r XEROX

SSL-91-95

Composition Modeling of Physical Systems

Brian Falkenhainer
Ken Forbus

[P91-00018]

System Sciences Laboratory
Palo Alto Research Center
3333 Coyote Hill Road

Palo Alto, California 94304

Compositional Modeling of Physical
Systems

Brian Falkenhainer and Kenneth D. Forbus

1.1 Introduction

This paper describes recent progress in our compositional modeling frame-
work for organizing models of continuous physical systems. Previously
we described how to organize large-scale qualitative models [FAFO33] to
allow automatically composing domain model fragments into an appro-
priate task-specific model. We organized model fragments as operating
blocks, which describe a system or subsystem at a uniform level of detail,
and functional blocks, which hide internals and only have input-output
behavior. Coherence was enforced by finding a single operating block
which could serve as a focus of attention, and modeling all of its subsys-
tems as functional blocks.

As we built more models, however, we discovered this decomposition
was fundamentally flawed. It confounded several roles of modeling as-
sumptions, which this paper disentagles with a new taxonomy. Grain
assumptlions control the amount of structure to be reasoned about. We
introduce a simple notion of system for controlling the granularity of
an analysis. Perspective assumptions control the point of view taken
on a system. These include the choice of ontology, approximation, and
abstraction. The relationships between these assumptions can be comn-
plex, so we adapt the notion of assumption classes from [ACP89] to
allow domain-specific coherence constraints to inform model composi-
tion. We describe a new model composition algorithm which uses these
representational extensions.

We also demonstrate that these ideas can be applied to quantitative
as well as qualitative models. While our algorithm can always provide
a relevant model, it cannot guarentee sufficient accuracy a priort. We
show how the use of explicit modeling assumptions can sometimes allow
the detection of inaccurate models and suggest appropriate revisions.

L)

Chapter 1

1.2 Overview of compositional modeling

A domain model describes a class of related phenomena or systems. [t
consists of a set of fragments, each describing some fundamental piece of
the domain's physics, such as processes (e.g., liquid flow), devices (e.g.,
transistor), or objects (e.g., container). We call the system or situation
being modeled the scenario, and its model the scenarto model. The sce-
nario model is built by instantiating fragments from the domain model.
This modularity is the heart of compositional modeling: implicit in the
domain model is a vast set of consistent scenario models, which can
be assembled as needed rather than explicitly enumerated in advance.
Automatic model composition requires explicit representation of mod-
eling assumptions. Each fragment must include sufficient conditions for
its applicability. The language of modeling assumptions provides the
“connective tissue” for organizing large-scale domain models.

We divide the process of modeling a specific scenario into three stages:
(1) composing the simplest coherent model sufficient for the task, (2)
performing the task using the model, and (3) evaluating the results to
ensure they are reasonable. This paper focuses on (1), with a foray into
(3) for the special case of modeling assumption violations uncovered
during the analysis phase.

1.3 Domain model organization

We begin by outlining how to organize domain models using the compo-
sitional modeling strategy. We focus on simplifying assumptions, which
provide the bulk of control over the applicability of model fragments'.
We draw on examples from an implemented domain model of the ther-
modynamic phenomena in steam propulsion plants.

1.3.1 Simplifying assumptions

The groundwork of any particular analysis is a set of simplifying assump-
tions specifying which aspects of a domain are relevant. For uniformity,
we stipluate that all simplifying assumptions take the form

CONSIDER({AsnType)((system)))

! Operating assumptions, which constrain potential behaviors (e g.. steady-state)
are also important, but are not discussed further here. See [FAFO33. FAF090].

where (AsnType) is a predicate denoting the specific kind of assumption
and (system) is what the assumption is about. We distinguish three
kinds of simplifying assumptions, described below.

Grain assumptions Tractable analysis of large systems requires tightly
focusing on what is relevant to answer specific questions. A rich model
of a ship’s laundry, for instance, provides no direct insight into boiler
efficiency. Often collections of objects can be considered as a single, ag-
gregate entity, such as ignoring the internal structure of the furnace when
analyzing the global behavior of a propulsion plant. Grain assumptions
control what objects are considered in an analysis.

We require all objects in scenarios to be organized into systems. A
system is either a primitive object or a named collection of systems.
For example, a container is a primitive object, and the boiler assembly
is not, since it consists of a furnace, boiler, superheater. The relation
Part-of holds when one system is part of another. Thus

Part-of(boiler boiler-assembly)

indicates that the boiler is part of the boiler assembly. Currently we
require systems to form a strict hierarchy. The root of this hierarchy,
which contains all the objects in the scenario, is always a system called
:scenario.

Grain assumptions are stated using the existence predicate. When

CONSIDER(existence((system)))

holds, it indicates that a model for (system) must be included in the
current analysis. Thus including

CONSIDER(existence(boiler))

in the framework of an analysis forces the boiler itself to be modeled,
rather than treating the boiler assembly as a black box or focusing on
the boiler’s subsystem (e.g., steam tubes, economizer, etc.)

The notion of system provides critical constraint on grain assumptions.
Intuitively, one cannot simply pick an arbitrary subset of a system to
model. Enough parts must be included to ensure that all relevant re-
lationships involving the objects of interest are included. Considering
an automobile transmission and wheels in isolation, for instance, will
miss important interactions between them unless the drive shaft and
differential are also taken into account.

4 Chapter 1

We define a covering system to be any system that contains all systems
of interest. (Clearly :scenario is always a covering system.) A minimal
covering system is the lowest common ancestor in the part-of hierarchy
of the systems being considered. The idea of minimal covering syvstem
provides the means to enforce the intuition above. Suppose we have two
objects of interest, and both are part of the same system. Then all of
that system's components must be considered. (We presume that if some
parts of the system could be further isolated, this fact would be reflected
in the system hierarchy.) If the two objects are at different levels of
the system hierarchy, the minimal covering system will be the smallest
system which has components which include both objects, and hence
instantiating its parts will ensure that the relevant structural connections
between them will be included. We return to this in Section 1.4.2.

Ontology assumptions Different tasks demand carving the world

up differently. For instance, fluids can be modeled as contained stuffs

[FORB84], an Eulerian perspective, or as molecular collections [COFO87],
a Lagrangian perspective. Other ontological assumptions include focus-

ing on energy or on mechanics. Ontological assumptions are specified

by domain-specific predicates, e.g., the following indicates the relevance

of contained-stuffs:

CONSIDER(fluid-cs(:scenario))

Ontology assumptions work as follows. (1) All ontological assumptions
are global. That is, they always apply to :scenario and are inherited by
all subsystems. (2) At least one ontological assumption must be included
in every analysis. (3) Multiple ontological assumptions are allowed when
consistent. For instance, some questions require combining results from
energy flow and mass flow analyses.

Approximations and Abstractions Approrimations provide sim-
pler models at the cost of reduced accuracy: Examples include incom-
pressible fluids, inviscid flows, inelastic objects, and frictionless motion.
Approximations are stated via explicit predicates, such as viscous. Ab-
stractions reduce the complexity of a model without reducing accuracy,
but at the cost of diminished detail and increased ambiguity. Examples
include modeling a fluid valve as a discrete switch versus a continually
varying conductance. Both approximations and abstractions differ from
ontological assumptions in that they typically do not represent sufficient

viewpoints by themselves.

Constraints on approximation and perspective assumptions are ob-
viously domain-specific. For example, in our models it does not make
sense to consider the space that connects a fluid path to a container as
an explicit portal unless the geometric properties of the container are
included in the analysis.

Assumption classes As seen above, some assumptions represent mu-
tually exclusive alternatives for modelling some aspect of an object or
phenomena. We use assumption classes to represent this important re-
lationship. Assumption classes are declared as

(defAssumptionClass (class-form) (a-forms))

where (class-form) indicates when the set of choices is relevant and (a-
forms) is an ordered list of alternatives. We call an assumption class
active when (class-form) holds, and in this case exactly one of (a-forms)
must be included in _any scenario model. For example, our domain in-
cludes two models of viscosity:

(defAssumption-class (fluid-viscosity ”path)
((CONSIDER (inviscid 7path))
(CONSIDER (viscous ?path))))

We use the ordering of (a-forms) to provide a simple model of cost:
Models specified by assumptions earlier in the list are presumed to be
cheaper, in some sense, than later models. (For instance, the viscous
model occurs second in the specification above because including fluid
resistance is often an unnecessary complication.) While an oversimpli-
fication, this simple model of costs is surprisingly useful (see Section

1.4.4).

Conditions of applicability and constraints on using different models
can be stated independently, thus enhancing modularity. For instance,
in our domain the need to model viscosity is declared by

(<s= (fluid-viscosity ?path) ((process-instance fluid-flow 7pi)
(?pi PATH 7path)))

which indicates that it is relevant when fluid flow is being considered.
Some of these constraints are subtle: For instance, questions concerning
head loss should rule out the inviscid (frictionless) assumption.

1.3.2 Specifying model fragments

We use a generalization of the modeling language developed for QP
theory [FORBB84]. The basic form is defModel, whose syntax is:

6 Chapter 1

(defModel (name-form)
Individuals ii-apcc)
Assumptions (asns)
OperatingConditions (opcon)
Relations (rels))

where (name-form) provides a pattern for specifying instantiations of the
model. The Individuals field describes the physical settings to which
the model applies, and (1-spec) defines all the model’s (logical) variables.
(asns) contains its simplifying assumptions, and (opcon) are the operat-
ing assumptions under which it holds. (rels) describe the consequences
of the model, including qualitative and quantitative equations?

A model is applicable for a set of objects and constants if they satisfy
(1-spec). If the simplifying assumptions also hold, then we say the model
is applied for that collection, and becomes part of the scenario model.
For example, a model of a string under tension is not applicable to
analyzing a steam plant, while a model of boiling is applicable but need
not be applied. Notice that a model can apply to a scenario yet not
constrain it. For example, a model of liquid flow is applicable to a path
even if it is currently blocked. An instance of a model fragment is active
exactly when it is both applicable and its OperatingConditions hold.

1.4 Model Composition

Our task is to construct a scenario model that is sufficient to answer a
given question with minimal effort. Sufficiency has two aspects. The first
is aboutness, i.e., ensuring the scenario model includes all the aspects of
the system required to perform the analysis. The second is accuracy,
i.e., ensuring the scenario model contains enough detail to provide a
suitable answer. In this paper we focus on aboutness criterion® Accuracy
and minimal effort often conflict. We resolve this dilemma by using
minimality as a filter on sufficient models.

Our model composition algorithm operates under two restrictions.
First, we require that the information needed to derive an appropriate

2QP fans will note that this syntax can be easily transformed into standard QP
notation. Preconditions and QuantityConditions become OperatingConditions,
Assumptions are pulled from the information in the standard Individuals field, and
a model is considered a view or a process according to whether or not (rels) includes
direct influences.

3[SHFA9Q] focuses on accuracy.

scenario model can be gleaned solely from the query and the contents of
domain model. Any domain-specific conventions or default patterns of
communication must be handled via preprocessing of the query. Second,
we only address the problem of selecting appropriate simplifying assump-
tions. Although some operating assumptions are entailed by choices of
simplifying assumptions, the general problem of choosing operating as-
sumptions is beyond the scope of this paper.

The idea underlying our algorithm is this. While a scenario model
consists of a collection of instantiated model fragments, directly search-
ing the space of model fragments is too expensive. Instead. we find
what model fragments are applicable, and organize our search for sce-
nario models in the space of simplifying assumptions they suggest. This
is more efficient because there are generally fewer modeling assumptions
than model fragments. Thus we produce as output a consistent set of
ground modeling assumptions which, together with the given scenario
description, entail a minimal, sufficient scenario model.

For simplicity, we describe our algorithm in terms of assumption-based
truth maintenance systems (ATMS) [DEKL86]. Each statement in the
database has a corresponding ATMS node. Some nodes are marked as
assumptions. An enwironment is a set of assumptions. The consistent,
complete, and minimal disjunction of environments under which each
node holds is called its label. If some environment in a node's label is
a subset of a given environment £, then the corresponding statement is
believed under the assumptions which comprise £.

All ground simplifying assumptions are marked as ATMS assump-
tions. We use the labels and dependencies maintained by the ATMS to
compute modeling environments, consisting of conjunctions of modeling
assumptions which entail scenario models. Given a scenario description,
we begin by finding instantiations of the domain model's fragments.
Once this is done, model composition consists of four steps: query anal-
ysis, object ezpansion, candidate completion, and candidate evaluation
and selection. We describe each in turn.

1.4.1 Query analysis

We presume a query elaboration procedure which can decompose a query
into a set of ground expressions Q = {ey,...,en}, where each e; has
a referent in the applicable model fragments. This procedure must be
domain and task specific. However, one useful general technique is to

8 Chapter 1

focus on extracting quantities from a query, which is typically easy and
highly indicative of what objects must exist for the analysis to make
sense.

Given Q, we construct seed candidate modeling environments (here-
after “seeds”) as follows. Let QUERY be a new ATMS node. Justify
QUERY by the conjunction of the expressions in Q@ and compute its label
Lq. Since the only assumptions in the ATMS database are modeling
assumptions, every environment £g isa seed, since at least one of these
environments must be included in the eventual scenario model in order

for the statements in @ to hold.

Suppose for instance our query is “How does the furnace’s fuel/air
ratio affect the amount of steam flowing in the superheater?”. By trans-
lating it into the quantities of interest, we get

Q = {Quantity(amount-of-in(vater,gas, superheater)),
Quantity(FA-ratio(furnace))}

Figdure 1.1 shows the dependencies for the corresponding QUERY node,
and in this case the ATMS computes the single seed:

{Consider(existence(furnace)), Consider(existence(superheater)),
Consider(fluid-cs(:scenario))}

Note that this seed does not entail a coherent scenario model. For
example, it assumes the existence of the furnace and the superheater,
yet fails to include the boiler which connects them. The next two steps
grow seeds into full modeling environments.

1.4.2 Object expansion

The first step in ensuring coherence is to include any relevant objects
beyond those directly entailed by the seed. In tracing the properties
of steamn flowing through the boiler and turbine, for instance, we need
to consider the condenser and feed pump as well to correctly recognize
that its flow is part of a closed cycle. New objects to include are se-
lected based on the minimal covering system for the objects entailed by
the seed. If the seed entails the existence of only a single object, that
object is the system and no new assumptions are added. Otherwise, the
seed is extended to include grain assumptions about any part of the min-
imal covering system not already entailed by it. In the example above,
the minimal covering system for the furnace and superheater is the
boiler-assembly, which forces

Consider(existence(boiler)

COomy | BRI IR STARCE | PulreCl)

!oﬂ T MR ELR D =CI (S EAngATER) }

-
COMTIBERENITTUACE(SUPTInERTLN))

— L -

LOMSIMRCFLUI IS 0OILERY)

{?II'JII (ERITERCE(BOILINY)

-
‘\—qﬂ;uﬂuu TRIC-SAOPERT E1CROILER))

Figure 1.1

This illustrates the relationship between model terms and the modeling
assumptions that support them. Answer(quary-33) represents the conjunction of
the query expressions. Monitor-boiler-level(boiler) shows what would have
been needed to also include the boiler's fault model and why it was deemed
unnecessary for the query.

to be added to our seed (see Figure 1.2). We continue to ignore other
components (e.g., the turbine and condenser assemblies) and subsystem
details (e.g.,the furnace’s fuel pump and exhaust manifold).

1.4.3 Candidate completion

Although our seeds now entail every relevant object, they do not neces-
sarily prescribe exactly how each object should be modelled. This step
uses assumption classes to add the necessary approximation and per-
spective models to complete the seeds. Roughly, it works like this. Each
seed entails some set of assumption classes. Extended seeds are gener-
ated by finding all consistent combinations of choices from these active
assumption classes. The actual procedure is slightly complicated be-
cause (a) choices from different assumption classes can interact, by one
either implying or contradicting another, and (b) some choices make
other assumption classes active in turn. We use the dynamic constraint

10 Chapter 1

relevand objecia Flratio|furnace)
O it Ds{FA-ratio|hunaca)|=1 € Skqupni I A

Osfhaat-rate|fumace|]=i

I
1 D{haatcatef boder)|= |
- 1‘] —
: | Ds|mass(c-s|water gas. boder|)]=1
L I
CONDENSER .______:: ::::__:_JJ Dspressare|c s water gas boder) ||=1
ALLIMBLT +
Ds{Now-rateipél]=t
Figure 1.2

How does the furnace's fuel/air ratio affect the steam fowing in the superheater?

satisfaction procedure described in [MIFA90]. Assuming the domain
model is correctly formed, i.e., that it includes assumption classes and
constraints between them to completely describe the relevant aspects
which need to be included in modeling each kind of object, then the

result of this step is a set of full modeling environments.
[n the example above, the seed is now

{Constdor(.xilnnce(2nnnc¢)1 , Consider(existence(supercheatar)),
Consider(existence(boiler)), Consider(fluid-cs(:scenario))}

There are nine instances of assumption classes active for this seed, drawn
from three distinct types. The first concerns whether or not a container’s
geometric properties are modeled (i.e., the furnace, boiler, and super-
heater). The second concerns whether thermal properties need to be
considered for fluids in these containers. The third type concerns the
appropriate model for fluid resistance in each flow path.

For efficiency, we do not exhaustively enumerate all full modeling en-
vironments. Instead, we do a best-first search of the set of full modeling
environments, using the evaluation metric described next.

1.4.4 Candidate evaluation and selection

The final step is to select “the best” modeling environment. This of
course depends on the details of the domain and task, but we have
found the following procedure useful. Essentially, we use several general
constraints to induce a preference ordering on modeling environments,

11

and begin by selecting the best. (Given equally prefered models, one is
chosen at random.) Should this model prove unsuitable, we backtrack
to select the next best alternative, subject to the constraints uncovered
in analyzing the previous model.

We currently use two criteria. The first is to prefer environments
which entail fewer objects. After all, at this stage each candidate is
presumed sufficient to answer the query, and minimizing objects tends
to minimize the total size of a model and hence the inferential work
involved in using it. The second criteria uses the ordering in assumption
classes to estimate overall simplicity. Recall that the choices in each
class are presumed to be ordered in increasing complexity. We use the
position of each choice in the list as a score, and compute the score for
an environment as the sum of the choices made from each assumption
class it entails. Lower scores are prefered over higher ones, since they
involve simpler choices (or at least, fewer perspectives).

Suppose a set of model fragments contained active assumption classes
A = {A1, Az, A3} and B = {By, By}. If all combinations are consistent,
the following candidates are possible:

A, B, {s:ore = 2{
Ay, B, }Ag'Bq score = 3
Az, B; A3, By (score = 4)
A3, By (score = 5)

Thus, {A;, By} would be selected.

This scheme has obvious limitations. For example, it is unlikely that
{Az, By} and {A3, B;} should be considered equivalent. But we leave
more sophisticated schemes for future work.

1.5 Model use, verification, and change

Simulation, both qualitative and quantitative, has been the principle
use of the models we develop. Our qualitative simulations are carried
out using QPE [FORB89), an envisioner for QP theory. For example, the
envisionment generated for the furnace/superheater question describes
how the furnace’s fuel/air ratio can affect the amount of steam flowing in
the superheater. Figure 1.2 shows the result of a perturbation when the
fuel/air ratio is increased if the furnace has been operating suboptimally,
with a low fuel/air ratio. Briefly, an increase in fuel/air ratio results in
increased heat production, which results in increased steam production

12 Chapter 1

and increased boiler steam pressure, leading to an increased flow of steam
through the superheater.

Our quantitative simulations are carried out by a simple fourth-order
Runge-Kutta integration algorithm with adaptive step-size control (from
[PFTVS86, ch. 15]). The equations are gathered from the scenario model,
with some minor processing to get them into the form it expects. Cur-
rently we restrict numerical simulations to a single operating region -
that is, all equations hold all of the time.

In both qualitative and quantitative problems, routines from QPE are
used to find the applicable model fragments, and to generate a scenario
model once an acceptable set of modeling assumptions has been found.
Then the appropriate simulation method is invoked, based on the pre-
processing of the query.)

Verifying the results of an analysis is always a crucial problem in mod-
eling. Sometimes a priort guarentees can be made for specific cases, but
since generally some parameters are unknown before analysis, the ini-
tial scenario model may rest on invalid assumptions about the system'’s
behavior. Models can be verified in many ways, including observation
or comparison with other models. Here we focus on internal consis-
tency tests, since these tend to be cheaper. For instance, identifying
an internally inconsistent qualitative model is easy: [f the envisionment
is empty, the model must be inconsistent because there must be some
state for the physical system to be in. See [FAFO88| for examples of
qualitative analyses using compositional modeling.

Determining if predicted behavior violates initial assumptions is an
important aspect of verifying numerical simulations. We do this by
gathering critical inequalities, those required by the model’s simplify-
ing assumptions. For example, to assume incompressible flow requires
that its Mach number (The ratio of its velocity to the speed of sound)
be less than 0.3. If the Mach number ever exceeds 0.3 in a simulation
based on this assumption, the modeling environment is deemed inconsis-
tent. When this happens we backtrack and repeat model composition,
informed by the inconsistency. The next section illustrates.

1.6 Example: Identifying appropriate flow models

Consider two oil supply drums connected to a central reservoir (Fig-
ure 1.3). The problem is to determine the behavior of the oil levels when

13

—_— e
s meon

i,...

g o |

i Seand “Samn Gy ans amy e 2
T

LoSis g ¥

L T
1

Figure 1.3
Two oil supply drums connected to a central reservoir. Find the level of the three
containers as a function of time when the system is released from the given initial
conditions.

the system is released from the illustrated initial condition. Qur domain
model includes the unsteady Bernoulli equation, e.g.,

2

\4
I:ll—l-l-—-l+§-'u=pz
) 2

2
-;-+vT;+yl’:+hg+/l %da
where p is the density of the fluid, z; is the height at point i, | is the
fluid velocity at point i, and h; is the head loss due to frictional effects.
The formula used to compute h; depends on the flow regime (laminar or
turbulent), which is normally determined by Reynold’s number (Re =
pV D/u). For low Reynold’s numbers (low flow rates), the flow is lami-
nar; for high Reynold’s numbers (high flow rates), the flow is turbulent.
Although the transition occurs over an interval, flow in pipes is generally
taken to be laminar for Re<2,300.

Given only the initial conditions, our algorithm cannot determine the
Reynold’s number for either pipe. Thus, it selects the simplest modeling

14 Chapter 1

environment, which includes assumptions of laminar flow:

Consider(laminar(pipel2)), Consider(laminar(pipe23)),
Consider(incompressible-flow(pipe12)),
Consider(incompressible~flow(pipe23))

The predicted level of each container as a function of time is shown in
Figure 1.3. The system inspects the predicted behavior and finds a mod-
eling violation: the Reynold's number for pipe23 reached 54,000, thus
violating the laminar flow assumption for pipe23. The model compo-
sition procedure is repeated with this added information, producing a
new set of flow regime assumptions:

Consider(laminar(pipe12)), Consider(turbulent(pipe23))

This modeling environment models the flow through pipel2 as laminar
and the flow through pipe23 as turbulent. The new model predicts
a lower amplitude oscillation for the flow through pipe23, due to the
greater dissipative effects of turbulent flow.

Notice that the laminar flow assumption for pipe12 remains consis-
tent, since its Reynold’s number never exceeded 1,100. This shows an
important feature of compositional modeling. By representing modeling
assumptions as predications over individuals, a scenario model can use
different models for the same type of object or phenomena as appropri-
ate. This flexibility is crucial for analyzing large systems. Sometimes
in analyzing a circuit, for example, certain wires must be considered as
transmission lines - even though it would be computationally disasterous
to consider all wires thusly.

1.7 Related Work

The closest work is the graph of models (GoM) approach [ACP89], in
which the space of possible scenario models is represented explicitly as a
graph. Each node represents a scenario model, and each edge indicates
which assumptions differ between the models it connects. To the extent
scenario models can be pre-enumerated GoM will be faster, but at a
worst-case exponential increase in storage. We believe the compositional
model approach, with its emphasis on automatic scenario modeling, has
more potential for organizing large-scale knowledge bases.

An interesting aspect of GoM is the ability to reason about how
changing assumptions affects model/observation discrepancies. Weld

[WELD89] describes a perturbation technique which might be applied
to compositional models, generating “adjacent” alternatives by repeat-
ing our candidate completion procedure.

Some aspects of the use of grain assumptions to control search were
captured by Davis [DAVI84]. The equivalent of his strategy in composi-
tional modeling would be to automate movement through a set of grain
assumptions during an analysis.

1.8 Discussion

Automatic modeling of physical systems is one of the long-term goals of
qualitative physics. We believe that compositional modeling provides an
important step towards that goal, by providing ways to organize large-
scale, multi-grain, multi-perspective’ models of physical domains. We
view our model composition algorithm's ability to insulate the analyst
from the details of the domain model as particularly important. For
tutoring tasks it is a necessity: If the student knew enough to build
the appropriate model, the tutor would be unnecessary. But we believe
even expert engineers will benefit from allowing the model compesition
algorithm to share the burden of finding (and verifying) the right model.
Efficiency will be gained if an engineer can specify just enough to make
her intent clear, leaving the obvious to a (mechanical) assistant. Con-
sistency will be gained if routine and rigorous tests are made to ensure
simplying assumptions made by engineers working on the same artifact
in different places and times do not conflict.

1.9 Acknowledgements

We thank John Collins, Mark Shirley, Sanjay Mittal, and Johan deKleer

for productive discussions. This research was supported in part by the
National Aeronautics and Space Administration, Contract No. NASA NAG-9137,
by the Office of Naval Research, Contract No. N00014-85-K-0225, and

by an NSF Presidential Young Investigator Award.

Bibliography

(ACPs9]

(COFO087)

[DAVIs4]
(DEKLS6)

[FAFO88]|

[FAFOS0]
(FORB84|

(FORB89)]

[MIFASQ]
[PFTV8é]

[SHFA90]

(WELDSS]

Addanki, S, Cremonini, R, and Penberthy, J. 5. Reasoning about as-
sumptions in graphs of models. In Proceedings of the Eleventh Interna-
tional Jownt Conference on Artificial Intelligence, Detroit, MI, August
1989. Morgan Kaufmann.

Collins, J and Forbus, K. Reasoning about fluids via molecular col-

lections. [n Proceedings of the Sizth National Conference on Artificial
Intelligence, pages 590-594, Seattle, WA, July 1987. Morgan Kaufmann.

Davis, R. Diagnostic reasoning based on structure and behavior. Arti-
ficial Intelligence, 24, 1984.

deKleer, J. An assumption-based TMS. Aruficial [ntelligence, 23(2),
March 1986.

Falkenhainer, B and Forbus, K. D. Setting up large-scale qualitative
models. In Proceedings of the Seventh National Conference on Arufi-
cial [ntelligence, pages 301-306, St. Paul, MN, August 1988. Morgan
Kaufmann.

Falkenhainer, B. and Forbus, K. D. Compesitional Modeling: Finding
the right model for the job. To appear. Artificial [atelligence, Fall, 1991.
Forbus, K. D. Qualitative process theory. Artificial Intelligence, 24,
1984,

Forbus, K. D. The Qualitative Process Engine in Readings in Qual-
itative Reasoning about Physical Systems, Weld, D. and de Kleer, J.
(Eds.), Morgan Kaufmann, 1989.

Miteal, S and Falkenhainer, B. Dynamic constraint satisfaction prob-
lems. Proceedings of AAAI-90, Boston, August, 1990.

Press, W.H., Flannery, B.P., Teukolsky, S.A. and Vetterling, W.T. Vu.
merical Recipes. Cambridge University Press, 1986.

Shirley, M. and Falkenhainer, B. Explicit Reasoning About Accuracy

for Approximating Physical Systems, Working Notes of the Automatic
Generation of Approrimations and Abstractions Workshop, July, 1990,

Weld, D. Automated model switching: Discrepancy driven selection of
approximation reformulations. Technical Report 89-08-01, Department
of Computer Science and Engineering, University of Washington, 1989.

