FROM: Proceedings of the 1990International Conference on

the Learning Sciences; NWU, Evanston, ILj; 8/91
Towards Tutor Compilers 173

Towards Tutor Compilers: Self-Explanatory
Simulations as an Enabling Technology

Kenncth D. Forbus
The Institute for the Learning Sciences, Northwestem University
1890 Maple Avenue, Evanston, lllinois 60201

Abstract: This paper discusscs self-explanatory simudations, an integration of
qualitative and quantitative techniques, which we believe will provide the founda-
tion for a new generation of simulation-based (utoring systems. We deseribe the
basic technology and decompose potential instructional uscs along three dimen-
sions, type of explanations, artifact size, and processing locus, indicating what
progress scems needed for particular classes of applications.

1. Introductions

Simulation-based training provides a powerful technique for ITS. Examples include
SOPHIE (Brown, Burton, and dcKleer 1982), STEAMER (Hollan, Hutchins, and
Weitzman 1984; Stevens et al. 1981) and RBT (Woolf et al. 1986). Their power stems from
the ability of numerical simulation to provide a reasonably accurate depiction of artifact
behavior and the use of dircct-manipulation interfaces (o make the simulation internals
inspectable to some degree. But building simulation-based trainers can be very difficull, in
part because building numerical simulations themselves is very difficult. In both
STEAMER and RBT, pre-cxisting simulations were used as a starting point. Creating such
simulations typically takes many person-years of effort. So while there are many potential
applications for simulation-based (raining, the lack of usable simulators is a scrious
roadblock.

Even when simulators exist, they are often hard to use or unsuitable for training
purposcs. Just hooking up an cxisting simulator can be a herculean chore, requiring cqual
mcasures ol archeology, operating-systems expertise, and luck. Most numerical simulators
sulfer the traditional problems of custom software: a lack of documentation and the
existence of many implicit modeling assumptions. Intelligent tutoring and training systems
should provide cxplanations, but gralting an explanation system on top of an existing
numerical simulator is a difficult, and often impossible, task. In STEAMER, for instance,
no qualitative explanations were provided in thc main system and only a few modules used
qualitative techniques. In part this was duc Lo the primitive state of qualitative physics in
the early 80's. But it was also duc lo the sheer difficulty of “spelunking” through the
simulator to figure out just what parts of the stcam plant were modeled, and to what degree
of fidelity.

This paper explores self-explanatory simulations (Forbus and Falkenhainer 1990) as a
way around this roadblock. Section 2 describes the basics of self-explanatory simulations.
Section 3 examines this technology from the standpoint of building ITS’s. We decompose

174 Forbus

potential systems along three dimensions: their explanation capabilities, the size of artifact
involved, and the degree to which on-line processing is required. This decom position is used
to examine what may be practical in the near term versus what requires substantial
additional basic research. Finally, Section 4 outlines some further issues and our plans to
build a first-pass Tutor Compiler.

2. Self-Explanatory Simulations

The basic idea of self-explanatory simulations is to use the qualitative analysis of a
system as a framework to organize a numerical simulation of that system. Consider the
traditional state space formulation of dynamical systems. In this formulation a system has
a set of state variables which suffice to completely determine its properties. The state
variables for a spring-block oscillator, for instance, might be the position of the block and
its velocity. These state variables may in turn determine other propert ies of the system (e.g.,
kinetic energy), but all other parameters are functions of these state variables. In Qualitative
Process theory (Forbus 1984a), such state variables correspond to directly influenced
quantities. In QP theory the directly influenced quantities cause in turn changes in other
quantities, just as other parameters are determined by state variables in the state-space
formulation. In a state-space the state of the system is described by a vector of values for
the state parameters; while in qualitative terms it is described by a set of inequalities over
the system’s variables. Effectively, the qualitative description quantizes state space into
regions of “equivalent” (i.e., qualitatively identical) behavior.

A simple system like a spring-block oscillator can be modelled by a single set of
equations. But many systems are not so simple. For example, the set of equations relevant
for modeling a can of water being heated on a stove is different from the set of equations
that model what happens when that water is boiling. Traditional techniques focus on
analyzing agiven set of equations, and tend toignore the modeling process itself. Qualitative
physics provides tools for formalizing the modeling process, enabling the implicit assump-
tions of the modeler to be expressed and reasoned about. For example, a spring might
behave linearly for small excursions but non-linearly for large displacements. Such changes
in the relevant equations are then reflected in the quantization of state-space introduced by
the qualitative description.

Already we sce one role that qualitative analysis performs in simulation generation:
constructing the relevant sets of equations. But there is more to it than that. First, suppose
our simulation includes a notion of qualitative state as well as numerical state. This provides
the potential for improved seif-monitoring, i.c., detecting clashes between expectations
expressed qualitatively and numerical predictions. Suppose, for instance, that one has
modeled aspring-block oscillator in the usual way with the spring providing a restoring force.
A naive user might try a spring constant with the wrong sign (corresponding to a
“exacerbating force”), and the simulation will detect the inappropriate hehavior which
results and flag the relevant parameters for correction. Integrating the qualitative state with
the numerical state also provides the basis for powerful explanation facilities, since the
qualitative state can be used to access the set of equations describing the current behavior,
the artifact’s causal structure, and the qualitatively distinct behaviors which may occur next.
These capabilities are illustrated in Forbus and Falkenhainer (1990).

Towards Tutor Compilers 175

This sclfll‘axplanalmy simulation concerns a large can containing a small amount
ofw?let: sﬂ?ing on a stove. In the dialogue below, the user has run the simulation
and is viewing plots of the amounts of water and steam and their temperatures.
Questions are posed in a formal query language, and paraphrased here in English.

The answers were generated automatically by the simulator’s explanation facility.
Commentary is in italics.

Q: What _is happening at t = 100.0 seconds?
A: Heat is flowing from STOVE to the water in CAN.

Qualitative explanations are available for every time tick in the simulation.

Q: What is the temperature of the stcam?
A: Sorry, the temperature of the steam in CAN docs not cxist at 100.0 seconds.

The simulator knows that the numerical value it has for this tick is meaningless and
does not report it.

Q: What happens next?
A: At 238.6 seconds the boiling temperature of WATER and the temperature of

the water in CAN become equal. Then, heat is flowing from STOVE to the
waler in CAN and the water in CAN is boiling.

Here we see .rhe qualitative and quantitative components interacting: The qualitative
aspectidentifies this point as interesting, the numerical aspect ascertains its exact time.

Q: What clsc might have happened?

A: The only other possibility was: The temperature of the water in CAN and the
temperature of STOVE become equal, which leads to S2. In S2, nothing is
happening.

The qualitative aspect of the simulation provides altemate possible behaviors.

Figure 1. An example of sclf-explanatory simulations

Thl? causal structure imposed by the qualitative analysis is more than just a device for
quallla!wcmmulnlion and explanation. It playsa central role in building the numerical aspect
of(he simulator itself. For example, the order in which parameters are updated can be read
f:hrectly off the graph of influences in the QP analysis of the system. Also, tests are
incorporated to determine when the qualitative state changes, so that different code is used
to reflect the different set of governing equations.

To sun:lmarize, a sclf-explanatory simulator combines qualitative and numerical
representations to generate predictions and explanations of an artifac’s behavior. The
numerical component provides precise predictions of behavior, while the qualitative
component explains this behavior in terms of the underlying qualitative model and set(s) of
€quations. (In this respect we differ from the IMTS approach (Towne and Munro 1988),

- Forbus

which focuscs on crafting simulations with just enough fidelity for providing on-screen
animations and training students in troubleshooting.) . =

Sclf-cxplanatory simulators can be built automatically, assuming the following 1an|(5;
(1) a domain theory, expressed in QP theory, which describes lhc.fundamcr'llal phyfuca
phenomena of interest in qualitative terms; (2) a Math .Modfr{ Library, which pmw'dcs
fragments of equations for each sct of qualitative pmpnrlmn?hl_tcs which may constrain a
type of quantity in the domain theory; and (3) astructural description of “.'c artifact or system
to be modeled, including a sct of modeling assumptions outlining the kln.ds of factors Io.hc
considered. Given (1) and (3), an envisionment is generated [m: the artifact, representing
its quantized state space under the particular modcli_ng assumptions. This envisionment 1
then analyzed in concert with the Math Model Library to produce a sclf-cxplanatory
simulation.

3. A Design Space for Simulation-Based Tutors

There arc many ways to build and use simulation-bascd lulors..To clar.ify 'lhc issucs
involved, we distinguish (hree dimensions which characterize potential applications, The
location of the state of the art along these axcs indicates what kinds of systems arc.(and arc
not) technologically feasible. We consider each dimension in turn, and then examine some
specific potential applications.

Types of Explanations

Instruction can involve a range of cxplanations, from simple statements alfnul asystem’s
structure to causal explanations to analogics explaining a ncw phenomenon in terms of the
familiar. Whilc there are a host of issucs concerning what should be -cxlpl:uncd (and Ilmw
and when) which must be tackled by any ITS designer, our focus here is just on what kinds
of information are in principle available. ') _

Sclf-cxplanatory simulations provide scveral uselul Ic-mds of explanations dircctly. For
any given lime, one can ascerlain (a) the equalions governing the system, (b) the cal:iqai stn‘:y
linking the various system parameters, in tcrms of processes a.nd mﬂucfaccs, and (c) e
numerical values of the system’s continuous propertics. Predictions can cither hc made via
additional simulation, or via qualitative analysis. For example, if the state transitions of the
cnvisionment used to generate the simulation are cached as part of the cxplnnnllmn system,
alternate behaviors can be casily described (c.f. Figure 1). lluw'cvcr, they provide no direct
cxplanation of the telcology of the system or how the system might behave under th[fcrclnl
modcling assumptions than the simulation was generaled frtr. Nor do l.hcy cxplain u;
fundamental principles of the domain itsclf in morc dc.lml, nor provide any sort o
explanation that is not specific to the particular system the :-;mmlnmr was compiled I'nr.. To
generate such cxplanations will require other facilitics, built on top of the representations

supplicd by selfl-cxplanatory simulators. ey] ;

Roughly, additional cxplanation facilitics can ifc. l':ll\'l.tlcd into two calegorics: cannee
and generative. Examples of canned explanation fnCIllllc:ﬂ include chun.ks n.F text describing
the system’s components, or hypermedia networks. Using hypermedia W.'Ilh scl‘l'—cxplan;:i
tory simulations is a particularly inleresting prospect. Scll’—cxpln'nalury snmulnl-mns coul
become a new kind of node in the nctwork, with the terms used in the cxplanation facility
cross-indexed into the rest of the network.

b —

Towards Tuter Compilers 177

Ge-ncmlivc explanation facilitics include for example the ability to recognize specific
categories of behavior in functional terms. Determining whether or not an oscillation is
dampc(!, for instance, requires analyzing the behavior as it unfolds. Another useful
generative capacity would be the ability to evaluate a student’s analogics, suggesling
corrections lo avoid misconceptions and to lead to a deeper understanding, Obviously such

capabilities would be very useful pedagogically, but currently these are matters of basic
rescarch,

Artifact Size

The operation of sell-explanatory simulators can be made extremely fast. There is no
reason to belicve that they cannot asymplotically approach the speed of a traditional
mathcmatical simulator, with clever design., Building them is another story. The current
SIMG_EN compiler relies on total cnvisionments as s starting point for gencraling
behaviors. The size of an envisionment tends to be exponential in (he size of the system
modcled, which means that the current system is suitable only for small-scale examples, and
could be applicd to medium-scale systems only with substantial compuling rcsourccs.. We
are currently exploring scveral techniques to solve this problem.

Processing Locus

Performing novel reasoning from first principles will always be slower than skill-bascd
behavior. As Anderson (1986) demonstrated, a uscful strategy lor delivering instruction on
affordable machines is to use substantial off-line resources to produce a skilled system that
performs in a pre-selected subset of the domain, Self-explanatory simulators can be viewed
a'sgcm:rali?:inglhistcchniquclosimu]aliun-hascd systems. For some instructional tasks off-
line reasoning and on-line simulation will suffice. However, there arc other tasks which

require on-linc reasoning. For instance, cvaluating a student’s design requires the ability
to rapidly analyzc a new system.

What Can We Do When?

h.low that we have some dimensions to characlerize simulation-bascd traincrs, we can

cxamine some potential instructional applications for sell-cxplanatory simulations and
belter understand what is needed to achieve them.
_ Active illustrations. Simulations which involve a handful of parts that arc used to
|Ilu5lralc.lundamcn|al physical principles are perhaps the simplest instructional application.
Exphmz'ltlons would be in terms of the QP domain theory, the artifact size is small, and the
processing locus is totally off-line. Building such systems appears at this point (o mainly
require some software engincering work, to make the current version of SIMGEN more
bulletproof and to make it produce better stand-alone runtime syslems.

Subsystem traincrs include systems with controls and possible faults, with roughly the
cnn?plcxily of an engincering watch station on a Navy ship or an aircralt subsystcm (c.g., an
enginc or hydraulic system). Building such systems will require extending sell-explanatory
simulations lo usc action-augmented envisionments (Forbus 1989). This cxtension scems

5lrmg!||l'rl:rwanl. although the inclusion of fault modcls may require substantially increascd
compilation time,

178 Forbus

Training simulators, such asSTEAMER and RBT, involve a substantial (i.e., orders of
magnitude) increase in complexity over subsystems trainers. Compiling self-explanatory
systems on this scale will require a breakthrough.

Simulated laboratories and construction sets. Learning by building, where students
create novel devices by combining stock parts, is pedagogically altractive (c.f. Forbus 1984b).
However, they can require substantial on-line processing, since the structure of the artifact
cannot be fixed in advance, Again, this will require a breakthrough.

Critics and coaches. Usingtraincrs and construction scts often requires coaching, which
ideally should be provided by the program itsclf. This requires expanding the kinds of
knowledge beyond the physical principles encoded in a standard QP domain theory. For
instance, analyzing modcling assumptions (Falkenhainer and Forbus 1991) is cssential in
understanding why perpetual motion machines don’t work. Recognizing that a student’s
refrigerator design doesn't quite work correctly requires teleological reasoning. These
issues require more basic rescarch,

4. Discussion

Building ITS's is currently a labor-intensive enterprise, with thousands of hours
invested for each hour of instruction delivered. Automalion seems crucial. Ultimately, we
want a full-fledged Tutor Compiler—asystem which could produce ITS' given the description
of the artifact, its intended users, and target hardware (Forbus 1988). We believe self-
cxplanatory simulators arc an important step towards that goal. Currently at ILS we are
designing the Mark One Tutor Compiler, which will produce active illustrations and
subsystem trainers which can run on small (IBM PS/2) computers. We hope to have this
system operational sometime during fall of 1991.

One factor nol mentioned in the design space for simulation-based tutors, but which
is perhaps the most critical, is the quality and scope of the domain theory. Anderson (1988)
points out that developing the domain theory is often about hall of the total ITS-building
clfort. Aswe learn how to automate ITS construction more, we can only expect this fraction
to grow. It will be a happy day when the biggest problem facing the builders of intclligent
tutoring systems is teaching a tutor compiler what it should be teaching.

Acknowledgements: The work onsclf-explanatory simulations s carried out in collaboration
with Brian Falkenhainer. The Mark One Tutor Compiler is being built in collaboration with
Gregg Collins. Financial support has been provided by NASA Langley Rescarch Center,
Xerox, and IBM. The Institute for the Learning Sciences was established in 1989 with the
support of Anderson Consulting, part of the Arthur Anderson Worldwide Organization.
The Institute receives additional funding from Ameritech (an Institute Partner) and IBM.

References

Anderson, J.R. and Skwarccki, E. (1986). The automated tutoring of introductory program-
ming. CACM 29(9):842-849.

Anderson, J.R. (1988). The expert module. In M.C. Polson and J.J. Richardson, Founda-
tions of intelligent tutoring systems. New Jersey: Lawrence Erlbaum Associales.

Brown, 1.S., Burton, R.R,, and de Klcer, J. (1982). Pedagogical, natural language, and
knowledge engincering techniques in SOPHIE 1, 11, and 111, In D.H. Sleceman and J.S.
Brown (Eds.), Intelligent tutoring systems. London: Academic Press,

Towards Tutor Compilers 179

Falkenhainer, B. and Forbus, K. (1991, Fall). Compositi i indi
; " ; . ; positional modeling: Finding the ri

model for the job. Artificial Intelligence, to appear. = Gl
?m:us, : :I!gg:i':} Qualitative process theory, Artificial Intelligence 24.
‘orbus, K. (1984b). An interactive laboratory for teaching control s

Tech Report No. 5511. > i
Forbus, K. (1988, Fall). Intelligent Computer-aided Enginecring. AT Magazine.
Forl.-;;'a, K.D. (1989). Introducing actions into qualitative simulation. Proceedings of I/CAl-

Forbus, I(a.ncl Falkcnhai_nct, B. (1990). Self-Explanatory Simulations: An integration of
qualitative an.d quantitative knowledge. Proceedings of AAAI-90 Boston, MA.
Hnll.nn. L, Hu!ch_ms, E., and Weitzman, L. (1984, Summer). STEAMER: A‘n inlcraclive
ol inspectable simulation-based training system. A7 Magazine.
oberts, B. and Forbus, K. (1981). The STEAMER mathemati i i
s prsaos mathematical simulation. BBN Tech
Stevens, A, Roberts, B., Stead, L. Forbus, K., Steinberg, C., Smith, B. (1981). STEAMER:
" Advanced computer-aided instruction in propulsion engincering. BBN Tech report.
uw;:, ::MD :‘m;l“Munru. I:I (1988). The intelligent maintenance training system. In J.
sotka, D.L. Masscy, and S.A. Multer, Intelligent tutoring systems les, 1
Jersey: Lawrence Erlbaum Associatcs. & il

Wooll, B., Blegen, D., Jansen, J., and Verloop, A 1986). Teachi .)
brocess, AAAL-86, ’ P, A. (1986). Teaching a complex industrial

