
IQE: An Incremental Qualitative Envisioner

Dennis DeCoste
Qualitative Reasoning Group

Institute for the Learning Sciences
Northwestern University

1890 Maple Avenue
Evanston, Illinois 60201

email : decoste@aristotle.ils .nwu.edu

and

Abstract

John W. Collins
Qualitative Reasoning Group

Beckman Institute
University of Illinois
605 N. Mathews St.
Urbana, Illinois 61801

email: jcollins@cs .uiuc.edu

The finite representation of infinite behaviors provided by total envisionments has been
shown to be useful for tasks such as model development, explanation, and monitoring .
Unfortunately, generating total envisionments of complex systems can be intractable, or
at least excessive for highly-focused tasks . Such shortcomings have encouraged some re-
searchers to favor alternative schemes, such as attainable envisioning and history genera-
tion . However, we argue in this paper for an incremental means of envisioning that can
realize many of the practical advantages of total envisioning while supporting more-focused
search to address issues of tractability and relevance . In this paper, we describe our theory
of incremental envisioning and compare it with QPC [3] and QPE [9] . We emphasize how
IQE attempts to reason about states at low (i.e ., abstract levels of detail when that is
sufficient for the overall task . Such reasoning helps avoid the inefficiency of making state
distinctions that are irrelevant for the overall task - a problem common among most other
current qualitative simulators, including QPC and QPE .

1 Introduction

A total envisionment [5,10], indicating all possible transitions among all possible qualitative
states, provides a finite representation of infinite behaviors that can be useful, for example,
in explanation and monitoring tasks [8,6] . However, total envisioners, such as QPE [9], suffer
the up-front cost of generating all possible states before any transitions can be generated .
Such costs can make total envisioning intractable for complex systems .

QPC [3] provides an alternative to QPE . Like QPE, QPC takes advantage of the modeling
facilities of Qualitative Process Theory (QPT) [10] to automate the task of applying a
library of domain theories to a particular scenario . QPC compiles applicable qualitative
process descriptions into qualitative differential equations (QDE's) suitable for simulation
by QSIM [11] . QPC employs incremental model-building to adjust the current set of QDE's
when the system changes operating regions during simulation . Thus, QPC avoids QPE's up-
front cost of total envisioning by computing attainable envisionments - generating a history
tree from an initial state, considering only those states which arise during simulation .

In this paper, we argue for another alternative, called incremental envisioning, which in-
crementally refines partial envisionment representations towards more-complete ones . This
approach is embodied in the LISP program IQE. Like QPE, IQE employs an assumption
based truth maintenance system (ATMS) [4,1,7] to efficiently cache inferences across mul-
tiple states . Yet, like QPC, IQE avoids the burden of total envisioning ; that is, it avoids
ATMS interpretation construction to compute the total set of possible states (as QPE does) .
The way in which IQE uses an ATMS also facilitates efficient context-switching to reason
about alternative structural abstractions and modelling assumptions .

IQE serves the role of a sort of envisionment maintenance system that is invoked by a
problem solver performing some higher-level qualitative reasoning task, such as a diagnostic
engine . Some of the facilities provided by IQE are qualitative reasoning analogs of those
of an ATMS . For example, whereas an ATMS answers queries such as "Is this proposition
true in this context?", IQE answers queries such as "Is this proposition true in this (partial)
state?" . However, IQE can also answer more general forms of such queries, like : "Is this
proposition true in some refinement of this (partial) state?" . IQE can also answer temporal
queries, such as "Are these propositions all true in any or all of the possible next (or
previous) states of this (partial) state?" and "Are there any consistent paths of states
between these initial and goal states?" . Furthermore, IQE can incrementally adjust its
simulation results to consider alternative goal states (which problem solvers often provide),
whereas simulators like QPC and QPE typically do not.

This paper describes the design of IQE and discusses the facilities it provides for the
problem solver.

2

	

The design of IQE

There are three key characteristics of IQE's design, all of which facilitate its efficient rea-
soning over all states at all levels of detail : 1) extensive use of declarative qualitative
knowledge, 2) reasoning about states in terms of ATMS environments, and 3) incremental

59

temporal reasoning .

2 .1

	

Declarative Representation of Qualitative Knowledge
One of the goals driving the development of IQE has been to develop and utilize a declar-
ative knowledge base of the constraints underlying qualitative reasoning . In some cases,
efficiency constraints have mandated a more procedural implementation - for example, en-
forcing transitivity efficiently requires special purpose code which avoids the introduction
of uninteresting inequality relations . Still, most of IQE's qualitative reasoning is imple-
mented by a single file of antecedent rules . These rules take the form of logical implications
augmented with closed world assumptions, which are discussed further in Section 2 .1.3 .

These rules enforce various inequality constraints, resolve influences on quantities, and
enforce temporal constraints . Because these rules are set up to infer consequences given the
minimal required antecedents, they can be applied to even very partial state descriptions .
Although the current set of rules was developed with QPT in mind, IQE should also be
able to handle other ontologies if this small set of rules is modified appropriately.

2 .1.1 Inequalities

Inequalities are central to qualitative reasoning in IQE. An inequality exists between two
numbers whose ordering is relevant to the reasoning process . In IQE, a number may be
either a quantity Q or its time derivative (D Q) . IQE does not distinguish between variable
and constant quantities ; in particular, ZERO is treated as an ordinary quantity . Inequalities
are limited to involve either two quantities or two derivatives ; mixed inequalities are not
allowed. We have found this sufficient for our current QPT models . This greatly simplifies
the rules for reasoning about inequalities - particularly rules for temporal reasoning .

Inequalities are represented in IQE using a single relation : >_ . This representation
scheme was chosen for its simplicity and expressive power. It avoids the canonical ordering
problem of other schemes, since both orderings of two related numbers are represented . It
simplifies the rules used to implement inequality reasoning, since there are fewer cases to
handle. It also reduces the number of ATMS nodes needed per inequality from four pairs
(in QPE) down to two pairs . Finally, the justifications required to enforce taxonomy among
the nodes are replaced by a single clause, requiring > to be true for one of the two possible
orderings of two related numbers, whenever both numbers exist . Table 1 demonstrates
how this scheme represents the possible inequality relations .

2 .1 .2

	

Qualitative Algebra

Like QPE, IQE supports various algebraic expressions, including equivalence, binary sums,
differences, products and ratios . Quantities in IQE can be constrained by the following
predicates : (positive ?Q), (negative ?Q), (zerop ?Q), (increasing ?Q), (decreasing
?Q), and (constant ?Q) . These are represented internally by the appropriate inequality
with ZERO .

Just as two quantities may be related by an inequality, two inequalities may be related .
The predicate Same-Relation takes two pairs of numbers as arguments, and enforces that
the inequality relations for the two pairs are always the same. That is, knowledge of one
inequality relation is imposed on the other pair. This predicate is used to implement the
Correspondences of QPT, as well as sums and differences, as shown in Figure 1 .

2.1.3

	

Causal Influences

Table 1: Concise inequality representations using >

QPT defines two types of causal influences : direct influences and qualitative proportional-
ities (or Qprops) . They are similar in that both allow for an arbitrary number of influences
to affect a quantity, and both require some mechanism for disambiguating multiple com-
peting influences . They differ in that for a direct influence, the mere presence of a non-zero
influencer (e.g . flow-rate) causes the influenced quantity to change; while for a Qprop, the
rate of change of the influencer contributes to the rate of change of the influenced quantity.
The direct influencer is also more tightly constrained, in that the derivative of the influ-
enced quantity is equal to the net sum of its influences . These influences are implemented
in IQE using the rules shown in Figure 2. In general, if a quantity is influenced in one
direction and not the other, then it will change in that direction. If there are no influences
on a quantity, then it must be constant . Influences in both directions result in ambiguity
concerning direction of change.

Inferring that a quantity is influenced in one direction or the other simply requires
finding an instance of an influence in that direction. But inferring that a quantity is not
influenced is not so easy; it requires making a closed-world assumption about the possible
influencers for the quantity, and then showing that none of the known influencers are in
effect . This is done by specifying that all influence-related predicates are to be closed,
which enforces a kind of "negation by failure" for the predicates . By including an explicit
closed-world assumption in the resulting justification, it is possible to add to the set of
possible influencers without having to start from scratch.

2.1 .4

	

Temporal Constraints

Qualitative reasoning derives much of its power from a few temporal constraints . Change
is assumed to be continuous, and must be consistent with known temporal derivatives .

Relation Representation using
Q1 > Q2 Q2 ;~_ Q1
Q1 = Q2 Q1 ~! Q2 n Q2 > Q1
Q1 < Q2 Q1 Q2

Q1 ~: Q2 Q1 Q2
Q1 < Q2 Q2 > Q1

(<== (or (>= ?Q1 ?Q2) (>= ?Q2 ?Ql)) (Inequality ?Q1 ?Q2))
;;; Same-Relation, Same-Sign, Opposite-Sign :

(Same-Relation (?Q1 ZERO) (?Q2 ZERO)) (Same-Sign ?Q1 ?Q2))
(Same-Relation (?Q1 ZERO) (ZERO ?Q2)) (Opposite-Sign ?Q1 ?Q2))
(Same-Relation (?QS ?Q2) (?Q3 ?Q4))

(<== (and (= ?Q1 ?Q2) (°
;;; Sums and Differences :

(=+ ?sum ?Q1 ?Q2) (or (Q= ?sum (+ ?Q1 ?Q2)) (Q= ?Q1 (- ?sum ?Q2))))
(and (Qprop+ ?sum ?Ql) (Qprop+ ?sum ?Q2)) (Q= ?sum (+ ?Q1 ?Q2)))
(and (Qprop+ Miff ?Q1) (Qprop- Miff
(Same-Relation (?sum ?N1) (?N2 ZERO))
(Same-Relation ((D ?sum) (D ?N1)) ((D
(Same-Relation (?sum ?N2) (?N1 ZERO))

?sum) (D ?N2)) ((D
;;; Products
(<== (Qprop+
(<__ (Qprop-
(<__ (Qprop+
(<__ (Qprop-
(<__ (Qprop+

(<__
(<__
(<__

(Same-Relation ((D

(Qprop-

(Qprop+
(Qprop-

Ratios :

?ratio
(=* ?prod ?M1

(D ?Ql) (D ?Q2)) (Qprop+ ?Q1 ?Q2)) (Q :=

?N1)
and

?prod ?M1)
?prod ?M1)
?prod ?M2)
?prod ?M2)
?ratio ?N)
?ratio ?N)
?ratio ?D)

?D)
?M2)

(Same-Sign ?prod
(Same-Sign ?prod ?m2) (and (=* ?prod ?ml ?m2) (Positive
(Opposite-Sign ?prod ?ml) (and (_* ?prod ?ml ?m2) (Negative
(Opposite-Sign ?prod ?m2) (and (_* ?prod ?ml ?m2) (Negative
(Zerop ?prod) (and (_* ?prod ?ml ?m2) (Zerop ?m2)))
(Zerop ?prod) (and (_* ?prod ?ml ?m2) (Zerop ?ml)))

(and (Q=
(and (Q=
(and (Q=
(and (Q=
(and (Q=
(and (Q=
(and (Q=
(and (Q=
(or (Q= ?prod (* ?M1 ?M2))

?ml) (and (=* ?prod ?ml ?m2)

?prod (* ?M1 ?M2)) (Positive ?M2)))
?prod (* ?M1 ?M2)) (Negative ?M2)))
?prod (* ?M1 ?M2)) (Positive ?M1)))
?prod (* ?M1 ?M2)) (Negative ?Ml))))
?ratio (/ ?N ?D)) (Positive ?D)))
?ratio (/ ?N ?D)) (Negative ?D)))
?ratio (/ ?N ?D))
?ratio (/ ?N ?D))

Figure 1 : Qualitative algebra rules

?Q1 ?Q2))

?Q2)) (Q= ?diff (- ?Q1 ?Q2)))
(=+ ?sum ?N1 ?N2))
?N2) (D ZERO))) (=+
(=+ ?sum ?N1 ?N2))

(D ZERO))) (=+

?sum ?N1 ?N2))

?sum ?N1 ?N2))

(Negative ?N)))
(Positive ?N)))
(Q= ?M1 (/ ?prod ?M2))))
(Positive ?m2)))

?ml)))
?m2)))
?MM)

(and (Correspondence (?Q1 ?Q2) (?Q3 ?Q4)) (Qprop+ ?Q1 ?Q3)))
(<== (Same-Relation (?Q1 ?Q2) (?Q4 ?Q3))

(and (Correspondence (?Q1 ?Q2) (?Q3 ?Q4)) (Qprop- ?Q1 ?Q3)))
(>_ ?Q1 ?Q2) (and (Same-Relation (?Q1 ?Q2) (?Q3 ?Q4) (>= ?Q3 ?Q4)))
(>_ ?Q2 ?Q1) (and (Same-Relation (?Q1 ?Q2) (?Q3 ?Q4) (>= ?Q4 ?Q3)))
(> ?Q1 ?Q2) (and (Same-Relation (?Q1 ?Q2) (?Q3 ?Q4) (> ?Q3 ?Q4)))
(> ?Q2 ?Q1) (and (Same-Relation (?QS ?Q2) (?Q3 ?Q4) (> ?Q4 ?Q3))))

Influenced by whom?
(<== (Influenced ?Q1 ?dir) (Influenced-by ?Q1 ?Q2 ?dir))

Direct Infuencers :
(<__ (Influenced-by ?Q ?rate :+) (and (I+ ?Q
(<__ (Influenced-by ?Q ?rate :-) (and (I+ ?Q
(<__ (Influenced-by ?Q ?rate :+) (and (I- ?Q
(<__ (Influenced-by ?Q ?rate :-) (and (I- ?Q
(<__ (Quantity (Net-Influence ?Q)) (or (I+ ?Q
(<== (Qprop+ (Net-Influence ?Q) ?rate) (I+ ?Q
(<__ (Qprop- (Net-Influence ?Q) ?rate) (I- ?Q ?rate))
(<__ (Same-Sign (D ?Q) (Net-Influence ?Q)) (Quantity (Net-

?rate) (Positive
?rate) (Negative
?rate) (Negative
?rate) (Positive
?rate) (I- ?Q
?rate))

Figure 2: Causal influence rules

?rate)))
?rate)))
?rate)))
?rate)))

?rate)))

Influence ?Q)))

Unlike other qualitative simulators which compute transitions between complete states,
IQE performs temporal reasoning incrementally, requiring only partial state descriptions .

Table 2 summarizes the temporal constraints for two temporally contiguous states, as
enforced by IQE. Propositions about the next state are represented internally by wrapping
a Next predicate around each proposition . This allows IQE to reason about adjacent
pairs of states without requiring an explicit temporal reference for every combination of
proposition and state . The use of these constraints for incremental temporal reasoning is
described in Section 2.3 .

2.2

	

Representing States with ATMS Environments
With PM representing the set of all propositions mentioned in the qualitative model:

Definition 2.1 (Partial State) Each partial state S indicates a particular subset of PM,
denoted Props (S). The deductive closure of Props (S) is denoted Closure (S) .

In order to reason over all partial states, it is sufficient to reason only about those Si for
which Props(Si) = Closure(Si) . Thus, each partial state Si that IQE explicitly considers
is assigned a unique corresponding ATMS environment, called Env(Si) . This allows IQE
to reason efficiently over all partial states simultaneously, since the ATMS caches each
inference with the minimal Env(Si) for which it holds.

Indirect Infuencers :
(<__ (Influenced-by ?Q1 (D ?Q2) :+) (and (Qprop+ ?Q1 ?Q2) (Increasing ?Q2)))
(<__ (Influenced-by ?Q1 (D ?Q2) :+) (and (Qprop - ?Q1 ?Q2) (Decreasing ?Q2)))
(<__ (Influenced-by ?Q1 (D ?Q2) :-) (and (Qprop+ ?Q1 ?Q2) (Decreasing ?Q2)))
(<__ (Influenced-by ?Q1 (D ?Q2) :-) (and (Qprop- ?Q1 ?Q2) (Increasing ?Q2)))

Directions of Change:
(<== (Increasing ?Q) (and (Influenced ?Q :+) (not (Influenced ?Q :-))))
(<__ (Decreasing ?Q) (and (not (Influenced ?Q :+)) (Influenced ?Q :-)))
(<__ (Constant ?Q) (and (not (Influenced ?Q :+)) (not (Influenced ?Q :-))))
(<__ (Ambiguous ?Q) (and (Influenced ?Q :+) (Influenced ?Q :-)))

Table 2 : Temporal constraint rules
The predicates Converging and Non-Converging are true for a pair of related quantities
if their absolute difference is decreasing or non-decreasing, respectively.

Each ATMS environment indicates a particular, unique set of assumptions. So, to
reason about a more complete version of a partial state, IQE refines the state by making
additional assumptions to create a more specific environment:

Definition 2.2 (State Refinement) Partial state Si is refined to partial state Sj by the
subset p of Pm when the deductive closure of (Props (Si) + p) equals Closure (SJ.

The following subsections discuss the two major issues which arise in this scheme: 1)
what to assume, and 2) when and how to refine .

2.2 .1

	

Assumptions in IQE

In the course of incremental envisioning, IQE uses four types of assumptions to define the
environments associated with states :

Scenario assumptions indicate the current belief of what entities (i.e ., QPT individ-
uals) can exist in the system and how they are structured.

Modelling assumptions represent the approximations and perspectives underlying
the domain theory. Modelling assumptions (such as CONSIDER's [8]) provide the flexibility
in perspective required for robustness over a broad domain.

Closed-world assumptions represent the belief that the entities currently being
considered are in fact the only ones to consider. By making these assumptions explicit,
objects may be added to or removed from sets without having to restart simulation from
scratch.

State assumptions encode the qualitative state of the system, in terms of the active
views and processes, or equivalently, the inequalities on which they are conditioned. These
assumptions indicate the current mode of operation of the system.

64

Constraint Type Previous State Next State
Continuity Q1 > Q2 Q1 5~, Q2
Divergence Q1 ~4 Q2 n Q1 > Q2 Q1 > Q2

Q1 > Q2 Q1 ~4 Q2 A 0 1 < Q2
No Convergence Q1 > Q2 n Q1 ~ Q2 Q1 > Q2

Q1 > Q2 Q1 > Q2 A Q1 Q2
Interval Consistency Q1 = Q2 Non - Converging(Q 1 , Q2)

Converging(Q1,Q2) Q1 = Q2
Duration Interval t Instant

Q1 > Q2 A Instant Q1 > Q2

Q1 > Q2 4' Q1 > Q2 n Instant

Q1 = Q2 A Interval Q1 Q2
Q1 ?~ Q2 Q1 = Q2 A Interval

As an alternative to assuming these propositions individually, a single assumption may
be used to represent a set of them, by justifying each proposition by that assumption . The
tradeoff is that less information is cached in the ATMS labels, in the event that one of
these propositions is no longer believed .

As shown in Figure 3, the ATMS combines these assumptions in a hierarchical fashion
(ordered by environment subsumption) to define IQE's envisionment lattice . This space
is represented by the combination of the ATMS environment lattice and the temporal
relations between those environments given by IQE's temporal constraints . The set of
currently believed scenario, modelling, and closed-world assumptions defines IQE's working
focus environment . By default, all environments that IQE provides to the the problem
solver will include those working assumptions .

Figure 3 : Example IQE envisionment lattice

Closed-world assumptions represent the belief that all members of a set are known .
If a new member of a set is found after the set has been closed, then the closed-world
assumption for the set is made inconsistent with the new set member. A new closed-world
assumption is built to represent the augmented set which includes the new member . Each
closed-world assumption for a given set thus represents a different belief about the contents
of the set .

As an example, consider the discovery of a new process influencing quantity Q, after the
influences on Q have been closed . The existing closed-world assumption representing the
set of influences on Q is made inconsistent with the new influence, and a new closed-world
assumption is built and used to re-close the set . Closed-world assumption violations are
detected by building a rule as each set is closed, which watches for new members of the
set and performs the necessary cleanup operations .

2.2 .2

	

Refining a State by Adding State Assumptions

To answer a query by the problem solver IQE may have to refine a state to consider alter-
native completions of that state to some level of detail . One important class of refinements
is that of determining the status of process and view (P/V) instances . Such refinement
involves first determining which P/V instances are relevant to the query. IQE considers
a P/V instance to be relevant if it could influence the system towards or away from the
behavior being queried about, Next, IQE generates a choice set of size two for each relevant
P/V instance, containing assumptions that the instance is active or not active . Finally,
IQE invokes ATMS interpretation construction upon the refined state's environment using
the choice sets . The result is the set of maximal consistent environments representing all
alternative PIV refinement environments . In each of those environments, each relevant
P/V instance will either be assumed to be active or assumed to be not active . Those
assumptions represent the additional state assumptions used for that refinement.

2 .3

	

Incremental Temporal Reasoning
All of the Next propositions derived from the temporal constraint rules of Table 2 for some
state together define the minimal state description of what must be true in any next state .
The temporal relations among states have several important properties . Each state S has
exactly one successor state, which we denote as Succ(S) :

Definition 2.3 (Successor State) The successor state of a state S is the state Succ(S)
such that Props (Succ (S)) = {f E Pm Next{f} E Closure (S)}

Monotonicity requires that all propositions that are true in Succ(S) are necessarily
true in Succ(S;), for each refinement S; of S :

Property 2.1 (Successor-Refinement Confluence) Given state S and some refine-
ment (of S) St, then Succ(S;) must be a (possibly null) refinement of Succ(S).

Thus Succ (S) represents the intersection of the successor states of all possible refine-
ments of S. There will generally be fewer propositions which are true in Succ(S) than in
S itself. This is because the Next propositions inferred by the temporal constraint rules
are only those which must be true in the successor state of every possible refinement of S,
not all those which may be true in some refinement . If the problem solver desires a more
detailed description of the successor state of S, IQE must either refine Succ(S), or refine
S and then compute the successor states of the refinements of S .

While the successor state is uniquely defined for each state, it is possible for two states
to share a common successor state:

Property 2.2 (Shared Successors) Given two different states S; and S� it is possible
that Suc c (S;) = Suc c (S;) .

For example, S; and one of its refinements S; might both have the same successor, if the
refinement adds no useful information for inferring Next propositions . Shared successors
can also occur due to equilibrium states or cycles of states :

Definition 2.4 (Equilibrium State) An equilibrium state is a state S such that Succ (S) = S.

Property 2.3 (Equilibrium Non-Inheritance) Refinements of an equilibrium state need
not be equilibrium states ; however, no refinement of a non-equilibrium state can be an equi-
librium state.

Definition 2.5 (Cycle of States) A cycle is a chain of successor states such that the
first and last states are identical.

Property 2.4 (Cycle Non-Inheritance) Refinements of a cycle of states need not form
cycles; however, no cycle may result from refinement of a non-cycle.

Figure 4 shows the successor states (S5 , S6 , and S7) that should exist for example state
Sl and existing refinements of it (S2 , S3 and S4) . If such successor states are not created
during the normal ATMS computations, they must be created by IqE if the problem solver
wishes to reason about them.

Figure 4: Example IQE temporal relations among states
All of the propositions that are true in each state are shown inside the oval representing that state .

IQE envisions by "laying down tracks" consisting of chains of successor states, at suc-
cessively higher levels of detail . These tracks never branch, but may "die out" by becoming
equivalent to or below the base environment . Tracks may also terminate by reaching an
equilibrium state or a cycle of states .

Figure 5 illustrates an example of how IQE can lay down tracks of states at low levels
of detail in an attempt to quickly realize that a partial goal state is not reachable from a
partial initial state . First, the lowest track (the next successors of the initial state itself)
is laid down from the initial state until the base state is noticed. This indicates that it is
consistent that the initial state reaches the goal state. Special refinement driven by the
temporal constraints from the previous state (i.e, the initial state) of SO indicate a closed
set of refinement states of SO (see (2]) . If the track of successor states of each state in
that closed set shows that the goal state is not reachable from SO, then the goal state
is not reachable from the initial state either . This process is repeated until either the
unreachability is proven or such refinements are exhausted.

67

acmplete aut.. . .

Next

	

"
Next

	

� Next

	

vNext

	

" Next

	

-K' Next
Refansf

lnidd eightreach CudMS7k~patibkwith Cod

v
equtlibrnae. . .

Next Sl --v

68

%

	

%

	

C$6)._ Next
-ft`t.

Next% r-xef. ~Nex e
Next

	

S2

	

; Next
v

Next

r-R,p % Next Nexi S5 w .

Refwe?

Next
Ss hoppersto be ImwnpahbkwithCod

Next ;

	

Next

	

-Next

	

"Next
Sl happen b be i-pahbk with Cad

Detail

	

no teem Inr~tioo padhere

Next Base
v

Time

	

Nexs

NextextAlternatives

Figure 5 : Example IQE envisionment lattice
Portion of an example lattice searched to realize that the partial goal state is not reachable from the partial

initial state. If partial state S7 was compatible with the goal, then further refinements would be needed to

show that the goal is not reachable from the initial state.

One possible application of IQE is doing goal-directed search . Given a partial descrip-
tion of an initial state and a goal state, IQE lays tracks from the initiai state, checking
each state along the track for compatibility with the goal . If the track hits an equilibrium
state or a cycle before encountering a state consistent with the goal, then the goal state is
declared unreachable :

Property 2.5 (State Unreachability) A goal state G is unreachable from a state S if
a cycle or equilibrium state is encountered along the track from S before encountering any
states compatible with G .

Unreachability of a goal state may be propagated back through the track (which may
branch in the reverse direction) until reaching a state consistent with the goal state .

If the first consistent state is encountered after N successions, then no path shorter
than N can exist from the initial state to the goal state. When this occurs, then new
tracks are laid from some refinement along the existing track. Two important control
issues are how to choose which refinement to extend, and how much to refine it . It is
desirable to minimize branching and maximize information content . Choosing the state to
refine involves a tradeoff, since earlier states are likely to be more detailed than later ones ;
however, because the track never branches, the cost of re-laying from a refinement of an

early state is outweighed by the benefit of additional information . Similarly, choosing how
much to refine involves a tradeoff, given that refinements contribute to both information
and branching.

3

	

Facilities Provided by IQE

IQE's design allows it to offer several significant facilities to the problem solver, without
the need to completely specify all states . Figure 6 describes some of the key ones we have
identified so far .

(CHANGE-SCENARIO add-asns delete-asns) and (CHANGE-PERSPECTIVE add-asns delete-asns) :
Changes IQE's working focus environment by adding and deleting assumptions .

(PARTIAL-STATE propositions) :
Finds or creates a partial state S in which Props(S) is the deductive closure of propositions and all
Props(S) are true in Env(S).
(AUGMENT-PARTIAL-STATE propositions partial-state) :
Same as PARTIAL-STATE, except that it adds all of Props (partial-state to propositions .

(TRUE-IN-SOME-REFINEMENTS? propositions partial-state) :
Returns some refinements of partial-state for which all propositions are in Props(partial-state .

of

(STEADY-STATE-IN-SOME-REFINEMENTS? partial-state) :
A special case of TRUE-IN-SOME-REFINEMENTS?, where propositions represents all (D Q) values being equal
to ZERO .

(CONSISTENT-TRANSITION? current-partial-state next-partial-state) :
Predicate which is true exactly when, for each proposition X for which proposition (Next X) is in
Props(current-partial-state, proposition (Not X) is not in Props (next-partial-state .

(CONSISTENT-PATH? current-partial-state next-partial-state) :
Predicate which is false exactly when it is impossible for next-partial-state to occur after current-partial-
state . Incremental temporal reasoning starting at low levels of detail is used to try to efficiently show this
path is impossible, while incremental refinements during this process progressively move towards complete
states which will represent such a path, if it exists .

Figure 6: Basic IQE facilities

4 Discussion
In this paper we have presented our view of incremental envisioning as providing a sort
of envisionment maintenance system for use by a higher-level problem solver. We have
argued that such an approach provides a significant alternative to simulators such as QPC
and QPE. Its power and efficiency comes from attempting to first reason about states at low
levels of detail, while being able to consider higher levels of detail when such distinctions
are required to answer a query. We have outlined the design of one such system, IQE, and
highlighted some of the techniques used in its implementation .

69

5 Acknowledgements
Thanks to Ken Forbus and Gordon Skorstad for their comments on this work. This research
has been supported by NASA Langley, under contract NASA-NAG-11023 .

References

[10] Kenneth D. Forbus. Qualitative process theory. Artificial Intelligence, 24:85-168,
1984 .

[11] Ben Kuipers . Qualitative simulation . Artificial Intelligence, 29:289-338, 1986.

[1] John Collins and Dennis DeCoste. CATMS: an ATMS which avoids label explosions .
In Proceedings of AAAI-91, July 1991 . To appear .

[2] John Collins and Dennis DeCoste . IQE: An Incremental Qualitative Envisioner .
Technical Report, Institute for the Learning Sciences, Northwestern University, 1991.
Forthcoming.

James Crawford, Adam Farquhar, and Benjamin Kuipers. QPC: a compiler from
physical models into qualitative differential equations . In Proceedings of AAAI-90,
pages 365-372, July 1990 .

[4] Johan de Kleer. An assumption-based TMS. Artificial Intelligence, 28(2), March
1986.

Johan de Kleer and John Seely Brown. A qualitative physics based on confluences .
Artificial Intelligence, 24 :7-83, 1984 .

Dennis DeCoste. Dynamic across-time measurement interpretation . In Proceedings
of AAAI-90, pages 373-379, July 1990.

Dennis DeCoste and John Collins. CATMS: An ATMS Which Avoids Label Explo-
sions . Technical Report, Institute for the Learning Sciences, Northwestern University,
1991 .

[8] Brian Falkenhainer and Kenneth D. Forbus . Setting up large-scale qualitative models.
In Proceedings of AAAI-88, pages 301-306, August 1988.

Kenneth D. Forbus. The qualitative process engine. In Daniel S . Weld and Jo-
han de Kleer, editors, Readings in Qualitative Reasoning about Physical Systems,
pages 220-235, Morgan Kaufmann, 1990. (Technical Report UIUCDCS-R-86-1288,
University of Illinois at Urbana- Champaign, December 1986) .

