
172
Fischer

Fischer, G. and Nakakoji, K. (1991) . Making Design Objects Relevant to the Task at Hand,

Proceedings of AAAI-91, Ninth National Conference on Artificial Intelligence, AAAI

Press/The MIT Press, Cambridge, MA, forthcoming.

Grecno, J.G . (1989). Situations, Mental Models, and Generative Knowledge, in D. Klahr,

K. Kotovsky (eds.), Complex Information Processing: 77re Impact of Herbert Sinion,

Lawrence Erlbaum Associates, Hilldate, NJ, pp . 285-318, ch . 11 .

Halasz, F.G . (1988) . Reflections on NotcCards: Seven Issues for the Next Generation of

Ilypcrmedia Systems, Communications of theACM, Vol. 31, No. 7, pp . 836-852.

Kinlsch, W. (1988) .The Role ofKnowledge in Discourse Comprehension: AConstruction-

Integration Model, Psychological Review, Vol. 95, pp . 163-182.

Lave, J. (1988) . Cognition in Practice, Cambridge University Press, Cambridge, UK.

Lemke, A.C . and Fischer, G. (1990) . A Cooperative Problem Solving System for User

Interface Design, Proceedings of AAAI-90, Eighth National Conference on Artificial

Intelligence, AAAI Press/The MIT Press, Cambridge, MA, pp . 479-484.

Piped, S. (1980) . Afindstonns : Children, Computers and Powerful Ideas, Basic Books, New

York .
Paper(, S . (1986) . Constmctiortism: A New Opportunityfor Elementary Science Education,

Proposal to The National Science Foundation, MIT - The Media Laboratory, Cam-

bridge, MA.
Rcsnick, L.B . (1989) . Introduction, in L.B. Rcsnick (ed.), Knowing Leaming, and ht .s(ntc-

tiorr Essays in Honor ofRobert Glaser, Lawrence Erlbaum Associates, Hillsdale, NJ,

pp . 1-24, ch . 1 .
Ricslrcck, C . and Schank, R.C . (1989) . Inside Case-Based Reasoning, Lawrence Erlbaum

Associates, Ildlsdale, NJ .
Schocn, D.A . (1983) . 77ie Reflective Practitioner flow Professionals Think in Action, Basic

Books, NewYork .
Sculley, J . (1989) . The Relationship Between Business and 1 ligher Education: A Prespeclive

on the 21st Century, Communications of the ACM, Vol. 32, No. 9.

Suchman, LA. (1987) . Plans artd Silua(edAcdons, Cambridge University Press, Cambridge,

UK.
Wenger, E. (1987) .ArtificialIntelligence and TworingSys(erns, Morgan Kaufmann Publish-

ers, Los Altos, CA .
Weyer, S.A . (1987) . As We MayLearn, Multimedia in Education: Interfaces to Knowledge,

Educadon Advisory Council Conference Proceedings, Apple Computer, pp . 87-103 .

Winograd, T. and Flores, F. (1986) . Understanding Computers and Cognition: A New

Foundation for Design, Ablex Publishing Corporation, Norwood, NJ .

FROM: Proceedings of the 1990International Conference on
the Learning Sciences ; NWU, Evanston, IL ; 8/91

Towards Tutor Compilers

	

173

Towards Tutor Compilers : Self-Explanatory
Simulations as an Enabling Technology

Kenneth D. Forbus
7hte Institute forthe Leaming Sciences, Northwestern University

1890 Maple Avenue, Evanston, Illinois 60201

Abstract This paper discusses .self-explanatory sinnrlations, an in(egralion of
qualitative and quantitative techniques, which we believe will provide the founda-
tion for a new generation of simulation-based tutoring systems. We describe the
basic technology and decompose potential instructional uses along three dimen-
sions, (ape of crplana(ions, artifact size, and processing locus, indicating what
progress seems needed for particular classes of applications .

1 . Introductions

Simulation-based training provides a powerful technique for ITS. Examples include
SOPHIE (Brown, Burton, and dcKlccr .1982), STEAMER (Hollan, Hutchins, and
Weitzman 1984 ; Stevens ct al . 1981) andRBT(Woolfet al . 1986). Their power stems from
the ability of numerical simulation to provide a reasonably accurate depiction of artifact
behavior and the use of direct-manipulation interfaces to make the simulation internals
inspeclable to sonic degree. But buildingsimulafon-based trainers can he very difficult, in
part because building numerical simulations themselves is very difficult . In both
STEAMERandRBT,pre-existingsimulations were used as a starting point. Crcatingsuch
simulations typically takes many person-years of effort. So while there arc many potent ial
applications for simulation-based training, the lack of usable simulators is a serious
roadblock.

Even when simulators exist, they are often hard to use or unsuitable for training
purposes . Just hooking up an existing simulator can be a herculean chore, requiring equal
measures ofarcheology, operating-systemsexpertise, and luck . Most numerical simulators
suffer the traditional problems of custom software : a lack of documentation and the
existence of many implicit modeling assumptions . Intelligent tutoring and training systems
should provide explanations, but grafting an explanation system on top of an existing
numerical simulator is a difficult, and often impossible, task. In STEAMER, for instance,
no qualitative explanations were provided in the main system and only a few modules used
qualitative lcchniqucs . In part (his was due to the primitive stale of qualitative physic's in
the early 80's . But it was also due to the sheer difficulty of "spelunking" through the
simulator to figure out just what parts ofthe steam plant were modeled, and towhat degree
of fidelity.

This paper explores self-explanatory .simulations (Forbus and Falkcnhaincr 1990) as a
way around this roadblock. Section 2 describes the basics of self-explanatory simulations .
Section 3 examines this technology from the standpoint of building ITS's. We decompose

174 Forbus

potential systems along three dimensions: their explanation capabilities, the size of artifact
involved, and thedegree to which on-line processing is required . This decomposition is used

to examine what may be practical in the near term versus what requires substantial

additional basic research . Finally, Section 4 outlines some further issues and our plans to
build a first-pass Tutor Compiler.

2. Self-Explanatory Simulations

The basic idea of self-explanatory simulations is to use the qualitative analysis of a
system as a framework to organize a numerical simulation of that system . Consider the
traditional state space formulation of dynamical systems . In this formulation a system has

a set of state variables which suffice to completely determine its properties. The state
variables for a spring-block oscillator, for instance, might be the position of the block and

its velocity . Thesestalevariables may in turn determine other properties of the system (e .g .,

kinetic energy), but all other parameters are functionsofthese statevariables . In Qualitative
Process theory (Forbus 1984a), such state variables correspond to directly influenced

quantities . In QP theory the directly influenced quantities cause in turn changes in other
quantities, just as other parameters are determined by state variables in the state-space
formulation. In a state-space the state ofthe system is described by a vector of values for

the state parameters ; while in qualitative terms it is described by a set of inequalities over

the system's variables . Effectively, the qualitative description quantizes state space into
regions of "equivalent" (i .e ., qualitatively identical) behavior .
A simple system like a spring-block oscillator can be modelled by a single set of

equations. But many systems are not so simple . For example, the set ofequations relevant
for modeling a can of water being heated on a stove is different from the set of equations

that model what happens when that water is boiling . Traditional techniques focus on

analyzingagiven set of equations,and tend to ignore the modeling process itself. Qualitative
physics provides tools for formalizing the modeling process, enabling the implicit assump-

tions of the modeler to be expressed and reasoned about. For example, a spring might

behave linearly for small excursions but non-linearly for large displacements. Such changes

in the relevant equations are then reflected in the quantization of state-space introduced by
the qualitative description .

Already we see one role that qualitative analysis performs in simulation generation:

constructing the relevant sets of equations . But there is more to it than that . First, suppose

our simulation includes a notion of qualitative state as well as numerical state .This provides
the potential for improved self-nronitoring, i .e ., detecting clashes between expectations

expressed qualitatively and numerical predictions . Suppose, for instance, that one has

modeled a spring-block oscillator in the usualwaywith thespring providing a restoringforce.

A naive user might try a spring constant with the wrong sign (corresponding to a
"exacerbating force"), and the simulation will detect the inappropriate behavior which

results and flag the relevant parameters for correction . Integratingthe qualitative state with

the numerical state also provides the basis for powerful explanation facilities, since the

qualitative state can be used to access the set of equations describing the current behavior,

the artifact's causal structure, and the qualitatively distinct behaviorswhich may occur next .

These capabilities are illustrated in Forbus and Falkenhainer (1990) .

f.

Towards Tutor Compilers

Figure 1 . An example of self-explanatory simulations

175

This self-explanatory simulation concerns a large can containing a small amount
of water sitting on a stove . In the dialogue below, the user has run the simulation
and is viewing plots of the amounts of water and steam and their temperatures .
Questions are posed in a formal query language, and paraphrased here in English.
The answers were generated automatically by the simulator's explanation facility.
Commentary is in italics .

Q: What is happening at t = 100.0 seconds?
A-' Heat is flowing from STOVE to the water in CAN.

Qualitative explanations are available for every time tick in the simulation .

Q: What is the temperature of the steam?
A: Sorry, the temperature of the steam in CANdoes not exist al 100.0 seconds.

The simulator knows that the numerical value it hasfor this tick is meaningless and
does not report it.

Q: What happens next?
A- At238.6 second.-, the boiling temperature ofWATERand the temperature of

the water in CANbecome equal. Then, heat is flowing from STOVE to the
water in CAN and the water in CAN is boiling.

Here we see the qualitative andquantitative components interacting: The qualitative
aspect identifies this pointasinteresting. thenumericalaspect ascertains its exact rime.

Q: What else might have happened?
A: The only other possibilitywas: The temperature of the water in CAN and the

temperature of STOVE become equal, which leads to S2 . In S2, nothing is
happening.

The qualitative aspect ofthe simulation provides alternate possible behaviors.

The causal structure imposed by the qualitative analysis is more than just a device for
qualitative simulation and explanation . It plays a centralrole in building the numerical aspect
ofthe simulator itself. For example, the order inwhich parameters are updated can be read
directly off the graph of influences in the QP analysis of the system . Also, tests are
incorporated to determine when the qualitative state changes, so that different code is used
to reflect the different set of governing equations .

To summarize, a self-explanatory simulator combines qualitative and numerical
representations to generate predictions and explanations of an artifact's behavior . The
numerical component provides precise predictions of behavior, while the qualitative
component explains this behavior in terms ofthe underlying qualitative model and set(s) of
equations. (In this respect we differ from the IMTS approach (Towne and Munro 1988),

176

Types of Explanations

3. A Design Space for Simulation-Based 'Tutors

Forbus

which focuses on crafting simulations with just enough fidelity for providing on-screen
animations and (raining students in troubleshooting.)

Self-explanatory simulators can be built automatically, assuming the following inputs:

(1) a dornain theory, expressed in OP theory, which describes the fundamental physical

phenomena of interest in qualitative terms; (2) a Math Model Library, which provides

fragments of equations for each set of qualitative proportionalitics which may constrain a

type ofquantity in the domain theory ; and (3) aslnrctural description of (he artifact or system

to be modeled, including a set of modeling assumptions outlining the kinds of factors to be

considered . Given (1) and (3), an envisionmeta is generated for the artifact, representing
its quantized state space under the particular modeling assumptions . This envisionment is

then analyzed in concert with the Math Model Library to produce a self-explanatory
simulation .

There are many ways to build and use simulation-based tutors . To clarify (lie issues

involved, we distinguish three dimensions which characterize potential applications . The

location of the state of the art along these axes indicates what kinds ofsystems arc (and arc

not) technologically feasible . We consider each dimension in turn, and then examine some

specific potential applications .

Instruction can involvea range of explanations, from simplestatements about a system's

structure to causal explanations to analogies explaining a new phenomenon in terms of the

familiar . While there arc a host of issues concerning what should be explained (and how

and when) which must be tackled by any ITS designer, our focus here is just on what kinds

of information are in principle available.
Self-explanatory simulations provide several useful kinds of explanations directly . For

anygiven time, onecan ascertain (a) the equations governingthe system, (b) thecausal story

linking the various system parameters, in terms of processes and influences, and (c) the

numerical values of the system's continuous properties . Predictions can either be made via

additional simulation, or via qualitative analysis . For example, if the stale transitions of the

envisionnsent used to generate the simulation are cached as part of the explanation system,

alternate behaviors can be easily described (c .f. Figure 1) . 1lowever, they provide no direct

explanation of the teleology of (lie system or how the system might behave under different

modeling assumptions than the simulation was generated for . Nor do they explain the

fundamental principles of the domain itself in more detail, nor provide any sort of

explanation that is not specific to the particular sysiern the simulator was compiled for . To

generate such explanations will require other facilities, built on top of the representations
supplied by self-explanatory simulators .

Roughly, additional explanation facilities can be divided into two categories: canned
andgenerative . Examples of canned explanation facilities include chunks of text describing

the system's components, or hypermedia networks. Using hypermedia with self-explana-

tory simulations is a particularly interesting prospect . Self-explanatory simulations could

become a new kind of node in the network, with the terms used in (lie explanation facility
cross-indexed into the rest of (lie network .

Towards Tutor Compilers

Generative explanation facilities include for example the ability to recognize specificcategories of behavior in functional leans . Determining whether or not an oscillation isdamped, for instance, requires analyzing the behavior as it unfolds . Another usefulgenerative capacity would be the ability to evaluate a student's analogies, suggesting
corrections to avoid misconceptions and to lead to a deeper understanding . Obviously suchcapabilities would be very useful pedagogically, but currently these are matters of basicresearch .

Artifact Size

The operation of self-explanatory simulators can be made extremely fast . There is noreason to believe that they cannot asymptotically approach the speed of a traditional
mathematical simulator, with clever design . Building them is another story . The currentSIMGEN compiler relies on total cnvisionments as its starting point for generatingbehaviors . The size of an envisionmcn(lends (o be exponential in (lie size of (lie sys(crumodeled, which meansthat the current system is suitable only for small-scale examples, andcould be applied to medium-scale systems only wi(h substantial computing resources. Wearc currently exploring several techniques to solve this problem .

Processing Locus

177

Performing novel reasoning from first principles will always be slower than skill-basedbehavior . As Anderson (1986) demonstrated, a useful strategy for delivering instruction onaffordable machines is to use substantial off-line resources to produce a skilled system thatperforms in a pre-selected subset of the domain . Self-explanatory sinnrlalors Can he viewedasgcneralizingthis technique (osimulalion-bascdsystems . Forsome inslructional(asks o(f-line reasoning and on-line simulation will suffice . However, (here arc other lasks which
require on-line reasoning. For instance, evaluating a student's design requires (lie abilityto rapidly analyze a new system .

What Can We Do When?

Now (hat we have some dimensions to characterize simulation-based trainers, we canexamine some potential instructional applications for self-explanatory simulations and
better understand what is needed to achieve Ilrern .

Active illustrations. Simulations which involve a handful of parts that arc used toillustrate fundamental physical principlesare perhaps (hesimplest instructional application .Explanations would be in terms of the OP domain (lieory, the artifact size is small, and (lieprocessing locus is totally off-line . Building such systems appears at (his point to mainlyrequire some software engineering work, to make (lie current version of SIMGEN morebulletproof and to make it produce better stand-alone runtime .systems .
Subsystem trainers include systems with controls and possible faults, with roughly (liecomplexity ofan enginecringwalch station on a Na%y ship or an aircraft subsystem (e .g., anengine or hydraulic sys(em) . Building such systems will require cxtcnoting self-explanatory

sinrtrlalions to use action-anpnented cavisionmcnis (Forbus 1989) . This extension seemsstraightforward, although (lie inclusion of fault models may require substantially increasedcompilation time .

178

Training simulators, such as STEAMERand RBT, involve a substantial (i .e ., orders of
magni(udc) increase in complexity over subsystems trainers. Compiling self-explanatory
systems on this scale will require a breakthrough .

Simulated labomlorier and eonomclion sets. Learning by building, where students
createnovel devicesbycombiningstock parts, is pedagogicallyaltradive (c .f. Forbus 19841)) .
1 lowevcr, they can require substantial on-line processing, since the structure of the artifact
cannot be fixed in advance. Again, this will require a breakthrough .

CN(icsandcoaches- Using(rainers and construction sets often requirescoaching,which
ideally should be provided by the program itself. This requires expanding the kinds of
knowledge beyond the physical principles encoded in a standard QP domain theory. For
instance, analyzing modeling assumptions (Falkcnhainer and Forbus 1991) is essential in
understanding why perpetual motion machines don't work . Recognizing that a student's
refrigerator design doesn't quite work correctly requires teleological reasoning. These
issues require more basic research .

4. Discussion

Building ITS's is currently a labor-intensive enterprise, with thousands of hours
invested for each hour of instruction delivered . Automation seems crucial. Ultimately, we
wan(a full-fledged TatorCompiler-asystem whichcould produce ITS' given the description
of the artifact, its intended users, and target hardware (Forbus 1988) . We believe self-
cxplanatory simulators are an important step towards that goal . Currently at ILS we are
designing the Mark One Tutor Compiler, which will produce active illustrations and
subsystem trainers which can run on small (IBM PS/2) computers. We hope to have this
system operational sometime during fall of 1991 .

One factor not mentioned in the design space for simulation-based tutors, but which
is perhaps the most critical, is the quality and scope of the domain theory. Anderson (1988)
points out that developing the domain theory is often about half of the total ITS-building
effort . As we learn how to automate ITS construction more, we can only expect this fraction
to grow . It will be a happy day when the biggest problem facing the builders of intelligent
tutoring systems is teaching a tutor compiler what it should be teaching.

Acknowledgements: Theworkonself-explanatory simulations is carriedout in collaboration
with Brian Falkcnhainer . TheMark OneTutor Compiler is beingbuilt in collaboration with
Gregg Collins . Financial support has been provided by NASA Langley Research Center,
Xerox, and IBM. The Institute for the Learning Sciences was established in 1989 with the
support of Anderson Consulting, part of the Arthur Anderson Worldwide Organization .
The Institute receives additional funding from Ameritech (an Institute Partner) and IBM.

References

Forbus

Anderson, J.R . and Skwarecki, E. (1986).The automated lutoringof introductoryprogram-
ming . CACM 29(9):842-849.

Anderson, J.R . (1988) . The expert module. In M.C . Poison and J.J . Richardson, Founda-
(ion.s of intelligerd ltttoring systerns . New Jersey: Lawrence Erlbaum Associates.

Brown, J.S ., Burton, R.R ., and de Klecr, J. (1982) . Pedagogical, natural language, and
knowledge engineering techniques in SOPII IE I,11, and 111. In D.11 . Siceman and J.S .
Brown (Eds .), hrlelligent lworingsys(ems . London : Academic Press.

Towards Tutor Compilers 179

Falkcnhainer, B. and Forbus, K. (1991, Fall). Compositional modeling : Finding the right
model for the job. Artificial Intelligence, to appear .

Forbus, K. (1984x). Qualitative process lhcory. Artificial Intelligence 24.
Forbus, K. (19846). An interactive laboratory for teaching control system concepts . BBN

Tech Report No . 5511 .
Forbus, K. (1988, Fall). Intelligent Computer-aided Engineering. Al Magazine .
Forbus, K.D. (1989) . Introducing actions into qualitative simulation . Proceedings ofllCAI-

89.
Forbus, K. and Falkcnhainer, B. (1990) . Self-Explanatory Simulations : An integration of

qualitative and quantitative knowledge. Proceedings ofAAAI-90 Boston, MA.
Ifollan, J., Hutchins, E., and Weitzman, L. (1984, Summer). STEAMER: An interactive

inspectable simulation-based training system . AI Magazine .
Roberts, B. and Forbus, K. (1981) . The STEAMER mathematical simulation . BBN Tech

Report No. 4025.
Stevens, A., Roberts, B., Stead, L. Forbus, K., Steinberg, C., Smith, B. (1981) . STEAMER:

Advanced computer-aided instruction in propulsion engineering . BBN Tech report .
Towne, D.M . and Munro, A. (1988) . The intelligent maintenance training system . In J.

Psotka,D.L. Massey, andSA . Mutter, Intelligent fuforingsyslems lessons leantcd. New
Jersey: Lawrence Erlbaum Associates.

Woolf, B., Blegen, D., Jansen, J ., and Verloop, A. (1986) . Teaching a complex industrial
process. AAAI-86.

