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Assumption-based truth maintenance systems have developed into powerful and

popular means for considering multiple contexts simultaneously during problem

solving. Unfortunately, standard ATMS node labels tend to grow combinatorically

as problem complexity increases. In this paper, we present a new ATMS algorithm

(CATMS) which avoids the problem of label explosions, while preserving most of

the query-time efficiencies resulting from label compilations . CATMS generalizes the

standard ATMS subsumption relation, allowing it to compress an entire label into

a single assumption. These compressions of labels are balanced by expansions of

environments to include any implied assumptions . The result is a new dimension

of flexibility, allowing CATMS to trade-off the query-time efficiency of uncompressed

labels against the costs of computing them. To demonstrate the significant compu-

tational gains of CATMS over de Kleer's ATMS, we compare the performance of the

ATMS-based QPE [9] problem-solver using each.

A condensed version of this report appears in the Proceedings of the Tenth National

Conference on Artificial Intelligence, July 1991.



1 Introduction

Assumption-based truth maintenance systems [3] have proven useful for reason-
ing about multiple contexts, especially in domains such as qualitative physics [9,7]
and signal processing [15,12] . Each context indicates a different set of assump-
tions (i.e ., choices) made during problem solving . An ATMS reasons with multiple
contexts simultaneously, with larger contexts inheriting inferences made in smaller
ones, so that the cost of reasoning is amortized over the set of contexts . The power
of an ATMS comes from its compiling of inferences into labels, each representing
the alternative contexts in which a particular proposition is true . Although such
compilations can potentially lead to enormous efficiency gains at query time, those
efficiencies may be unrealized due to an ATMS problem called label explosion . This
problem arises during compilation when labels grow exponentially large . The po-
tential for label explosion is a consequence of the cross-product nature of label
computations .

In this paper, we present a new ATMS algorithm (CATMS) which can avoid the
problem of label explosions, while preserving most of the query-time efficiencies
resulting from label compilations . CATMS generalizes the standard ATMS notion
of subsumption, allowing it to compress an entire label into a single assumption.
This compression of labels is balanced by an expansion of environments to include
implied assumptions . The result is an added flexibility to trade-off the query-time
efficiency of uncompressed labels against the costs of computing them. In short,
CATMS provides an efficient hybrid of the compiled approach taken by a traditional
ATMS and the interpreted approach noted in [16] .

Section 2 briefly provides the ATMS background relevant to this paper. Sec-
tion 3 explains the key idea underlying the CATMS algorithm : our theory of label
compression . Section 4 presents the basic CATMS algorithm and Section 5 describes
how it can detect and avoid label explosions . Section 6 describes some refinements
of the basic CATMS algorithm which further improve its efficiency. Section 7 demon-
strates the significant computational gains allowed by CATMS over de Kleer's ATMS,

by comparing their performance for the ATMS-based QPE [9] problem-solver . Fi-
nally, Section 8 discusses the implications of CATMS to future ATMS technology.
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ATMS Background

Briefly, an ATMS can be characterized as follows . Each proposition considered
by the problem solver is assigned an ATMS node . As the problem solver derives
relations among propositions, it declares them to the ATMS as clauses among nodes .
A particular ATMS implementation may support general CNF clauses or just Horn
clauses . The problem solver declares a subset of the nodes to be assumptions -
propositions which are assumed to be true . Each set of assumptions indicates
a particular context and is represented as an ATMS environment. Throughout
the paper, we let E, E;, E; refer to environments. We denote the assumptions
comprising E by Asns(E). A node is considered true in E if it can be propositionally
deduced from Asns(E) together with the clauses C. A node is considered false in
E if its negation node is true in E . The ATMS contradiction node denotes a logical
contradiction . It is inferred whenever a node is both true and false in some E,
in which case E is called nogood (i.e ., inconsistent) . The primary responsibility
of an ATMS is to process an incremental stream of nodes (N), assumptions (A),
and clauses (C) to efficiently answer queries about the status (i .e ., true, false, or
unknown) of some node in a given environment, or about the consistency of some
environment .

An important concept in any ATMS is that of subsumption among environments:

Definition 2.1 (Environment Subsumption) E; subsumes Ej - Asns(E;) C
Asns(Ej).

Because an ATMS operates monotonically, all nodes true in E; are also true in the
subsumed E� as long as E; is consistent . Thus, one can avoid making redundant
inferences by inheriting inferences from subsuming environments. However, the
typical problem solver rarely requires an explicit list of all nodes true in some
environment. So, instead of caching implied nodes with each environment, an ATMS
caches for each node the minimal set of implying environments, called its label .

Definition 2.2 (Node Label) Let Label(N) denote the set of environments for
node N satisfying:



1. Consistency: No E; E Label(N) is a nogood;

Z. Soundness: N is true in each E; E Label(N) ;

S. Completeness : If N is true in E� then some E; E Label(N) subsumes E; ;

.¢ . Minimality : For E;, EJ E Label(N) and E; 7~ Ej, E; does not subsume E; .

By compiling node labels, an ATMS can efficiently determine whether a node N is
true in a given E by checking whether some E; in Label(N) subsumes E.

As assumptions and clauses are given to an ATMS, labels are incrementally
maintained through a technique called boolean constraint propagation (BCP) [5],
which ensures that each clause is locally satisfied. This process involves computing
cross-products of labels and unioning the results with the existing label. Due to the
nature of cross products, ATMS labels have the potential to grow exponentially,
resulting in label explosions .

Conceptually, an ATMS maintains a special label for the contradiction node,
where consistency is not enforced. This label represents the set of minimal nogoods.
Thus, an ATMS can determine whether a given E is nogood by checking whether
E is subsumed by some E; in the label of the contradiction node. To maintain
label consistency, an ATMS must further provide a means for removing minimal
nogoods, and any environments subsumed by them, from all other labels .

Let E denote the union of the labels of all nodes, plus any environments men-
tioned in queries posed by the problem solver . S indicates the set of all environments

which must be explicitly represented by an ATMS in order to reason over all possi
ble contexts . Typically, E will be much smaller than the worst-case (the power set
of all assumptions), due to the consistency and minimality properties of labels .
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Theory of Label Compression

ATMMS generalizes the standard ATMS algorithm by generalizing the notion of envi-
ronment subsumption. This impacts the minimality and completeness requirements

for labels, as explained below.
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3 .1 Assumption Closures

In CATMS, an important property of each environment is its assumption closure -
the set of assumptions which logically follow from its base assumptions :

Definition 3.1 (Assumption Closure) Closure(E) - {A; E A I Asns(E) U C
Af } .

An obvious property of these closures is that they include the base assumptions :

Property 3.1 (Base Assumption Inclusion) Asns(E) C Closure(E).

It is possible for two environments with different base assumptions to have identical
closures :

Definition 3.2 (Equivalent Environments) E; is equivalent to E;
Closure(E;) = Closure(Ej .

Recall that in a standard ATMS, two environments are compared for subsumption
by comparing the (base) assumption sets comprising them. In CATMS, subsumption
is based on assumption closures :

Definition 3 .3 (Closure Subsumption) E; c-subsumes E; - Closure(E;) C
Closure(EJ) .

Closure subsumption is a generalization of standard ATMS subsumption, due to
transitivity and the nature of closures :

Property 3 .2 (Subsumption Generalized) If E; subsumes E; then E; c-subsumes
E; ; alternatively, if Asns(E;) C Asns(Ej) then Closure(E;) C Closure(Ej.

Proof of Property 8.2:
Assume Closure(E;) 9=' Closure(Ej) and Asns(E;) C Asns(E?).
Then 3 A E Closure(E;) ( A V Closure(Ej) .

	

Asns(E;) U C ~= A (by Definition 3 .1) .
But Asns(E;) C Asns(Ej), so Asns(Ej) U C H A (by monotonicity) . So A E
Closure(Ej) (by Definition 3.1), which is a contradiction . Q.E.D .
Properties 3.1 and 3 .2 suggest a test for closure subsumption that requires a single
closure computation :



Property 3.3 (Closure Subsumption Test) E; c-subsumes Ej if Asns(E;) C

Closure(Ej.

Proof of Property 3.3:

Asns(Ei) C Closure(E;) (by Property 3 .1). Closure(E;) C Closure(Ej) (by Defini-

tion 3.3). Asns(E;) C Closure(Ej) (by transitivity of C) .

Assume Closure(E;) g Closure(Ej) and Asns(E;) C Closure(EJ) .

Then 3 A E Closure(E;) I A i% Closure(EJ) .

	

Asns(E;) U C ~= A (by Definition 3 .1) .

But Asns(E;) C Closure(Ej), so Closure(Ej) U C ~= A (by monotonicity) . So A

E {Ak E A I Closure(EJ) U C H Ak } (by Definition 3 .1) . However, {Ak E A

Asns(EJ) U C ~-- Ak } = {Ak E A I Closure(EJ) U C ~= Ak }, since Closure(Ej)

{Ak E A ( Asns(Ej) U C ~= Ak } (by Definition 3.1) . Therefore, A E {Ak E A

Asns(EJ) U C H Ak } . So A E Closure(Ej) (by Definition 3 .1), which is a contra-

diction . Q.E .D.

3.2

	

Using Assumption Closures

Applying CATMS's notion of closure subsumption to the ATMS minimality property

for labels can result in CATMS labels being smaller than the corresponding labels

in a standard ATMS. For example, this new notion of minimality prevents a label

from containing two equivalent environments. We use the term compression to refer

to the act of removing from a standard ATMS label those environments which are

c-subsumed by others in that label. A compressed label retains the soundness and

consistency of the original label since no environments are added to the label by

such compression.

Viewed in isolation, compressed labels violate the completeness requirement for

labels ; however, label completeness is, in effect, reestablished by using closure sub-

sumption for queries as well . More formally, if E; is in Label(N) in a standard

ATMS and E; subsumes query environment Eq (i.e ., N is true in Eq), then after

compression there will still be some env in Label(N) that c-subsumes Eq . Proof:



either E; is still in Label(N) after compression or 3 Ek E Label(N) I Ex c-subsumes
Ei. If E; E Label(N), then E; c-subsumes E9 (by Property 3 .2) . Otherwise, Ek
c-subsumes Eq (by transitivity through E;) . Q .E.D .

Figure 1 shows an example justification structure and the corresponding node
labels that CATMS and a standard ATMS would respectively compute from it . In
this example, there are no equivalent environments since environments can only
be equivalent when there are cycles in the justifications of assumptions . However,
several environments c-subsume others that would not subsume them in the stan-
dard ATMS sense. For instance, environment {A7A8} c-subsumes {AM5A6}, since
{A5A6} implies A8. This example illustrates how CATMS's compressed labels can be
much smaller than the standard ATMS labels .

( (A7AS) (Al Aat4As) (A3AjAs) W&As) (AlAaAdAgAs) (A9A4A5As) )

( (A,) )

	

((Aa1)

	

((As) )

Figure 1 : Example justification structure
Beside each node are the labels that a standard ATMS would compute for them.
The (smaller) labels that CATMS would compute for them are indicated by the
underlined environments.

A CATMS label is always a subset of the corresponding standard ATMS label .
The compression of CATMS labels accounts for the "C" in CATMS . Label compression
can occur only when there are implied assumptions for environments - that is,
when some assumption node is the recipient of a justification .' de Kleer has argued

'We use the terms "justification" and "clause" somewhat interchangeably; CATMS supports both
Horn and general CNF clauses.

Legend:
Assumption Node

O Non-assumption Node`
0 Justification



[3] that allowing assumptions to be implied makes little intuitive sense.2 However,

in practice, assumption nodes are commonly implied. This occurs in part because

it is often difficult for the problem solver to know in advance which nodes it will

eventually assume (as noted in [9]) . Furthermore, allowing implied assumptions

enables our technique for avoiding label explosions (see Section 5) .

The cost of CATMS's compressed labels comes at query time. To answer a query

of whether a node N is true in a given E, CATMS must first expand E to the cur-

rent Closure(E), and then check whether E is c-subsumed by any environment in

Label(N) . Because labels in CATMS are potentially much smaller, the cost of a query

in CATMS may actually be less than in a standard ATMS.

CATMS labels can be significantly smaller than standard ATMS labels, including

the label of the contradiction node (which defines the minimal nogoods) . Since

maintaining consistency is a major expense in an ATMS, CATMS's reduced number

of minimal nogoods is an especially significant advantage . As with node status

queries, nogood queries require first expanding the query environment to compute

its current assumption closure. That closure set is then used to check if any minimal

nogood c-subsumes the query environment. This need to expand is the price that

CATMS must pay for having smaller labels and fewer minimal nogoods to check

against - it usually turns out to be quite a bargain.
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The Basic CATMS Algorithm

This section describes the fundamental aspects of the CATMS implementation . For

simplicity, we focus on how CATMS handles Horn clauses (as justifications of the

form Nl A . . . A N,ti --+ Nc) . However, all of CATMS's advantages are retained when

general CNF clauses are used as well -although CATMS's handling of clauses suffers

from the same incompleteness suffered by all boolean constraint propagation (BCP)

approaches, as discussed in [5] .

tin fact, our notion of equivalent environments is similar to de Kleer's notion of characterizing

environments for a context [3]. Apparently he never made anything of such groupings because he

felt assumptions should never be implied.
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Label Propagation

CATMS computes compressed labels using the standard ATMS label propagation
algorithm, but using CATMS's generalized notion of subsumption based on closures .
The most dramatic difference occurs when an assumption node is reached during
label updating. In CATMS, propagation terminates at that assumption. The CATMS

label of an assumption node A always consists of a single environment EA containing
only A itself. Any other environment that a standard ATMS would include in
A's label must necessarily contain A in its assumption closure, and thus be c-
subsumed by EA. All label propagations through non-assumption nodes proceed as
in a standard ATMS, but using the CATMS version of subsumption based on closures .

The ability of assumptions to block label propagations can be understood as
follows . In a standard ATMS, label environments are propagated "forward" from
the assumed propositions . In CATMS, assumed propositions are, in effect, propagated
"backward" to the minimal environments in which they are true and indirectly to
the c-subsumed environments, via assumption closures . This avoids the need to
propagate through assumptions, thereby reducing the potential for label explosion .

The ability in CATMS to propagate selected nodes (i .e ., assumptions) backward
to environments provides a continuum between the two extremes of caching nodes
with environments and caching environments with nodes . In the extreme case where
all propositions are assumed, CATMS performs no label updates and every label will
contain exactly one environment. In that case, CATMS becomes a mechanism for
caching the status of each node with particular environments of interest . In the
case where no assumptions are justified, the CATMS labels are identical to those of a
standard ATMS .

4.2

	

Computing Assumption Closures

As noted in Section 3, a CATMS environment must be expanded (i.e ., have its cur-
rent assumption closure computed) before testing whether it is c-subsumed by some
other environment. Conceptually, an environment E could be expanded by simply
running over all of the justifications . One would start with a set S of nodes, rep-
resenting the union of Asns(E) and the set of always-true propositions, and would



extend S by the consequent nodes of justifications whose antecedents are all mem-
bers of S . Such expansion would terminate within time linear in the total size of
clauses in C . Closure(E) would be the set of assumption nodes in S.

However, the justification structure is inefficient for computing assumption clo-
sures because it typically contains a large percentage of nodes which are not assump-
tions. In practice, we employ that straight-forward expansion by justifications only
to verify CATMS'' performance. A more efficient structure results from collapsing out
the non-assumption nodes, leaving only assumptions and equivalent justifications .
The actual implemented structure, which we call the expansion lattice, is conceptu-
ally analogous to this . The expansion lattice contains only those environments which
minimally imply one or more assumptions .' For instance, in the example of Fig-
ure 1, the corresponding expansion lattice would contain environments {AIA2A4}
and {AsA4} (both implying Ar) and {AsA6} (implying A8) . These environments
are connected such that a path exists from each single-assumption environment up
to every superset environment in the expansion lattice, where "superset" is based
on standard ATMS subsumption - not c-subsumption. This is the only instance
in CATMS where standard subsumption is used instead of c-subsumption.

Consider an assumption node A with incoming justifications. As label propaga-
tion reaches A, each environment E; that a standard ATMS would add to A's label
is marked as minimally implying A. E; is then added to CATMS'' expansion lattice,
if it is not already there.
When a new environment E is added to e, CATMS expands E by searching 'ap-

ward from the single-assumption environments corresponding to Asns(E). The set
S starts equal to Asns(E). When an environment Ei satisfying Asns(E;) C S
is encountered for the first time, CATMS adds the minimally implied assumptions
cached with E; to S . Each such assumption actually added to S indicates a new
single-assumption environment from which to search . This search terminates, with
Closure(E) = S, as soon as all active search paths are exhausted without picking
up any new implied assumptions.

HHowever, Section 4.4.2 describes another use for this expansion lattice.
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Maintaining Assumption Closures

In a standard ATMS, an environment is a static collection of assumptions . In CATMS,
an environment's assumption closure can grow as new assumptions or clauses are
added.

When label propagation reaches an assumed node A, any E that a standard
ATMS would add to Label(A) must now include A in Closure(E) . The same is true
for all environments c-subsumed by E . The problem is how to index environments so
that those c-subsumed environments can be found and updated." One obvious, but
inefficient, approach would be to search through S for all environments c-subsumed
by E. A slight improvement results by indexing environments by size (i.e ., size of
their assumption closures), as environments smaller than E cannot be c-subsumed
by it . This scheme is complicated by the need to re-index environments whenever
their assumption closures grow .

Further improvement results from maintaining pointers from environments to c-
subsumed environments . This involves maintaining a dynamic lattice of all relevant
environments, having the following properties :

1 . A path of pointers exists from E; to Ej if and only if E; c-subsumes E; .

2. No two environments are both directly and indirectly connected .

This lattice is dynamic in that the required pointers up to E change as Closure(E)
grows.

The dynamic lattice provides a mechanism for continuously maintaining assump-
tion closures of all E; in 6 . Each E; newly added to 6 is first expanded and then
inserted into the lattice . Once inserted, Closure(E;) is updated by propagating
newly implied assumptions up through the lattice . When these propagations cause
Closure(E;) to grow, then E; must be re-expanded and possibly repositioned higher
in the lattice . Collisions occur as environments become equivalent . Only one rep-
resentative of an equivalence class is kept in the lattice, with pointers to the rest of
the class .

"This problem is identical to finding subsumed environments of a new minimal nogood .



The maintenance of the dynamic lattice is quite complex and costly. While

the dynamic lattice was the basis for initial implementations of CATMS, it has been

disabled in the current implementation, in favor of the lazy approach described in
Section 4.5 .

4 .4 Maintaining Consistency

New minimal nogoods arise as environments are added to the label of the contradic-

tion node . Consistency maintenance involves marking new minimalnogoods, finding
and marking any new non-minimal nogoods in E, removing (marked) nogoods from

labels, and checking additions to e against the minimal nogoods. CATMS's use of clo-

sure subsumption complicates the standard methods for finding new non-minimal

nogoods and for checking new environments, as shown below .

4.4.1

	

Finding Non-Minimal Nogoods

The traditional ATMS approach for finding subsumed environments of a new mini-

mal nogood is to cache environments in a table indexed by their size, as the nogood
can only subsume environments larger than it . The use of such a table is more com-

plicated in CATMS because the size of an environment grows as its assumption closure

grows. Thus, CATMS must move environments up in the table as their assumption

closures grow.
If the dynamic lattice is being used to maintain assumption closures, it prqvides

an efficient structure for propagating inconsistency. The new non-minimal nogoods

in e which are c-subsumed by a new nogood are exactly those environments found

above that nogood in the lattice. Non-minimal nogoods are removed from the

dynamic lattice once they are found.

4.4.2

	

Checking Consistency

As new environments are added to 6, they must be initially checked for consistency.

We have explored three different approaches for performing this check in CATMS. The

trade-offs of these approaches are still being explored .
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Dynamic Lattice

	

By keeping minimal nogoods in the dynamic lattice, detecting

whether a new environment is a non-minimal nogood is easy : a non-minimal nogood
will always be placed directly above some minimal nogood in the lattice . This is

clearly the best choice as long as the dynamic lattice is being maintained .

Nogood Table

	

The standard ATMS approach is to maintain a table of minimal

nogoods . An environment is detected as nogood if a c-subsuming nogood can be

found in the table . As for the environment table mentioned above, nogoods in the

nogood table are indexed by size, as nogoods bigger than the query environment
cannot c-subsume it . Thus, when the assumption closure of a nogood grows, CATMS

moves that nogood up in the table . Failure to do so will not lead to inconsistencies,
as all smaller nogoods will be checked; however, it could cause CATMS to make

unnecessary checks of those nogoods .

Bad Assumptions in the Expansion Lattice Another approach does not
cache minimal nogoods directly ; it instead maintains the set of bad assumptions
for each environment . Upon finding a new minimal nogood E� , a consistent subset
environment E, is found by removing (any) one assumption A from E,, . A is added
to E,'s list of minimally bad assumptions, and E, is added to the expansion lattice

(unless already there) . The bad assumptions are then picked up during expansion,

in a manner analogous to computing assumption closures . An environment is recog-

nized as nogood whenever some assumption is in both its assumption closure and in

its set of bad assumptions . We have found this technique to be particularly useful

when using the lazy update approach described next .

4.5

	

Lazy Updating of Closures

Because of the high cost of continuously maintaining assumption closures via the
dynamic lattice, the current implementation of CATMS employs an alternative which

updates assumption closures upon demand . This involves temporarily relaxing the

minimality and consistency requirements for labels . Non-minimal or inconsistent
environments are allowed to remain in a label until that label is examined during a

13



label propagation or a query.
When assumption closures are not continuously maintained, it is especially im-

practical to attempt to fully maintain consistency. That would require updating the
assumption closures of all environments in 6 each time a new minimal nogood is
found, to see if any are c-subsumed by that nogood and are thus new non-minimal
nogoods . Therefore, CATMS takes a lazy approach for detecting nogoods, whereby
non-minimal nogoods are not identified until their consistency is required during a
label propagation or a query. Consistency checking is performed on such environ-
ments using either of the last two techniques of Section 4 .4.2 . This lazy approach
results in slightly larger CATMS labels, though typically still much smaller than the
corresponding labels of a standard ATMS .

CATMS also employs some time-stamp efficiencies which allow it to avoid a sig-
nificant percentage of lazy updates and consistency checks . For example, it avoids
updating Closure(E) when no new assumptions have been minimally implied since
the last time E was updated. Similarly, it avoids consistency checks for E whenever
no new minimal nogood has been found since the last consistency check for E.

5

	

Avoiding Label Explosions

CATMS can avoid the problem of label explosion by reducing the label of any node
N to size-one, by assuming N. The resulting Label(N) contains just one environ-
ment representing the single assumption N. All of the environments previously in
Label(N) are added to the expansion lattice as minimally implying the assumed N,
as explained in Section 4 .2 . For example, if a large Label(N) is about to partici-
pate in a costly cross-product operation, then assuming N can make the operation
tractable. We call this technique auto-assuming a node, and distinguish such as-
sumptions from ones made by the problem solver . Even though minimality and
consistency can make the final result of a cross-product significantly smaller than
the worst-case, tractability may demand avoiding the cost of even performing the
cross-product .

The complexity of CATMS's expansion lattice grows at worst quadratic in the total
(precompressed) size of assumption node labels . Thus, auto-assuming to avoid ex-

14



ponential explosions in any label eliminates the potential for exponential explosions
inherent in a standard ATMS . The trade-off, of course, is that fewer inferences are
compiled into the labels, requiring some of them to be made repeatedly each time a
new environment is expanded . CANS reduces the problem of label explosion to one
of deciding the best time for auto-assuming versus computing a standard ATMS
cross-product.

The worst-case complexity of assuming all nodes in CANS is linear in the total
size of the clauses C, due to the limited complexity of expansion by justifications .
Therefore, as label growth exceeds some linear function of problem complexity, the
performance of CANS using auto-assumptions becomes increasingly superior to that
of a standard ATMS .

We are experimenting with an assortment of criteria for when to auto-assume,
based on the particular N, A, C and E of a given problem. For now, we have
found a simple constant threshold function that avoids performing cross-products
of size greater than about 50 to be sufficient for performance superior to a standard
ATMS for many problems. More sophisticated criteria could be based on some
limited look-ahead into the justification structure defined by C, to avoid making
overly-conservative auto-assumptions .

6

	

Efficiency Issues

1 5

The actual ATMMS implementation allows many more trade-offs and efficiencies than
have been discussed in the previous sections . For example, label propagation need
not stop at all justified assumptions - such blockings can be limited to just auto-
assumptions. Blocking label propagations only at auto-assumptions allows the max-
imal label compilation which still avoids label explosions . However, we have found
that CATMS's efficient techniques for expanding environments often make blocking
label propagation at all assumptions perform better .

Resolving that trade-off, as with most CATMS trade-offs, depends on the nature
of the queries . When most queries involve a small set of environments and occur
after most justifications have been asserted, the sum cost of environment expansion
will typically be quite low, due to the efficient use of time-stamps discussed in Sec-



tion 4 .5 . However, as the number of unique query environments increases, the sum

cost of all environment expansions increases. There will usually be some number

of unique query environments for which standard ATMS label compilation would

lead to overall performance superior to using some compressed labels . However, our

experience indicates that for many problems that threshold is much higher than the

number of unique query environments that are considered in practice .

One typical way in which a large number of unique query environments may be

considered is during ATMS interpretation construction. Interpretation construc-

tion involves finding the maximal set of consistent interpretation environments

(i.e ., interpretations), each consisting of one assumption from each given choice

set. For example, for choice sets ((Ai,A2),(As,A4,As,As),(A7)) and minimal no-

goods {A1 }, {A2As}, and {A2A4A7}, the consistent interpretations are: {A2A3A7}
and {A2A6A7} . A standard technique for efficient interpretation construction is to

extend an interpretation of the first K- 1 choice sets by an assumption of the Kth

choice set. Each resulting environment is itself extended unless it is inconsistent or

it contains an assumption from each choice set. Thus, for N choice sets, all of size

M, interpretation construction may need to consider as many as O(MN) unique

query environments .
CATMS reduces the cost of expanding such query environments during interpre-

tation construction by providing an efficient way of expanding a new environment

E which is known to be a union of two already-expanded environments E; and E;.

This involves starting with set S = Closure(E;) U Closure(Ej) for the expansion

lattice search described in Section 4.2 . Furthermore, that search starts at only

the single-assumption environments corresponding to the assumptions of either S

- Closure(E;) or S - Closure(Ej), whichever is smaller. In the case of expanding a

query environment generated during interpretation construction, that means that

typically the only seed environment of the search will be the one corresponding to

the assumption used to extend the previous partial interpretation .

To reduce the cost of expanding an environment E not known to be union of

two expanded environments, CATMS uses a technique that we call leg search. For

each environment in the expansion lattice, one of its links down to a subsuming

environment is designated to be its leg. In this case, the set S of the expansion



lattice search described in Section 4 .2 is considered to be the current Closure(E) and

the seeds are the single-assumption environments corresponding to the assumptions
of S. Initially, CATMS considers only those environments which can be reached via

the leg links alone. If S grows during that first pass, then search continues in the

normal way by considering the non-leg links as well .
To further reduce the cost of expansions, we are experimenting with several

other trade-offs . For example, one can introduce phantom environments in the

expansion lattice which do not minimally imply any assumptions but which do
increase the hierarchy of the lattice . Using such phantoms can reduce the number

of subsumption tests required to realize when many environments above the current
one in the lattice are not subsumed by the current assumption closure . In the

extreme, such phantoms can be used to maintain the lattice equivalent of a full
discrimination tree .

7 Examples

Because our CATMS implementation provides all the functionality of a standard
ATMS, problem solvers can use it in place of de Kleer's ATMS program. To evaluate

the utility of CATMS's use of compressed labels, we have run a variety of benchmarks

comparing CATMS versus ATMS on real, complex problems . In particular, we fiave
extensively tested CATMS with the Qualitative Process Engine (QPE) [9], which was

originally designed to use ATMS . The results vary with the specific QPE domain and

scenario being modelled . For small examples the differences are minor, but as the

size and complexity of the examples increases, the advantages of CATMS become
clear .

Table 1 compares the results of running QPE on two different scenarios: the famil-
iar two container liquid flow and a linkage example from the domain of mechanisms.

In fact, this latter example provided the original inspiration for developing CATMS.

Although CATMS's superior performance in these examples is sufficient to suggest

the leverage it can provide, these results are somewhat misleading because CATMS

does not yet employ many of the standard ATMS efficiency hacks that ATMS does .

We expect that using de Kleer's extremely fast (but complex) bit-vector, hash table,

1 7



8 Conclusions

Table 1 : Example QPE results using CATMS versus ATMS

and label weave operations could help significantly .

These examples demonstrate the following (typical) results : 1) average CATMS

label sizes are much smaller, 2) CATMS considers fewer unique environments and

nogoods, and 3) CATMS may take slightly longer at query time but the speedup at

justification time leads to overall better performance.

CATMS provides an efficient hybrid of the compiled approach taken by a traditional

ATMS and the interpreted approach noted in [16] . It does so by generalizing the

standard ATMS notion of subsumption to allow label propagation to stop at justified

assumptions. To use the resulting compressed labels for queries, CATMS provides a

means for computing the closure of assumptions implied by a query environment.

Furthermore, CATMS uses its ability to maintain compressed labels to prevent the

label explosion problem inherent in a fully compiled ATMS approach . CATMS avoids

label explosions by auto-assuming a node if its label is too large to allow a tractable

cross-product during label propagation . Thus, CATMS transforms the problem of

label explosion to one of deciding when a node should be auto-assumed .

18

QPE Example

Two Containers Mechanical Linkage

CATMS ATMS CATMS ATMS

Nodes 1049 1050 1585 1586

Assumptions 18 16 26 24

Environments 135 188 810 4270

in labels 58 50 239 1130

nogoods 52 85 198 1514

minimal 36 66 90 402

Avg . label size 1.15 1 .73 1.46 9.91

QPE time (secs) 33 .5 36.4 244.4 479.9



The label compression of ATMMS is similar to the partitioned approach of PATMS

[2], in that both allow a single assumption to take the place of an entire label .

However, we believe that CATMS provides a more general solution to the problem of

label explosions.
The following issues seem especially worthy of future exploration: 1) better cri-

teria for auto-assuming (perhaps based on limited look-ahead through the justifi-

cation structure) ; 2) allowing assumptions to selectively block some environments

while propagating others, during label propagation; 3) when using the dynamic

lattice (based on c-subsumption) is worth its cost to maintain (using an explicit

lattice based on standard ATMS subsumption is discussed in [4,3]) ; and 4) the

impact of CATMS on standard ATMS techniques for focusing [10], backtracking [8],

parallelizing [17,6], and others [14,11,13] .

Finally, some problem solvers (such as GDE [7]) actually require, for their own

use, the standard ATMS labels . To support such reasoning, CATMS would have to

either explode a compressed label into its standard ATMS form, or provide a means

of protecting particular labels from ever becoming compressed.' Of course, for such

tasks, as well as when the number of queries is exponential or ATMS interpretation

construction is performed, ATMMS cannot prevent overall exponential complexity.

What it can do, however, is perform enough label compilation so that any tractable

reasoning over multiple contexts can be performed efficiently.
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