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Similarity permeates human cognition . There is evidence
that objects are categorized based partly on similarity to pre-
vious category members and that the likelihood of transfer
is governed by the similarity between the original and cur-
rent situations . New problems are often solved by analogy
to prior problems . Similarity is responsible for many human
errors, such as perceptual confusions and many recall intru-
sions ; but at the same time, analogy and similarity are impor-
tant in scientific discovery. Consequently, we are developing a
cognitive architecture in which similarity computations play
a central role . This is unlike most architectural approaches,
which either do not treat analogy and similarity at all, or rel-
egate them to a subsidiary role, to be called in sporadically
when other mechanisms are stuck . We are using Gentner's
Structure-Mapping theory [12] as our framework for defining
similarity computations.

The rest of this note addresses the list of issues suggested by
the symposium organizers.

1 Why integration?

Part of our motivation is the long-range goal of creating a
computational account of human reasoning and learning in
physical domains [9] . That is, we are trying to capture the
processes and representations that make it possible for some-
one to learn about areas such as thermodynamics from obser-
vation, experimentation, and instruction . We want to cap-
ture the entire progression of human mental models, from the
accumulation of prototypical behaviors through the ability
to perform engineering analyses, as well as the computations
which move a learner from one model to another . Most of our
efforts to date have been short forays into specific subprob-
lems . While much can be learned this way, and such efforts
will continue, some issues can only be addressed by looking
at larger pieces of the problem . Here are two specific projects
to illustrate what we mean:

Learning from lay-science texts : Many introductory science
books focus on imparting qualitative knowledge about a do-
main, providing more systematic explanations for phenomena
that the reader may have already observed and linking it to
new phenomena . Such books typically use analogy to convey
models, and often build up a domain model by multiple, in-
teracting analogies . Our goal is to construct a program which
can build up a qualitative model of a domain from such texts
that will enable it to answer questions it couldn't before.

Learning engineering thermodynamics : Thermodynamics is a
substantially harder domain than those traditionally used in
problem-solving studies : The collection of techniques which
suffice for puzzles and even for a subset of newtonian mechan-
ics are woefully inadequate to capture human performance
in this domain! The goal of this project is to build a system
which can learn to perform on engineering thermodynamics
problems as well as a college student after taking an intro-
ductory course . We presume the system starts with good
(albeit partial) qualitative models . Learning will proceed by

processing textbook information and attempting to solve new
problems posed by an instructor . Our focus here is on mod-
eling the acquistion of quantitative knowledge and problem-
solving skills, which includes the effective integration of such
knowledge with the system's intuitions (as represented by
its qualitative model) . For instance, we want the system to
be able to absorb and integrate information from multiple
sources, including diagrams . Another issue we want to study
is how to design the system to profitably take advice from
someone who doesn't know its detailed internal state . Quite
apart from cognitive modeling, as our knowledge bases grow,
such techniques will become crucial for augmenting and even
maintaining them.

Both experiments involve integrating problem-solving, ana-
logical learning, knowledge representation, spatial reasoning,
memory, and (to some degree) natural language.

1 .1 Basic components

To date we have concentrated on developing accounts of the
basic components required, with forays into particular as-
pects of the problem . These forays include Falkenhainer's
PHINEAS [7] program, which explored learning at the Naive
Physics stage, and G. Skorstad's SCHISM [24] which is ex-
ploring how to integrate qualitative and quantitative models
to solve engineering thermodynamics problems . PHINEAS in-
cluded the following components:

• SME [6], a simulation of structure-mapping.

• QPE [8], an envisioner for Qualitative Process theory.

• ATMoSphere, an ATMS-based inference engine with an-
tecedent rules and an and/or graph control system.

• DATMI [4], a measurement interpretation system.

• TPLAN [16], an Allen/Koomen-style temporal planner.

while SCHISM currently uses only QPE and ATMoSphere.

Much of our research effort has involved building and extend-
ing these components . For example, we recently extended
SME to make it more efficient and more suitable as a com-
ponent in problem solvers [11] . An important property of
those systems intended to be cognitive simulations is what
we call accountability . That is, processing choices not ex-
plicitly constrained by theory must be easily changable, so
that the dependence of results on alternate choices can be
explored . For instance, SME's input includes two sets of rules
which construct and evaluate local matches, allowing it to
be programmed to emulate all the comparisons of structure-
mapping and other matching theories consistent with its ba-
sic assumptions [5].

Smaller combinations of these systems have been used to
model particular aspects of cognitive processes . For example,
J . Skorstad's SEQL, which uses SME as a module, provides a
toolkit for exploring exemplar-based versus abstraction-based
models of concept formation . SEQL has been used to model
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Figure 1 : The Structure-Mapping Architecture

This diagram illustrates how human analogical processing
may be organized . Can this organization be extended to
cover a broad range of cognition? We intend to build a se-
ries of simulations to explore the characteristics of similarity-
based architectures
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data concerning sequence learning effects in geometric stimuli
[26].

Another example is MAC/FAC [13,14], an initial exploration of
similarity-based retrieval and inference . Psychological results
indicate that human similarity-based retrieval from long-term
memory is largely driven by surface commonalities ; while
in contrast, human judgements of similarity and inferential
soundness are chiefly driven by the degree of structural match
[15,17,22] . MAC/FAC, for "many are called, but few are cho-
sen", is a two-stage retrieval system that attempts to cap-
ture the different roles of similarity in this phenomena. The
first stage (MAC) is a computationally cheap, but structurally
stupid match process. Given a probe, MAC selects a subset
of memory for further processing using a numerosity match,
a coarse, non-structural means of estimating the quality of a
structural match . Thus while some of the matches it returns
are sound, many of them need not be . The FAC stage applies
the full structure-mapping match computation, which means
fully enforcing structural consistency, producing global in-
terpretations, and calculating candidate inferences (i .e ., the
surmises which the match suggests) . The FAC stage currently
consists of SME operating in literal similarity mode (i .e ., sen-
sitive to both structural and object-based similarity).

Figure 1 illustrates the design of our architecture . In our
current version, the Retriever and Analogy Engine are sub-
sumed by MAC/FAC . We plan to experiment with several or-
ganizations of the Working Memory, the Evaluator, and the
Controller . The questions we want to explore include:

1 . What instantiations of these modules suffice to provide
at least the power of traditional AI problem-solvers, but
are consistent with psychological data? How much of the
work can be borne by similarity computations?

2 . How does analogy interact with more traditional
problem-solver organizations? When should a problem-
solver resort explicitly to analogy, and how can implicit
learning be integrated with problem-solving?

To explore these questions we plan to build a series of infer-
ence engines . Each engine will attempt to perform more and
more of the inferential work by similarity computations . For
example, the first engine will use a pattern-directed rule sys-
tem with an underlying truth-maintenance system to perform
most of the reasoning, with SME used to generate surmises
about solutions based on hints (e .g., "Look at this previously-
solved problem") . Next, the pattern-directed rule system
could be replaced by MAC/FAC . A SEQL-like system could then
be integrated to provide a model of implicit learning, ab-
stracting commonalities from frequently encountered classes
of situations to model the process of rules naturally arising
from cases as expertise increases in a domain.

Analogical learning from lay-science texts requires tapping
into a broad understanding of the world . Therefore we will be
attempting to build on the CYC knowledge base [19], extend-
ing its ontology with the constructs of Qualitative Process
theory and interfacing it with SME.

2 Sources of inspiration

The SOAR project and Van Lehn's SIERRA have been major
sources of inspiration, along with work in case-based reason-
ing [18] and instance-based models of human memory (e .g .,
[20]) . Collaborations with Doug Medin and Jerry DeJong
have sparked our interests in exploring categorization and
problem solving, respectively.

3 Characterization

Our answers to the dimensional decomposition suggested by
the organizers are based on the proposed learning projects
described above .

3.1 Generality

Many of the specific representational content and techniques
(e .g ., languages for physical processes and mathematics)
should be applicable to a broad range of scientific and tech-
nical domains . We hope that at least a subset of our mech-
anisms will prove to be valid models for human cognition,
independent of domain.

We are planning experiments with other kinds of domains as
well . It is worth looking at other problem-solving domains,
for instance, to better compare our ideas with other systems.
One interesting example might be geometry theorem proving
(c .f. [1]) . However, we see an important line of research
being the simulation of developmental data . Developmental
psychology is currently making great strides in characterizing
children's mental models . One example is the exploration
of causal understanding of motion and collisions in infants
[2] . Another is the development of theories of weight and
balance [3,23] . We want to develop psychologically plausible
computational accounts of these models and their acquisition.

3 .2 Versatility

Learning by experience in the world is an important aspect
of human learning in physical domains . However, we have
no plans for integrating real vision or real robotics . We view
these areas as extremely difficult research problems in their
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own right . Our suspicion is that, given the current state of
the art and our goals, integrating in that direction would be
unproductive for us, unless it was in collaboration with other
researchers whose research focus was vision and/or robotics.
Our approach instead is to concentrate on the spatial rea-
soning problems that arise in physical reasoning and ignore
taking action in the physical world'.

3.3 Rationality

It would be a fairly poor cognitive model if its actions were
always consistent with its knowledge and goals, wouldn't it?

3 .4 Ability to add new knowledge

We are hoping to move from "mind implants" to something
more akin to instruction, where there is a teacher who has
only a glimmer of the system's internal state, based on ob-
serving it . This is one reason for scaling up : In today's
knowledge-poor simulations, it is altogether too easy to make
very detailed predictions about the internal state of the sys-
tem by a few observations because they simply can't do very
much .

3 .5 Ability to learn

Presumably .

3.6 Taskability

One way to view this question is, "Are we trying to develop
computer individuals, as Nilsson suggested in 1983?" The
short answer is : not yet . One common theme in the projects
above that echos Nilsson's suggestion (and a difference from
most learning programs) is that we want to build programs
whose knowledge bases evolve over a significant span of learn-
ing experiences — i .e ., working through a textbook. We still
know very little about building robust systems which can sur-
vive such extended bouts of operation and learning ' However,
for the forseeable future we still intend to tell our programs
what to do, at least in broad terms.

3.7 Scalability

We certainly hope so . But we expect there will be problems.

3 .8 Reactivity

In the quiet world of book learning, we suspect most of the
system's surprises will be conceptual boggles rather than sud-
den environmental threats.

3.9 Efficiency

Implementing detailed simulations of cognitive mechanisms
on today's hardware can be very difficult . It seems likely,
for instance, that massive parallelism will be necessary for
modeling some aspects of human memory phenomena . For
some experiments we focus on getting the model "right" and
damn the actual run-times . But for these projects, our chal-
lenge is to find good approximations to cognitively plausible

' We think of metric diagrams and visual routine proces-
sors as the same thing, viewed from different sides of the
cognition/perception borderland.

'The CYC project is the only effort we know of which has
faced at least some aspects of this problem squarely.

mechanisms that will allow us to explore issues at the larger
scale .

3.10 Psychological validity

There are a number of questions we want to explore com-
putationally which have seen little attention in previous cog-
nitive architecture studies . These include issues concerning
the form and role of different kinds of knowledge about the
physical world as well as a detailed explication of the role of
similarity computations in cognition.

But there are also several classic issues which are unavoid-
able. One of them is memory organization . AI models of
memory, which tend to be based on clever indexing schemes,
seem unlikely to scale to human-size knowledge bases and
the demands of significant conceptual change during learn-
ing. Psychological models of memory organization have typ-
ically utilized very simple representations, such as feature
vectors . Feature vectors can provide tractable large-scale
searches, but they fail to capture the rich relational infor-
mation that people clearly possess and use in reasoning . On
the other hand, matching structured descriptions tends to be
computationally expensive, making large searches seem un-
feasible . MAC/FAC's two-stage computation provides the best
of both worlds : The search carried out by the MAC stage is,
in effect, based on a flat, simple representation . While not
highly accurate [13], its low computational cost makes large-
scale searches feasible . The full, structured representations it
retrieves are then used by the FAC stage, thus providing the
relational matches required to draw inferences . This allows
the MAC/FAC model to capture two seemingly incompatible
intuitions about memory : Access tends to be governed by
surface properties, while inference tends to be governed by
relational matches. We think that by looking at reasoning
and learning in a complex domain we may gain new insights
about how memory works.

4 Knowledge sharing

One problem with PHINEAS and SCHISM was that a substantial
portion of each system's expertise was frozen in impenetrable
rule mechanisms . Some impenetrability is probably okay ; we
presume that the laws of qualitative mathematics are already
known, for instance, and hence do not have to be learned.
But we need to make our next generation programs more
transparent . We are hoping CYC will help in this.

5 Control

We have done very little thinking about this . Suggestions are
welcomed.

6 Comparison with other cognitive
architectures

We agree with Newell [21] that the field should be exploring a
variety of architectural approaches . We find much that is ex-
citing and admirable in the SOAR, ACT*, and SIERRA projects.
However, we differ from them in three important ways.

First, we assume that important general constraints on ar-
chitectures will come from a better understanding of the rep-
resentational needs imposed by rich domains and human-
quality robustness and performance. Most architectural
studies have focused on simple domains and small knowledge
bases . We believe many of the distinctions which separate to-
day's brittle AI systems from the quality of human cognition
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can only be understood by looking at reasoning and learning
in complex domains.

For example, we conjectured that naturalistic representations
would include a preponderance of appearance and low-order
information, unlike current AI representations which tend to
focus on task-relevant information (the specificity conjecture).
This conjecture allowed us to constrain the space of possible
algorithms for structural evaluation of analogies [10].

Second, like Van Lehn, we consider content-oriented psycho-
logical evidence to be a crucial source of constraint . Process-
oriented measures, such as reaction time studies and numer-
ical measures of human performance can provide valuable
information once there is an overall framework to ground
their interpretation . However, we believe content-oriented
evidence, such as patterns of recall and classification, proto-
col studies, and assessment of mental models, will be crucial
to arriving at the correct overall framework. To us, the crit-
ical tests include the ability to assimilate new information
about a domain from a lay-science text, and to parlay this
understanding with additional instruction into the ability to
solve new problems in the domain.

Third, we believe that a similarity-based architecture will
ultimately provide a more constrained account of cognitive
processes than production-rule systems . Production rules
provide little constraint on the representation of knowledge,
since there are many equivalent ways to encode a particular
computation in them. Without such constraints it is diffi-
cult to make detailed predictions using these theories, since
a change in representation could yield substantially different
results. In Structure-Mapping, analogy and similarity com-
putations are sensitive to the form of the representation . This
sensitivity means that our representations should be less tai-
lorable than standard production-rule models — not only must
they carry out the required inferences, but they also must
perform reasonably under similarity computations . Whether
or not this extra constraint leads to additional discriminabil-
ity is, of course, an empirical question.
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