Submitted to Artificial Intelligence. Draft of September 18, 1990. Comments welcome.

Analogy in Context

Brian Falkenhainer
System Sciences Laboratory
Xerox Palo Alto Research Center
3333 Coyote Hill Road, Palo Alto, CA 94304

Abstract

Context appears in two forms in analogy. First, there is the context in which
the analogy is performed. Second, each statement being compared is done so
within the context of each analogue’s overall description. By explicitly taking
context into account, we can provide a more robust account of analogy. Central
to this account is that each element of an analogue’s description has an identifi-
able role, corresponding to the dependencies it satisfies or its relevant properties
in the given context. The relations comprising each analogue are placed in cor-
respondence by virtue of their filling corresponding roles. This work makes three
principle contributions. First, it extracts a set of core principles underlying reason-
ing from similarity which enables correspondences between syntactically distinct
expressions and the controlled introduction of many-to-many mappings. Second,
it uses these principles to provide a unifying look at a variety of recent analogical
and case-based reasoning systems. Third, it introduces the map and analyze cycle,
a general computational framework for computing similarity correspondences and
producing useful inferences. The work is demonstrated with implemented exam-
ples, including classification, causal explanation, and a number of examples from
the literature.

1 Introduction

When plotting the perfect murder, how is an icicle analogous to a knife? When pack-
ing an ice-chest, how is an icicle analogous to an ice-cube? Icicles, ice cubes, knives,
and spoons have numerous properties. Their relative similarities vary according to the
context in which the similarity is assessed. Analogical reasoning is a process in which
similarities between two situations are identified and used to suggest that knowledge of
one situation may also apply to the other. Yet, by what criterion should similarity be
judged? How does similarity lend credibility to this kind of knowledge transfer?
Analogical similarity is typically defined in terms of matching patterns in the de-
scriptions of two analogues, seeking both isomorphic structures and features described
by the same terms [16, 21, 25, 33, 44]. Thus, if our icicle and knife were explicitly de-
scribed in their respective narratives as hard and pointed objects, their similarity would

be identified via these common terms. This view of analogy is amenable to simple com-
putational frameworks and has demonstrated some success on a variety of tasks. It
rests on the fundamental assumption that corresponding aspects of two analogues are
represented in the same manner and may be identified using simple, syntactic matching
criteria. As task complexity and representational sophistication grow, this assumption
breaks down. As we will demonstrate, similarity criteria based on one-to-one mappings
between identical terms are too restrictive and brittle. Furthermore, existing solutions
based on the conceptual closeness of terms [5, 27, 43, 44] (e.g., generalization hierarchies)
are too weak; they can produce unmotivated and incorrect similarity correspondences.
Determining similarity requires understanding which aspects of the terms being com-
pared are relevant in a given context. This insight was crucial to the success of PHINEAS
[12, 13, 14], a program that constructs causal explanations of observed phenomena based
on their similarity to understood phenomena. As we will show, similar insights may be
found in several other recently developed systems as well [3, 30, 32, 34].

This paper uses the insights gained from recent efforts to reexamine the principles
underlying analogical similarity. It describes conteztual structure-mapping (CSM), a
knowledge-level account of similarity that attempts to explain the basic principles by
which reasoning from similarity is meaningful and identify the implicit assumptions em-
bodied in existing systems. CSM provides a general characterization of similarity that
allows the controlled introduction of many-to-many mappings and matches between syn-
tactically distinct expressions. This account is based on the notion that each element
of an analogue’s description has an identifiable role, corresponding to the dependen-
cies it satisfies or its relevant properties in the given context. The relations comprising
each analogue correspond by virtue of their filling corresponding roles. The notion of
role includes a component’s participation in a given behavior, design decisions achiev-
ing a design’s rationale, an actor’s actions and traits achieving a story’s plot, and-an
antecedent justifying its consequents in a logical proof. For example, in the context of a
murder mystery, an icicle is analogous to a knife in the role of being an effective murder
weapon because they have the requisite properties, not because they are conceptually
close along some dimension. In the context of packing an ice chest, different properties
become relevant and an icicle may become analogous to an ice cube.

The second part of this paper shows how contextual structure-mapping serves to unify
and explain some of the intuitions behind a variety of recently developed approaches,
including derivational replay [6, 37], tweaking [30, 29], knowledge-based pattern match-
ing [3], and my work on analogical explanation [12, 13]. It shows that each technique is
an attempt to exploit some aspect of role and context in analogy.

The third part of this paper uses this characterization of similarity to examine the
computational requirements of an analogical reasoning system. It describes the map
and analyze cycle, a general computational framework for computing correspondences
and producing useful inferences. Initial correspondences between the two analogue’s
given descriptions are found using simple pattern matching operations. These corre-
spondences are extended by analyzing incomplete portions of the analogy, seeking ad-

electric valve
furnace furnace
wire
4
gas source
mercury spring
adjustment I#l ﬁ_
lever i bimetallic
adjustment rod
Ell:l dial
gas source
(a) (b)

Figure 1: Two thermostats.

ditional information about the roles of unmatched items. An implementation using the
structure-mapping engine (SME) [15, 16] is described.

1.1 Objectives

While noting similarities between two situations is a central aspect of analogy, we
are most interested in its use for problem solving, in which knowledge of one analogue
(the base) is used to answer questions about the other (the target). Analogy begins when
a base analogue that has potentially relevant similarities to the target is retrieved (or
directly supplied, as by a teacher). Ultimately, it may lead to memory reorganization,
comparative evaluation of competing hypotheses, and continued use of the base analogue
to further explore its consequences for the target domain. This paper is concerned
with what lies in between — how similarities are elaborated and used to solve an open
problem once a candidate base analogue has been identified.! It presents a general
model, applicable to across domain comparisons (with within-domain comparisons as a
special case), that may be used to either accelerate problem solving or produce plausible
inferences to overcome an incomplete domain theory.

For example, consider the thermostat shown in Figure 1(a). This device regulates
a heater to maintain a specified temperature. Temperature deviation is sensed by the
coil, which expands and contracts as it heats up and cools down, respectively. The
furnace is on when the mercury in the glass tube electrically connects the two terminals,
which keeps the valve open. As the environment temperature increases, the coil expands
and the glass tube’s angle increases. Eventually, the temperature reaches a point where
the mercury moves to the right, disconnecting the terminals and closing the valve. The

'See [13, 14] for a description of PHINEAS, a complete analogical reasoning system that uses CSM in
conjunction with retrieval and hypothesis evaluation mechanisms.

lever position controls the device’s goal temperature by shifting the relationship between
temperature and position. By analogy, how does device (b) operate as a thermostat?
Intuitively, our understanding of device (a) should make this explanation easier. Like
the coil, the bimetallic rod senses temperature deviation via expansion and contraction.
When in the on position, gas flows past its end. As the temperature increases, the rod
lengthens and acts as a valve to shut off the gas flow to the heater. The dial acts like
device (a)’s lever to control the equilibrium temperature. The spring stabilizes the dial
by increasing the friction on its threads.

1.2 Analogy in context

What are the principles and methods that enable the explanation of device (a) to assist,
and perhaps make possible, the process of explaining device (b)? Clearly, one aspect
is identifying possible correspondences between their descriptions. In comparing two
analogues, most methods only match expressions that use the same predicate (e.g., the
two furnaces). However, differences between cases or domains often lead to different
predicates describing analogous concepts. If changes are to be allowed in response to
differences in the two analogues’ descriptions, what constitutes an acceptable change?
The common approach is to measure conceptual closeness, using a generalization hierar-
chy [44, 5, 25, 43] or a-priori similarity score [27]. When comparing the two thermostats,
this approach might suggest a correspondence between device (a)’s lever and device (b)’s
dial (both adjustment knobs). However, it might also suggest a correspondence between
device (a)’s coil and device (b)’s spring (both springs). Yet, their similarity is irrelevant
and misses the coil’s role with respect to the device’s components and teleology. The
coil’s relevant aspect in this context is its thermal expansion characteristics — the same
aspect that is relevant to understanding device (b)’s bimetallic rod. When an expression
is used in some context (e.g., in a chain of inference), it denotes certain characteristics
about the world important for that context. Without knowing which effects are rele-
vant, there is no way to know which generalizations or similarities are appropriate. Thus,
objects and relations are identified as being similar by ezamining their roles in their re-
spective analogue descriptions. To do this, we must clearly understand what a role is,
how role information affects similarity assessment, and how incomplete role information
affects the validity of an analogically derived conclusion.

In addition to predicate similarity, constraints on analogical mapping tend to require
that the mapping be one-to-one. However, in device (a), the coil and the valve provide
temperature sensing and gas control, respectively, while both functions are provided by
device (b)’s rod. Here, an isomorphic mapping fails to fully capture the correspondence; a
many-to-one mapping from {coil, valve}to {rod} is needed. Due to function sharing,
many-to-many mappings are common in physical systems. Yet, allowing these mappings
can dramatically increase computational cost and lead to incoherent mappings. Thus,
the conditions under which the one-to-one restriction should be relaxed must be precisely
defined. These conditions come from ezplicitly considering the roles of compared items.

If an expression has more than one role, then each role may lead to a different analogical
correspondent.

Finally, several mappings may be possible and some criteria must be used to select the
“best” one. The thermostats are relatively unambiguous, but at least two interpretations
are conceivable: one in which the coil is mapped to the spring and one in which the coil
is mapped to the rod. Evaluation criteria proportional to match size, such as Gentner’s
[21] systematicity, could prefer the former interpretation if the thermostats’ descriptions
included detailed descriptions of the coil and spring. However, the purpose of the analogy
in this context is to explain the devices’ overall behavior as thermostats, and only the
second interpretation achieves this. Current goals should have a strong influence over
which matches are preferred. - oo

The process of computing similarities is traditionally depicted as a form of pattern
matching between base and target descriptions. However, in realistic memories, not all
that is inferrably known about the base and target is explicit in their initial descriptions.
Furthermore, they may not be described using the same terminology (e.g., coil and rod
rather than sensor). Thus, the process of elaborating correspondences and adapting
elements of the base to fit the target situation often requires inferring additional in-
formation in response to mapping impasses. Because pattern matching alone can be
expensive, and there are many (potentially infinite) inferences that can be made to ex-
tend either analogue, this process must be tightly focused and goal directed. Therefore,
we decompose it to form a map and analyze cycle (Figure 2): use simple matching cri-
teria to determine the best, initial mapping between the analogues, analyze the results
and seek additional relevant information about unmatched areas, reexamine the map-
ping to determine the information’s impact on the mapping (i.e., extensions or complete
shifts), analyze the new results, etc. In this manner, only when impasses arise, such as
an expression having no apparent correspondent in the other analogue, is the domain
theory consulted and more detail about that expression and its role sought. Addition-

Base analogue Target case Target case

" aMap X

]
Analyze

o Mo g

Identify direct matches _ Analyze unmapped relation’s roles
to adapt to target case

Figure 2: Map and analyze cycle. Analogy involves comparing two representation structures.
Obvious correspondences may motivate additional correspondences according to the corre-
sponding elements’ roles. The task is complicated by abstracted or implicit reasoning steps in
the analogue descriptions, which often must be further analyzed to decompose an expression’s
roles into finer levels of detail. The map and analyze cycle focuses more in-depth reasoning only
where and when needed to converge to a point where the match can no longer be extended.

(1]

ally, the separation means that these inferencing processes are only used in furtherance
of a single, initially best mapping, rather than the potentially much larger set of possible
mappings.

1.3 Assumptions

Each analogue is a representational structure consisting of a set of interdependent ez-
pressions. An expression may be a predicate-calculus formula, a feature in a feature
vector representation, or a node or link in a semantic network. Take B and 7 to denote
the base and target structures, respectively. These may represent either actual cases
or generalized prototypes, but are always ground. Theory Th (B,7 C Th) consists of
all available knowledge and may supply additional information about the two analogues -
beyond what is stated in the first two inputs. Analogical inference is then of the form

Py, Qs (P, Q» € B)

Py, ~+ @y Py is predictive of @
P, (PeT)

P, ~ P, P, is similar to P,

Q

P and @ need not be correlated in the underlying domain theory in an antecedent /consequent
manner (as in P, — @). Analogical inference may give the effect of forward inference,
abductive inference, and in general pattern completion.

This paper’s central focus is on understanding the similarity relationship ~ and
how that affects the conclusion Q;. Some correspondences may be directly identifiable
from the base and target descriptions; others arise as a side effect of adapting base
information to apply to the target case. Although our account is task-independent, our
examples and the computational method described in Section 4 focus on explanation
and classification tasks. This class of problems takes three inputs: (1) a description of
the target situation and the set of query facts @, to be explained (e.g., observations or
category membership); (2) a potentially analogous base example and the corresponding
set of facts @ it explains;? and (3) theory Th.

Two fundamental questions arise in analogical inference. First, what does it mean
to say that two things are similar? Second, how do these similarities increase the likeli-
hood of inferred facts? Several factors contribute to increasing confidence in analogically
derived hypotheses, including logical justification [10], consistency [28], and empirical
utility [12, 23]. The fundamental, but not sufficient, criterion for plausibility requires
that inferred facts be somehow correlated to those participating in the similarity rela-
tionship. This correlation may be causal (P causes @), functional (Q = f(P)), empirical,

2The base represents the dependency structure (i.e., proof) containing Qy. Sometimes the base
is simply a set of ground atomic facts By,..., B, describing something satisfying Qs (e.§., a concept
exemplar). In this case, we may view it as a dependency structure of length one, with Qs — By, ..., Ba.

etc, but must be predictive. For example, similarities between U.S. and British politics
may suggest that they have similar economies, due to the strong correlation between po-
litical and economic policy, but does not suggest they drive on the same side of the road.
Inferential strength depends on the specific type of correlation (e.g., material implica-
tion is stronger than a weak empirical association). Additionally, it depends on other
mitigating factors, such as analogue differences directly providing negative evidence.

Although there have been recent attempts to formally capture the correlation under-
lying analogical inference (e.g., [1, 2, 9, 10, 35]), much work is still needed. Rather than
attempt to fully address this issue here, we separate the criteria that suggest plausible in-
ferences from the criteria that evaluate them. At this time, the existence of a correlation
is taken as sufficient evidence for suggesting an inference.” We assume a representation
where dependencies between facts are readily discernible (e.g., semantic nets, schemas,
frames, dependency and derivation structures). Accepting or rejecting conjectures is
relegated to the performance element, which can compare a conjecture’s strength to the
task’s requirements.

2 The role of role

If the roles of an analogue’s elements are fundamental to how they participate in an
analogy, then what is a role and how is it identified? “Role” appears in various forms
across many domains and tasks. In physical systems, a component’s role is how it
contributes to the system’s overall behavior. In design, the role of particular design
decisions and artifact components is the satisfaction of particular design specifications
and rationale. The role of an agent’s actions (as in planning or a story) may be in support
of certain outcomes. In deductive proof, the role of an antecedent is to provide logical
support for its consequent. For these intuitions to be useful, we need a more precise
definition of role that transcends these various domains and tasks. This is found in the
logical notion of dependency — an expression’s roles correspond to the dependencies it
satisfies.

Within an analogue, if @ is a predication whose truth is dependent on predication P,
then the role of P in that analogue is to satisfy the dependency relationship with Q. P
may fill other roles in the analogue as well, in as much as P satisfies other dependencies.
P’s complete set of roles with respect to analogue A; is represented as

ROLE 4.(P) = {Q1,---,Qn}

and consists of all of the elements of A; that P influences.® For the remainder of this
paper, we will leave the important conditional “with respect to A;” unstated and drop
the subscript.

3The contents of A; are a function of the purpose of the analogy, e.g., relevant to answering the
given query. Thus, A; and A; may describe the same case but for different purposes.

Base Description Target Description

Coffee-Grows(r,)
Mountaneous(r,)

Sunny(r,)

Good-Drainage(r,) Fertile(r,) Well-Watered(r,) Type2-Soii(r,)
t

Irrigation(r,)

Mountaneous(r,] Sunny(r,) Typei-Soil(r,] High-Rainfali(r,)
Domain Theory

(1) Typel-Soil(R) — Fertile(R) (5) Mountaneous(R) — Good-Drainage(R)
(2) Type2-Soil(R) ——» Fertile(R) (6) High-Rainfall(R) — —Vacation-Spot(R)
(3) High-Rainfall(R) —— Well-Watered(R) (7) Typel-Region() — —Vacation-Spot(R)

(4) Irrigated(R) — Well-Watered(R)

Figure 3: Can coffee grow in region r;?

The elements of two analogues’ descriptions correspond by virtue of having corre-
sponding roles (rather than because they share a number of possibly irrelevant proper-
ties). If the dependencies supported by base expression P, may be satisfied by target
expression P, then P, and P, are said to be functionally analogous and may be placed
in analogical correspondence. For example, the property Rainfall should map to the
property Irrigation if the role of these conditions is to ensure that a given crop re-
ceives sufficient water. Note that they are not functionally analogous in other roles, such
as washing a plant’s leaves. This may be generalized (and form a recursive definition)
by stating that given two corresponding roles (i.e., not necessarily identical), their role
fillers may be considered functionally analogous and eligible for being placed in corre-
spondence, independent of predicate (or feature) identicality. The more that is known
about the roles of an analogue’s elements, the greater the ability to go beyond syntactic
similarity measures and produce creative analogies.

For example, suppose we are asked if coffee can grow in region r; and are given a
base case describing region r, where coffee is known to grow (adapted from [2]). Figure 3
shows the initial base and target descriptions, and the relevant parts of the domain
theory.* The base case indicates that coffee’s ability to grow is a function of climate,
sun exposure, and terrain. To draw the analogical inference, the relevant similarities
between r; and r; must be established. Clearly, the two regions are both Mountaneous

“In this particular example, Coffee-Grows(r;) follows from the domain theory. The next section
discusses how analogy may provide speedup in such circumstances. The subsequent section discusses
analogy in the context of a weak domain theory (e.g., Coffee-Grows(r;) is not entailed by the domain
theory).

and Sunny. Syntactically, the two regions have no other similarities. However, by noting
rainfall’s role in the base case

ROLE(High-Rainfall(ry)) = { Well-Watered(r;)}

rule (4) indicates that Irrigated(r,) is functionally analogous to High-Rainfall(n,). Like-
wise, Type2-Soil corresponds to Typel-Soil via the common role of Fertile-Soil. Therefore,
the conclusion Coffee-Grows(r;) may be drawn.

2.1 Compiled and abstracted representations

When solving complex problems, if a similar problem has been solved before it is intu-
itively better to draw on that experience than to start from scratch. While not true for
our simplistic example about growing coffee, this is one potential benefit of analogical
reasoning. Unfortunately, representations that are adequate for traditional approaches
to problem solving may not be suitable for performing analogical reasoning. Al sys-
tems tend to represent a minimalist approach to encoding knowledge, in which detailed
descriptions or intermediate reasoning steps are avoided to promote efficiency. For exam-
ple, a physical process may be modeled at a fixed level of abstraction and a design plan
may not contain the rationale behind the decisions it embodies. Indeed, knowledge com-
pilation is a central goal of explanation-based generalization [11, 36]. While potentially
effective for accelerating reasoning, a great deal of information is intentionally absent
from the resulting representations. This poses a significant problem for adaptation of a
base analogue to a novel case: these intermediate or second-order justifications are often
needed to ascertain the requisite role information (Figure 4).

For example, consider the following schema used to explain why coffee grows in region
The

Coffee-Region(r;)
PRECONDITIONS High-Rainfall(ry) A Fertile-Soil(ry) A Sunny(ry) A Mountaneous(r)
EFFECTS Coffee-Grows(m)

This schema is not directly applicable to a situation in which High-Rainfall is false and
Irrigated is true. Why is the High-Rainfall precondition there? Suppose a deeper expla-
nation is retrievable and reveals that this condition is important in this context because
it ensures that the region is well watered. Without knowledge of the role of High-
Rainfall(ry), it would be impossible to justify considering High-Rainfall(r;) functionally
analogous to Irrigated(r;).

To address the compiled knowledge problem, the schema’s internal justifications must
be accessible (either cached or reconstructable). This information may then be consulted
as needed during analogical mapping to decompose and elaborate the reasons underlying
a particular dependency relationship.® In the implementation described in Section 4, a

SIncluding all background knowledge in the initial base and target descriptions would be too expen-
sive. Additionally, which added details are needed cannot be identified until impasses arise during the
similarity assessment.

ezpansion

Legend:

P==Q Q depends on P
---- . Potential correspondence

Figure 4: Compiled knowledge problem. Intermediate reasoning steps removed to increase
problem solving efficiency are often required when considering how to elaborate analogical cor-
respondences and adapt a solution to unanticipated cases. The BASE representation depicts a
macro formed by removal of the intermediate justifications within the dashed box. A question
mark indicates a relevant base expression having no known target correspondent without more
information about its role in the base context.

CACHE field accompanies all compiled schemas. For example, the coffee growing schema.
should have an added CACHE field to store compiled reasoning steps like

High-Rainfall(ty) — Well-Watered(t;)

This form of role analysis presents a means for sound adaptation of a syntactically
inapplicable compiled theory. It offers an extension to explanation-based learning and
schema application methods: demand-driven, sound adaptation of an overly-specific
macro. Partial retention of a macro’s details, and the corresponding space / efficiency
tradeoffs, is a topic of future research.

2.2 Where is the inductive leap?

Role analysis as described above uses sound methods over a complete domain theory to
establish the logical equivalence of two features with respect to the analogues’ depen-
dencies. This form of the functionally analogous relation assumes complete knowledge
of all relevant features and complete knowledge of a feature’s relevance. However, anal-
ogy clearly has ties to induction and can be used to draw plausible conjectures in the
presence of a weak, incomplete domain theory.

10

“.... unknown details about a factor’s role

A1

Uy T unknown factors playing a role

- Figure 5: Uncertainty arises due to incomplete role information. This has two forms: (1)
partial knowledge of a feature’s roles and (2) incomplete knowledge of all relevant features.

One way plausible inferences arise is by making added assumptions about the target
to complete an explanation. This is abductive inference, and occurs in many tasks
independent of whether analogy is used. For example, when applying the coffee growing
schema to region ry, if the status of Mountaneous(r;) is unknown, it might be assumed in
order to make the inference proceed.

More specific to analogy, uncertainty arises due to incomplete role information (i.e.,
uncertainty about the contents of ROLE(P) and the manner in which they are affected
by P). This may be illustrated by considering a simple, abstract base description, in
which Q was observed and P, A--- A P, was offered as an explanation. Uncertainty then
appears in two general forms, as illustrated in Figure 5:

1. Inability to fully state the roles of each relation in the analogues’ descriptions
(thus, inability to fully state corresponding relations’ equivalence with respect, to
the current context).

2. Inability to state that all of the relations relevant to the desired conclusion are
captured by the analogue description (thus, inability to state all the factors that
play a role in influencing the conclusion).

In the first case, the antecedent information in the base analogue may be fully predic-
tive (i.e., PLA+-- A P, — @), but more detailed knowledge of their roles is incomplete.
Knowledge of an expression’s roles provides the detail that enables valid adaptation
(i.e., generalization) to novel cases. Incomplete knowledge of an expression’s roles in-
troduces uncertainty into this step and reduces it to plausible inference. To make the
presence and magnitude of this uncertainty explicit, it must be captured in the under-
lying domain theory’s representation of dependencies. We use “~»” to describe partial
role information.® Thus, in the derivation of @, we would have P, ~+ P;;, or

ROLE(.P]_) = {Pu, U]}

5We are currently examining probabilistic and default logic interpretations for this relation.

11

where U, represents the set of unknown roles for P;.
This may be demonstrated by reconsidering the coffee growing example:

High-Rainfall(ry) A Tropical(ry) A Sunny(ry) A Mountaneous(ry) — Coffee-Grows(r;)

Previously, we stated that high rainfall is only relevant by virtue of its ensuring a well
watered region (i.e., both “water supply is a relevant effect” and “it has no other relevant
effects” are true). Suppose now that high rainfall may have other (possibly unknown)
attributes that are relevant, such as high humidity, and thus Coffee-Grows may not
be universally true for the more general case of well watered regions. There may be
something intrinsically important about high rainfall beyond supplying ground water
(such as humidity) that leads to successfully growing coffee. In this case, the probability
that the role of High-Rainfall(r,) is { Well-Watered(ry)} is less than one and thus region r;’s
analogy to ry may fail due to the uncertainty in the generalization that enables Irrigated
to map to High-Rainfall. .

In the second case, the base description is merely plausible (probabilistic). Either the
grain size of the known factors P; is insufficient to deterministically make predictions,
or some relevant factors U, are missing from Py,..., P,. For example, suppose that
although coffee is known to grow in region ry, its rainfall, region type, sun exposure, and
terrain are only partially predictive of other regions. Region r, may have an additional,
critical attribute that is either unknown or has unknown relevance, such as its altitude.
The validity of conclusions about r; via similarities to r is limited due to incomplete
knowledge of which similarities are relevant.

These two sources of uncertainty provoke a number of questions that affect the sound-
ness of an analogical inference: Is base condition B; needed in the target case? What
fortuitous side effects (whose relevance may not be recognized) does base condition, B;
cause? What negative side effects (whose relevance may not be recognized) does target
condition T; cause?

2.3 Where is the generalization?

Analogy is often characterized as a generalization process, in which a common abstrac-
tion is found between the two analogues. Such generalizations, when they occur, appear
in two forms: (1) generalization of individual features (e.g., prince to royalty) or (2)
abstraction of the analogue as a whole (e.g., Macbeth to Shakespearean tragedy). Here
we only consider the first case.”

“Automated abstraction (as opposed to using existing abstractions) is a little understood, difficult
task in which an analogue’s objects and relations are all generalized in concert. It is mentioned here
only for completeness: the generalization must respect the interdependencies (i.e., the role structure) of
the relations being generalized. For example, finding a common abstraction between “the jungle” and
“wall street” must maintain the basic interactions between the agents while generalizing the interaction
and agent types. The elements cannot be generalized independently.

Identifying similarities between two instance descriptions often requires finding a
common generalization for syntactically distinct features. For example, successful com-
pletion of the coffee growing example required generalizing High-Rainfall and Irrigated to
Well-Watered. However, each feature will typically have many consequences (most be-
ing irrelevant) and thus many possible generalizations. For example, high rainfall may
generalize to a climatic condition, a source of water supply, a falling object, or an air
cleanser. Which line of generalization is allowable depends on the feature’s role in the
context of the analogue’s overall description. Without some source of role information,
there is no justification for generalization (e.g., arbitrary generalization failed frequently
when attempted in PHINEAS [13]). There are three general ways to determine a feature’s
role.

First, role information may be explicit in an analogue’s description. As shown in the
previous two sections, this can be used to provide either valid or plausible generalization.
This is the only approach implemented in Section 4.

Second, empirical typicality information may suggest a feature’s role prior to its
appearance in a particular analogue. For example, given “95% of the time, high rainfall
is mentioned in the context of supplying water”, there is a 0.95 a priori probability that
for any analogue A; in which High-Rainfall appears, the following is true

ROLE 4, (High-Rainfall(r)) = { Well-Watered(r)}

Third, knowledge of the application domain may be used implicitly by restricting the
range of possible generalizations to being a priori relevant. We say that a generaliza-
tion hierarchy has the task-relevant property if for every pair of nodes in the hierarchy,
they share a common parent if and only if they have a common role in all situations
that will ever be encountered by the application (i.e., the hierarchy always reflects an
item’s purpose). If a hierarchy satisfying the task-relevant property can be constructed,
then similarity assessment via proximity in the hierarchy is a computationally attractive
alternative to full role analysis. First, it reduces the storage requirements of explic-
itly maintaining all role information. Second, each pairwise similarity comparison can
be computed in time linear in the depth of the hierarchy. Because the task-relevant
property is a fallible idealization, it is important to be explicit about when it is being
assumed.

A number of systems successfully operate by matching terms that share a common
parent in an ISA hierarchy [5, 25, 33, 43, 44]. Each appears to satisfy the task-relevant
property; in each case, the hierarchy is both shallow and relevant to the system’s single
task domain. For example, CHEF [25] builds recipes in the domain of Szechwan cooking.
Its hierarchy is a shallow forest (rather than a single tree) in that broccoli and snow peas
are both vegetables, but vegetables and meat are not both listed as organic objects. Its
hierarchy is relevant to the system’s goals in that ingredients are organized along the
lines of taste, texture, and style.

13

3 A unifying look

Understanding the role of role information in similarity assessment provides significant
explanatory and unifying power. This section describes several recently developed sys-
tems from the contextual structure-mapping perspective and examines the basic as-
sumptions under which they operate. These systems display various aspects of the same
basic need to know the role of the individual expressions in each analogue’s descriptive
context. All of the examples shown have been implemented using the CSM algorithm
described in Section 4 and are presented from that perspective. It is important to note
that for all of the systems discussed, only a subset of their operations are related to
CSM. For example, each system addresses the additional problem of retrieving useful
base cases. . '

3.1 Mapping immutable structures

CSM was inspired by extensive computational experience with Gentner’s Structure-
Mapping Theory (SMT) [20, 21, 22] and attempts to understand and rectify its limi-
tations. We share the intuition that analogy is about systems of interrelated relations
rather than collections of independent facts. Furthermore, several aspects of the CSM
implementation (Section 4) are based on the original SMT implementation [15, 16].
However, experience has shown that for some tasks, SMT’s restriction that mappings
must be one-to-one and between expressions using the same predicate is too strong, and
its reliance on representational form is too brittle [13].

While algorithmically very different, the approaches of Gentner [21, 16] and Greiner
(23] both effectively reinstantiate a base structure onto a new target case, allowing token
(object) and function substitution. Because they assume the system of relations from
the base must apply as is to the target case, reformulation and role analysis does not
come into play. The basic assumption under which analogical inferences are made is that
there exists a predictive correlation between the elements of the base structure such that
commonality with respect to some suggests commonality with respect to the others. This
correlation is captured by the interconnections in SMT’s structural representation. In
Greiner’s framework, it is captured by abstractions (precollected sets of relations) and
an “A is like B” hint from a trusted source.

3.2 Derivational replay

Derivational replay mechanisms make the observation that it is typically easier to reuse
the problem solving process of a prior episode than the episode’s final solution [6, 37].
Taking a stored problem solving plan, a new problem is solved by replaying the plan
top-down, resolving subgoals that no longer apply in the current situation. This is in-
tended to provide problem solving speed-up (by borrowing a rule-invocation ordering
from a past experience) rather than plausible conjecture or learning. No explicit ana-

14

logue comparison is performed; rather, rules are assumed to reinstantiate to the target’s
analogous items. Violation of this assumption can lead to backtracking [37]. Addition-
ally, it means that correspondences are not recorded to ensure consistent reuse across
different portions of the problem solving process, which may lead to a lack of focus.

CSM’s definition of functionally analogous captures the underlying intuition behind
replay’s appeal over mapping only a final solution: the root problem in reusing a prior
solution is the need to understand the role of each part of the solution. Specifically, good
adaptability comes from being able to recognize alternate ways to achieve equivalent
functionality. In problem solving, adapting a prior solution to a new problem instance is
greatly simplified if decisions’ rationale are known, so that their intent can be satisfied
without necessarily adhering to the same decisions. Top-down replay achieves this by
giving the effect of reseeking each role filler in the new situation. An alternate method
would start at the solution, and work backwards, analyzing role information at solution
transfer impasses. Thus, the implicit assumption in replay mechanisms is that it is more
efficient to work forward, replaying the entire decision-making process, than to work
backward, reconsidering the decisions (alternate ways to achieve functionality) where
needed. This tradeoff is influenced in part by the connectivity of the solution: good
modularization is amenable to local modifications with minimal global repercussions.
Poor modularization may affect the entire solution. Derivational replay mechanisms
probably work best for situations where modularity is poor.

3.3 Explanation reuse

PHINEAS [12, 13, 14], Kedar-Cabelli’s PER [32], and the Yale SWALE project [30, 29] are
efforts to use analogy to reduce the cost and increase the creativity of explanation build-
ing. These systems all use operations that draw upon role information to adapt-to
differences in the two analogues. In contrast to derivational replay, they compare the
situation descriptions first and adapt only those parts of the base explanation that fail
to map. This approach rests on implicit assumptions of analogue proximity and good
modularity - if the analogues are highly similar, then their instance descriptions should
have high overlap and require little adaptation. Identification of this overlap can initiate
the analogy process and provide focus by isolating the relations requiring further role
analysis. It is also a side-effect of their explanatory task, which cares only about iden-
tifying the target’s facts that allow inference to the conclusion. In the planning tasks
typically addressed by derivational replay, the analogues’ differ both in their conclusions
(goals) and in their antecedents (starting states). This makes intermediate steps be-
tween the starting and goal states more likely to need adaptation, and makes the base’s
intermediate solution procedure as relevant as its start or goal state descriptions.

CSM was originally developed in support of PHINEAS [12, 13, 14], a program which
constructs qualitative explanations of time-varying phenomena based on their similarity
to understood phenomena. When there are structural differences between the recalled
and observed situations, it examines elements’ functional roles to identify similarities

15

Dissolving Salt Disappearing alcohol

amount(saltl) > 0 amount(alcoholl) > 0

L amount(alcoholl) < 0

4 amount(saltl) < 0 it

dt

ds d!
7T amount(saitl) < 0 e amount(alcoholl)= 0

Y

Y

amount(salt1) =0 Liquid(alcoholl) amount(alcohol1)=0
d Container(beaker2) d
2 amount(saltl) =0 Open(beaker2) 3t amount(alcoholl)=0

Substance-of(alcoholi.alcohol)

Contained-Liquid(alcohol1.beaker2
qualitative simulation QNN iquid(a)

Mixture(salt1,water) Contained-Liquid(water1)

MODEL Dissolving(saltl,waterl)

PRECONDITIONS
Soluble(saltl.waterl)
Solid(salt1)
Mixture(salt1.water1)
Immersed-in(salt1.waterl)
amount(saitl)> 0
concentration(salt1.water1)

> saturation-point(saltl.wateri)

EFFECTS
dissolve-rate(saltl. waterl) > 0

dissolve-rate(saltl.water1)
o< surface-area(saltl, waterl)

Ctrans(saltl.waterl .dissoive-rate{saltl.water}‘]

General domain theory

MODEL Mixture(s,f)
EFFECTS Quantity(concentration(s,f)
Quantity(saturation-point(s,f)
concentration(s,f) £ 0

- " e

MODEL Contained-Liquid(cl,can)
EFFECTS ¢ o ¢

Immersed-in(saltl.waterl)
~»Touching(saltl,wateri.connection(saltl,waterl)) |

Soluble(salt1.water1) ~» Miscible(salt1,water1)
Solid(salt1) B=eettion, sojuble(salt1.water1) |
Physical-path(salt1.wateri.connection(saltl.water1))

I_ LreQ % Ciransfer (salt1, waterl dissolve-rate(sait1 water))

Contained-Liquid(cl,can) A Open(can)
—»Touching(cl, atmosphere)

Vaporizable(l, g) —> Miscible(l,g)
Touching(a, b= Physical-path(a, b, connection(a, b))

Figure 6: Explaining why alcohol is disappearing from an open container by analogy to salt
dissolving in water.

16

and debug its models. For example, PHINEAS uses an analogy to salt dissolving in a
glass of water to explain an observation of alcohol evaporating from an open beaker
(Figure 6).® Initially, it compares the two situations and finds a possible correspon-
dence between the disappearing salt and the disappearing alcohol. However, it cannot
apply the dissolving model to the disappearing alcohol case. First, the dissolving model
describes the interactions between saltl and waterl, yet there is no apparent correspon-
dent for waterl in the alcohol scenario. Second, some of the conditions for dissolving
are inapplicable to the alcohol scenario. For example, substituting alcoholl for salt1
suggests the precondition Immersed-in(alcoholl,?unknown). Yet, the first argument to
Immersed-in must be a solid while alcoholl is a liquid. To adapt to these differences,
PHINEAS examines unmapped elements’ roles. The relevant aspect of Immersed-in is that
it ensures physical contact between the salt and the water (e.g., as opposed to prevent-
ing exposure to the air). Seeking similar functionality in the alcohol case, it finds that
Touching(alcoholl,atmosphere) follows from the alcohol being in an open container.
This suggests that atmosphere, previously absent from the alcohol scenario’s descrip-
tion, may be the missing correspondent for water1. With this, PHINEAS reexamines the
mapping and finds that the alcohol/atmosphere combination has the requisite proper-
ties for the other unfilled roles (e.g., Vaporizable(alcoholl,atmosphere) is functionally
analogous to Solube(salt1,water1)). The mapping phase concludes with a new model
applicable to the disappearing alcohol case. PHINEAS then uses qualitative simulation to
compare the model’s predictions to the observation and revise the model if necessary.
Not addressed in this paper are these subsequent evaluation and revision processes,
which find that the proposed explanation leads to an interesting set of predictions about
unobserved rates and concentrations (see [13]).

PHINEAS contains a sophisticated pattern-matching mechanism (SME [16]) capable
efficiently comparing large descriptions of multiple objects. As the example illustrates,
PHINEAS’ mapping component is able to revise the base and target descriptions with
additional facts and objects in response to mapping impasses. However, its use of role
information is domain-specific and is limited to behavioral and causal information about
structural components.

Kedar-Cabelli [32] describes a method for purposive ezplanation replay, PER. Given
a plan schema and an old object to which the schema has applied, PER’s task is to
find an object in the current state that may be substituted and still achieve the plan.
PER replans around preconditions not supported by the current situation. These op-
erations seek functionally analogous expressions in the two analogues by attempting to
find alternate inferential support for unmatched items. In one example, the task is to
classify a given styrofoam cup as an instance of Hot-Cup (Figure 7). The base case is
a description of a previously classified ceramic cup. PER begins by seeking each of the

8The base representation contains the expression g o go. This is qualitative process theory (QP)
[18] syntax indicating that q; is qualitatively proportional to q. All else being equal, q; increases when
q2 increases and decreases when ¢, decreases. Additionally, Ctrans(s,d,r) indicates continuous transfer
from s to d at rate r.

17

BASE (ceramic cup) TARGET (styrofoam cup)

Open-Conical(scup)
Capacity(scup.1602)

Flat-bottom(ccup
Has-Handle(ccup)
Capacity(ccup.160z)
Open-Cylinder (ccup)

Hot-C
up(ccup) Flat-bottom (scup)

Ceramic(ccup) Styrofoam (scup) Gray(scup)
espansion — —_— — — — Fo—— — s —
\ 7/ o Rationale CACHE 7

 Flat-bottom(ccup) —p- Stable(ccup):t. .-+ Can-pour(ccup) /
7/ Has-Handle{ccup)— Grasping-Area(ccup):. ... - /7
s ' " iCan-grasp(ccup il
) Hot-Cup(ccup
/ Open-Cylinder(ccup) —# Open-Concavity (ccup)-~. ":1-Can-pickup(ccup 9 4
/ Capadty{ccup,iﬁoz]—bLi;hl-weight(ccup)‘:‘_'_'_. /
: B /
/ Ceramic(ccup)—» lnsulated(cwp]'i'.'____ Can-ingest(ccup) /

z F]

General domain theory

Styrofoam(e) —impliss_,, Insulated(c)
Open-Conical(c) —T24 5, Grasping-Area(c)

Figure 7: Categorizing a styrofoam cup by analogy to a ceramic cup.

base case’s antecedents in the target description. This reveals that the styrofoam cup
has the relevant Flat-bottom and Capacity properties. It also reveals that the styrofoam
cup lacks the ceramic cup’s other important properties: Open-Cylinder and Ceramic. For
these features, PER seeks to rederive their consequents. For storage expense reasons,
the actual implementation does not store these consequents explicitly. Rather, it guesses
the role of an inapplicable item by retrieving a horn clause in which the item appears as
an antecedent, followed by reproving the consequent. This heuristic does not guarantee
that of the item’s consequences, only those that play an actual role in the context of the
base analogue are considered.

PER’s goals are explanation-based learning and performance improvement for plan-
ning, rather than plausible analogical inference. Thus it is designed to analogically derive
conclusions already entailed by existing knowledge (i.e., it assumes access to complete
role information). PER picks a candidate base analogue at random from the specified
class (e.g., Hot-Cup) and consults each antecedent in sequence. Because it does not ex-
amine the analogues’ global similarity, it may waste time reproving an analogue that
violates PER’s near miss assumption.

18

Jim Fixx

Premature Death Schema Swale’s Premature Death
Anomalous Fealures . Death(sw)
Death(jf) Premature(Death(jf)) Racehorse(sw)

Physical-Condition(jf,high)

Premature(Death(sw))

Physical-exhaustion (jf) General domasn theory

implies

Phys:cal-exeﬂ:ton{jf) Racehorse(X) — Physical-Condition(X.high)

implies

Racehorse(X) —= Runs(X)

|

I

|

|

Runs(jf) I

S (O — _1‘_ —
Defective(jf.heart) Jogger(jf)

Figure 8: Why did Swale die?

SWALE [30, 29] is an explanation system that applies stored ezplanation patterns
(schemas) to new situations, tweaking them as needed to adapt to the situation’s novel
aspects. For the tweaking operation, SWALE uses a set of revision rules, such as substitute
alternate theme or substitute related action. These heuristics suggest ways to repair
inapplicable portions of a recalled schema. For example, SWALE explains the premature
death of the racehorse Swale by analogy to Jim Fixx, a famous jogger who died due to a
heart defect stressed by prolonged physical exertion. Figure 8 shows a predicate calcilus
interpretation for SWALE's representation of this scenario. The Jim Fixx schema requires
the principal actor to be a jogger, which is not true for Swale. In SWALE, such problems
are treated as contradictions of the base’s stated antecedents. It attempts to replace the
“recreational jogger” theme (via the substitute alternate theme strategy) by examining
each of Swale’s known themes - “competed in horse races”, “took performance drugs”,
and “ate oats”. It substitutes Swale’s racehorse theme for Fixx’s jogger theme because
only “competed in horse races” involves an action mentioned in the original explanation
[29].

CSM focuses instead on the source of the problem: a dependency failure. It deter-
mines the anomalous item’s role and seeks elements of the current situation that could
satisfy that role’s dependencies. Thus, adaptation of the Jim Fixx analogue is performed
by analyzing the role of the failed jogger precondition, which is to satisfy the running
action dependency, and noting that Swale’s racehorse status is functionally analogous.
This goal-direct behavior avoids ever considering Swale's other themes, but can require
constructing complex explanations. An interesting open question is the relative efficiency
of the heuristic tweaking strategies and the explicit role analysis in CSM. Alternatively,

19

Chairl Chair2
_____ = . — Wood
r /j Rationale CACHE) Seat
Backrest
eigid-Matera /';"‘"d""””“ |
I Seat-Support Lateral-Support l
L= _.g_._._g___ Y NN

Metal Pedestal Armrests Seat Backrest

General domasn theory

implies

Wood —= Rigid-Material

implies

Legs — Seat-Support

Figure 9: Is chair-2 a chair?

role analysis could be used to form new tweaking strategies when none of the existing
ones apply.

SWALE does not attempt to completely address the correspondence problem, since
object level mappings are unambiguous in the small stories analyzed. Additionally, like
PER, it is designed as more of a deductive rather than analogical system.

3.4 Exemplar Classification

Case-based and exemplar-based approaches interpret new cases by relating them to a
store of previously classified exemplars, performing classification by finding the exemplar
that best matches the new instance. PROTOS [3] implements this technique as a learning
apprentice for heuristic classification and has been successfully used for diagnosis in
clinical audiology. Partial, approximate explanations of each feature’s relevance to the
concept are stored with each category instance. These provide needed role information
when classifying a new case and provide a basis for plausible generalization. Comparison
of a new case to a category exemplar is performed by knowledge-based pattern matching.
Like the approaches in the previous section, its computational performance relies on
proximity of the instance descriptions. In fact, one of the central claims in PROTOS is
that exemplar-based reasoning is more efficient than traditional approaches because of
the large distance between the instance language and generalized concept language for
many concepts.

For example, to classify Chair-2 (described in Figure 9) as a chair, PROTOS would
compare it to a known chair exemplar Chair-1. During this comparison, the syntacti-
cally distinct features Legs and Pedestal are considered functionally analogous because
they both provide Seat-Support. PROTOS limits the scope of a match to the explicitly
given features of the two cases. It does not include the possibility that additional fea-
tures may be derived or retrieved from memory in response to the needs of the match
elaboration process. Furthermore, it (and most case-based approaches) uses a feature-

20

vector representation (i.e., a set of attribute-value pairs). This is inadequate for complex
scenarios requiring representation of the relations between objects, their features, and
other relations (e.g., legal precedents and physical systems). Branting [4] addresses this
limitation in PROTOS.

4 The map and analyze process

From the reviewed systems, we can identify a partial desiderata for a general analogical
reasoning system. First, analogues may involve a complex pattern of relationships and
events between multiple, interacting objects. This adds complexity and ambiguity to the
mapping task and is why many approaches tend toward analogues consisting of unary
features describing a single object. It requires the ability to use a description language in
which predicates may be commutative and of arbitrary arity. Second, the analogues may
be incomplete and syntactically dissimilar. To handle this, an analogy system must be
able to reason about the roles and rationale of each analogue’s elements, and reformulate
their contents to include previously unconsidered facts and objects.

The central difficulty of elaborating an analogy is keeping the process focused. Com-
putationally, this has two principle concerns. First, identifying matching aspects of the
two analogues’ initial descriptions. Second, generalizing and reformulating the descrip-
tions via role analysis to expose further similarities and thereby adapt the base structure
to the target case. To provide focus, we decompose these two concerns into a map and
analyze cycle. First, simple pattern matching criteria are used to determine the best,
initial mapping between the analogues and provide an initial estimate of their simi-
larity. Second, this mapping is analyzed and additional information about unmatched
areas is sought. When several mappings are possible, the first step prunes the search
space by identifying the most promising initial mapping and providing an initial set of
correspondences. Only when impasses arise, such as an expression having no apparent
correspondent, is more detailed role information sought.

We begin by considering the two phases in isolation and then describe their integra-
tion.

4.1 The mapping phase

Constraints on the matching process that determine admissibility and selection generally
fall into three classes [24]: similarity criteria restrict pairwise matching of predicates
according to their similarity, structural constraints preserve the relational structure of the
descriptions, and conteztual relevance motivates the mapping towards solutions relevant
to the needs of the performance element. The remainder of this section describes the
CSM constraints and their implementation. '

4.1.1 Preliminaries

Before proceeding, it will be useful to introduce some of the terminology from the SME
framework for viewing theories of analogical mapping [16]. The representations given to
SME are restricted to ground expressions with no quantification. For simplicity, predicate
instances and entities in an analogue’s description will be collectively referred to as items.
In this framework, a distinction is made between allowable, pairwise correspondences and
selected, complete mappings:

Definition 1- A match hypothesis, denoted MH(b;,t;), is a binary relation between a
base item b; and a target item ¢; indicating that their correspondence is a candidate for
inclusion in some mapping interpretation.

For example, a theory that restricted expression matches to those using the same
predicate would declare a match hypothesis between all expression pairs sharing the
same predicate, and no others. :

Some match hypotheses may be mutually incompatible:

Definition 2 Two match hypotheses are conflicting, denoted CONFLICTING (MH;,
MH ;), if they may not appear in the same mapping interpretation.

For example, a theory specifying that no base item may match more than one target
item would declare:

MH(b,t;) AMH(b,t;) At; #t; = CONFLICTING[MH(b,¢;), MH(b,t;)]

Definition 3 A global mapping, or gmap, identifies a possible, complete mapping in-
terpretation. Each gmap consists of a subset of the match hypotheses and the set of
expressions the interpretation suggests is transferable to the target (called candidate
inferences).

Throughout, a predicate-calculus-style notation will be used for expressing the rules
of contextual structure-mapping. These rules operate over the base and target repre-
sentations. The connectives “A™ and “V” have their standard meaning, “=” includes
negation-by-failure, and “=” indicates an implication which asserts the consequent.
Variables are represented by lowercase, italicized letters and are assumed universally
quantified.

4.1.2 Similarity Criteria

Given a base item and a target item, what criteria are used to propose a match hypothesis
between them? We start with some immediately obvious criteria and then focus on the
important concept of role and its use in determining similarity correspondences.

First, some correspondences may simply be part of the input (e.g., given by a teacher,
found during access etc.).

[Sv]
(S

Rule 1 (Given Pairing) Two items match if they are a priori designated as matching.

GIVEN-PAIRING (b,t) = MH(b,t)
Second, expressions using the same predicate are clearly candidates for matching.

Rule 2 (Same Functors) Two expressions may match if they use the same predicate
and these predicates are not part of a given pairing.

FUNCTOR(b)=FuNcTOR({) A "GIVEN-PAIRING (b,anyt) A ~GIVEN-PAIRING (anyb,t)
= MH(byt) :

Thus, given expressions P(a,b) and P(c,d), this rule would form a match hypothesis
between the two instances of P as long as P is not part of a given pairing.

Additionally, some match hypotheses are motivated by virtue of their relationship to
existing match hypotheses. For example, match hypotheses are declared for entities in
corresponding argument positions of existing match hypotheses. In this manner, entities
are only matched if sanctioned by their position in matching relations:

Rule 3 (Non-Commutative Corresponding Entity Forms) Letentity form denote
both entity tokens (e.g., waterl) and compound entities defined by functions (e.g., pres-
sure(waterl)). Two entity forms may match if they occupy the same argqument position
of non-commutative predicates that have already been matched and neither entity form
is part of a given pairing.

For example, given expressions P(a,b) and P(c,d) and a match hypothesis between the
two instances of P, this rule would form match hypotheses between a and ¢ and between
b and d. An additional rule, similar to Rule 3, pairs entity forms that are arguments of
commutative predicates (i.e., the “same argument position” condition is removed).

The above rules suffer from a dependence on identicality to initiate match hypotheses.
Role information explicit in the representations is also used to provide a more sophisti-
cated similarity criterion. Here, matches between expressions using different predicates
may occur if the expressions are functionally analogous:

Rule 5 (Functionally Analogous) Two ezpressions are considered functionally anal-
ogous and may match if they fill corresponding roles in the contezt of the structures being
matched.

b €RoLE(D) A t,EROLE(t) A MH(by, t,) = MH(b, t)

During mapping, ROLE must be discernible from direct inspection of the base and
target descriptions, without inferencing or memory retrieval. For example, the above
rule will form a match between expressions A and B if the base contains Implies(4,C)
and the target contains Implies(B,C).

4.1.3 Structural Constraints

Structural constraints ensure that each mapping consists of syntactically meaningful
representations and control mapping redundancy with restrictions such as one-to-one.

Structurally Consistent Gentner’s [21, 16] structurally consistent criterion requires
that if expressions B; and T are placed in correspondence, then their arguments must
exhaustively correspond as well. CSM adopts this requirement with one important ex-
ception — when the expressions denote sets, only a non-empty correspondence between
their elements is required.? Here, a “set” is distinguished as an unordered collection of
relational structures that may be collectively referred to as a unit. They are associated
to predicates taking any number of arguments. For example, relations joined by the
predicate AND define a set. Other examples include the axioms of a theory, a decom-
posable compound object, or the relations holding over an interval of time. Intuitively,
we would like to say that two sets correspond without requiring that their contents are
exhaustively mapped.

If base and target propositions each contain a set as an argument, the propositions
should not be prevented from matching if the sets’ members cannot be exhaustively
paired. For example,

B: Implies[And('Pl,'Pg,'pa),AP4] (1)
T: Imp!ies[And(P'l,P"z). Py

should match better than

B: Implies[And(P;,P3,P3), P4 i (2)
e Ph, Pl P

SME’s original structurally consistent constraint [16] would score (1) and (2) equally,
since the Implies relations of (1) would not be allowed to match. This is particularly
inappropriate when matching sequential, state-based descriptions (e.g., the behavior of
a system through time). The set of relations describing a pair of states often do not
exhaustively match or are of different cardinality. Yet, relations over states, such as
temporal orderings, are vital and must appear in the mapping.

One-To-One and Many-To-Many If a one-to-one criterion is clearly too strict, the
problem remains of how to weaken the criterion while still ensuring meaningful mappings.
Fortunately, the definition of role provides the needed specification: violations of the
one-to-one restriction are motivated by a single base or target item filling multiple roles
that are filled by multiple items in the other domain. Figure 10 shows the multiple
dependencies motivating a many-to-one mapping in a simplified representation of the
thermostats example.

9Unlike the other criteria of CSM, the structural consistency criteria are hardcoded in SME.

24

Mercury thermostat Rod thermostat

) Sfunetion

Coilfcl) —— Sensor(c1) function_ Sensor(r1)
. Rod(r1) <
Valvefu1) M’L Coniroller(v1) function™ Controller(r1)

Figure 10: A many-to-one mapping motivated by role analysis.

The following three rules define sanctioned one-to-many mappings and enforce one-
to-one mappings as the normal default by examining all cases of a single base item
mapping to two target items.

Rule 6 (Direct role-filler) A base item b, filling roles Ry and Ry, may map to mul-
tiple target items, t, and t,, filling roles R,y and Ry, respectively, if role Ry corresponds
to role Ry and role Ryy corresponds to role Rys.

MH(b,t;) A MH(b,t) A £t A
1 EROLE(D) A m2€ROLE(D) A m1#m2 A ra€ROLE(H) A rig€ROLE(f2) A ra#Fre A
MH (m1,r1) A MH(my2,me2)

= SANCTIONED/(b,t,b,t2)

The above rule sanctions expressions that may violate the one-to-one restriction.
However, unless this sanctioning is propagated to their respective subexpressions, a one-
to-one restriction will still be in effect.

Rule 7 (Role-filler sub-expressions) Let OCCURS-IN(b, b,) denote the relation-
ship that erpression b is syntactically contained in the expression b,. A base item may
map to multiple target items if the base and target items are subezpressions of a sanc-
tioned one-to-many mapping.

MH (b,t;) A MH(b,t;) A t#t; A SANCTIONED (bp,tp;,bp,tp,) A OCCURS-IN (b,bp) A
{ [OCCURS IN(t;,tp;) A OCCURS-IN(ta,tp;)] V
[OCCURS-IN(t,tp;) A OCCURS-IN(ty,tp,)] }
= SANCTIONED (b,t;,b,t2)

With sanctioned violations of one-to-one identified, we are now ready to define when
two match hypotheses are conflicting. Due to the non-monotonic nature of the definition,
implicit in the following rule is the assumption that all sanctioned pairings are known
at the time the rule is invoked.

Rule 8 (One-To-One) Unless ezplicitly sanctioned, two match hypotheses are conflict-
ing if they pair the same base item to multiple target items.

MH(b,t;) A MH(b,t) A ti#t2 A ~SANCTIONED (b,t;,b,t)
= CONFLICTING [MH(b,t;),MH(b,t;)]

25

Water Flow: Dec[Press(beaker)] <_\ Meets Const [Press(beaker)]
—\-Inc[Press(vial)] ~ _ _Const[Press(vial)] -/-
>

I

|

| # ™
Heat Flow: : Const [Temp (coffee)] Meets Dec[Temp(coffee)]
Inc[Temp(ice-cube)] Const [Temp(ice-cube)]/—

Figure 11: The structure rearrangement problem in behavioral descriptions of liquid flow and
“heat flow”.

A symmetric set of three rules exist for multiple base items mapping to a single target
item. Together, the six rules identify sanctioned many-to-many mappings and enforce
one-to-one for all other, unsanctioned cases.

Structure Rearrangement Implementation and testing of Gentner’s structure-mapping
theory led to the conclusion that, by being insensitive to the specific contents of the struc-
tures, purely structural constraints are insufficient to prevent anomalous mappings. The
principal type of anomalous mapping is called structure rearrangement.

The structure rearrangement problem arises when some fundamental relationships
in the representation are not preserved in the mapping. For example, consider the two-
state behavioral descriptions of water flow and “heat flow” shown in Figure 11. The heat
flow description has been altered to demonstrate the anomaly: the coffee temperature
is constant in the first state and decreasing in the second state. When the rules of SMT
are applied, every item matches if the temporal Meets relation is excluded. That is,
Inc[Press(vial)] maps to Inc[Temp(ice-cube)] while Dec[Press(beaker)] maps
to Dec[Temp(coffee)]. All four water flow relations have a correspondent in the heat
flow situation, but by rearranging time. While not all such rearrangements may be
wrong, there is no way to make this decision without inspecting the content of the
structures being manipulated.

Thus, additional constraints are supplied to capture important general representa-
tional or domain-specific knowledge about the structures being manipulated. At the
current time, two very general representational constraints have been sufficient. The
first preserves the cohesion and ordering of temporal states:

Rule 12 (Temporal Preservation) Two match hypotheses are mutually inconsistent
if they pair base items always co-occurring in time, EQuaLTIME(by,by), to taryet items
that never overlap in time, DisioINTTIME(t;,t;). Likewise, two match hypotheses are
mutually inconsistent if they pair target items always co-occurring in time to base items
that never overlap in time.

MH(by,t1) A MH(by,t2) A
TEMPORALLY-SCOPED(b;) A TEMPORALLY-SCOPED(b;) A
TEMPORALLY-SCOPED(t) A TEMPORALLY-SCOPED(#;) A
{ [EQUALTIME(by,b2) A DisioINTTIME(ty,t2)] V
[D1s3oINTTIME (by,b2) A EQUALTIME(t,22)]}
= CONFLICTING [MH(by,t),MH(by,t)]

The second constraint preserves prespecified functional relationships.

Rule 13 (Functional Relationship Preservation) Let f denote some function to be
preserved (specified from domain or task). Let Bounp-BY (i, f) denote that i is an item

- that should be bound by function f, that is, there ezxists some value v such that f(i)=v is- -

true. Then, two match hypotheses are mutually inconsistent if they pair an item bound
by f and its value under f to another item bound by f and something other than its value
under f, respectively. '

MH (by,t1) A MH(b2,t2) A BOUND-BY (b1.f) A BOUND-BY (£.f) A

{ f(b1,b2) A =f(t1,2)] vV [=f(b1,b2) A f(t1,22)] }
= CONFLICTING [MH(by.,t),MH(by,t)]

In PHINEAS, this rule has been used to preserve the relationship between a liquid
and its container. Prior to using this rule, it was possible to pair a contained liquid
Contained-Liquid(cl,) and its container, Container-of(cl;)=can;, to another contained
_ liquid Contained-Liquid(cl,) and a container that was not ¢l;’s container, such as cans.
This would arise if can, and canj shared other relevant properties, such as Container.

4.1.4 Selection: Combining systematicity and relevance

The previous rules produce match hypotheses and place constraints on their combina-
tion. This section presents criteria for selecting among possible mappings. It is generally
agreed that in problem solving situations, the current reasoning goals have a strong influ-
ence over how an analogy develops. However, many uses of analogy lack a clear driving
purpose. These include metaphorical embellishment, inductive generalization, and sim-
ply noting the similarities between two situations or stories. For these cases, Gentner’s
systematicity principle (the preference for large systems of interconnected relations) has
strong psychological support [22].

Thus, a hybrid approach, influenced by both systematicity and contextual relevance,
is used. In the absence of problem solving goals, systematicity serves as the sole cri-
terion for selection. In the presence of problem solving goals, rules for supporting the
current reasoning needs of the performance element fall into two categories. The rele-
vant inference rule prefers gmaps that offer inferences needed by current problem solving
goals. For example, if a cause for event E is sought, only gmaps offering the inference
Cause(C,E) would be considered. This is a hard constraint, in that only interpretations
containing the relevant base information are considered. The salient features rule sup-
ports relations that are more salient for the current reasoning task. For example, if the

27

same functor

1 i #SF ..o systematicity
behamo;ssal.a.efie. "'---hMH(bl.tl)""“'--...#SYS * MH(b1.t1)
3 MH(b2.12) MH (b3.13)

functionally analogous |
#FA oo -
MH(b4.t4) <~ "*>» MH(b5.t5)

systematicity
#S8YS * MH(b1.11)

.. Figure 12: Match hypothesis evidence rules contribute numeric evidence scores based on factors
such as systematicity and problem solving relevance.

central focus is to explain an observed behavior, then matches identifying corresponding
behavior are given greater import than matches for other features.

In the implementation, SME, selection is performed by ordering gmaps according to
numeric evidence scores. The rules are similar in form to the match creation and con-
straint rules presented above. They operate on match hypotheses, using a probabilistic
combination technique to combine evidence weights supporting each match hypothesis
(Figure 12. See also [16]).1° Each evidence source, and each match hypothesis score,
are in the range 0..1. A gmap’s evidence is then obtained by adding the scores for each
of its constituent match hypotheses. In the rules described below, each evidence weight
will be given as #(parameter — name). The numeric values of these parameters, and their
performance, are then discussed in the next section.

The first three evidence rules support correspondences that are part of the original in-
put, pair expressions having the same predicate, or pair expressions filling corresponding
roles.

Rule 14 (Given Pairing Evidence) Iftwo items are a priori designated as matching,
then supply an evidence score of #GP to the match.

Rule 15 (Same Functors) If the ezpressions comprising a match hypothesis use the
same predicate, then supply an evidence score of #SF to the match.

Rule 16 (Functionally Analogous Evidence) If the ezpressions comprising a match
hypothesis fill corresponding roles, then supply an evidence score of #FA to the match.

Systematicity is supported by passing evidence from a match involving a relationship
to the matches involving its arguments.

'9Tt should be pointed out that numerical evidence is used to provide a simple way to combine local
information concerning match quality. These weights have nothing to do with any probabilistic or
evidential information about the base or target per se. Additionally, the evidence scores used here are
lower than those previously described for SMEsyr [16]. It was found that the prior scores pushed the
weights too far into the high end of the 0..1 spectrum, offering little difference between fair matches
and very good matches.

23

Rule 17 (Systematicity) Given MH, and MH,, where MH, pairs arguments of the
relations in MH,, propagate #SYS% of MH, s total evidence score to MH, (i.e., supply
an evidence score of #SYSxMH; to MH;).

In this manner, the more matched, higher-order structure that exists above a given
match hypothesis, the more that hypothesis will be believed. This provides a local
encoding of Gentner’s systematicity principle.

Finally, contextual relevance is included. This is dependent on the performance
element. In PHINEAS, the central focus is to explain an observed behavior. For that task,
~ matches identifying correspondmg behavior are given greater import than matches for
other features.

Rule 18 (Behavior Salience) If a match hypothesis is between two behavioral rela-
tions (e.g., Increasing, Decreasing), then supply an evidence score of #B to the match.

4.1.5 Implementation

The structure-mapping engine (SME) [15, 16] is used to model the mapping component
of contextual structure-mapping. SME is a general mapping tool which performs a set
of basic mapping operations, enforces structural consistency, and formulates mappings
based on user-supplied match rules. Match rules specify which pairwise correspondences
between expressions and entities are possible, restrictions on how they may be combined,
and preference criteria for scoring these combinations. The 18 rules described in the
previous sections have a straight-forward translation into SME pattern-directed lisp rules,
which define SMEcsas.!' This section briefly describes SMEcsy and reviews the mapping
selection criteria. J

Given descriptions of base and target dgroups, SME constructs all consistent interpre-
tations (gmaps) of the comparison between them. Conceptually, the algorithm is divided
into four stages:

1. Local match construction: Given two dgroups, SME begins by finding all match
hypotheses. Allowable matches are specified by match constructor rules (e.g., CSM
rules 1-5).

o

Gmap construction: SME next combines local match hypotheses into maximal, con-
sistent collections of correspondences. Consistency constraints include structural
consistency and the supplied rules, which identify pairs of conflicting match hy-
potheses (e.g., CSM rules 6-13).

3. Candidate inference construction: The inferences suggested by each gmap are
found by collecting base expressions that would fill in structure which is not in

"Throughout, the general program is called SME, the program running the rules of Gentner’s
Structure-Mapping theory is called SMEsp 7, and the program running the rules of Contextual Structure-
Mapping is called SME sy .

29

the gmap, provided that the base structure’s subexpressions intersect at some
point the base information belonging to the gmap.

4, Match Evaluation: An evaluation score for each match hypotheses and gmap is
found by running match evidence rules and combining their results (e.g., CSM
rules 14-18).

The specific parameter settings used in SMEgsy are (the #B parameter is specific to
the PHINEAS task):

[Evidence Parameter Dfalue |

#GP 0.4
#SF 0.4
#FA 0.8
#SYS 0.8

B - 0.4

Whenever numeric weights are used to influence a system’s function, there is danger
of (1) tailoring for particular examples and (2) sensitivity to specific values. Values for
the evidence parameters in SMEcs) were selected based on long experience with SMEsyT,
empirical studies [19], and general intuition. Of course, a more formal sensitivity anal-
ysis is required. However, SMEcsp’s evidence parameters have not changed for several
years and have been applied to dozens of examples. Both Forbus & Gentner [19] and
myself have conducted empirical studies to determine SMEgy7's sensitivity to the space
of possible parameter settings. On extremely simple examples, it was found that simply
having non-zero settings is sufficient. On more complex analogies, such as the short sto-
ries discussed in [40], performance is robust but not completely insensitive to parameter
settings. Most crucial is the setting for systematicity. This must be high for SMEsyr to
demonstrate a marked preference for interconnected systems of relations. The findings
are still preliminary. Although they should apply equally well to SMEgsar, studies on
SMEcsy have not yet begun.

4.1.6 Example: Understanding thermostats

To illustrate, Figure 13 shows a description of the thermostats originally pictured in
Figure 1. The task is to use the explanation of the coil thermostat to assist in explaining
the rod thermostat’s functionality. To simplify the example, we will only describe the
subcase in which the thermostat turns the furnace on when the temperature is less than
some threshold temperature.

The initial base and target representations describe the artifacts’ structural configu-
ration. In the base case, only those aspects antecedent to the relevant explanation (i.e.,
is the furnace on when the temperature is below some threshold) are given. From these
descriptions, SMEgsys finds the following correspondences: '

30

Coil Thermostat

valvel
Y

furnacel

wirel s1 pilot1

leveri

On(furnacel)

Furnace(furnacel Coil(coill)

Source(si.gas)
Path(p1.s1.furnacel) Connected(valvel.p1)
Valve-Control(coill.valvel) On(pilot1)

Electric-Valve(valvel) Furnace-Pilot(pilot1.furnacel)

temperature(env) < temperature(env)

T = T T T 7 Ton(funacet) Rationale CACHE|

/,..\\

Flow(gas.furnacel) Furnace(furnacel) On(pilot1)

/\ Furnace-Pilot(pilot1.furnacel)
caures

Source(sl.gas) Open-Path{p1.s1.furnacel)

Py

Valved-Path(p1.valvel.sl.furnacel) Open(valvel)

' |
! 1
| 1
' !
' |
' |
' ‘ |
1 I‘"‘"‘“ / T |
| Connected(valvel.p1) Valve-Control(coill.valvel) |
I Path(p1.s1.furnacel) Valve(valvel) Sensor-On(coill) |
| Electric-Vaﬁu:tul} / |
' |
! l
| |
l l
| I

angle(coill) < angle - (coill)
temperature(coill) < temperature(coill)
temperature(env) < temperature(env) Thermal-Sensor(coill.angle(coill))

implics

L Coil(coil1) 2

Position-Valve(v) e Valve(v)
Position-Valve{v) — Valve-Control(v,v)
Coil(z) =5 Spring(z)

Coil(z) “ Thermal-Sensor(z,angle(z))
BiMetallic-Rod(r) — Metal-Rod(r)

Rod Thermostat

furnace?|
springl | ¢
3
e,
diall o
t
s2

Source(s2.gas)
Path(p2.s2.furnace2)
Connected(rod1.p2)
Position-Valve(rod1)

Furnace(furnace2)

Thermal-Sensor(rod1.length(rod1))

Ti‘m[ﬂl‘zn
BiMetallic-Rod(rod1)

temperature(env) < temperature(env)

General domain theory

implics

Figure 13: Descriptions of two different thermostats. How does the rod thermostat function?

31

Furnace(furnacel) «~ Furnace(furnace2)
Source(si,gas) « Source(s2,gas)
Path(pi,si,furnacel) < Path(p2,s2,furnace2)

Connected(valvel,pl) < Connected(rodl,p2)
temperature(env) <temperaturer(env) « temperature(env)<temperaturer(env)
furnacel <« furnace2
8l <« 82
gas « gas
pl < p2

valvel «« rodil
env « env

This mapping identifies relevant properties explicity present in both descriptions
(SMEcsa rules 2-4). Due to the lack of explicit role information at this stage, no further
correspondences are possible. For example, there is currently no motivation for matching
Coil(coill) with either BiMetallic-Rod(rod1) or Spring(spring1). Had additional role
information been present in the initial descriptions, additional similarities could have
been identified (such as coil to bimetallic rod).

At this stage, the mapping is both unambiguous and incomplete. A number of
the coil thermostat’s relevant properties have no (apparant) correspondent in the rod
thermostat case. These initial similarities are elaborated during the analysis phase.

4.2 The analysis phase

The mapping phase determines the best, initial correspondences between two analogues
and provides an initial estimate of their similarity. The analysis phase seeks additional
role information about unmapped areas in a goal-directed effort to resolve mapping
impasses. This exposes further similarities and thereby adapts the base structure to the
target case.

We begin with the various routines needed and then use these as primitive operations
in describing the analysis phase as a whole.

4.2.1 Inference engines and abductive retrieval

Portions of the analysis phase consist of seeking objects that may be assumed to occupy
unfilled roles in the mapping or alternate ways to adapt or justify proposed inferences.
In support of these various operations, we assume the existence of two retrieval methods
- one deductive (ask) and the other abductive (abductive-ask).

ask

Some candidate inferences may represent facts that are true in the target, but are not
explicit in the target description. The ask operation tests if a given expression is entailed
by the current store of facts and domain theory. It’s behavior is akin to Prolog or the

32

deductive retriever described in [8]. If the expression contains variables, then it returns
a set of bindings for which the expression is true.

abductive-ask

The abductive-ask operation is identical to ask with one important difference — it al-
lows abductive assumptions when deductive reasoning over existing facts is insufficient
to derive a specified request pattern. When given a ground expression, abductive-ask
tests if the expression is consistent and thus may be assumed. If the expression con-
tains variables, then it returns a set of bindings and a set of assumptions for which the
expression is true. Since skolem objects are expressed as existentially quantified vari-
ables during this operation, returned instantiations represent known objects that may
consistently fill the role of a given skolem object. For example, given the request pattern

P(z) A Q(z) A R(z)

and assertions P(a), Q(b), and R(b), the abductive retriever would return two possibili-
ties:

Binding Assumptions
1: (z.a) Q(a) A R(a)
2 (z+b) P(b)

The abductive-ask implementation used for this paper is described in [13]. It is
a backward chaining, breadth-first problem solver that is responsible for maintaining
the system’s domain knowledge, facts, and assumptions. A branch bound bb (default 5)
is used to limit the number of acceptable possibilities. If more than bb candidates are

. retrieved, it is assumed that not enough information exists to make a decision and the
skolem object remains unknown. _ '

Three tests are used to determine an expression’s consistency: (1) the arguments
are consistent with the predicate type declarations, (2) the proposition is not assumably
false by closed-world assumption, and (3) the proposition’s negation is not provably true.
Closed-world assumptions are task-specific. For example, in the physical explanation
scenarios, all spatial relationships, such as Touching, are assumed to be either known or
false. For expressions containing variables, only argument type consistency for ground
arguments is examined and the other two consistency tests are not attempted. For
example, Immersed-in(alcoholl,z) is inconsistent for any instantiation of z, since
alcoholl occupies a slot limited to solids.

4.2.2 Expression analysis and adaptation

Vocabulary used to describe the base may not be applicable to the target case, either
due to alternate characteristics of the situations or vocabulary changes in crossing do-
mains. For example, it would be better to find a known fact to fill a given role (e.g.,

33

Irrigation(r,) in the coffee growing case) than to assume one imported from the base (e.g.,
High-Rainfall(r,)). Therefore, each unmapped condition (which appears as a candidate
inference from the mapping phase) is checked to see if it is true, consistent, or adaptable
to fit the target environment. Three operations support this: ask, abductive-ask, and
retrieve-functional-analogue. The ask operations were described above.

retrieve-functional-analogue

The retrieve-functional-analogue operation seeks a functionally analogous expres-
sion that may fill the role of the original base expression, and is either true or consistently
assumable. A functionally analogous expression is found by determining the base expres-
sion’s role in the base description and searching for a target expression that can provide
the corresponding service. Cached information attached to the base description sup-
plies the necessary information by stating what dependencies each expression satisfies.
The general prerequisites the expression’s base correspondent satisfied are retrieved and
mapped to the target by application of the existing mapping function. Depth-bound,
exhaustive backchaining is then used to locate all known target propositions deductively
supporting any of these prerequisites. Each one found is added to the base and target
descriptions to make their role information explicit for future mapping operations.

4.2.3 Unknown objects

When a candidate inference contains slots occupied by unknown objects (skolem objects),
suitable target objects must be found or their existence conjectured. There are four
options:

1. General physical knowledge. Search for a known item that may actually be the
item in question. This is a component of the general abduction problem and is
dealt with by the abductive retriever.

2. Analogous conditions. Search for a known item that satisfies constraints considered
functionally analogous to those conjectured for the skolem object.

3. Directed experimentation. Experiments may be devised to empirically determine
what the missing entity is (e.g., [39]).

4. Hypothesize ezistence. The object’s existence may simply be assumed and rep-
resented by a skolem constant. If it is a known type of object, then a standard
assumption mechanism as used in abduction will suffice. Otherwise, the existence
of some new, hypothetical entity may be assumed, as was done when ether was
conjectured as a medium for light waves.

Only the last option is described in this section. The first option was addressed above
by ask and abductive-ask. The second option is addressed by retrieve-functional-analogue.
The third option is not considered in this paper, but was demonstrated in [17].

34

create-entity

If a skolem object cannot be identified, a new entity token may be created and assumed to
fill the role. create-entity makes a new entity token and then analyzes the consistency
of its proposed existence.

Consistency for created entities deviates from the standard consistency operation.

First, the new token is substituted into the skolem object’s N conditions and the status
of

Consistent(Cy A---ACn)

is determined as described above.'? However, if the conjunction C; A ... A Cy is incon-
sistent using the new entity token, then ’

(Vz)=[Ci(...z..)A---ACN(...z...)]

is true, where all instances of the new entity are replaced by z. In other words, no
such object could possibly exist under current beliefs. In this case, we are faced with
the problem of conjecturing a new kind of entity as opposed to simply creating a new
instance of a plausible entity type. In general (and for the purposes of this paper), this is
grounds to reject the analogy. However, for theory formation tasks this can be grounds to
form a new concept (perhaps by creating new predicates) [13, 14]. Conjectured entities
have a long history in science and are often at the center of controversy in a developing
theory. For example, an all-pervading ether was long postulated to provide a medium
for the flow of light waves because other kinds of waves require a medium.

4.2.4 The map and analyze cycle

The analysis phase creates a set of usable target hypotheses from candidate inferences
proposed by mapping, or rejects the analogy if this cannot be accomplished. It uses the
set of operations described in the preceding sections and summarized in Table 1. The
algorithm is shown in Table 2.

The process starts when a new mapping is received and begins by examining each
proposed expression £ in the set of candidate inferences. It first checks if £ is already
known using ask. If unknown, a functionally analogous expression that is currently
believed is sought using retrieve-functional-analogue. If none are found and &
is consistent (using abductive-ask), then £ is assumed. Finally, if the above fails,
any functionally analogous expressions that are consistent are sought. Any alternative
expressions found during this process are collected and later used to augment the current
base and target descriptions.

If € contains variables, then these operations serve to identify known objects that may
be consistently substituted for the unknown object. The use of retrieve-functional-analogue

2Note that the consistency of the C; must be determined together rather than individually, since
each atomic sentence may be consistent when considered individually, but may not be consistent when
considered in conjunction with the other N — 1 assumptions. Charniak [7] makes this point as well.

35

Table 1: Summary of analysis phase operations.

o ask(ezpression) = {success | bindings | failure}

¢ abductive-ask(ezpression)
= {success| (01,A1)...(On,AN)} | failure
(where 6; is a binding and A; is a set of assumptions)

¢ retrieve-functional-analogue(F(...)) = P/(...)

e create-entity(skolem-object, conditions) = entity-token

in searching for unknown objects addresses an important component of the correspon-
dence problem: how can a target correspondent for a base object be found given only the
base object’s stated conditions?!® Unless these conditions have been fully mapped, there
may be no target correspondent to satisfy them. This is especially true of cross-domain
analogies, in which an analogous pair of objects may have no identical characteristics in
common.

If all expressions are consistent and there are no unknown skolem objects remain-
ing, the analysis phase is successfully completed. The potentially modified candidate
inferences are now considered operational for the target domain (recall there may be
branching at this point, producing a set of alternate target hypotheses). When this is
not accomplished, there are two options. If new information was retrieved, processing
returns to the mapping stage, using base and target descriptions augmented with the
additional information. This may lead to an augmented or alternate mapping and pos-
sibly new points of discrepancy on which to focus the analysis process. Otherwise, the
analogy is rejected.

4.2.5 Example: Understanding thermostats

The initial mapping phase found a number of relevant similarities between the two
thermostats. However, five conditions and two objects from the coil thermostat had no
apparant correspondents (shown before and after applying the current mapping M):

3Most analogy systems either create a new token and assume the proposed conditions for it [45],
work on constrained within-domain analogies that eliminate the problem [6, 32], or don’t examine the
possibility of skolem objects produced by mapping [5, 23].

36

Table 2: Transfer algorithm.
Repeat Until no new information can be retrieved or there are no inconsistent expressions
and no skolem objects:

"1. For every expression £ € CT

(1) ask(&)

(2) else retrieve-functional-analogue(&) (accept provably true alternates only)

(3) else abductive-ask(£)

(4) else retrieve-functional-analogue(£) (accept any assumable alternates)

2. If there is no expression £ € CZ that is inconsistent and no unknown skolem ob jects
then return target inferences {Z7...Zrn},

where each Ir; represents a different permutation of the set of proposed modifications
to CI.

3. If (there exists an expression £ € CZ that is not consistent
or a skolem object that cannot be identified)
and new information has been found by retrieve-alternate-expression
then invoke mapping with base and target descriptions augmented with the new infor-
mation.

4. If all ground expressions are consistent but skolem objects that cannot be identified
For every skolem object S € skolem-objects(CT)
Let Cs = {€s | £&s € CT and S € &5}
create-entity(S,Cs)

5. Else, reject the analogy.

37

Electric-Valve(valvel) Electric-Valve(rodi)

Valve-Control(coill,valvel) Valve-Control(?coill,rodl)
Coil(coill) Coil(fcoill)
Furnace-Pilot(piloti,furnacel) Furnace-Pilot(?pilot!,furnace2)

On(pilot1) -4 On(?pilot1)

= |= |2

M

The analysis phase begins by examining each expression sequentially:
Electric-Valve(rod1)

1. ask(Electric-Valve(rodl)) fails.

2. retrieve-functional-analogue(Electric-Valve(rod1)) consults the base
analogue’s cache and finds that the only role of valvel’s Electric-Valve
property is to support the Valve requirement. Position-Valve(rod1) satis-
fies this requirement for the rod thermostat case. This information is added
to the analogues’ descriptions:

Base: Implies(Electric-Valve(valvel),Valve(valvel))
Target: Implies(Position-Valve(rodl),Valve(rodl))

Valve-Control(?coil,rod1)

1. ask(Valve-Control(?coill,rod1)) succeeds (due to Position-Valve(rodi))
and returns { ?coill=rod1}.

Coil(?coil)

1. ask(Coil(?co:ll)) fails.

2. retrieve-functional-analogue(Coil(?coill)) finds that the only role of
coill’s Coil property is the ability to operate as a thermal sensor. BiMetallic-rod(rod1)
provides this function in the rod thermostat context. This information is
added to the analogues’ descriptions:
Base: Implies(Coil(coill),Thermal-Sensor(coill,angle(coill)))
Target: Implies(BiMetallic-Rod(rodl),Thermal-Sensor(rodi,length(rod1)))

Furnace-Pilot(?pilotl)

1. ask(Furnace-Pilot(?pilot!,furnace?)) fails.
2. retrieve-functional-analogue(Furnace-Pilot (%pilotl)) fails.

3. abductive-ask(Furnace-Pilot(?pilot!,furnace?2)) fails.
Furnace-Pilot(?pilotl)

1. ask(On(?pilotl)) fails.

38

On(furnacel)

Furnace(furnace2)

Path(p2,s2,furnace2)

Thermal-Sensor(rod1.length{rod1))
Source(s2,gas)

Connected(rod1,p2)

Valve-Control(rodi.rod1) BiMetallic-Rod(rod1)

On(pilot1-1)
Valve(rod1) Furnace-Pilot(pilot1-1.furnace2)
temperature(env) < temperature.(env) Font key: given
derived
Position-Valve(rod1) _ assumed

Figure 14: Final explanation of the rod thermostat’s function.

2. retrieve-functional-analogue(On(?pilot1)) fails.

3. abductive-ask(0On(?pilotl)) fails.

At this point, the analysis phase is completed. Because new role information was
retrieved, the mapping is reexamined. This produces the following additional correspon-
dences:

Implies(Coil(coill) ,Thermal-Sensor(coill,angle(coill)))
«~ Implies(BiMetallic-Rod(rod1),Thermal-Sensor(rodl,length(rodi)))

Implies(Electric-Valve(valvel),Valve(valvel))
«~ Implies(Position-Valve(rod1),Valve(rodi))

valvel — rodil
coill & rodi

Note that the syntactically distinct expressions Coil(coill) and BiMetallic-Rod(rod1)
are placed in correspondence due to the common role of thermal sensor (via SME¢sy rule
5). Additionally, rod1 has been found to correspond to both coill and valvel due to
the rod’s dual roles as sensor and valve (via SMEcgp rules 6-11). At this point, the only
unresolved features are

Furnace-Pilot(?pilotl,furnace2) and On(%pilotl)
Because they have no correspondents and an assumption of their existence is consistent,
the new entity token piloti-1 is created for ?pilotl, and
Furnace-Pilot(piloti-1,furnace2) and On(piloti-1) are assumed. The final expla-
nation for the rod thermostat’s functionality is shown in Figure 14.

39

5 Discussion

Elaborating the nature of role information in similarity assessment provides significant
explanatory and unifying power. It has been shown to make three principal contri-
butions. First, it provides a general characterization of similarity that specifies the
conditions under which syntactically distinct expressions may be considered similar, the
conditions under which the one-to-one restriction should be relaxed, and how knowledge
of one situation may be adapted for use in another. It attempts to explicate the repre-
sentational and algorithmic assumptions that can be made, the conditions under which
they are viable, and the ramifications of their use. Second, the CSM framework has
been used to unify and explain some of the intuitions behind a number of converging,
independent research efforts. Its scope and utility has been extensively demonstrated
on a range of tasks of varying complexity. Third, the map and analyze cycle provides
a focused mechanism for computing similarity correspondences and adapting the base
structure for use in the target case. The implementation allows extended representa-
tional expressiveness, is task-independent, and has been shown to have broad coverage.
In addition to those described here, the implementation (which is a superset of the
earlier SMEgy7) has been applied to a wide range of examples, including short story
comparisons [40, 19], geometric figures [41], some examples from SPROUTER [26], and a
dozen from PHINEAS.
The remainder of this section outlines a number of outstanding research issues.

5.1 Relationship to other learning techniques

Analogical reasoning has close ties to both inductive and explanation-based (EBL) learn-
ing. With role analysis and function substitution capabilities removed, the implemen-
tation effectively reinstantiates a stored explanation structure to the current case. This
is almost equivalent to the functionality provided by EBL. Role analysis adds flexibility
to the reinstantiation process by allowing sound (when role information is complete)
modification of the structure. This close relationship deserves indepth attention. Which
is more efficient - using traditional EBL techniques to form a range of macros covering
some example space or using CSM techniques over a smaller number of adaptable macros
covering the same space?

When partial or probabalistic role information is allowed, analogical reasoning lies
where theory and empirical observation blend. Although some approaches make the
attempt, prediction from a single case has no empirical justification and must rely on at
least a weak domain theory for support. As numerous, similar cases are observed, and
patterns or prototypes are identified, empirical justification becomes possible. In this
manner, analogy forms a natural bridge between pure forms of inductive and analytical
(explanation-based) learning. Unfortunately, it also raises a number of complex indexing,
retrieval, and generalization issues that are currently not well understood.

40

5.2 The utility of reasoning from similarity

There are important tradeoffs that research in analogical reasoning must consider. What
is it being used for? What utility does it provide? Are the costs commensurate with
this utility? Analogical reasoning has two primary uses. First, it may provide faster
solutions to otherwise solvable problems (e.g., planning by analogy). Second, it may
provide plausible conjectures and inductive generalizations. In either case, researchers
to date have focused on first understanding what it means to reason from similarities
and have not yet examined the cost/benefit tradeoffs.

For what class of tasks, techniques, and analogies is analogical reasoning an effective
approach? At one end of the spectrum are approaches which syntactically match lists of
unary features, without further adaptation or analysis. These techniques offer efficient
memory retrieval and similarity computation at the cost of reduced coverage and rep-
resentational expressivity. At the other end of the spectrum lies approaches like CSM,
which allows commutative, n-ary relations over multiple objects and adaptation via role
analysis. These techniques offer wide coverage, including across-domain capabilities,
and representational expressivity. However, they incur greater computational expense.
Extensive empirical and theoretical work is needed to explore this space and understand
for both simple and complex problems the effects of the various limiting assumptions
that can be imposed.

One very important utility issue concerns the treatment of expressions filling corre-
sponding roles. The technique described in Section 4 uses role analysis and the map
and analyze cycle to maintain a full correspondence set while adapting the base to fit
the target case. While CSM alleviates much of the brittleness associated with pattern-
matching approaches to analogy, the current approach still requires that for each pair of
corresponding roles, their role fillers are isomorphic (due to the structural consistency
criterion). Arbitrary collections of expressions that are functionally analogous cannot
be matched. For example, suppose a set of relationships between three objects serves
the same role as a different set of relationships between two objects. Role analysis will
successfully identify the role fillers, but the subsequent mapping phase will reject their
correspondence due to their structural inconsistency. There are several responses to this
issue that deserve further consideration:

o Just fill the roles. One could argue that role analysis should be used to simply refill
the roles of unmatched base items, without attempting to explicitly name their
correspondents. The techniques in [32, 37| reflect this approach. At first glance,
this alternative may appear to be obviously superior and the algorithm can easily
be modified to function this way (remove the return to the mapping phase in line
3 of Table 2). However, consider the following set of base expressions:

P(b) — Q(b)
P(b) — R(b)
P(b) — S(b)

41

Upon finding P’(t)—Q(t) in the target, which suggests that P(b) corresponds to
P'(t), this approach would not know to try P’(t) as the first candidate when
attempting to justify R(t) and S(t). Explicitly noting correspondences uncovered
during role analysis may provide focus for subsequent problem solving.

e Record all functional correspondences. In addition to its focusing potential, some
tasks may require explicitly noting all correspondences (e.g., forming abstractions,
comparing and contrasting legal cases [1], or evaluation of competing designs).
However, if matches between syntactically disparate role fillers must be recorded,
this approach raises serious issues for identifying object and relational correspon-
dences. For example, consider matching

P(b) — Q(b)
with
R(t1,t1) A S(t2) — Q(t1)

Should we just place the antecedents in sets and say that {P(b)} corresponds to
{R(t1,t1), S(t2)}, without further decomposition? What impact does this have on
structural consistency? What would such a correspondence mean?

o Take the middle ground. A final approach of course is simply to refill the roles of
unmatched base items and record any correspondences that can be easily identified.

5.3 Research issues for analogical mapping
5.3.1 The plausibility problem

What is the underlying basis for analogical inference that makes conclusions plausible?
As discussed in Section 1.3, several factors contribute to evaluating the plausibility of
analogical inferences, including logical or statistical justification [9, 10, 35], consistency
(28], and empirical utility [12, 13, 23]. The general condition that there be a predic-
tive correlation between mapped features and inferred features appears fundamental.
However, the plausibility problem remains as a critical open research issue.

One dominate point of convergence has been the centrality of consistency in guiding
and evaluating analogy production [28, 23, 32, 24]. Many go beyond consistency to
require that analogy produces deductively sound inferences [6, 31, 10]. While consistency
is an important component of all forms of reasoning, it should not be afforded too much
import. Limiting analogy to strict consistency requires that analogy be a monotonic
process. However, analogy often causes the questioning of beliefs and may lead to
a complete change in world view. Thus, a weaker form of consistency is needed — one
which takes into account the cost of overthrowing or revising prior beliefs for the benefits
of a more coherent belief state. Work on explanatory coherence [38, 42] may be viewed
as a step in that direction. Additional factors such as plausibility and specificity in
accounting for the phenomenon are required as well.

42

5.3.2 The multiple instances problem

An implicit assumption in analogy research is that each analogue description depicts
a single (sometimes complex) concept. For many domains and application tasks, this
assumption may not be satisfied. For example, three containers connected in series (e.g.,
canl to can2 by pipe12 and can2 to can3 by pipe23) can produce two simultaneous
liquid flow processes. Using an analogue describing the flow of liquid between two
connected containers to explain this scenario would produce two different analogies, one
with the can2 to cani flow and the other with the can2 to can3 flow. This produces
two independent initial explanations. Existing analogy systems do not have the ability
to recognize that. a single phenomenon is simply occuring twice.

5.3.3 Role analysis

More work is needed to formally capture and increase understanding of role information
and its analysis. This leads to consideration of some related subproblems:

Compiled Knowledge Problem. Al systems tend to use compiled knowledge, in which
intermediate reasoning steps or detailed models are absent to promote efficiency of use.
This runs counter to the need in analogy to understand the underlying rationale behind
that which is being adapted (i.e., its role in the analogue). For example, knowing why a
prior decision was made is necessary for satisfying the intent of a decision without nec-
essarily adhering to the same decision. More work is needed, to specify what knowledge
is needed, what knowledge should be cached, how that knowledge is to be retrieved, and
how that knowledge is to be used in the analogy process.

Learning role information. This paper has claimed that analogy requires role informa-
tion to at least plausibly suggest the relevance and interrelatedness of each analogue’s
features. The ability to learn this relevance information is of fundamental importance.
One approach is to use a developing analogy to motivate specific questions about the
world and use directed experimentation to answer them and ascertain the requisite rele-
vance information. This was demonstrated by the merger of PHINEAS and ADEPT [17]. A
second approach is to again use a developing analogy to motivate specific questions, but
place the system in a learning apprentice setting and obtain requisite relevance informa-
tion from the user. This is the approach taken in PROTOS [3]. Finally, a third approach
would be to use inductive methods to indicate which factors are relevant to the concept
under study.

6 Acknowledgements

This work has benefited from guidance, suggestions, and generally enlightening conver-
sations with Danny Bobrow, John Collins, Ken Forbus, Dedre Gentner, Pat Langley,

43

Mark Shirley, Janice Skorstad, VS Subrahmanian, and Brian Williams. Danny Bobrow
and Mark Shirley were instrumental to the development of these concepts beyond their
specific instantiation in PHINEAS.

Portions of this work were conducted as part of the author’s doctoral disseration
at the University of Illinois Department of Computer Science. Support was provided
through an IBM Graduate Fellowship and the Office of Naval Research, Contract No.
N00014-85-K-0559.

44

References

[1]
(2]
.[ﬂ
(4]

(5]

(6]

[10]

(11]

[12]

Ashley, K. D and Rissland, E. L. Compare and contrast, A test of expertise. In Proceedings
of the Sizth National Conference on Artificial Intelligence, pages 273-278, Seattle, WA,
July 1987. Morgan Kaufmann.

Baker, M, Burstein, M. H, and Collins, A. Implementing a model of human plausible
reasoning. In Proceedings of the Tenth International Joint Conference on Artificial Intel-
ligence, pages 185-188, Milan, Italy, August 1988. Morgan Kaufmann.

Bareiss, E. R, Porter, B. W, and Wier, C. C. Protos: An exemplar-based learning appren-
tice. In Proceedings of the Fourth International Workshop on Machine Learning, pages
12-23, Irvine, CA, June 1987. Morgan Kaufmann. :

Bi'anting, L. K. Integrating generalizations with exemplar-lbased reasoning. In Proceedings
of the Eleventh Annual Conference of the Cognitive Science Society, Ann Arbor, MI,
August 1989. LEA. -

Burstein, M. Concept formation by incremental analogical reasoning and debugging. In
Proceedings of the Second International Workshop on Machine Learning, Monticello, IL,
June 1983. (Revised version appears in R.S. Michalski, J. Carbonell, T. Mitchell (Eds.),
Machine Learning: An Artificial Intelligence Approach, Volume II, Morgan Kaufmann,
1986).

Carbonell, J. G. Derivational analogy in problem solving and knowledge acquisition. In
Proceedings of the Second International Workshop on Machine Learning, Monticello, IL,
June 1983. A revised version appears in Machine Learning: An Artificial Approach Vol.
IT, R.S. Michalski, J.G. Carbonell, and T.M. Mitchell (Eds.), Morgan Kaufman, 1986.

Charniak, E. Motivation analysis, abductive unification, and nonmonotonic equality.
Artificial Intelligence, 34(3):275-295, 1988.

Charniak, E, Riesbeck, C. K, and McDermott, D. V. Artificial Intelligence Programming.
Lawrence Erlbaum Associates, Hillsdale, NJ, 1980.

Clark, P. Representing arguments as background knowledge for the justification of case-
based inferences. In Proceedings of the AAAI-88 Workshop on Case-Based Reasoning,
pages 24-29, August 1988.

Davies, T. R and Russell, S. J. A logical approach to reasoning by analogy. In Proceedings
of the Tenth International Joint Conference on Artificial Intelligence, pages 264-270,
Milan, Italy, August 1987. Morgan Kaufmann.

DeJong, G and Mooney, R. Explanation-based learning: An alternative view. Machine
Learning, 1(2), 1986.

Falkenhainer, B. An examination of the third stage in the analogy process: Verification-
Based analogical learning. In Proceedings of the Tenth International Joint Conference on
Artificial Intelligence, Milan, Italy, August 1987. Morgan Kaufmann.

45

[13] Falkenhainer, B. Learning from Physical Analogies: A Study in Analogy and the Ezpla-
nation Process. PhD thesis, University of llinois at Urbana-Champaign, 1988. (Technical
Report UTUCDCS-R-88-1479).

[14] Falkenhainer, B. A unified approach to explanation and theory formation. In Shrager, J
and Langley, P, editors, Computational Models of Scientific Discovery and Theory For-
mation. Morgan Kaufmann, San Mateo, CA, 1990. Also appears in Readings in Machine
Learning, Shavlik & Dietterich (Eds.), 1990.

[15] Falkenhainer, B, Forbus, K. D, and Gentner, D. The structure-mapping engine. In
Proceedings of the Fifth National Conference on Artificial Intelligence, pages 272-277,
Philadelphia, PA, August 1986. Morgan Kaufmann.

[16] Falkenhainer, B, Forbus, K. D, and Gentner, D. The structure-mapping engine: Algorithm
and examples. Artificial Intelligence, 41(1):1-63, November 1989.

[17] Falkenhainer, B and Rajamoney, S. The interdependencies of theory formation, revision,
and experimentation. In Proceedings of the Fifth International Conference on Machine
Learning, pages 353-366, Ann Arbor, MI, June 1988.

[18] Forbus, K. D. Qualitative process theory. Artificial Intelligence, 24:85-168, 1984.

[19] Forbus, K. D and Gentner, D. Structural evaluation of analogies: What counts? In
Proceedings of the Eleventh Annual Conference of the Cognitive Science Society, pages
341-348, Hillsdale, NJ, August 1989. Lawrence Erlbaum Associates.

[20] Gentner, D. The structure of analogical models in science. Technical Report BBN Tech-
nical Report No. 4451, Bolt Beranek and Newman Inc., Cambridge, MA., 1980.

[21] Gentner, D. Structure-mapping: A theoretical framework for analogy. Cognitive Science,
7(2):155-170, April-June 1983.

(22] Gentner, D. Mechanisms of analogical learning. In Vosniadou, S and Ortony, A, editors,
Similarity and Analogical Reasoning. Cambridge University Press, London, 1988.

[23] Greiner, R. Learning by understanding analogies. Artificial Intelligence, 35(1):81-125,
1988.

[24] Hall, R. P. Computational approaches to analogical reasoning: A comparative analysis.
Artificial Intelligence, 39(1):39-120, May 1989.

[25] Hammond, K. J. CHEF: A model of case-based planning. In Proceedings of the Fifth
National Conference on Artificial Intelligence, pages 267-271, Philadelphia, PA, August
1986. Morgan Kaufmann.

[26] Hayes-Roth, F and McDermott, J. An interference matching technique for inducing ab-
stractions. Communications of ACM, 21(5):401-411, 1978.

[27] Holyoak, K. J and Thagard, P. Analogical mapping by constraint satisfaction. Cognitive
Science, 13(3):295-355, 1989.

46

(28]

[29]

[30]

(31]
(32]

(33]

[34]

[35]

[36]
37]

[38]

[39]

[40]

[41]

[42]

Indurkhya, B. Approximate semantic transference: A computational theory of metaphors
and analogies. Cognitive Science, 11:445-480, 1987.

Kass, A. Adaptation-based explanation: Extending script/frame theory to handle novel
input. In Proceedings of the Eleventh International Joint Conference on Artificial Intelli-
gence, pages 141-147, Detroit, MI, August 1989. Morgan Kaufmann.

Kass, A, Leake, D, and Owens, C. SWALE, A program that explains. In Schank, R, editor,
Ezplanation Patterns: Understanding Mechanically and Creatively. Lawrence Erlbaum
Associates, Hillsdale, NJ, 1986.

Kedar-Cabelli, S. T. Purpose-directed analogy. In Proceedings of the Seventh Meeting of
the Cognitive Science Society, August 1985.

Kedar-Cabelli, S. T. Formulating Concepts and Analogies According to Purpose. PhD
thesis, Rutgers University, May 1988. (Technical Report ML-TR-26).

Kolodner, J, Simpson, R. L, and Sycara-Cyranski, K. A process model of case-based
reasoning in problem solving. In Proceedings of the Ninth International Joint Conference
on Artificial Intelligence, pages 284-290. Morgan Kaufmann, August 1985.

Koton, P. Reasoning about evidence in causal explanations. In Proceedings of the Seventh
National Conference on Artificial Intelligence, pages 256-261, St. Paul, MN, August 1988.

Loui, R. P. Analogical reasoning, defeasible reasoning, and the reference class. In Pro-
ceedings of the First International Conference on Principles of Knowledge Representation
and Reasoning, pages 256265, Toronto, CA, May 1989. Morgan Kaufmann.

Mitchell, T, Keller, R, and Kedar-Cabelli, S. Explanation-based generalization: A unifying
view. Machine Learning, 1(1), 1986.

Mostow, J. Design by derivational analogy: Issues in the automated replay of design
plans. Artificial Intelligence, 40:119-184, 1989.

Ng, H. T and Mooney, R. J. On the role of coherence in abductive explanation. In
Proceedings of the Eighth National Conference on Artificial Intelligence, pages 337-342,
Boston, MA, July 1990. AAAI Press.

Rajamoney, S. Experimentation-based theory revision. In Proceedings of the 1988 AAAI
Spring Symposium Series: EBL, Stanford, CA, March 1988.

Skorstad, J, Falkenhainer, B, and Gentner, D. Analogical processing: A simulation and
empirical corroboration. In Proceedings of the Sizth National Conference on Artificial
Intelligence, Seattle, WA, July 1987. Morgan Kaufmann.

Skorstad, J, Gentner, D, and Medin, D. Abstraction processes during concept learning:
A structural view. In Proceedings of the Tenth Meeting of the Cognitive Science Society,
Montreal, August 1988.

Thagard, P. Explanatory coherence. Behavioral and Brain Sciences, 12:435-502, 1989.

47

[43] Wellsch, K and Jones, M. Computational analogy. In Proceedings of the Seventh European
Conference on Artificial Intelligence (ECAI), pages 153-162, July 1986.

(44] Winston, P. H. Learning and reasoning by analogy. Communications of ACM, 23(12),
December 1980.

[45] Winston, P. H. Learning new principles from precedents and exercises. Artificial Intelli-
gence, 19:321-350, 1982.

48

