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ABSTRACT

The causal ordering procedure of Iwasaki and Simon [5,6] provides a means for uncovering
causal dependencies among variables constrained by a set of mathematical equations. This
paper examines the procedure from a qualitative modeling viewpoint and addresses one
of its limitations: contezt sensitivity. Causal dependencies predicted by the procedure
may change depending on the context or scenario in which the underlying physical system
operates. This prevents the qualitative modeler from using causal ordering to determine,
a priori, a single causal interpretation of equations describing some phenomenon. We
show that in some cases it is possible to find clusters of equations that possess causal
stability. That is, their causal dependencies are the same in all scenarios consistent with the
equations’ modeling viewpoint. These unidirectional equations help the qualitative modeler
by providing a stable, unambiguous causal interpretation. To identify such equations
we define conditions sufficient to guarantee causal stability. In addition, we show that
unidirectional equation sets are causally independent of equations outside their set. Thus,
they add compositionality to the causal modeling task. Lastly, we demonstrate our ideas
by uncovering the causal dependencies of Hooke’s law, Gauss’s law for electricity, and
Bernoulli’s equation.



1 INTRODUCTION

The notion of cause and effect plays a major role in human commonsense reasoning. Since
causation explains how systems achieve their behavior, it has been widely adopted as a
means of understanding the events of everyday life. In science and philosophy however,
causation remains a controversial topic. At one extreme, proponents of the causality doc-
trine claim that all connections between events in the world are ultimately causal. In other
words, nature can be described as a complex graph of cause and effect links [1]. Others
view causation as a myth, occuring mostly in the primitive stages of a science. Bertrand
Russell declared that “...in a sufficiently advanced science, the word ‘cause’ will not occur
in any statement of invariable laws” [7]. Whether or not nature possesses true cause and
effect relationships, these notions pervade our explanations of natural phenomena. Since
a major goal of qualitative physics [8] is computer modeling of commonsense reasoning
about natural phenomena, it should include some notion of cause.

There are widely varying accounts of causation among different theories of qualitative
physics. A key distinction among them is whether or not connections between quantities
are directed. In de Kleer and Brown’s confluence theory [2], equations represent undirected
constraints between quantities. Perturbations among any n — 1 of the quantities in an
equation cause the nth quantity to change. de Kleer and Brown’s approach is not causal in
the classical sense since it lacks the essential ingredient of unidsirectionality. In their theory,
causation can flow through an equation in many ways. In contrast, Forbus’ qualitative
process (QP) theory [3]| asserts that connections between quantities have a fixed causal
direction. Quantities interact with each other through direct and indirect influences. A
quantity is directly influenced if and only if it is acted upon by a process. Examples of
processes are motion, acceleration, boiling and heat flow. When a motion process acts on
an object, it directly influences its position and causes that position to change over time. A
quantity is indirectly influenced when it is a function of another quantity that is changing.
For example, when a force f acts on a particle of mass m, the particle’s acceleration
is indirectly influenced by the applied force. Changes in applied force instantly cause
acceleration to change, but not vice versa. In the language of QP theory, acceleration is
qualitatively proportional to applied force.

Unfortunately, the directed connectives of QP theory make it difficult for the qualitative
modeler to represent certain laws of nature. The model builder is forced to decide a priori
which way causation flows in all circumstances. But many laws take the form of equations
which have no obvious causal interpretation. Consider for example Bernoulli’s equation
for liquid flow along a fixed path: P+ % pv+pgy = ¢, where P is pressure, p is fluid density,
v is velocity, g is the gravitational acceleration constant, y is height, and ¢ is a constant.
Is pressure causally dependent on velocity, or vice versa? How does the modeler uncover
asymmetries in the interactions, and are the asymmetries valid in all circumstances? The
causal ordering procedure presented by Iwasaki and Simon [5,6] addresses part of this



problem by attempting to extract causation directly from mathematical equations. As we
shall see though, the procedure is contezt sensitive. The predicted causal dependencies
of an equation may change depending on the context or scenario in which the underlying
physical system operates. In other words, the model builder cannot be certain that the
causal ordering of a system’s equations remains unchanged when that system is placed
in different environments. However, we will show that in certain cases, it is possible to
find clusters of unidirectional equations whose causal ordering is stable across all scenarios
consistent with the equations’ modeling viewpoint. Unidirectional equations ease the mod-
eler’s burden in two ways. First, they have an unambiguous causal interpretation. Second,
as we will show, they add compositionality to the difficult task of causal modeling.

2 CAUSAL ORDERING

The causal ordering procedure begins with a mathematical model of a phenomenon in the
form of n independent equations, f-.(i') = ¢, in n unknowns, £ = {zi,...,Z.}. In order for
the procedure to yield causal relations that are intuitively plausible, each equation should
be structural. That is, each equation should reflect a mechanism operating at some level of
detail in the phenomenon. Unfortunately, there is no simple way to know if an equation is
structural. One useful heuristic is that a structural equation’s variables should represent
things which interact locally through processes. For example, Hooke’s law, f = —kz,
relating the internal force f of a spring and its displacement z, is structural. The equation
is a rough reflection of the interactions occuring between the spring’s atomic bond forces
and deformation of its crystalline structure.

We illustrate the causal ordering procedure by applying it to the bathtub example shown
in Figure 1a (adapted from [6]). Water enters the bathtub at a mass flow rate of m,; and
leaves at a rate of m,,. P designates water pressure at the bottom of the bathtub and M
is the total mass of water in the bathtub. Assuming steady state behavior!, the system is
modeled by the equations of Figure 1b. The equations have the following interpretation
(the ¢;’s are constants): (1) P = ¢; M, pressure is proportional to the mass of water in
the tub; (2) m,, = c2P, the rate of flow out of the tub is proportional to pressure; (3)
m,, = m,;, the rates of flow into and out of the tub are equal at steady state; (4) m,; = ¢,
the input rate of flow is ezogenous. That is, the input rate is controlled by factors outside
the bathtub system.

The procedure assigns causal dependencies between variables by propagation through a
structural equation matrix (Figure 1c). Each matrix element is either zero (blank) or
marked with a “1”. Each row has one or more marks. A mark in row ¢ column j means
that variable z; appears in equation 7. In order for the procedure to work, the matrix
must be expressible in upper triangular form with 1’s along the diagonal. The matrix fails

1A system operates at steady state when its properties at any point in space are constant over time.
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Figure 1: Steady State Bathtub Example

to meet this condition when the equations are either underconstrained or overconstrained.
For example, in phenomena containing feedback, the structural equation matrix cannot be
expressed in upper triangular form—one or more terms below the diagonal is marked and
the equations are underconstrained. If the equations are overconstrained, some diagonals
are zero and the causal dependencies may be inconsistent.

By definition, one or more rows of an upper triangular matrix must contain a single
mark. A row containing a single mark in column j represents an exogenous variable
zj. Exogenous variables are the causal inputs to the phenomenon and are unaffected or
negligibly affected by it. It is from these variables that causation propagates to other
variables. In this paper, exogenous variables such as m,; in Figure 1c, are circled in their
structural equation matrices. The final causal structure or influence diagram is shown in
Figure 1d. The diagram shows that M is causally dependent on P, which depends on
m,,, which in turn depends on m,;. If the input flow rate is increased, the output flow
rate must increase after reaching steady state. In this steady state model, pressure can be
viewed as a measure of the bathtub’s resistance to flow. If the flow rate of water through
the bathtub is increased, pressure increases. Less intuitively, if the pressure is increased,
mass must accumulate?.

In (6], Iwasaki extends the procedure to handle first order, ordinary differential equations.
The procedure requires that differential equations be translated into “canonical form”.
Each differential equation must contain only one time derivative, as in z; = f;(Z), and
each derivative must appear in only one equation. A variable whose derivative appears in
an equation is said to be causally dependent on the other variables in the equation. For
those variables which do not appear as derivatives in any equations, causal dependencies
are found, as before, by propagation through a structural equation matrix. The matrix is

2This causal dependency seems unintuitive because bathtubs are not ordinarily viewed as steady state
systems. If we study analogous phenomena which are usually viewed as steady state, their causal orderings
seem more natural. Consider the phenomenon of steady current flow through a resistor in parallel with a
capacitor. Current flow i corresponds to the two bathtub flow rates. Voltage drop and capacitor charge
accumulation correspond to pressure and water mass, respectively. As more voltage is applied to the circuit,
charge accumulates on the capacitor plate.
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Figure 2: Dynamic Bathtub Model

formed by “equilibrating” the differential equations, that is, by replacing each differential
equation z; = f;(Z) with the constant equation z; = ¢;. These newly introduced constants
act as “seeds” or starting points for causal propagation to other variables.

An example will help clarify the extended procedure. Consider again the bathtub system,

but viewed as a dynamic system with transient variations in the amount of water (Figure 2).

Equation (3a) models the fact that the rate of accumulation of water M is equal to the
net flow rate of water into the bathtub. Thus, the mass of water is said to be causally
dependent on the flow rates into and out of the bathtub, and this is reflected in the causal
structure diagram of Figure 2d. The edges marked with an ¢ are causal integration links
between a derivative of a variable and the variable itself. In QP theory terms, the variable
M is directly influenced by the mass flow processes.

Figure 2b shows the equilibrated version of the equations. Equation (3a): M = My i— My ,,
is replaced by the constant equation (3b): M = ¢;. The intuition behind constant equation
(3b) is that the directly influenced quantity M changes so slowly in comparison to other
variables that it can be regarded as constant. M is influenced by an integration link and
integration requires finite time to cause a finite change. In contrast, the algebraic equations
represent mechanisms that are instantaneous in comparison. Figure 2c shows the resulting
structural equation matrix. Notice that the differential equation provided a seed, M, at
which propagation through the matrix could begin. This “quasi-exogenous” variable is
circled with a dotted line in Figure 2c. Notice also that exogenous variable m,; was not
needed for causal propagation through the equilibrated equations.
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Figure 3: New Steady State Scenario Changes Causal Dependencies

3 CAUSAL STABILITY

In general, the causal ordering procedure requires knowing which variables are exogenous.
That is, it requires knowing which variables are affected by factors outside of the system
being modeled. Since placing a system in different situations changes the interactions
between it and its surroundings, the set of variables that are exogenous may change from
situation to situation. As a result, the causal ordering procedure is unstable or context
sensitive. Causal dependencies uncovered by the procedure for a given equation may change
when the equation is applied to a slightly different scenario. In this section we illustrate
causal instability with an example and show how, in some cases, it can be avoided.

Consider the bathtub system operating at steady state. We will show that equation (3):
m,, = m,;, is context sensitive. Its causal dependency flips depending on the circum-
stances. In the simple scenario of Figure 1a, the output flow rate m,, was shown to be
causally dependent on the input flow rate m,;. Next consider the steady state bathtub in
the new situation of Figure 3a. The bathtub drain has been attached to a pump which is
externally controlled. The output flow rate m, , has become exogenous. The input stream
has been attached to a control valve which varies the input flow rate in an attempt to main-
tain constant pressure and hence a constant amount of water in the bathtub. The input
flow rate is thus no longer independent of the system and cannot be treated as exogeneous.
Equations (1) and (3) of the original, simple situation (Figure 1b) also apply in this new
scenario. However, because the exogenous variables have changed, causal ordering yields
a new dependency for equation (3). Compare the causal influence diagrams of Figures 1d
and 3d. In the new situation, the causal link between input and output flow rates has
been reversed. Input flow rate m,; is now causally dependent on m,,. Unfortunately for
the qualitative modeler, the direction of causal flow in equation (3): m,, = m,;, can’t be

known beforehand.

The causal instability of a set of equations is best understood in terms of its underlying
modeling viewpoint and scenario space. A modeling viewpoint is the set of decisions made
by the modeler when conceptualizing the phenomenon. This includes decisions about on-



tology (eg., what individuals and processes exist), spatio-temporal grain size, idealizations,
perspective, and operating assumptions. A modeling viewpoint is a necessary prerequisite
for formulating a mathematical model. In the steady state bathtub examples, the model-
ing viewpoint includes the ontological choice of a contained liquid and the idealization of
steady state behavior. The dynamic bathtub modeling viewpoint extends the recognized
behaviors to include transient variations in the amount of water.

An equation set’s scenario space is the set of possible situations that are consistent with
the equations, subject to the underlying modeling viewpoint. For example, the scenario
space of equations (1): P = ¢; M, and (3): m,, = m,;, includes both situations shown in
Figures 1a and 3a. It does not include situations where, for example, boiling occurs in the
bathtub, since equation (3) would then imply that the mass of water M would decrease,
contradicting the assumed steady state behavior.

We have seen that equation (3)’s causal ordering varies depending on its situational context.
In other words, its causal ordering is unstable over its scenario space. This raises the
question of whether equations ever possess causal stability:

Definition 1 (Causal Stability) A set of algebraic equations at a particular modeling
viewpoint is causally stable if and only if its causal ordering is invariant with respect to
its scenario space. Such a set of equations is unidirectional with respect to the modeling
viewpoint.

The usefulness of this property is that it allows the qualitative modeler to assign an a priori
causal direction to algebraic equations without regard to the particulars of the situations
modeled. In QP theory, causally stable algebraic equations can be represented by unique
qualitative proportionalities which hold in any scenario that might be encountered.

To demonstrate causal stability, consider again the dynamic bathtub system. We argue
that equation (1): P = ¢;M, is unidirectional with respect to its underlying modeling
viewpoint. In this dynamic viewpoint we recognize that the bathtub may experience
transient variations in the mass of water. In QP theory terms, we have acknowledged the
possibility of assorted processes which directly influence mass M. This implies that mass
M is either constant® or quasi-exogenous. In other words, in all dynamic bathtub scenarios
M is a seed from which causation propagates to other variables. As shown in Figure 4b,
causation propagates from M to P in equation (1). Pressure P is causally dependent
on mass M, and this dependency must hold over equation (1)’s entire scenario space. If
equation (1)’s causal dependency ever changed, M would be an effect instead of a causal
input, thus contradicting the underlying modeling viewpoint. Therefore, equation (1) is
causally stable or unidirectional. This stable relation is shaded in the influence diagrams
of Figures 2d and 4c.

3Eg., the bathtub may be sealed shut.
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Figure 4: Causal Stability in the Dynamic Bathtub System

Equation (1)’s scenario space is large. It includes the simple situation of Figure 1la, the
process control situation of Figure 3a, situations where boiling occurs, and many others.
It does not include situations where, for example, the shape of the bathtub is changed* or
the bathtub is exposed to vacuum®. As long as we remain at the same modeling viewpoint,
pressure is causally dependent on mass regardless of the vagaries of the particular scenario.
This satisfies an intuitive sense that there is some basic mechanism operating between the
amount of liquid and the pressure at the bathtub bottom. The mechanism should have a
causal interpretation that is independent of whether the bathtub is attached to a pump,
boiling occurs, and so forth.

This example illustrates how the following causal stability conditions can be used to find
unidirectional equations:

Lemma 1 (Stability Conditions) If £ is a set of algebraic equations satisfying the two
conditions: (i) the subset of exogenous, quasi-exogenous, or constant variables in £ is
unchanged over its scenario space, and (i) the structural equation matrix of ¢ (including
its constant equations) is expressible in nxn upper triangular form, then £ is unidirectional
with respect to its modeling viewpoint.

This follows almost immediately from the definition of causal stability. Over £’s scenario
space, the structural equation matrix for the n equations is unchanged, thus guaranteeing
invariant causal dependencies.

When causally stable equations exist, they add compositionality to the causal modeling
task. In a complex scenario with many equations, unidirectional subsets have causal inter-
pretations that are independent of equations outside the subset. Causally stable equations
can be studied in isolation and used as building blocks in many scenarios. In the dynamic
bathtub example, equations (1) and (3b) are causally independent of other algebraic equa-
tions that may arise in various scenarios.

4This could change pressure P without changing M, contradicting equation (1).
51n a vacuum, liquids vaporize, contradicting the assumed existence of a contained liquid entity.
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Theorem 1 (Causal Independence) Let £ be a set of n unidirectional equations in
variables z. Let &' be a set of m equations, independent of £ and at the same modeling
viewpoint. If £ U &'s structural equation matrix is expressible in upper triangular form,
then the causal dependencies within Z are the same in both £ and £ U &£'.

To prove this, consider £ U £'s structural equation matrix. Without loss of generality, the
unidirectional equations £ can be grouped together in the matrix as shown in Figure 5.
The added equations &' must appear in matrix Regions I or II, or both. Equations in
Region I share none of the variables of £. Thus £’s variables, 7, are causally unaffected by
variables in Region I. Before considering Region II, note that for each row 1z, the diagonal
variable z; is either a causal seed or is causally dependent on variables z;,; > i. Equations
in Region II that share variables with £ provide a path for causal propagation from Z to
other variables lying along Region II's diagonal. Thus £’s variables may causally affect
variables in Region II, but not vice versa. Therefore, £ is causally independent of £’.

4 OTHER EXAMPLES

Unidirectional equations can be found in many branches of science. Three examples from
different domains are shown in Figures 6 through 8. The first example illustrates the stable
causal ordering of Hooke’s law: f = —kz, where f is the force exerted by the spring, z
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Figure 6: Causal Direction of Hooke’s Law
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is the displacement from rest length, and k is the spring constant. Our chosen modeling
viewpoint is standard in elementary physics. The spring is a homogenous object, subject
to smooth motion processes (expansion and compression)®, and is never stretched beyond
its elastic range. Over the space of scenarios consistent with this modeling viewpoint, the
displacement z is either constant” or directly influenced by motion processes. In other
words, z is always constant or quasi-exogenous. Hooke’s law plus a constant equation for
z form a 2 x 2 upper triangular structural equation matrix (Figure 6)%. Thus, by Lemma 1,
Hooke’s law is unidirectional with respect to this modeling viewpoint. The spring force f
is causally dependent on displacement z in every consistent scenario.

Figure 7 shows the stable causal ordering of Gauss’s law for electricity: ¢®r = g, where
® is the flux of the electric field through an arbitrary Gaussian surface enclosing an object
having net charge g and ¢y is the permittivity constant. Of the equations considered so far,
this one is unique in its near universal applicability. Every macroscopic object appears to
follow Gauss’s law for electricity. It is assumed that the mechanisms relating &z and g
act instantly in comparison to the rates at which these variables are affected by outside
influences®. Over the set of possible scenarios, the charge ¢ may be constant or may be
influenced by processes. For example, the charge on a capacitor’s plate may be influenced
by a flow of electrons. In other words, ¢ is always either constant or quasi-exogenous.
Gauss’s law plus a constant equation for ¢ form a 2 x 2 upper triangular structural equation
matrix (Figure 7). Thus, by Lemma 1, Gauss’s law is unidirectional. ®g is causally
dependent on ¢q. One way of interpreting this is that theories of electromagnetism offer no
means of influencing ®g except through the intermediary gq.

6This implies that moving springs either have mass or are always connected to a mass. Otherwise, a
spring could equilibrate instantly with an applied external force.

"For example, the spring may be held between two immovable objects.

8We can safely ignore k’s causal effects since it is always constant in this model.

91f this assumption was wrong, then the electric flux through two Gaussian surfaces that enclose an object
(of increasing charge) could be different depending on how close each surface was to the object.
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Figure 8: Causal Direction of Bernoulli’s Equation

Finally, Figure 8 reveals the stable causal ordering of Bernoulli’s equation for liquid flow
along a fixed path: P + 1pv + pgy = c10, where P is pressure, p is fluid density, v is
velocity, g is the gravitational acceleration constant, and y is height. The variables in this
equation represent properties of the fluid at arbitrary points along the path. This equation
is based on a highly constrained modeling viewpoint. The liquid flow is idealized to be
incompressible 1°, steady and nonviscous. The steady flow assumption rules out scenarios
where conditions at any location in the path vary over time. For example, the equation
cannot model the transient response of a fluid flow system subjected to increased inlet
pressure. Bernoulli’s equation also appears to be far from structural. It apparently does
not represent a distinct physical mechanism through which its variables interact directly. It
is not a basic principle, but is derivable from the fundamental laws of Newtonian mechanics.

Nevertheless, a stable causal ordering for Bernoulli’s equation exists. The equations of
Figure 8 illustrate this. The second equation, pAv = ¢;9, where A is cross sectional area, is
known as the continuity equation. It expresses the fact that, at steady flow, the rate of mass
flow through any cross sectional area is constant. The third equation, A = fy(z), where z
is position along the path, denotes the fact that the cross sectional area available for flow
is a function of position. Similarly, y = f2(z) says fluid height is also a function of position.
In other words, area and height reflect the geometry of the path. Over the scenario space,
the position z is influenced by a motion process. That is, z is always quasi-exogenous.
Since density p is always constant, its causal interactions can be ignored. In contrast,
the remaining variables are endogenous. That is, they are affected by variables within
the mathematical model. External influences on pressure, cross sectional area or height
are prohibited because this would violate the steady flow assumption!!. The equations of
Figure 8 form a 5 X 5 upper triangular structural equation matrix. Thus, by Lemma 1,
the equations are unidirectional. In Bernoulli’s equation, pressure is causally dependent
on velocity and height.

10In other words, p is constant.
11 For example, squeesing a garden hose increases its pressure at the point of contact, which causes transient
variations in flow.
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D DISCUSSION

The causal ordering procedure of Iwasaki and Simon is a useful tool for uncovering causal
dependencies which may be difficult to determine otherwise. Unfortunately, the proce-
dure is context sensitive. That is, the procedure is limited to “...creating models of
specific systems in specific modes of behavior”[4]. We have shown that by taking into
account underlying modeling viewpoints, it is possible to find clusters of equations whose
internal causal orderings are scenario independent. The processes in a domain define quasi-
exogenous variables which extend causal ordering’s range of validity. Processes impose a
direction of causation into the unidirectional equations and dictate which of their variables
are gateways for causal propagation. The stable causal ordering within these equations
satisfies an intuitive sense that causation should reflect the underlying physics, and should
not be due to particular configurations of the outside world. Unidirectional equations help
the qualitative modeler by providing independent, unambiguous causal components. These
components can be studied in isolation and used as building blocks in many scenarios. To
illustrate our ideas, we have uncovered the causal dependencies of Hooke’s law, Gauss’s
law for electricity, and Bernoulli’s equation using standard modeling viewpoints of their
underlying phenomena.

Acknowledgements: Many thanks to Ken Forbus, John Collins and Janice Skorstad for
insightful discussions. This work is supported by the Office of Naval Research.
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