the percentage o f
cases in which pairs of inequality assumptions suffice t o
resolve the ambiguity drops rapidly . Consequently, QP E
has several modes for handling ambiguous direct
influences .

The simplest mode is to do nothing, in which case the
normal constraint satisfaction process described in
Section 3 .8 handles the problem . The problem with thi s
mode is that for some purposes the situation description s
computed are not detailed enough. The obviou s
consequence is that you don't know when a particula r
collection of assumptions about rates would resolve th e
ambiguity without further inferential work. The mor e
subtle consequence is that transitions involving rates ca n
no longer be detected, since the inequalities involvin g
rates must be explicitly mentioned before limit analysi s
will consider the possibility that they will change .

The second mode introduces sum quantities for each
case of ambiguous direct influences . One sum quanity
represents the net positive effect and the other represents
the net negative effect . Each is qualitatively proportional
to the positive and negative influences, respectively . These
quantities replace old sets of direct influences, and a n
assumption concerning their relative magnitude is
installed to distinguish between the possible outcomes .
The qualitative proportionalities enable transitions
between these assumptions to be detected ; if in a case
where the net positive effect was assumed to be larger, th e
positive influences are decreasing and the negative ones
are increasing or remaining constant, then eventually th e
effects will cancel .

The third mode provides the most detailed answers ,
and is the most expensive computationally . All potentia l
relationships between each pair of opposing direc t
influences are assumed, and that pair is added to th e
Qstate . The combinations of assumptions which result i n
an unambiguous answer are found by a simpl e
modification of the algorithm outlined in Section 7 .2 .7 in
the MIT Report' . This algorithm worked quite wel l
when reasoning within a single state, since the inequality
information is either known or not . But making these
extra assumptions is quite expensive . Suppose there are N
positive direct influences and N negative direct influences
on a particular quantity . The N' inequality assumptions
will be created, each of which becomes part of th e
constituents of state, and hence increases the cost of mos t
subsequent operations . Empirically, we have found tha t
the amount of detail produced by this mode is almost
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never useful, but it is provided for completeness .

3.7 Constructing initial situations
The previous step comprised a second justify/assum e

subcycle, since (depending on the mode) we interleav e
adding justifications with additional assumptions . Now
the stage is set for the first interpretation phase, whic h
constructs the initial set of `solutions', i .e ., situations . The
choice sets include the alternatives for each preconditio n
and quantity condition . Any inequality assumption s
made in the course of the previous influence resolutio n
step are included as well .

Standard ATMS interpretation construction routine s
are used to build all consistent combination o f
alternatives from these choice sets . Each such
combination forms an environment which is, b y
definition, a situation. The consequences of these
environments include the situation's process structur e
(i.e ., the set of active processes), the view structur e
(similarly defined) and the unambiguous results o f
influence resolution .

It is useful to impose additional structure on the set o f
situations. We define an Sclass to be a set of situations
which are identical with respect to what objects exist i n
them, process structure, view structure, and Ds values .
Sclasses divide the set of situations into equivalenc e
classes, whose elements differ only in inequalities o r
preconditions . Sclasses are useful for two reasons . First ,
they provide a natural summarization of the
envisionment – the differences between members of a n
Sclass are irrelevant for many inferences . Second ,
resolving ambiguous influences requires makin g
assumptions, and as the next section demonstrates, thi s
can be done more efficiently for the whole Sclass at once .

Situations are partitioned into Sclasses by findin g
collections with common objects, process structure, an d
view structure . These commonalities ensure that the
influences which hold are identical for each situation i n
the Sclass . Consequently, the known Ds values are cache d
with the Sclass, and any quantities whose Ds values ar e
ambiguous are noted .

3 .8 Resolving ambiguous influence s
When all Ds values are known, Sclass is said to be r-

complete 17 . This step extends all Sclasses which hav e
unknown Ds values into r-complete Sclasses . Basically ,
we do this by extending the incomplete situations wit h
assumptions about the unknown Ds values . Since these
assumptions are not independent, it is more efficient t o
add them in an order determined by direction o f
functional dependency : If Q 2 depends on Q 1 , for example ,
then Q2 should be examined after Q 1 , since an assumptio n
about Ds[Q 1 ] may fix Ds[Q 2] . This suggests sorting the
quantities by functional dependency* . Since the same set
of influences hold for every situation in an Sclass (i .e ., the
set of influences is determined by the view and proces s
structures), this sorting step can be done just once for eac h
Sclass . In fact, the process of generating r-completions i s
simply a slightly more clever version of interpretation
construction, using the initial situations for the initial
solutions and not adding an assumption if the Ds valu e

* QP theory places two restrictions on the graph of influences believe d
at any time, which ensure this ordering is always well-defined" . First ,

the set of qualitative proportionalities is always loop-free . Second, no
quantity may be directly and indirectly influenced at the same time .

was fixed by some previous choice . The situations which
result are sorted into new Sclasses and are indexed under
the old Sclass as it r-completions .

3.9 Limit analysis
Limit analysis identifies potential state transitions and

determines their consequences . State transitions are
heralded by changes in ordering relationships between
numbers; their potential occurrence is described by limi t
hypotheses . These potential transitions must be filtered
carefully, to ensure that they lead to consistent states and
that physical properties such as continuity are preserved .
In QP theory these tests can require subtle measures ,
since objects can have finite temporal extents .

Suppose A[Q 1 ] and A[Q 2 ] are compared as part of the
quantity conditions for some process instance, or t o
resolve an ambiguous direct influence . In addition to
being marked as something to assume, during mode l
expansion the comparison between their derivatives i s
noted as a property of interest . The reason is that limi t
hypotheses can be detected by examining the derivativ e
comparison ; for example, if A[Q 1 ] > A[Q 2 ] and D[Q 1 ] <
D[Q 2 ], then eventually A[Q 1 ] = A[Q2] .

Typically the derivative comparison will already b e
known as a consequence of the Ds values, but some
derivative comparisons in some situations may not b e
known . Before limit analysis begins it is crucial to ensur e
that each important derivative comparison is known i n
every situation, which happens by extending situations a s
necessary with assumptions about derivativ e
comparisons . These extensions complete the interpret
phase of the first justify/assume/interpret cycle . The result
is a collection of completely specified situations ,
organized into Sclasses . The rest of limit analysis consist s
of a second justify/assume/interpret cycle to determin e
the set of transitions linking these states .

A limit hypothesis LH is the conjecture that a
particular set of inequality relationships will change in a
certain way . LH is applicable to a situation S i if the initia l
state of the inequalities mentioned in LH hold in S i . Each
application of an LH denotes a potential state transition .
The first step in finding limit hypotheses is to find single -
change limit hypotheses, i .e ., those involving only a singl e
inequality . This can be accomplished by iterating over
each assumed relationship between quantities in the
Qstate, seeing which of the combinations of amount an d
derivative relationships that lead to a potential transitio n
are consistent . This determines if the change is locall y
possible . Next this combination of inequalities is tested to
see if they are part of any situation. If they are, then a limi t
hypothesis is created for this combination, since we ar e
assured that it will be applicable to at least one situation .

The previous step is carried out one per scenario . Th e
next step is to combine the single-change hypotheses t o
create limit hypotheses corresponding to multipl e
simultaneous changes* . Continuing in the `once pe r
scenario ' spirit, the obvious algorithm to construct limi t
hypotheses corresponding to multiple simultaneou s
changes is to combine all consistent combinations o f
single-change limit hypotheses . Unfortunately, thi s
algorithm turns out to be a disaster for most rea l
problems . Many combinations of limit hypotheses are

* A common misconception is that such transitions are `unlikely' and
can be ignored . When two pairs of numbers are functionally related ,
often simultaneous transitions must occur .



LHO : A[TEOIL(WATER,CAN)] > A[TEMPERATURE(C-S(WATER,LIQUID,CAN)) ]

LH1: ACFLOW-RATE(PI1)3 > ZERO ~--.

	

_

LH2: A[TEMPERATURE(STOVE)] > A[TEMPERATURE(C-S(WATER,LIQUID,CAN)) ]

LH3: A[FLOW-RATE(PIO)] > ZERO i--. =

LH4: A[TEMPERATURE(STOVE)] > ACTEMPERATURE(C-S(WATER,GAS,CAN)) ]

LHS : A[AMOUNT-OF-IN(WATER,LIQUID,CAN)] > ZERO i--. =

LH8 : A[AMOUNT-OF-IN(WATER,GAS,CAN)] = ZERO ~-+ >

Fig. 10 . Single-change limit hypothese s

locally consistent, but not applicable to any situation .
Consequentely, the best next step is to find the applicabl e
single-change limit hypotheses for each situation, an d
combine them to form consistent multiple-chage limit
hypotheses . Clearly, any such hypotheses will b e
applicable without further testing . It is useful to keep a
global cache of multiple-change limit hypotheses, both t o
speed up the generation process and to `uniquize' the m
across situations for more coherent explanations .

The creation of limit hypotheses and their assignmen t
to situations completes the justify phase of the second
justify/assume/interpret cycle. The interpret phas e
consists of determining which limit hypothese s
correspond to legal state transitions . For every LH
applicable to each Si, this test consists of two steps . First ,
the new situation Si that results from assuming that LH
occurs in S i is generated . This is a temporal inheritance
problem, and since QPE uses a variant of the algorith m
described elsewhere 18 , we will only describe how the
ATMS has allowed us to simplify the algorithm .

Roughly, we `subtract' from the set of situatio n
assumptions those for which LH conjectures a change,
and `add' in the new inequalities that LH conjectures .
Complications arise from allowing objects to have finite
temporal extent (i .e ., changes in existence can occur) . For
example, if steam appears in the can, all relationship s
involving its properties (such as comparing it s
temperature to that of the stove) must change from
unrelated to something else . If all the water boils away, al l
of the relationships its quantities participate in become
unrelated . The consistent sets of these possibilities i s
generated by interpretation construction . Since we have
generated all consistent situations in advance, any result
of this process which is not already known as a situatio n
environment can be ruled out .

Even with these constraints, it is still possible fo r
interpretation construction to produce more than on e
possible next state . The final filter is to select the state
which is `closest' to the previous state . This intuition i s
applied quite literally, by counting the number of
assumptions in common between the candidates and th e
previous state, and picking the candidate with the most i n
common . Since the candidates differ only in whether o r
not certain individuals exist (assuming well-conditione d
models), this always results in a unique answer .

It should be noted that constructing these possibilities
and performing this filtering without an ATMS require s
very complicated bookkeeping. In GIZMO, for example ,
this computation was carried out by carefully making an d
retracting assumptions in a `scratchpad ' database . Each
such operation can cause propagation through a
substantial part of the justification database, which in
turn can lead to thrashing . No such propagation is
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required in the ATMS implementation.
What we have done so far is compute S i given S i and

LH. Just because S i and Si are themselves consistent does
not mean that LH constitutes a consistent transitio n
between them. The transition must be tested to ensur e
that it does not violate continuity . This test compares the
inequalities which hold between each pair of numbers in
the Qstate before and after the transition . If some
inequality 'jumps' from < to > or from > to <, the n
continuity is violated and the transition is ruled out .
Combinations of amount and derivative relationships are
tested as well, to ensure that the mean value theorem i s
respected .

QPE contains two additional mode switches fo r
experimenting with different varieties of continuity . The
tests above hold for all switch settings . The first switch
forbids any transition in which one pair of number s
becomes unequal at the same time another pair o f
numbers becomes equal . This implements a consequence
of classical continuity, namely that all transitions from
equality take an instant and all transitions to equalit y
require an interval of time* . The second switch allow s
discontinuous changes from equality by weakening th e
mean value law, as was done by Williams" . For instance ,
the transition from

=A [Q2] AD[QM]= D[Q2]

to

A[Q0] > A[Q2] A D[Q,] > D[Q2]

is allowed. The underlying intuition is that such
transitions correspond to changes from an unstable
equilibrium . (This switch sometimes interacts in odd way s
with changes of existence, earning it the nickname of th e
`spontaneous generation' switch . )

Extra work is required to ensure that continuity is no t
violated when changes in existence occur . Suppose we
have two containers on a level surface connected by a
pipe . If water is flowing from one to the other, the flow wil l
be stopped when the pressures equalize. Limit analysi s
will also hypothesize that the source container may run
out of water . If the water always existed, this transitio n
would be ruled out since it violates continuity . (In any
reasonable model, the pressure will be a function of th e
amount, and running out of water corresponds to a
change in the pressure in the source from being greate r
than the pressure in the destination to being less than it . )
However, without extraordinary measures this violatio n
would not be detected since the water in the projected
situation has vanished, taking its quantities with it! QP E
solves this problem by performing special tests when a
potential transition involves a vanishing quantity .
Basically, it re-computes the standard continuity test s
while temporarily suspending the QP laws governing the
relationship between existence and quantities . This i s
accomplished easily in the ATMS by including with eac h
situation the explicit assumption that these laws hold . To
suspend this assumption simply requires subtracting i t
from the situation and inserting its negation instead .

* QP theory explicitly deviates from classical continuity, assuming an
infinitesimal model for numbers . Transitions to equality where the tw o
numbers differ only by an infinitesimal amount are assumed to take onl y
an instant .
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Fig. 11 . The total envisionment for the boiling example

After the inconsistent transitions have been weede d
out, all remaining transitions are examined using the
Equality Change Law 16 to calculate the situation' s
duration. Each Sclass is examined to determine if th e
situations which comprise it last for an instant or a n
interval of time . If both kinds of situations occur, the
Sclass is split . At this point, the envisionment is complete .
The total envisionment for the example is shown i n
Fig. 11 .

3.10 Current statu s
The first version of QPE (QPE v .1) was finished in

March, 198 6 19. QPE v . 1 was used to develop a variety of
domain models, and was used as a module in research on
planning 26 , measurement interpretation 20 , reasoning
about alternate ontologies l , and learning13. Our
experience with this version uncovered various bugs and
limitations, as well as suggesting some valuable additions .

QPE v .2 incorporates many improvements over QP E
v .1, in addition to bug fixes . For instance, we have adde d
optional extra consistency tests and a `flight recorder' for
debugging purposes, and augmented our graphical

display system to show graphs of inequalities and
influences as well as envisionments . We finished QPE v . 2
in November, 1987 . It has been tested with a variety o f
domain models since then, and has been successfully as a
component in several projects 14 ' 22 . Although we are still
tuning its performance, we basically consider it finished .
A formal complexity analysis of the algorithms in QP E
v .2 is in progress .

3 .11 Performanc e
Here we demonstrate the value of our ATM S

techniques in two ways. First, we compare QPE' s
performance with GIZMO, the first implementation of
QP theory. Second, we comment on how various factor s
affect the program's performance .

3.11 .1 Comparison to GIZMO
Comparing programs is difficult, and hence a numbe r

of caveats are in order. GIZMO was designed as a
conceptual tool to explore QP theory . Roughly, ever y
occurrence of what would be an application of universa l
instantiation in a natural deduction system gave rise to a
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Example

Run time

GIZM O

Situations Sec/Sit Run time

QPE v . 2

Situations Sec/Si t

Two containers 231 3 77 33 6 5 .5

Boiling 210 6 35 43 19 2 . 3

Three Containers 1131 14 81 148 32 4 .6

Four Blobs 3176 89 36 801 159

Sec/Sit: 57 4 .35

Fig. 12. QPE and GIZMO performance figures . The
mode switches for QPE v .2 are set to approximate
GIZMO's operation . Since GIZMP produces attainabl e
envisionments and QPE produces total envisionments we
must normalize their results . Here we divide the
performance on each example by the number of situations
produced, and average this number over several examples t o
provide an index of performance . By this measure, QPE v . 2
is roughly 13 times faster than GIZMO

objects, quantities, process and view instances, etc . The
other factor is how many inequality assumptions ar e
introduced in the course of envisioning . This is a property
of how constrained the model is . For example, in certain
modes if QPE cannot deduce the sign of a rate, it create s
explicit assumptions for each alternative . Multiple
simultaneous direct influences also can cause extr a
assumptions to be added (see Section 3 .6), as can lack o f
knowledge of derivative comparisons (see Section 3 .9) .

Empirically, the number of additional assumption s
introduced during the analysis has a major impact o n
performance. Fig. 13 illustrates how QPE v .2' s
performance varies when varying the modes whic h
introduce assumptions . The degradation from additiona l
assumptions can be quite severe . For example, QPE add s
seven assumptions during influence resolution in th e
three containers problem, and two additiona l

Table 1

	

QPE v . 2

distinct node in the underlying logic-based TMS . Thus a
typical conclusion in GIZMO might depend on 25 0
assumptions, only three of which are specific to th e
particular situation . Clearly this is not the most efficien t
implementation strategy for a production program . Bu t
as a tool for exploring theories having these assumptions
explicitly available is invaluable, since it makes it easier t o
distinguish debugging the theory from debugging th e
program . QPE, on the other hand, was designed to be a
`production' program . It is designed to make as fe w
assumptions as possible, and to minimize the number of
justifications generated .

Fig. 12 shows comparative run times on several of th e
original GIZMO exampled' . All data reported here was
generated on the same Symbolics 3670, with 24MB o f
RAM and 200MB of virtual memory, running Symbolic s
Lisp Release 6 .1 . In these runs ambiguous direc t
influences were resolved using sum quantities, as
described in Section 3 .6 . Simply comparing run times is
not an accurate measure of performance, since GIZM O
generates only those situations that can arise from a give n
particular initial state (i .e ., attainable envisionments )
whereas QPE generates all situations possible from al l
initial states (i .e ., total envisionments), typically a muc h
larger number. Consequently we also show the number o f
situations produced, and normalize by dividing the run
time by the number of situations . This number is averaged
to produced a rough index of performance for eac h
program. As these results indicate, in this mode QPE v .2
is, on average, a respectable 13 times faster than GIZMO .

Two additional comments should be made about thes e
figures . First, the original GIZMO run time reported "
were from a Symbolics 3600 with only 4MB of RAM an d
a slower disk . On that machine, GIZMO averaged 240
seconds/situation . Increasing the amount of RAM by a
factor of six improved performance by a factor of four .
Thus we can generate envisionments about 55 times faster
than we could in 1984 . QPEv.2 is also more
space :efficient ; we can now produce envisionments tha t
GIZMO could never do .

3 .11 .2 Factors affecting performanc e
There are two sources of problem complexity . One is

simply how large the descriptions are : The number of

Run time Situations Sec/Si t

Two Containers 33 6 5 . 5

Boiling 43 19 2 .63

Three Containers 149 32 4.66

Four Blobs 200 135 1 .4 8

Table 2

Run time

QPE v . 2

Situations Sec/Sit

Two Containers 33 6 5 . 5

Boiling 43 19 2 .2 6

Three Containers 148 32 4.62 5

Four Blobs 801 159 5 .0 4

Table 3

Run time

QPE v . 2

Situations Sec/Si t

Two Containers 34 6 5 .67

Boiling 49 19 2 .59

Three Containers 703 44 1 6

Fig. 13 . How mode switches affect performance . QPE v . 2
contains several switches which control what classes of
assumptions are introduced, and consequently affect bot h
the detail of the answer and performance. The first table
shows performance with no additional assumptions, the
second table adds assumptions about sums of direct
influences, and the third adds assumptions about specifi c
pairs of opposing direct influences as well
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comparison assumptions about derivatives of rate s
during limit analysis . These nine assumptions add 1 2
more situation to the envisionment, but increase the
computation time by a factor of four! The degradation i s
even more severe for the four blobs problem, which had
run for hours and generated over 5200 situations before
the machine was halted manually .

There are two factors at work here . First, combination s
of introduced assumptions tend to be relativel y
unconstrained . After all, they were introduced exactly t o
make up for ambiguity in the state directly implied by th e
model . Fortunately, the growth is fairly restrained in
reasonable models . In the worst case, N extra inequality
assumptions could make the envisionment grow by a
factor of 4' . Second, the runtime increases more rapidly
than the growth of the envisionment because the ATM S
still has to compute new nogoods for the inconsisten t
combinations of these new assumptions .

We have found several strategies for avoiding thes e
performance problems . First, constrain quantities ,
especially rates, as much as possible when buildin g
domain models . Second, generate low-resolutio n
envisionments whenever possible. Third, when high-
resolution envisionments are needed they can b e
generated by successive refinement : Use a low-resolutio n
envisionment to determine what subspace of th e
behaviours are interesting, and then generate a high -
resolution description of just that subspace by including
additional assumptions about behaviour .

4. CONCLUSIONS

We have described QPE, a new implementation o f
Qualitative Process theory with substantially improved
performance (between 7 and 16 times faster than
GIZMO, depending on the desired degree of resolution in
the answer) . We believe that QPE v .2 provides a valuabl e
tool for building the next generation of qualitative models
and reasoning systems .

Based on our experiences with QPE we offer several
observations on using an ATMS in building problem -
solvers . The advantages are :

1. Speed : By allowing most deductions to be done
independent of specific situations, the ATMS ca n
provide significant performance improvements .
Instead of drawing conclusions once per situation ,
inferences can be made for sub-contexts and wove n
together to form complete solutions .

2. Program simplicitly: Simplifying the interpretation of
facts by avoiding explicit temporal references and by
providing the ability to explicitly manipulat e
assumptions allows programs to be substantiall y
smaller and cleaner . For example, QPE consists of
just over 5000 lines of code, while GIZMO is just over
15 000 lines* .

However, there can also be significant disadvantages i n
using an ATMS :

1 . Justifications must be written carefully . Too few
justifications cause combinatorial explosions durin g
interpretation construction . Installing too many

* Both figures ignore user-interface code . GIZMO included a simpl e
generator of English descriptions which we eventually plan to mak e
available with QPE . QPE includes better graphical debugging tools as
well as a window-oriented query system .

justifications leads to vast inefficiencies in the ATMS .
Unlike a logic-based TMS, where rapid prototyping
is facilitated by allowing the user to assert arbitrary
propositional logic statements, the user of an ATMS
must very carefully lay out the way in which each
domain fact is to be used and specify which facts are
to serve as assumptions . An ATMS which used
disjunctive normal form for clauses instead of hor n
clauses, if it can be made to run efficiently, could help
overcome this limitation .

2 . Intermediate interpretation bulge : While, in theory ,
interpretation construction is order-independent, i n
practice considering choices in different orders lead s
to dramatic performance differences . Early
experiences with QPE v .1 showed that choosing th e
wrong order could slow performance by a factor of 6 ,
or even make the machine run out of memory . A
useful heuristic used in both versions of QPE is t o
order the choice sets by logical dependency .

4 .1 Future wor k
While we are still tuning QPE v .2 to improve

performance, the basic program is stable and we ar e
moving on to other problems and extensions . Some of
these extensions include :

• Support for defining new sets in domain models :
Currently there is no facility for defining domain -
dependent sets, such as the set of contents in a
container or the set of forces on an object . The
mechanism of closed-world tables appears genera l
enough to handle such sets, assuming tha t
conventions for when to close the sets can be
established. We plan on first implementing a versio n
where the modeller specifies when the set must b e
closed, and examine how this facility is used toward
providing QPE with the ability to make these
decisions automatically .

• A portable Common Lisp version : While QPE v .2 i s
written in Common Lisp, it still assumes the
Symbolics user interface . We are expunging al l
Symbolics-specific parts of the code, banishing the m
to a separate interface package . The core program
will be ` source-portable', in that the same source
should compile on any machine running a reasonabl y
complete Common Lisp . A character-oriented
generic interface is being built, as well as new
graphical interfaces for Symbolics, TI Explorers, and
Lucid Common Lisp on IBM RT's . We intend to
make the portable version publically available fo r
research purposes . A manual is in progress, as well as
a tutorial on domain modelling .

• Domain analysis tools : We are identifying several
classes of bugs in qualitative models, such a s
underconstrained inequalities and undeclared
quantities and relationships, which can easily be
detected by cross-reference and simple static analysis .
We plan on developing tools to isolate and flag suc h
problems in order to speed model development .
Brian Falkenhainer has written the first version of
such a system which, although simple, has turned ou t
to be extremely useful .

• An implementation-independent modelling language :
While QP theory places many constraints on a
modelling language, it is not itself a fully specified
modelling language per se . We are beginning to
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develop an implementation-independent formal
modelling language for expressiing domain models ,
so that researchers can begin to accumulate
knowledge bases that can be used with an y
implementation of QP theory .
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