
Artificial Intelligence 51 (1991) 95-143

	

95
Elsevier

Compositional modeling :
finding the right model for the
job

Brian Falkenhainer
System Sciences Laboratory, Xerox Palo Alto Research Center, 3333 Coyote Hill Road,
Palo Alto, CA 94304, USA

Kenneth D. Forbus
The Institutefor the Learning Sciences, Northwestern University, 1890 Maple Avenue,
Evanston, IL 60201, USA

Abstract

Falkenhainer, B. and K.D . Forbus, Compositional modeling: finding the right model for
the job, Artificial Intelligence 51 (1991) 95-143 .
To represent an engineer's knowledge will require domain theories that are orders of mag-
nitude larger than today's theories, describe phenomena at several levels of granularity,
and incorporate multiple perspectives . To build and use such theories effectively requires
strategies for organizing domain models and techniques for determining which subset
of knowledge to apply for a given task . This paper describes compositional modeling,
a technique that addresses these issues . Compositional modeling uses explicit modeling
assumptions to decompose domain knowledge into semi-independent model fragments,
each describing various aspects of objects and physical processes. We describe an im-
plemented algorithm for model composition. That is, given a general domain theory,
a structural description of a specific system, and a query about the system's behavior,
the algorithm composes a model which suffices to answer the query while minimizing
extraneous detail. We illustrate the utility of compositional modeling by outlining the
organization of a large-scale, multi-grain, multi-perspective model we have built for en-
gineering thermodynamics, and showing how the model composition algorithm can be
used to automatically select the appropriate knowledge to answer questions in a tutorial
setting .

1 . Introduction

Armed with a vast body of knowledge ranging from abstract rules of
thumb to precise numerical models, engineers guide and simplify their

0004-3702/91/$03 .50 © 1991-Elsevier Science Publishers B.V . All rights reserved

96 B. Falkenhainer, K.D. Forbus

analyses through selective attention, approximation, and abstraction . Dur-
ing the course of analysis, they often shift between different perspectives
and simplifying assumptions, seeking those views which make needed dis-
tinctions most apparent . Selecting the perspective and level of detail ap-
propriate for each task is crucial; analyzing every aspect of an artifact
using the most accurate models available is generally prohibitive, even
for simple artifacts . For example, answering questions about the through-
put of a pump in a power plant requires neither consideration of the
plant's turbines and condensers, nor use of a quantum mechanical model
of the pump's parts and fluid. Systems designed to automate reasoning
about the physical world must also exhibit this kind of focused behavior as
the complexity and diversity of their tasks grow . Access to multiple mod-
els and the ability to form the most appropriate model for each analysis
task is crucial for future intelligent computer-aided design, diagnosis, and
tutoring systems.
Accomplishing this requires a view of the modeling process that enables

systems to explicitly represent and reason about models' underlying assump-
tions and areas of applicability . In this paper, we describe compositional
modeling, a strategy for organizing and reasoning about models of physical
phenomena that addresses the following problem: given an artifact descrip-
tion and a query, produce a model of the artifact that is commensurate with
the needs of the query.
The first step in accomplishing this is access to multiple, alternative mod-

els that differ along a variety of dimensions . This raises the problem of how
to represent and organize such models . In the first part of this paper, we
address this problem by describing a language for expressing both models
of physical systems and the assumptions constraining their use. First, we
introduce explicit simplifying assumptions to state each model's underly-
ing commitments (e .g ., abstraction level, approximations, perspective, and
granularity) and the conditions under which they are appropriate. This
allows us to determine which models are suitable for a given query and
physical setting, and allows mutually inconsistent models to co-exist in the
same domain theory . Second, we show how to organize a domain theory
into semi-independent modular fragments from which a model of a given
scenario is composed . This allows fine-grained control for producing parsi-
monious answers to questions posed, enables adaptation to a vast space of
different scenarios, and allows each fragment to be reused in a variety of
settings .
Given a query to answer and a space of models in which to search,

composing a good model requires answering some additional difficult ques-
tions . Which collection of objects should be considered? At what level of
granularity? What phenomena are relevant? From what perspective should
the phenomena be described? What approximations are allowable? In the

propellers
.`---

Compositional modeling

	

97

Fig. 1 . High-level view of a shipboard steam-powered propulsion plant. The boiler assembly
takes in distilled water and fuel and produces superheated steam. The superheated steam enters
the turbine, which produces work (i .e ., driving the ship's propellers) . The steam exhausts from
the turbine to the condenser. There it is cooled by circulating sea water and condensed again

into liquid, at which point it can be pumped back to the boiler .

second part of this paper, we introduce an implemented technique for com-
posing an appropriate model in response to a given query. It is based on
the recognition that the terms in the query provide significant constraint
in identifying an appropriate set of modeling assumptions and associated
model fragments. For example, given a description of the steam propul-
sion plant shown in Fig. l, consider answering the question "how does an
increase in the furnace's fuel/air ratio affect the amount of steam flowing
in the superheater?" The question alone provides significant clues about
the model required : the furnace and superheater, steam flow through the
superheater, and the furnace's fuel/air ratio must all be considered. These
clues are elaborated to form a complete model by examining the domain
theory's dependencies and the artifact's topology .

Finally, composing a useful model is often not sufficient ; analysis must
often be scoped within an assumed range of behavior . First, parsimonious
models do not necessarily produce parsimonious answers. Second, the valid-
ity of a model's underlying approximations is generally limited to a restricted
range of behavior. We introduce a second class of modeling assumptions
called operating assumptions which describe the kinds of behavior relevant
to a task (e .g ., steady-state) . This delimits an approximation's validity and
can increase the efficiency of simulation by ruling out the consideration of
many possibilities.

98

1.1 . Theproblem

(1) model composition,

B. Falkenhainer, K.D . Forbus

We call the system or situation being modeled the .scenario, and its model
the scenario model. One way to construct a scenario model is to directly
create a model of that specific situation for a particular purpose. This is
a common approach in many engineering domains, where special-purpose
simulators are built by hand (typically a FORTRAN program) and the
model is encoded as part of the simulator. A change to either the device
structure or the task requirements generally requires rewriting the simulator .

Alternatively, we can take an indirect but more robust route-build first a
general-purpose domain theory that describes a class of related phenomena
or systems . A domain theory consists of a set of model fragments, each
describing some fundamental piece of the domain's physics, such as processes
(e.g ., liquid flows), devices (e .g ., transistors), and objects (e .g ., containers) .
Ideally, a scenario model can then be built by instantiating and composing
elements of the domain theory . This too is a common approach in both
AI and engineering. Device-centered approaches, both numeric (e.g ., SPICE
[27,36]) and qualitative [11,54], provide catalogs of devices that can be
wired together to build scenario models . Qualitative process theory [16]
organizes domain models around quantified descriptions of processes and
views that can be automatically instantiated to form scenario models . QPC
was recently developed to provide the same capability for QSiM [7] .

Neither approach suggests how to selectively focus attention on a scenario's
relevant subset of objects, parameters, and behaviors . Nor do they suggest
how alternate models of the same process or device should be organized
and automatically chosen for a given task . We define the modelformulation
problem as follows:

Given:
" a scenario description: this includes its physical structure S and a

(possibly empty) set of statements about its behavior (e.g ., initial
conditions, steady-state, range limits, etc.) ;

. a domain theory Th, consisting of a set of domain modelfragments
{m1 , . . . , MnI and a set of rules constraining their use;

" a query about the scenario's behavior .

Produce:
" the most useful, coherent scenario model M = {mini;, . . . , mkUk,I for
answering the query, where a,j is a binding from the variables in mi
to objects in S and each instance miai, is unique .

Our basic approach is illustrated in Fig. 2. In this approach, the modeling
process is a three-stage cycle :

Query:

	

How does an increase in the furnace's. fuel/air ratio
affect the amount ofsteam flowing in the superheater2

Paths
fluid resistance

discrete or continuous valves
heat resistance

Add other objects
that must be
considered

Examine unresolved
modeling decisions

Select model
from candidates

Analysis

Validation

Compositional modeling

	

99

violated
modeling assumptions

Fig. 2 . Overview of the model composition process.

(2) use and validation of the model, and
(3) model revision if necessary.

The domain theory consists of a set of fine-grained model fragments, each
explicitly conditioned on the physical setting to which it applies and the
modeling assumptions upon which it rests. Model composition begins by
matching the terms of the query to their referents in the domain theory,
which suggests an initial set of necessary model fragments. This set is
then elaborated using the domain's constraints and the scenario's topology .
The resulting scenario model should be most useful (simplest suitable to
intended use) and coherent (internally consistent) . These criteria are defined
further in Section 3. The model's validity may depend on assumptions about

100 B. Falkenhainer, KD. Forbus

unknown aspects of the system's behavior. Analysis using the model may
uncover inconsistencies between the system's assumed and derived behavior
which are then used to formulate a more appropriate model.
Model formulation is a difficult problem. Our solution operates under

several simplifying presuppositions, which we believe are reasonable for
many tasks, including tutoring and many aspects of design analysis and
verification (Section 6 discusses how these limitations might be overcome) .
First, we presume that decomposition of the scenario, if any, is in the form
of a strict, structural part-of hierarchy. This, for example, presumes that
the interesting boundaries of the scenario can be characterized by a single
structural decomposition.

Second, we presume that the needs of the analyst (human or mechanical)
can be expressed as a list of requisite modeling terms (generated by the
analyst or an interface procedure) . That is, the information needed to
derive an appropriate scenario model can be gleaned by matching the terms
in the query to the terms introduced by the models, without further analysis
of the query's implicit information needs.
Third, we presume that for each approximation encoded in a model,

there is a set of a priori constraints on the behavior that determine when
the approximation is valid. These constraints are monitored during anal-
ysis to ensure that the error introduced by each approximation is within
an acceptable range . For many domains, there is sufficient experience that
such limits are known. For example, Reynolds' number is often used in
fluid dynamics to delimit when a flow is laminar or turbulent (e.g., "under
normal conditions, transition occurs at Re ~ 2300 for pipes" [21]) . Other
examples include using the Mach number to delimit when a gas flow is
incompressible and the Biot modulus to delimit when a lumped-parameter
analysis of unsteady-state heat conduction is valid [21,52] . The fundamental
problem in removing this presumption is that reasoning about an approx-
imation's cost/accuracy tradeoffs can be as expensive as not making the
approximation . (See [1,42,51] for some initial work in this area.)
We do not presume that the model fragments use a particular form of

mathematics, save that it be "compositional" (Section 2.2) . Because one
of the original motivations behind qualitative physics was to capture the
tacit knowledge behind the use of physical laws, the intellectual roots of our
work lies within that community. However, our approach is applicable to
quantitative, as well as qualitative representations for continuous systems.
In particular, we illustrate our techniques with two classes of examples :
ordinary differential equations and QP theory representations. 1
Even with these simplifications, our compositional modeling algorithm

I In this paper, we treat these cases separately . See

	

119,30,41,43,55 1

	

for work on the
important problem of integrating qualitative and quantitative representations .

Q: How does the furnace's fueVair ratio

affect the boiler's steam production?

A: level

2 . Compositional models

Compositional modeling

Q:

	

What affects the efficiency of the plant?

A: The efficiency of the plant is affected positively

by the work rate of the turbine (W). It is also affected

negatively by the energy input to the plant (Qin).

A: When the fuel/air ratio is below peak efficiency.

an increase in the fuel/air ratio causes art increase

in the boiler's heat rate . an increase in the boiler's

heat rate causes an increase in the amount of steam

in the boiler .

Q: The level in container 1 is initially 1.8 meters.

The level in container 2 is initially 0.8 meters .

Plot the behavior of the containers' levels .

t

Because the flow rate is high (Re >2300) .

we must assume turbulent flow through pipel .

I Qin
W

steam-plantl

Qout

cant cant

boiler

exhaust r-,, furnace J~C-.~factair

lot

Fig. 3 . Tutorial question answering about a shipboard steam propulsion plant. Here are some
answers generated by an implemented query system using the steam plant model . The questions
were formulated in a specialized query language . The explanations are automatically generated

by the program .

provides significant leverage . We have been able to analyze a hypothetical
steam propulsion plant (Fig . 1) using a large, multi-grain, multi-perspective
domain model of engineering thermodynamics . Using the compositional
modeling strategy, our system analyzes each query and automatically com-
putes an appropriate set of modeling assumptions. Some questions that can
be answered with the model currently are illustrated in Fig. 3. By focusing

attention, perspective, and granularity in response to the question posed,
each answer took only a few minutes to compute on a Symbolics XL400.

What are the characteristics of a good modeling framework? First, the

desire to adapt to a wide range of scenarios and tasks in a parsimonious

manner argues for finely-tuned control over the dimensions along which

a model can vary . Second, the desire to simplify knowledge acquisition,

maintenance, and reuse argues for the ability to succinctly state individual

10 2

modeling concepts, together with a description of when they apply, as
independently as possible . This argues for a fine-grained, modular approach
to modeling .

This observation is the heart of the compositional modeling strategy.
A domain theory consists of model fragments that can be assembled as
needed to form a scenario model under a particular set of modeling assump-
tions. These fragments need not correspond directly to complete devices or
processes ; to the extent that individual modeling decisions can be stated
independently (e.g., friction, compressibility, etc.), a finer level of decom-
position is possible . Of course, the modeling assumptions underlying the
model fragments are not always independent . Some assumptions only make
sense if others hold, while some sets of modeling assumptions conflict . But
as far as possible, the model fragments are conditioned on the minimal
set of antecedent assumptions, so that they will be as widely applicable as
possible .

This section describes how to organize a, domain theory using the com-
positional modeling strategy . It begins by defining the notion of model
fragment and describes a language for expressing domain models . Next,
we define what it means for a model to be compositional. Finally, we de-
scribe techniques for organizing modeling assumptions. Examples from the
thermodynamics model are used throughout for illustration .

2.1 . Conditionalized model fragments

B. Fatkenhainer, K.D. Forbus

A set of equations in isolation does not constitute a model, for it implicitly
corresponds to some physical setting, a set of assumptions and approxima-
tions, and some relevance criteria . To automate model formulation and
facilitate model reuse, this context must be made explicit . Therefore, we
define a model fragment m to be a quadruple (I, A, O, R), where

. I is a set of conditions defining the structural configuration of indi-
viduals to which the model applies (e.g., two containers connected
by a pipe) .

. A is a (possibly empty) set of assumptions concerning the model
fragment's relevance to questions of interest (e.g ., consider the flow
through pipe pi) and stating its underlying abstractions and approx-
imations (e.g., frictionless flow) .

o O is a (possibly empty) set of operating conditions delimiting the
model's behavioral scope. For example, a transistor has several op-
erating modes, each delimited by ranges on parameter values (e.g.,
VcE > 0.7) and characterized by a different device model. O includes
inequalities between the individuals' parameters and constants (e.g.,
pressure(cani) > pressure(can2)), conditions on the activity of other

model fragments (e.g., active (heat-flow,pi0)), and operating assump-
tions (e.g., steady-state) .
R is the set of relations imposed by the model fragment . It con-
tains assertions about the individuals in I and constraints on their
parameters . These constraints may be either qualitative (e.g., qual-
itative proportionalities) or quantitative (e.g ., ordinary differential
equations) .

Logically, a model fragment can be encoded as the first-order implication

IAAAO->R.

Compositional modeling

	

103

We find the distinctions highlighted by the definition of model fragment
desirable for two reasons. First, it makes distinctions that people tend to ex-
press and we have found to be natural in writing a variety of domain theories
(i .e ., separating the notions of a configuration of objects, their behavior, and
the assumptions under which a model of these objects is applied) . Second,
these distinctions can be utilized to reduce the computational effort of the
model composition algorithm, as described in Section 3.
Our current implementation supports a simple modeling language that

contains four basic primitives . One is for organizing modeling assumptions
and is discussed in Section 2.3.3 . Second, ground atomic assertions are
made with the form assert! . Third, rules (defined by ==>) are used to
state domain rules, part-of and generalization hierarchies, and interactions
between modeling assumptions and domain facts. Fourth, domain model
fragments are defined using defModel, which is of the form

(defModel nameform
Individuals i-spec
Assumptions list-of-assumptions
OperatingConditions list-of-operating-conditions
Relations list-of--consequent-relations)

where nameform is an expression with variables which provides a term des-
ignating an instantiation of this model and i-spec is the same set of variables
with conditions on their potential bindings . z Two classes of mathematical
constraints are currently allowed in the relations field :

(1) QP theory constraints (i .e ., If, Qprop±, Q=, Correspondence) or

ZThis generalizes the process and view primitives introduced in QP theory . In particular, a
defModel's Individuals field corresponds to the union of QP's individuals and preconditions .
In [l4], we placed modeling assumptions in QP's individuals specification, which was awkward
and less efficient . The t)peratingConditions field is a generalization of QP's quantity conditions
which allows symbolic statements about behavior (e .g ., steady-state) in addition to the prior
inequalities and process activation statements . A defModel's Relations are the union of QP
relations and influences .

104

	

B. Falkenhainer, K.D. Forhus

(defModel (THERMAL-LIQUID ?CL)
Individuals ((?cl :conditions (Contained-liquid ?cl)))
Assumptions ((CONSIDER (thermal-properties ?cl)))
Relations ((Qprop- (viscosity ?cl) (temperature ?cl :absolute))

(not (greater-than (A (temperature ?cl :absolute))
(A (temperature (boil ?cl) :absolute))))))

(defModel (CONTAINED-LIQUID-GEOMETRY ?CL)
Individuals ((?can :conditions (Fluid-container ?can))

(?cl :conditions (Contained-liquid ?cl)
(container-of ?cl ?can)
(substance-of ?cl ?sub)))

Assumptions ((CONSIDER (Geometric-Properties ?can)))
Relations ((Quantity (level ?cl))

(_ (level ?cl) (/ (* 4 (mass ?cl))
(* (density ?sub) PI (expt (diameter

(_ (pressure (bottom ?can) :absolute) (* (level ?cl)
(density ?sub) G))))

Fig. 4 . Domain model fragments defining a few properties of liquids.

?can) 2))))

(2) numeric constraints (i .e ., algebraic and ordinary differential equa-
tions) .

An important element of the relations field is the declaration of quantities,
which represent continuous parameters of the thing(s) being modeled. The
predicate Quantity is used to state that an object has a quantity of a
particular type, as in

Quantity(diameter(canl)) .

All quantities used in an equation must be defined at the time the equation
is stated to hold . Quantity declarations are important because they are the
major link for matching models to task requirements . It is generally easy to
extract from a query a set of quantities that must be considered for a task
to even make sense. And since what quantities are defined depends on what
modeling assumptions are in force, this information usually provides the
bulk of the suggestions about what modeling assumptions are appropriate .
As an example, Fig. 4 shows two different aspects of a model of liquids .

The first model fragment describes the constraints on the parameters of
a contained liquid (i .e ., a piece of stuff individuated by being in a con-
tainer) when thermal properties are being considered. The second model
fragment describes quantitative relationships that hold when the container's
geometric properties are being considered . Importantly, neither statement
alone defines "the model" of liquids . Nor in fact do they collectively : Other
defModel statements provide different aspects of the model of liquids, such
as defining the properties under which contained liquids exist, and stating

2.2 . Composable models

Compositional modeling

	

105

that when considering the thermal properties of an object it then has the
continuous properties heat and temperature. This fine-grained decomposi-
tion of different aspects of a model is a hallmark of compositional modeling.
Each model fragment only needs to specify the conditions under which it
should be used . Model fragments do not need to (and indeed, should not)
attempt to enumerate inappropriate conditions nor allowable combinations
of elementary models. This modularity simplifies domain model construc-
tion, improves reusability, and enables the system to respond to the specific
needs of each task .

A central component of a model fragment is a set of equations specifying
constraints between quantities . To be composable, the mathematical repre-
sentation and inference procedures should support a small set of general
modeling operations .

Parameter substitution
Modularity and reusability are supported by stating physical laws in their

most general form, using functional parameters when possible . For example,
the frictional component of fluid flow (head loss) is computed very dif-
ferently depending on whether the flow is laminar or turbulent. With head
loss as a separate parameter (hl), the general form of Bernoulli's fluid flow
equation can be stated once and used in different contexts . 3

Shared individuals and parameters
Composing a model of an artifact from models of its components requires

a way for the component models to interact . This is typically done through
shared parameters and individuals. For example, lumped-element models of
electrical circuit components typically communicate via shared nodes (e.g .,
the voltage on a node in the circuit) .
These two are commonplace modeling operations . An additional, powerful

source of composability comes from the ability to partially specify equations.

Composable functions
Ideally, elementary models do not require knowledge of the composite

environments to which they may be applied (e.g. "no function in structure"
[I I]) . However, some equations cannot be stated in a computable form

TThis does not imply that actual computation must be performed in this modular manner.

A separate compilation step after model formulation may be used to increase computational
efficiency .

106

	

!3. Falkenhalner, K.D . Forbus

until a fixed artifact and a fixed set of phenomena are identified . For ex-
ample, the law "the change in a container's fluid is equal to the sum of all
the flows into and out of the container" cannot be stated as a well-formed
equation until all flows into and out of the container are known. Still, we
would like to state how the flow of liquid out a container's portal affects
the amount of liquid in the container once, as a generally applicable law,
independently of what flows may be occurring in a specific instance . 4 To
allow explicit specification of such interactions, we assume a general class
of partial constraints called composable functions. These are n-ary functions
of arbitrary n (e.g., summation) that are declared piecemeal through mem-
bership assertions . Formulating the aggregate function (and fixing the value
of n) in a specific context requires the closed-world assumption [40] that all
of its elements are known. This can occur once the artifact and phenomena
to be analyzed are identified .
We currently use the two composable functions introduced by QP theory

[16] which are together known as influences. If Q, influences Q2, then a
change in Q, will cause a change in Q2, all else being equal. The net change
of an influenced quantity can be computed once all of its influences are
known. If a quantity is directly influenced, its derivative equals the sum of all
of the direct influences on it . I+ (QO,Q,) states that Q, directly influences
Qo positively ; I-(QO,Q,) states that Q, directly influences Qo negatively :

dV O -
ti t

	

E

	

Qn

	

(211
P11

	

n1l - (QO.Qn)

For example, the flow from container c, out portal p, can be stated as

I-(amount(fluid,c,),flow-rate(p,)) .

Quasi-static assumptions like "the flow in equals the flow out" can be stated
separately and explicitly (e.g., d/dt amount (fluid,cI) = o) .
The indirect influence (also called qualitative proportionality) Qprop +

(QO,Q,) states a much weaker, qualitative relationship . "Qo is qualitatively
proportional to Qt" means that there exists a function f such that Qo =
f (. . . , Q,_.) and Qo is increasing monotonic in its dependence on Q1 .

2.3 . Modeling assumptions

The specification of each domain model fragment includes the modeling
assumptions under which it holds (unless it is universally relevant) . This
provides control over its instantiation and use so that only the relevant

4 In device-centered models [I 1], such relationships are not explicit in the representation,
but rather are computed once all shared nodes have been identified (i .e ., the sum into and out
of the node is 0) . This makes a quasi-static assumption that is also left implicit .

Compositional modeling

	

107

aspects of a situation are examined . Models whose modeling assumptions
contradict knowledge of the scenario or the current focus of attention end
up not even being instantiated .
We state modeling assumptions as predicates over specific phenomena

or systems, not globally over an entire scenario, so that intricacy or sim-
plification can be introduced selectively where appropriate . For example,
we would like to model some flows in a steam plant as laminar and some
as turbulent, some containers as having finite capacity and some as being
infinite, and some mechanical parts as rigid and some as elastic.
To support this, we assume the objects in the scenario are organized into

systems. A system is either a primitive object or a named collection of
constituent systems. For example, a container is a primitive object, and the
boiler assembly is not, since it consists of a furnace, boiler, superheater. The
relation Part-of holds when one system is part of another. For example,
the boiler is part ofthe boiler assembly . The Part-of relation is limited to a
system and its immediate subsystems (i.e ., it is not transitive) . The function
components maps from a system to its set of parts; if s, is a primitive object,
then components (s,) is the empty set . The transitive closure of Part-of is
expressed by the relation Sys-Contains ; system s, contains system s2 if either
s2 is a part of s, or s2 is a part of some system s3 which itself is contained
in s, . We currently assume that systems always form a strict hierarchy . Its
root is always a system called : scenario, which contains all objects in the
scenario .
Conceptually, modeling assumptions are divided into two categories :

simplifying assumptions (Section 2.3 .1) and operating assumptions (Sec-
tion 2.3 .2) . Organization and control of modeling assumptions are provided
by assumption classes and domain-specific constraints, which are discussed
in Section 2 .3 .3 .

2.3.1 . Simplifying assumptions
Simplifying assumptions make explicit a model fragment's underlying

approximations, perspectives, and granularity. They provide the majority of
the vocabulary for representing the problem solver's decisions about how to
model the scenario . We require all simplifying assumptions to take the form

CONSIDER(AsnType (system))

where AsnType is a predicate denoting the specific kind of assumption and
system. is the subject of the assumption . Thus

CONSIDER(static-friction(tower-of-cards32))

enjoins us to think about static friction when reasoning about tower-of-

cards32 .

108

	

B. Falkenhainer, K.D . Forbj4s

The collection of CONSIDER assumptions forms the groundwork for any
particular analysis . They are classified into three categories :

Ontology assumptions
The first, and perhaps most basic, task in formulating a model is selecting

the appropriate method of description . What coordinate system should be
used? For example, should the analysis be over time or position? What
should be the basic primitives of the analysis-control volumes, particles,
lumped elements, etc.? Several distinct varieties of ontologies are used in
traditional engineering. For example, Lagrangian methods of description
(such as particle and rigid-body dynamics) track identifiable elements of
mass [21,52] . On the other hand, Eulerian methods of description (such as
control volume analysis of fluids) track the properties of a flow at specific
points over time . Qualitative reasoning has also adopted both methods of
description in several forms.
To date, we have made use of four ontologies .

" The contained stuff ontology [16,24] is an Eulerian view used to
model static and dynamic fluids and their containers . It is most
similar to the fluid control volumes of classical thermodynamics.
Models using the contained stuff ontology are predicated on ontology
assumptions of the form

CONSIDER(fluid-cs (system)) .

" The energy flow ontology is used to analyze the flow of energy (both
heat and work) through a system (cf., energy flow diagrams) .

" The molecular collection ontology [6] is a Lagrangian view that
follows the movement of a localized unit of fluid during flow .

" Finally, mechanics is used for the dynamic analysis of mechanisms .

Unlike the other simplifying assumptions, in our approach ontological
commitments are fundamental to each analysis and must be global . Thus,
any ontological assumptions that are made, and there must be at least one,
are applied uniformly to all systems and phenomena under consideration
(i .e ., they all apply to the system :scenario) . When consistent, multiple
ontological assumptions may hold . For example, an energy flow analysis
often occurs with a mass flow analysis . On the other hand, Eulerian and
Lagrangian models of the same phenomenon are always mutually exclusive
due to their use of different coordinate systems . However, an analysis in one
ontology may make use of results gleaned from a previous analysis using
another ontology [6,31,39] .

Compositional modeling

	

109

Grain assumptions
Crucial to analyzing large systems is the fact that not all objects in the

system need be considered for every analysis task . First, objects outside the
current area of concern can simply be ignored. Second, abstractions allow
collections of objects to be considered as a single, aggregate entity . A fluid
path, for example, can consist of dozens of valves . Yet when reasoning about
the system one typically speaks of this path as an entity . Control over which
objects to explicitly consider in an analysis is organized around assumptions
recognizing their existence, which we call grain assumptions.
We use the same CONSIDER operator to state grain assumptions. Their

syntax is

CONSIDER(exists (system)) .

When it holds, the existence of system is considered and it is placed within
the scope of the current analysis . This means some model for it must be
included in any coherent scenario model. For example,

CONSIDER(exists(boiler))

forces a model of the boiler to be included in an analysis, rather than
focusing on some subsystem of it (such as the steam tubes) or treating the
entire boiler assembly as a black box. Constraints governing the use of grain
assumptions, particularly how considering some objects requires considering
others, are described in Section 3.2 .

Approximations and abstractions
Approximations are used to construct simplified and (typically) easier

to use models at the cost of reducing accuracy . Their utility is in part a
function of the scenario's operating conditions, the accuracy requirements
of the task, and the computational benefits they afford . Approximations
appear in a variety of forms. Some correspond to ignoring influences that
are (presumably) insignificant in the scenario under consideration. For
example, the inviscid flow approximation assumes that the fluid viscosity
is zero and thus ignores dissipative effects. While this is fine for many
analyses of fluid systems, the assumption is only valid under a limited

set of conditions (e.g ., low velocity flows) . Other approximations of this
form include incompressible fluids, inelastic objects, and frictionless motion .
Some approximations represent simplifying assumptions about the structure
of the environment. For example, our fluid models typically assume level
fluid paths . Additionally, a fuel tank can be modeled as an infinite source
or as a container with finite capacity limits .
Abstractions reduce the complexity of the modeling language, usually at the

cost of reducing the information available (e .g ., detail or granularity) and

increasing ambiguity, but without reducing accuracy . For example, a fluid

110

	

B. F'alkenhainer, K.D. Forbus

valve can be modeled as either a discrete, on/off switch or as a continuous,
variable resistance . Additionally, geometry can often be compiled out of
a description, as when reducing a three-dimensional configuration to an
equivalent one-dimensional description.
Some simplifying assumptions are difficult to categorize, or have both

abstraction and approximation aspects that are difficult to separate . Although
the distinction is in principle an important one (see [51] for a good start),
our techniques do not require these distinctions . Success depends on the
modeler's ability to state within the domain theory when a simplifying
assumption is or is not appropriate .
Approximations and abstractions are again represented using CONSIDER.

Unlike ontological assumptions and grain assumptions, the constraints on
approximation and abstraction assumptions are very domain-specific . For
example, one would not wish to uniformly consider all containers as finite
or infinite, since one may not be worried about capacity limitations in parts
of the system not under direct consideration. Domain-specific constraints
between these assumptions must be explicitly encoded either as rules in
the domain model or as parts of domain model fragments themselves . For
example, in our models it does not make sense to consider the portals that
connect a container to a fluid path unless one is willing to consider the
geometric properties of the container . The reason is that the only thing
which distinguishes a portal is its height, and if geometric properties are
ignored, reasoning about portals provides no leverage . This constraint is
enforced by making the consideration of portals imply the consideration of
geometric properties .

2.3.2. Operating assumptions
Engineers constantly use default assumptions about behavior to manage

complexity . For example, when trying to figure out how a system containing
a heat exchanger works, engineers tend to assume that the fluid in the hot leg
is hotter than the fluid in the cold leg. If the system is operating as intended,
making this assumption saves effort because the other two alternatives (i .e .,
the temperatures being equal or the cold leg temperature being higher than
the hot leg temperature) need not be considered . If the system is not
operating as intended, then the engineer's predictions will be wrong and the
analysis must be re-performed to consider the other alternatives .

Operating assumptions have two roles. First, they focus simulation. For
example, if simulation progresses outside the assumed operating range, then
it can be halted and the reasons noted. Likewise, qualitative simulation
[11, 16,28,54] can be constrained by ruling out entire classes of behavior
(e.g ., assuming all containers are non-empty eliminates the many possible
combinations of empty and non-empty containers) .

Compositional modeling

	

11 1

Second, operating assumptions can be tied to approximations by indicating
the range of parameter values for which they are valid. For example, the
simplifying assumption laminar flow is often conditioned on the operating
assumption that Reynolds" number is less than 2300 . Introductory physics
textbooks make their analyses of pendulums tractable by assuming sin (x)
equals x, for suitably small x . Automating model formulation requires
providing a language that makes these assumptions explicit, so they may be
reasoned about.

Operating assumptions state constraints on possible parameter values,
either directly via inequalities or indirectly via symbolic assertions, which
in turn define a set of parameter constraints. We presently use three general
categories .

Local restrictions on quantity values
These consist of inequalities between quantities and constants . For exam-

ple,

Op-Assumption(greater-than(temp(boiler- steam),
temp(condenser-steam)))

constrains the temperature of steam in the boiler to be higher than the
temperature of steam in the condenser (when the two temperatures are
defined) . 5

Operating modes
An operating mode is simply a named collection of local restrictions .

For example, the description of a heat exchanger above is an informal
specification of the "normal mode" of heat exchangers . It would be stated
as

Mode(heat-exchanger-l,normal)

and then used in conjunction with rules defining the normal mode for a
heat exchanger. A steam plant has several operating modes, starting from
"cold iron" and ending in "full steam", and each subsystem has modes as
well .

SWe use the Op-Assumption form, rather than assuming the inequality directly, so that the
assumption is defined even when the quantities are not (i .e., temperature of boiler steam when
the boiler is empty) .

112

	

B. Falkenhainer, KD. Forhus

Steady-state assumptions
These state that all derivatives for some class of parameters is zero . Steady-

state assumptions are ubiquitous in engineering analyses . They appear in two
forms . First, we use the assumption applied to specific quantity instances as
a basic primitive. For example,

Steady-State(temperature(boiler-steam))

constrains the derivative of temperature (boiler-steam) to be zero when it
is defined . Second, we have found statements over a system and quantity
type to be useful . For example,

Steady-State(boiler-assembly,temperature)

applies the steady-state assumption to all of the boiler assembly's components
for which temperature is defined . This constraint is defined by the rule

((steady-state ?system ?q-type)
(part-of ?component ?system)
==> (steady-state (?q-type ?component)))

We presently have no general techniques for mapping from a query to
an appropriate set of operating assumptions. 6 Operating assumptions are
imposed if they are (1) explicit in the problem statement (i .e ., scenario
description or query) or (2) required as a by-product of selecting models
(e.g ., if you want to know about the flow of steam from the boiler to the
turbine, the very question presumes that there is steam in both the boiler
and turbine and that its conditions are such as to ensure a flow) .

2.3.3. Assumption classes
Some collections of assumptions represent natural groupings that can

be reasoned about as a whole, such as the alternative ways to model the
same aspect of an object or phenomenon . We organize such groupings into
mutually exclusive sets called assumption classes [2,9] . An assumption class
captures one dimension along which a modeling choice must be made.
For example, a fluid can be modeled as having zero viscosity (inviscid,
frictionless flow), a standard nonzero viscosity, or a non-Newtonian viscosity
(e.g., toothpaste) . Not all dimensions are relevant in all contexts . Therefore,
we also require a condition to state when an assumption class is relevant
and a choice must be made along that dimension . For example, the fluid
viscosity dimension is only relevant when answering questions about fluid
flow . Assumption classes are declared with the form

6Stallman and Sussman [46] describe techniques for making behavior assumptions in
response to ambiguity encountered during problem solving .

Compositional modeling

(defAssumptionClass c (ai, . . .,a�))

where condition c is an atomic sentence containing the (possibly empty)
set of free variables v and (a, , . .

.,a,)
is a mutually exclusive set of atomic

sentences (e .g ., CONSIDER statements) whose free variables, if any, must be
from v . It is logically equivalent to

Vv c -a, V . . . V a,z ,

	

Va;, a;, i ~-_ j,

	

-ai V -aj .

We say that the assumption class is active when c holds. Any scenario
model must include exactly one assumption from each active assumption
class. Inactive assumption classes are ignored, and none of their constituent
assumptions are included . Intuitively, when the class condition holds, one
and only one of the assumptions associated with that class must hold in the
scenario model. Additional information about the conditions under which
each assumption class is most relevant or is inappropriate can then be
specified independently via implications whose consequent is c.

In our current scheme, the order of the assumptions (a,, . . . , a,) is im-
portant. We assume that models based on assumptions earlier in the list
are less costly, in some sense, than models based on assumptions later in
the list . This context-independent cost estimate is an oversimplification, but
has proved quite useful . The extension to a scheme where a task-specific
cost procedure is provided to induce an ordering on assumptions is straight-
forward. However, specifying a good task-dependent cost procedure is a
difficult, open research problem.
As an example, our models of fluid flow include the fluid-viscosity

assumption class, which controls how the viscosity of a fluid flow process is
modeled. Its definition and the condition that it becomes relevant for each
fluid flow process under consideration are stated as follows:

(defAssumption-class (fluid-viscosity ?pi.)
((CONSIDER (inviscid ?pi))
(CONSIDER (viscous ?pi))
(CONSIDER (non-newtonian ?pi))))

((model-application fluid-flow ?pi)
==> (fluid-viscosity ?pi))

Additional constraints can then be placed on these assumptions to en-
sure that composition of model fragments results in a coherent scenario
model . For example, if the question concerns head loss, we should rule out
the inviscid assumption. Likewise, selection of the turbulent assumption
(from the flow-regime assumption class) is inconsistent with selection of
the inviscid assumption (from the fluid-viscosity assumption class) .
The use of assumption classes is discussed further in Section 3.3 .

11 4

	

B. Falkenhainer, K.D. Forhus

3. Model composition

In a rich domain model there are a variety of grain sizes and perspectives .
What constraints drive model composition? In the introduction, we stated
that a scenario model must satisfy two criteria : coherent and most useful.
The easiest criterion to guarantee is coherence. By coherent, we mean

that modeling decisions are consistent with both the physical and organizing
principles of the domain, as defined by the domain theory . An example
of violating the domain's physics would be to consider a fluid flow as
both turbulent and inviscid (i .e ., frictionless) . An example of violating
domain-specific organizing principles would be to attempt to use an equation
concerning head in a model that ignored geometric properties (to calculate
head one must have height, which in turn requires modeling geometry at
least to some degree) .
The more subtle criterion is to maximize utility. Utility is a tradeoff

between the (relevant) information acquired and the cost of acquiring it. On
the one hand, the scenario model should be sufficient to answer the query; a
model of a ship's boiler, no matter how good, is not a reasonable foundation
for analyzing its condenser. On the other hand, the model should contain
as little extraneous detail as possible and require the least problem-solving
effort to achieve the desired answers. For instance, a designer calculating the
efficiency of an industrial process probably does not benefit from a detailed
analysis of transient behaviors and startup states .

In any responsible modeling strategy sufficiency must dominate. We se-
lect the minimal scenario model that satisfies the query's requirements .
Sufficiency has two aspects. The first can be characterized as aboutness or
relevance: the scenario model includes all the aspects of the system required
to perform the analysis (ontological commitments, parameters of interest,
etc.) . An example of failure by making an inappropriate ontological com-
mitment would be to attempt to model the steam plant as an abstract heat
engine when asked about the mass flows which occur in it . An example of
failing to contain the parameters of interest is ignoring thermal properties
when a student specifically asks about the thermal effects of boiling. The
second aspect of sufficiency is accuracy: the scenario model must contain
enough information to provide an answer that is accurate enough for the
task. An example of inappropriate degree of accuracy is using a qualitative
model when a numerical prediction is called for, or using a detailed numer-
ical model when a student only wants to know what parameters can affect
something .
To illustrate the basic issues that arise in model composition, we start

with a simplified example. Suppose we are given the structural description
S and domain theory Th shown in Fig. 5. C (assumption-type) represents
a modeling assumption ; ri and acs indicate rules and assumption classes,

f=

Scenario

	

Domain Theory Th

a b
c

S : FCan(a)
FCan (b)

Metal-pipe(c)
Connects (c,a,b)

WorkingFluid (,,,water)

WorkingFluid (b,water)

FCan (a)

WorkingFluid (,,,water)

C (exists(e))

C (Nuid-ce(a))

FCan(b)
W orkingFltdd (b,water)

C(exists(b))

C (Nuid-cs (b))

CF :

Compositional modeling

	

11 5

E :

	

EConductor () A C (electrical()) A Vr (x) > V2 (z)

	

-+

	

Quantity (I (x))
B :

	

Barometer(b,s) n C(exists(b)) -+ Quantity (L(s,b)) n L(s,b)-Jr(Qr(b),Q2(b))

FCan(c) n WorkiugFiuid(c,nub) n C(Auid-es(c)) n C(exists(c))

-" CFluid(sub,c) A Quantity(P(sub,c)) n Quantity(L(sub,c)) n Qprop(P(sub,c),L(sub,c))

FF : CFluid(sub,s) n CFluid(sub,d) n FPipe(p) n Connerts(p,s,d)
Quantity(FR(p)) n I-(L(sub,s),FR(P)) n I+(L(eub,d),FR(P))

FR I : Quantity(FR(p)) n C(inviscid(P))- FR(p)=P(s) -P(d)
FR V : Quantity(FR(p)) n C(viacons(P)) - FR(p)=C(p) " (P()-P(d))

r r :

	

Metal-Pipe (p) - FPipe(p)
r 2 :

	

Metal-Pipe (p) -' EConductor (P)
r 1 : Quantity(FR(p)) ~ Fluid-vis(p)

acl : Fluid-uis(P)- C(inviscid(P)) v C(v1scous(P))

Instantiation of Th onto S

Qprop (P (water,,,), L(water,a))

Quantity (L (water,,,))

Quantity (P (water,,,))

-'- C'Fluid (water, .)

r l
Metal-Pipe (r)-0.- FPipe(o)

Connects (e, .,l>)-

--CFhad (water,b)

Quantity (P (water,b))

Quantity (L(water,)))

Qprop (P (water,b) , L (water,b))

r 2
Metal-Pipe (p)

	

No- EConductor(z)

C (eiecericsl()) -

Vt (z) > V2 ()

Fig. 5. Simplified view of model composition .

I Quantity(L (water, a)), Quantity(L (water, b))1 .

FR(c) -. P(a) - P(b)

acl C(invtscid(c))
Quantity(FR(c))-~-"Fluid-vis(c)-fir- v

FF

	

C(viseoasc))) ())\
I-(L(sub,s, FRc

I+(L (sub, d), FR(c))

Quantity (I ())

FR y

PR(r) = C(r) .(P(a) .. P(b))

respectively . Suppose as our query we are interested in the behavior of the
water levels in the two cans . The input to our algorithm (Section 3.1) is
a set of ground expressions (e .g ., quantity declarations, relationships, etc.)
that must be present in the composed model. For this example, the query
would be

The structural constraints of the models' individuals specifications and the
behavioral constraints of their operating conditions indicate which behaviors

11 6

	

B. Falkenhainer, K.D. Forbus

are possible . The query indicates which behaviors are of interest . These
various constraints combine to suggest an appropriate model. For example,
the query suggests that each can should be modeled as a fluid container (as
opposed to heavy object or rusting object) . Because there are two contained
fluids connected by a pipe, there is also potential for flow . Thus, the metal
pipe's behavior qua fluid path is relevant. In this example, this occurs as
a side effect of the pipe's connection to two fluid containers whose fluids
are being considered . Other models that could potentially apply to the pipe,
such as being an electrical conductor, need never be considered because they
do not interact with models supporting the query about fluid levels .

Before describing the basic algorithm, two issues must be examined that
are critical to identifying the form of the algorithm's search space and output .
The first issue that arises is how to identify candidate models-which model
fragments are both applicable to the scenario and describe L(water,a) and
L(water,b)? Model fragment E is irrelevant to the query because it does not
cause consideration of any L(s,c) . B is irrelevant to the scenario because
Barometer(b,s) does not follow from S. CF appears to be relevant, but we
must ensure that its requisite assumptions are consistent with S U Th . The
search for potentially relevant model fragments involves a tradeoff between
minimizing the amount of exploration and exhaustively checking all the
constraints in an efficient manner to ensure a coherent scenario model . We
use the scenario description S as the principle source of focus by searching
only in the space of model fragments that are relevant to the scenario . Recall
that each model fragment is logically equivalent to

IAAAO-~ R.

A model fragment may be instantiated for each set of individuals that
satisfy I; for each such collection, we say that the model is applicable to
that collection . If furthermore A is assumed, then we say that the model is
applied to that collection . For example, a model of a string under tension
is not applicable to analyzing a steam propulsion plant, while a model of
boiling is applicable but need not be applied . Finally, a model can apply
to a scenario yet not be imposing constraints. We say a model is active
when it is both applied and its operating conditions O hold . The equivalent
implication

I - (A- (O-R))

reflects the ordering of these decisions, as well as their relative variability
(the individuals are roughly constant throughout an analysis, while the
operating conditions can change on a state-by-state basis) . Importantly, for
each instantiation of I the remainder of the clause is ground and can be
treated propositionally . In the implementation, each defModel compiles to a

Compositional modeling

	

11 7

rule which triggers on the conditions stated in I to produce the substitution
o . The body of the rule then checks the ground assumptions Aa and if
consistent creates a unique token for the model instance (e .g ., M132) and
creates the following ground Horn clauses:

Ia AAQ -> Model-Application(M132),

Model-Application(M132) AOQ -Active(M132),

and for eachr E R,

	

Active(M132) --> ra .

This instantiation process (called scenario expansion in [17]) converts
the quantified domain theory into an equivalent propositional theory that
is specific to the scenario S.7 Search for relevant models can then focus
directly on the ground query terms and consistency can be determined in
the more tractable propositional theory . The bottom half of Fig. 5 shows
the dependency structure produced by instantiating the applicable domain
theory for the current example (the Model-Application and Active nodes
have been left out to simplify the figure) . From this, it is clear that model
fragment CF introduces quantities L(water,a) and L(water,b) .
The second issue that arises concerns the form of the algorithm's output

and intermediate results. One approach would be to explicitly reason about
combinations of model fragments to ascertain which are consistent and suffi-
cient. However, there can be many combinations, involving many irrelevant
model fragments. A better alternative is to reason about combinations of
modeling assumptions. There tend to be fewer modeling assumptions than
model fragments, and so combinations of assumptions provide a more con-
cise representation . Further, checking consistency requires reasoning about
the model fragments' requisite assumptions anyway. The model formulation
task is then to select a suitable set of modeling assumptions. We call this set
of consistent, ground assumptions the modeling environment E. The final
output of the algorithm is an E that, together with S and Th, derives a
minimal, sufficient scenario model.
For the query about quantities L(water,a) and L(water,b), the modeling

environment must be at least

E _ { . . ., C(exists(a)), C(fluid-cs(a)),
C(exists(b)), C(fluid-cs(b)), . . .} .

This environment may be incomplete in several ways and therefore must
be extended . s For example, having decided that fluid flow should be mod-
eled, other decisions about the flow must be made . Rule r3 implies that

7 1nstantiation and caching of quantified formulae is a common mode of interaction with
truth maintenance systems [10,321 .

TThis marks an extension of [141, which assumed that each environment represented a
coherent scenario model and thus concluded the model composition process at this stage.

11 8

	

B. Falkenhainer, KD. Forbus

any modeling environment which introduces quantity FR(c) also activates
assumption class ac, and thus must include the assumption C(inviscid(c))
or C(viscous(c)) . Ultimately, an evaluation criterion must be applied to the
set of candidate modeling environments to select the one most useful for
answering the query.
The conceptual distinctions and associated algorithms of assumption-

based truth maintenance systems (ATMS) [9] apply quite naturally to
the model formulation task . Our algorithm exploits the ATMS' ability to
easily compare and manipulate sets of assumptions. To briefly review : each
statement in the problem solver's database has a corresponding ATMS
node. Since we use a one-to-one mapping between nodes and statements,
we sometimes refer to nodes and statements interchangeably. Dependencies
between nodes are indicated by justifications, which may be viewed here as
Horn clauses. A distinguished subset of the nodes are called assumptions . A
set of assumptions is called an environment. A node is said to hold in an
environment if the node can be derived from the environment and the set
of justifications. The set of all such environments in which a node holds
is characterized by the node's label . A label is a set of environments, each
consistent (in that it does not imply a contradiction) and minimal (in that
there is no other environment in the label which is a subset of it) . A node
holds in a given environment if some environment in the node's label is a
subset of the given environment. Label information is propagated through
dependencies by an algorithm described in [9] .
Our algorithm uses the labels and dependencies maintained by the ATMS

to compute the minimal conjunction of modeling assumptions needed to
produce an appropriate scenario model. After using the scenario description
to fully instantiate the domain theory, model composition consists of four
steps:

(1) Query analysis. Identify from the contents of the query a set of
objects, quantities and relations of interest . Compute the collection
of minimal environments which justify the modeling terms in the
query. Every coherent modeling environment must have one of these
environments as a subset .

(2) Object expansion . Each partial environment identifies a set of objects
to consider, but additional objects may need to be considered to
capture all relevant interactions . This step uses the part-of hierarchy
to find the minimal extension of each partial environment such that
a coherent set of objects are considered .

(3) Candidate completion . Some choices of simplifying assumptions raise
new choices in turn . For example, considering liquid flowing through
a pipe requires a decision about whether to model the fluid as
compressible or incompressible . This step ensures that every partial

Compositional modeling

environment is extended to include choices for each assumption class
it entails .

(4) Candidate evaluation and selection. Finally, each candidate modeling
environment is evaluated to select the "best" candidate.

The remainder of this section describes each step in more detail . Steps (2)
and (3) are performed for each candidate environment and are described
from the perspective of a single environment.

3.1 . Query analysis

The form and content of queries for different tasks can vary widely .
To remain as task-independent and domain-independent as possible, we
restrict ourselves to only very basic information. In particular, we assume
that whatever the initial form of the query, it can be decomposed by a
query elaboration procedure into a set of ground expressions 2, each having
referents in the fully instantiated domain model. These ground expressions
provide the input for this step of model composition .
The simplest query elaboration procedure is to find all quantities and

objects mentioned in a query. Consider again the examples in Fig. 3. The
question "What affects the efficiency of the plant", would be transformed
into

(Quantity (efficiency STEAM-PLANT)) .

Often simple rules suffice to transform a query into the required form .
For example, the question "How many mass flows are there?" refers to the
set of entities that represent either liquid flow or gas flow . Fetching such
entities from the instantiated domain model is trivial. Some aspects of query
elaboration will be task-specific. For example, the question "How does the
feed pump's throughput change as the pressure gradient ranges from 500
psi to 1500 psi?" suggests the use of quantitative models, not through the
individuals involved (since they have qualitative as well as quantitative
models) but by the fact that the question concerns a specific duration, and
hence requires the fine resolution of quantitative analysis to provide an
answer . The important point for query elaboration is that it must identify
which aspects of the query are descriptions that must be supplied by the
scenario model .
Given our processed query expressions Q =

	

{el, . . . , e,z }, we construct
partial, candidate modeling environments as follows. We take as input the
ATMS dependency network from the fully instantiated domain theory . This
network will have a distinct node for each model term that could appear in
the query. Furthermore, notice that each term's label contains the minimal
sets of modeling assumptions in which it holds. Let QUERY be a new ATMS
node. Justify QUERY by the conjunction of the expressions in Q and allow

12 0

	

B. Falkenhainer, K.D . Forbus

the ATMS to compute its label. Since the only assumptions in the ATMS
database are modeling assumptions, every environment in QUERY's label is
a partial, candidate modeling environment. That is, since we have included
all potential simplifying assumptions in the instantiated domain model,
every minimal consistent combination of these assumptions that together
entail the objects and properties mentioned in the query will appear as an
environment in the label of the node QUERY . Of course, these environments
may not by themselves entail a coherent scenario model. The next two steps
extend them into coherent candidate scenario models .
As an example, suppose we are interested in the question "How does the

f'urnace's fuel/air ratio affect the amount of steam flowing in the super-
heater?" . This query is transformed into the set of expressions representing
the quantities of interest :

2 = {Quantity(amount-of-in(water,gas,superheater)),
Quantity(FA-ratio(furnace))} .

The dependencies for the corresponding QUERY node are shown in Fig. 6.
Inspection of these dependencies produces the single partial candidate envi-
ronment:

{Consider(exists(furnace)),
Consider(exists(superheater)),
Consider(fluid-cs(:scenario))} .

This environment provides initial guidance by identifying the simplifying
assumptions that enable the minimal set of model fragments supporting the
query's expressions. Had the query mentioned other aspects of the boiler
assembly, these requirements would have been reflected in the environment.
For example, also stating interest in the boiler's water level would add con-
sideration of the boiler's geometry as part of the environment. Asking about
how the fuel/air ratio also affects the condenser would add consideration
of the condenser . Note that this environment does not represent a coherent
scenario model. For example, it considers the existence of the furnace and
the superheater, yet fails to include the intervening object, the boiler.

3.2. Object expansion

Each initial environment forces consideration of some set of objects. To
ensure coherence we must determine if additional objects are required. For
example, if we are thinking about steam flow in the boiler and turbine, then
we need to think about the condenser and feed pump, too, so that we will
correctly recognize that these flows are part of a closed cycle. On the other
hand, if we are only considering possible faults in the furnace, the rest of the
steam plant can be ignored. These decisions are governed by the constraints

S (relevant portion shown)
FUEL-SOURCE (FUEL-TANK)

SUPPLIES-TO(FUEL-TANK,FURNACE)

AIR-SOURCE(ATMOSPHERE) .

SUPPLIES-TO(ATMOSPHEREXURNACE)
FURNACE (FURNACE)

WORKING-FLU ID-STATE(WATER.GAS,SUPERHEATER)
:U. .RHEATER(SUPERHEATER)

Instantlation of Th Onto S (relevant portion shown)

QUANTITY(FA-RATIO(FURNACEU

Compositional modeling

Th (relevant portion shown)
(defModel (FURNACE-OPERATIONS ?FURNACE)

Individuals ((?furnace :conditions (Furnace ?furnace))
(?air-source :conditions (Air-Source ?air source)

(Supplies-to ?air-source ?furnace))
(?fuel-source :conditions (Fuel-Source ?fuel source)

(Supplies-to ?fuel-source ?furnace)))
Assumptions ((CONSIDER (exists ?furnace)))
Relations ((Quantity (FA Mixture ?furnace)) ; .nm ofxi-dIU&I ezoomu.P

(not (less-than (A (FA-Mixture ?(urnace)) zero))
(Quantity (FA-Ratio ?furnace))
(not (less-than (A (FA-Ratio ?furnace)) zero))

(Quantity (Heat Rate ?furnace))

(not (less-than (A (Heat-Rate ?furnace)) zero))

(defModel (CONTAINED-STUFF (C-S ?SUB ?ST ?CAN))
Individuals ((?can :conditions (Fluid-Container ?can))

(?sub :conditions (Working-Fluid ?sub ?can))
(?st :conditions (Working-Fluid-State ?sub ?st ?can)))

Assumptions ((CONSIDER (exists ?can))
(CONSIDER (fluid-cs ?can)))

Relations ((Natural-Quantity (amount-of-in Faub ?et ?can))

(Physob (c-s ?sub ?st ?can)) ; gimme it pruprrties nI n phrs&Al objet
(CONSIDER (volumetric-properties (c -s ?sub ?st ?can)))

(Q
.= (mass (c-s ?sub ?st ?can)) (amount-of-in ?sub ?st ?can))

(Container-of (c-s ?sub ?st ?can) ?can)

(Substance-of (c-s ?sub ?st ?can) ?sub)))

((Natural-Quantity ?q) ==> (Quantity ?q) (not (less-than (A ?q) zero)))

((SuperHeater ?obj) ==> (Fluid-Container ?obj))

CONSIDEIR(EXISTS(F(TRNAOE))
FUEI: SOURC-E(FUEL-TANK)

an,jr-SUPPLIFS-TO(FUEL-TANKFURNACE)

AIR-SOURCE(ATMOSPHERE)
SUPPI ICS-TO(ATMOSPHERE,F'URNACF)

FURNACE-OPERATIONS(FURNA(E) ~FURNACE(FURNACE)

QUANTITY(AMOUNT-OF-IN(WATER .GAS .SUPERHEATER))
NATURAL QUANTITY (AMO(JNT-OF-IN(WATER .(,AS.SUPERflEATER))

CONTAINED-STUFF(C.-S(WATER.GAS .SUPERHEATER))

ACTIVE(MI5)

	

CONSIDER FLUID-CS SUPE_RHE_ATER~

	

CQNSIHER(FLUID-CS(:SCENARIO))
AA~PLIED(MI5) ICONSIDER(EXISTS(S(TPERHEATER))

WORKING FLUID-STATE(WATER .GAS .SUPERflEATFRI

WORKING FLUID(WATER .SUPERHEATER)

	

WQRKING-FLUID-STATE(WATER .GAS,SUPERHEATER)

FLUID-CONTAINER(SUPERHEATER) SUPERHFATER(SUPERHEATER)

Fig. 6 . TMS dependency structure showing the relationship between terms in the mod-
els and the modeling assumptions that enable their use . QUERY-33 represents the con
junction of the query expressions quantity(amount-of-in(water, gas, superheat er))

	

and
Quantity(FA-ratio(furnace)) .

imposed on grain assumptions. The intuition is that one cannot arbitrarily
choose a set of parts to model in isolation . Instead, given interest in some
initial set of parts, one has to consider enough of the system so that all of
the relationships involving the initial set are included in the model.

In the simplest case, if we consider two objects that are part of the same
system, then all of that system's components must be considered :

122

	

B. Falkenhainer, K.D . Forbus

CONSIDER(exists (s1)) n CONSIDER(exists (s2)) n SIX-- S2 n
Part-of (s1 , so) A Part-of (S2,4)
--+ CONSIDER (components (so)),

CONSIDER (components (so)) A Part-of (si,so)
-+ CONSIDER (exists (si)) .

When objects being considered are part of different systems, a more sophis-
ticated set of constraints are required . We define a covering system to be
a system that contains all systems of interest . Many covering systems are
too large to be useful ; :scenario, for example, is always a covering system .
Therefore we define a minimal covering system to be a covering system
that contains no smaller covering system . Specifically, a minimal covering
system is the lowest common ancestor in the part-of hierarchy of the sys-
tems being considered . Because we assume a strict hierarchy, the minimal
covering system will be unique . Given an initial set of grain assumptions,
their minimal covering system (MCS) determines what other systems must
exist by the following rule :

MCS(s,)

	

A CONSIDER(exists (s,))A
Sys-Contains (s,si) n Sys-Contains (si , si)
---> CONSIDER (exists (si)) n CONSIDER (components (si))

If the partial modeling environment only requires a single object, then the
minimal covering system will be that object and nothing needs to be added.
Otherwise, if s, is the minimal covering system, then a path of existence
assumptions is extended across the systems leading from s, to the objects
mentioned in the initial environment. The modeling environment is then
augmented with these new existence assumptions .
Resuming our example, recall that the initial environment explicitly stated

a need to consider the furnace and superheater. To identify the complete
set of objects required to form a coherent scenario model from this environ-
ment, we first determine its minimal covering system . For the furnace and
superheater systems, this is the boiler-assembly system . From the grain
assumption constraints, the following grain assumptions are then required
(Fig. 7) :

{Consider(exists(furnace)),
Consider(exists(superheater)),
Consider(exists(boiler))}

The net effect is that the boiler has been added to the model. Note that the
steam plant's other primary components, such as the turbine and condenser
assemblies, are ignored for this query. Further, additional detail within the
selected systems is ignored, such as the furnace's fuel pump and exhaust
manifold .

I

	

I---

	

I

I I

	

I SUPERHEATER
I I

	

BOILER

	

- - -

	

-I

rI'I-

	

I

	

__	I

	

I PUMP
I

	

I

	

r---- _~

	

fuel I

	

ASSEMBLY
TURBINE

	

I

	

I

	

i

	

;

	

__

	

i T T,
exhaustA =-.---"

	

_ _ _

	

air

	

I

	

1

	

I

I1------- FURNACE ---- J

	

1- Ir

L--------

	

I

	

I I
CONDENSER r - `

	

-'------------I I

ASSEMBLY

	

I - - - _ - - 1 - - - _ _ _ - - _ - - J

Fig. 7 . Extending a partial modeling environment to consider a coherent collection of objects .
A partial environment comprised of the furnace and superheater systems must also minimally
include the boiler system . Note that the steam plant's other components, as well as the internal

structure of the furnace, need not be considered .

3.3. Candidate completion

Compositional modeling

	

123

i _ - - - - _ _ _ _ - -
BOILER

	

1
ASSEMBLY I

At this stage the partial modeling environments have grown to include
every object that must be included in a coherent domain model. However,
this does not necessarily mean that we have chosen exactly how each object
and associated phenomena should be modeled. For example, if the query
concerned the difference in water pressure between the boiler and the con-
denser, then the initial environment would consider those two objects from
the fluid-cs perspective and the object expansion step would extend it to
include the feed pump, turbine, and the paths which connect them . But how
should the paths be modeled? Should their resistance be taken into account
or not? How should flows through the paths be modeled? How about the
pump?
The extra information needed to both determine what further kinds of

modeling assumptions are required and what the alternatives are is provided
by assumption classes (Section 2.3.3): Recall that an assumption class
is considered active when its activity condition holds (i .e ., follows from
E, S, Th), and when active, the problem solver must include one of its
members in a scenario model. Thus, we extend each partial environment to
include one assumption from each assumption class whose activity it entails.
This is called the candidate completion procedure.
The candidate completion procedure is slightly tricky . For example,

choices made for one assumption class can lead to choices for others be-
coming inconsistent . Obviously, some choices are not constrained, leading
to branching and thus a growing number of candidate modeling environ-

124

	

B. Falkenhainer, K.D. Forbus

(defAssumption-class (geometry ?obj)
((not (CONSIDER (geometric-properties ?obj)))
(CONSIDER (geometric-properties ?obj))))

((Fluid-container ?can) (CONSIDER (exists ?can)) ==> (Geometry ?can))

Fig. 8. Rules defining the geometry assumption class.

{Consider(exists(furnace)),
Consider(exists(superheater)),
Consider(exists(boiler)),
Consider(fluid-cs(:scenario))}

ments. Choosing to extend an environment by one assumption may expand
its entailments to include yet more assumption classes, which in turn must
be searched . This can be cast as a dynamic constraint satisfaction problem
[33] by viewing class conditions and their associated assumptions sets as
active variables and their associated choice sets . We use the ATMS-based
algorithm described in [331 to solve it .
The result of this procedure is a set of complete candidate modeling

environments . The scenario models represented by these environments are
coherent, since they consider all the objects necessary to reason about the
queried objects and include a choice for all relevant modeling decisions.

In our continuing example, the developing modeling environment is cur-
rently comprised of

This environment activates nine assumption class instances, corresponding
to three general assumption class types. The first assumption class, defined
in Fig. 8, requires a decision about whether or not to model the geometric
properties of each fluid container whose existence is considered . Because
there are three "fluid containers" (furnace, boiler, superheater), there are
three geometric-properties assumption class instances, each conditioned
on Geometry(can) . For example, the condition that the boiler is a fluid
container and its existence is being considered entails Geometry (boiler),

which is the condition that activates the choice set of whether or not to
consider the boiler's geometric properties . The second type of assumption
class activated concerns the thermal properties of each object whose existence
is considered. Again, there are three instances of this class, one for each
of the three objects under consideration. Finally, there are three applied
fluid flow instances: the liquid input to the boiler, gas from the boiler to
the superheater, and gas output of the superheater. Each activates a fluid-
viscosity assumption class (defined in Section 2.3.3) applied to the flow

Compositional modeling

	

125

instance (e.g., M132), forcing the decision to model each flow instance as
either inviscid or viscous.
There are nine binary assumption classes active for the current, partial

modeling environment, leading to 512 consistent extensions for this environ-
ment (these assumption classes happen to not interact) . In the next section,
we describe our metric for evaluating the relative desirability of each choice .
This metric is consulted by the candidate completion procedure so that all
possibilities need not be generated .

3.4 . Candidate evaluation and selection

Given a set of candidate modeling environments, the final step is to
apply an evaluation metric to the candidates and select the best one to use
in answering the query. What is best often depends on the details of the
domain and task-for example, the computational support available to use
the model often determines whether one form is better than another. We
allow user-supplied evaluation metrics to enable future study of alternate
approaches . However, we describe here a simple scheme that is based on
crude estimates of model costs and has worked surprisingly well for the
examples we have examined.

First, the set of candidates is pruned. by retaining only those with the
smallest number of objects. For example, if two candidates entail four objects
and. three candidates entail five objects, those considering five objects would
be ignored .

Second, the ordering information in assumption classes is used to estimate
overall simplicity . Recall that the choices in each assumption class are
ordered in increasing complexity . Consequently, we assign a number to each
choice corresponding to its place in its ordering . For each candidate these
values are summed, and the candidate whose sum is the smallest is selected .
In case of a tie, one of the minimal environments is selected at random.

As an example, assume a domain model containing active assumption
classes A = {A,, A2, A3} and B = {B,, B2} . If all combinations are
consistent, the following candidates are possible :

Thus, {A 1 , B, } would be selected .
The limitations of this scheme are obvious. For example, should {A2, B2 }

and {A3, B1 } be considered equivalent? Probably not. But the information

{A1 ,B1 } (score = 2)
{A 1 ,B1 } (score = 2)
{A,, B2} {A2, B, I (score = 3)
{A2, B2t . {A3, B,} (score = 4)
{A3, B2

1
1 (score = 5)

126

	

B. Falkenhainer, K.D . Forhus

required to distinguish between them (for instance, by ascertaining the
relative expense of A 3 and BZ) depends on the specifics of the task and
domain, and hence we must defer attempting to provide more guidance
here.
Returning to our running example, the following modeling environment

is selected : 9

{Consider(exists(superheater)),
Consider(exists(furnace)),
Consider(exists(boiler)),
Consider(fluid-cs(:scenario)),
Consider(inviscid(boiler-sh)),
Consider(inviscid(sh-env)),
Consider(inviscid(env-boiler)),
-Consider(thermal-properties(furnace)),
-Consider(thermal-properties(boiler)),
-Consider(thermal-properties(superheater)),
-Consider(geometric-properties(furnace)),
-Consider(geometric-properties(boiler)),
-Consider(geometric-properties(superheater))

3.5 . Model use and validation

This modeling environment produces the scenario model summarized
in Pig. 9. It describes the fluids and processes associated with the three
components being considered, as well as their interactions, in isolation from
the rest of the steam plant. Although the domain theory contains many other
potentially applicable model fragments, the model composition algorithm has
allowed us to construct a model that focuses only on relevant aspects.

Prior to analysis, the information available about the scenario is incom-
plete. As a result, the model composition procedure cannot guarantee that
the modeling assumptions it selects are valid for the scenario being studied.
Here we describe how analysis using a scenario model can detect inappro-
priate assumptions, thus leading to another, more informed round of model
composition .

Simulation, both qualitative and quantitative, has been the principle use of
the models we develop . Qualitative simulations are carried out using QPE
[171, an envisioner for QP theory. Quantitative simulations are carried
out using a fourth-order Runge-Kutta integration algorithm with adaptive
step-size control (from [37, Chapter 151) . The equations for the simulator

9Throughout this example, env refers to the scenario's physical environment exterior to the
minimal covering system .

Contained- Stuff(c-s(water .liquid .boiler))
Contained- Stuff(c-s(water .gas.boiler))
Contained-Stuff(c-s(water .gas .superheater))
Aspatial-contained-liquid (c-s(water .liquid.boiler))

(Qprop pressure(bottom(boiler)) volume(c-s(water,liquid,boiler)))

Non-thermal-gas(c-s(water.gas .boiler))
Non-thermal-gas(c-s(water,gas .superheater))

	

(Qprop pressure mass)

Fluid-flow (env-boiler.water .liquid .env .boiler)
Fluid-flow(boiler-sh .water .gas .boiler.superheater)

Fluid-flow(sh-env.water,gas.superheater,env)

Inviscid(env-boiler)
Inviscid(boiler-sh)

	

(Qprop

	

flow-rate

	

A pressure)

Inviscid(sh-env)

Boiling(boiler.water)
Superheater-process(superheater)

Compositional modeling

Total-FA-intake(furnace)

	

total-intake =fuel-intake + air-intake
FA- ratio (furnace) = fuel-intake / total-intake
etc

Cornbustion(furnace)
Furnace-running-lean (furnace)

	

(Qprop heat-rate FA-ratio)

Furnace-running-rich(furnace)

	

(Qprop- heat-rate FA-ratio)

Furnace-operations(furnace)

	

(heat-rate, FA-mixture, FA-ratio, FA-peak-efficiency. . .)

Furnace-boiler-connected(boiler,furnace)

	

(heat-rate(boiler) = heat-rate(furnace))

12 7

Fig. 9 . Summary of the scenario model composed in response to the query "How does the
furnace's fuel/air ratio affect the amount of steam flowing in the superheater?" .

are gathered from the scenario model, with some minor processing to get
them into the form it expects. Currently we restrict quantitative analysis to
concern a single operating region-that is, all equations hold all of the time .
This restriction will soon be removed when we add these model composition
techniques to SIMGEN [19] .

Internal consistency tests have long been used to check the validity of
assumptions made during the course of problem solving. How we use them
to verify a simulation model depends on whether it is qualitative or quan-
titative . We consider each in turn .
Given the weak nature of qualitative information, how does one detect

an internally inconsistent model? The answer is simple : If the envisionment
is empty, then the model is inconsistent because it states that no behavior
is possible . For example, imagine a string with one end attached to the
ceiling and the other tied to a block. Suppose the block is initially held
close to the ceiling, with the string hanging loose, and then released . What
happens when the string becomes taut? If the string is assumed inelastic,

128

	

B. I'alkenhainer, K.D . Forbus

Ds[FA-ratio (furnace)]=1

Ds[heat- rate (furnace)]=1

Ds[heat-rate (boiler)]=1

y
Ds[Mass(c-s(water.gas. boiler))]=1

Ds[pressure(c-s(water .gas .boiler))]=1

Ds[flow-rate(pi6)]=1

FA-ratio(turnace)

< FA-peak-efficiency (furnace)
- - _

SUPERHEATER

exhaust ~- FU

	

C
:-air- _ - _ -
~air

Heat
Production FIA

Fig. 10 . How does the furnace's fuel/air ratio affect the amount of steam flowing in the
superheater?

the block will stop, instantaneously, without any deceleration . This violates
continuity, and hence this transition is ruled out. But since the falling block
must arrive at the end of its reach (since asymptotic approach is ruled out
in QP theory), the entire modeling environment is ruled inconsistent . If, on
the other hand, the string is assumed elastic, the block will decelerate over
some interval of time and come to rest .
We validate a quantitative model by checking to see if the behavior it

predicts violates its assumptions . To do this, we gather the set of critical
inequalities that represent the operating assumptions required by the model's
simplifying assumptions. For example, the incompressible flow assumption
requires that the flow's Mach number (ratio of velocity to speed of sound)
is less than 0.3 . If at any time during a simulation using the incompressible
flow assumption its Mach number exceeds 0.3, the modeling environment
is deemed inconsistent .
When an inconsistency is discovered, the process is repeated with new,

very specific information about inconsistent modeling assumptions (cf.
dependency-directed backtracking [461) .
Returning to the scenario model derived in the previous section (Fig. 9),

it produces a qualitative envisionment describing the various ways in which
the furnace's fuel/air ratio can affect the amount of steam flowing in the
superheater. 10 The furnace's heat production is a function of its fuel/air

t°The query for this example included operating assumptions which constrained this
envisionment . These were : the amount of fluid in each container is greater than zero,
pressure (fluid, env) > pressure (flaid, boiler) (enabling flow), pressure(steam,boiler)

> pressure (steam, superheater), preasure (steam, superheater) > pressure (steam,env),

and heat-rate (furnace) > 0.

ratio-too much air (low F/A) or too much fuel (high F/A) lowers the
combustion efficiency . An ideal fuel/air ratio corresponds to a point of
peak heat production . For the case in which the furnace has been operating
in a suboptimal, low F/A region, Fig. 10 shows the resulting perturbation
when the fuel/air ratio is increased . Briefly, an increase in F/A results
in increased heat production, which results in increased steam production
and increased boiler steam pressure, leading to an increased flow of steam
through the superheater . Because no model inconsistencies are detected for
this envisionment, the query has been answered and model formulation
stops.

4. Tutorial question answering about a steam plant

One of our motivations for building comprehensive, multi-perspective
models is to support the construction of intelligent tutoring systems [45,53] .
Consequently, we focus on the problem of finding an appropriate model to
answer questions in an instructional setting . Our ultimate goal is to develop
a generic tutoring system which, given a domain theory and appropriate user
interface, could produce reasonable explanations (in the manner of [20]) .
This task is an excellent one for testing the model composition algorithm,
since it would be unreasonable to expect students to know the internals of
the domain model or what simplifying assumptions are reasonable. How-
ever, we are far from a generic tutoring toolkit. Since we have focused on
developing organizing principles for domain models and a method for model
composition, everything else is very rudimentary . The natural language ex-
planations in the sections which follow are indeed generated automatically .
Queries are expressed as a conjunction of modeling terms or via procedures
tuned to specific types of questions that in turn compute a conjunction
of modeling terms. For all qualitative queries, we make extensive use of
operating assumptions to avoid the expense of unconstrained envisioning.
Even with these limitations, we have been able to efficiently use domain
theories that are an order of magnitude larger than our previous ones .

As our test domain, we have developed a multi-grain, multi-perspective
domain theory for a subset of engineering thermodynamics and use it to
answer questions about a shipboard steam-powered propulsion plant. The
principles described in this paper have been crucial to managing the model's
complexity . At present, our domain model is predominately qualitative,
although its quantitative aspects are being extended . It represents three
primary areas of coverage (see Fig. 11) . One set of elementary models
treat the steam plant as a closed, thermodynamic cycle. In this energy flow
ontology, the internals of the propulsion cycle need not be considered; heat

Compositional modeling

	

129

130

	

B. Falkenhainer, K.D . Forbus

Volumetric properties
Contained stuffs
Pressures
Liquid flows

Fig. 11 . Differing views of the propulsion plant .

Thermal properties
-Temperatures
-Thermal mixing
-PV work

flows into the system and work flows out. It is useful for describing global
properties of a thermodynamic system, such as efficiency .
A second set of elementary models focuses more specifically on the boiler

assembly and its parts (i .e ., the furnace, boiler, and superheater) . They
represent the furnace explicitly, including the effects of fuel/air ratio on
heat production rate and efficiency . Further, they include fault models for
the boiler and furnace, such as enabling consideration of the boiler becoming
too full or too empty. In operating a plant it is important to keep the water
level within a certain range. Too low, and the boiler can melt . Too high, and
water droplets are entrained into the superheater. Since steam is moving
through the superheater faster than sound, these water droplets can cause
tremendous damage.
The largest set of models describe various aspects of the mechanics and

thermodynamics of fluids using the contained stuff ontology . These include
fluid paths, fluid and heat flows, pumps, containers, and portals .
A major claim of compositional modeling is that it facilitates creating

larger domain models. To support this claim requires comparing this model
to previously developed models, which can be difficult . One way is to
reduce model fragment's to something simpler, such as Horn clauses. If we
treat Horn clauses as "axiom-equivalents", then at last measure our domain
model corresponded to 1637 axioms . By contrast, our earlier QP models of
thermodynamics were around 300 axioms . l1

I I Few domain models have been published to date . The best known is Hayes' naive theory
ofliquids [241 . This theory consisted of 74 axioms, but these were more complex logical forms.
Assuming a (generous) multiplier of 3 to translate into Horn clauses, his model of liquids

Compositional modeling

	

131

A good sense of how well the model composition algorithm focuses analysis
can be gained by comparing the size of the fully instantiated steam plant
model to the size of model created for each query. In fully instantiating
the steam plant model 83 model fragments are used. These introduce 89
quantities . As the examples below show, our algorithm provides significant
filtering.

4.1 . Qualitative questions

Our domain model can be used to answer a variety of questions based on
qualitative models of the plant.

4.1 .1 . Plant efficiency

Q: What affects the efficiency of the plant?
A: The efficiency of the plant is affected positively

by the work rate of the turbine . It is also affected
negatively by the energy input to the plant .

8 quantities, 21 inequalities, 7 model fragments, and 3 situations .

Questions about what affects a parameter are viewed as a request for
a qualitative model which includes the qualitative proportionalities that
constrain the named parameter . The query given to the model composition
algorithm is simply the parameter itself, e.g.,

and

(Quantity (efficiency steam-plant))

Thus what one would expect is the simplest model that includes the efficiency
of the plant as an explicit parameter.

Plant efficiency is introduced by the closed, thermodynamic cycle model
fragment . It is conditioned on two assumptions

(CONSIDER (exists ?plant))

(CONSIDER (energy-flow ?plant)) .

The modeling environment generated by the model composition algorithm
is simply these two assumptions applied to the steam-plant-they alone
produce a coherent scenario model for this query. The closed thermodynamic
cycle model in turn forces consideration of three of the steam plant's main
components (boiler heat source, compressor heat sink, and turbine work
sink), thus creating their respective heat and work rates . This example
shows the importance of system boundaries-potentially, almost everything

consisted of roughly 230 axioms . Other models, such as Molle's work on chemical processes
(34] appear to be roughly the same size as Hayes' model and our previous models.

13 2

	

B. Falkenhainer, K.D. Forbus

in the plant affects efficiency . Yet clearly that is not the level of detail which
is appropriate, given a high-level query.

4.1.2. Finding mass flows

Q: How many mass flows are there?
A: There are 4 mass flows :

(1) A flow of water from the condenser to the feed pump .
(2) A flow of steam from the turbine to the condenser .
(3) A flow of steam from the boiler to the turbine .
(4) A flow of water from the feed pump to the boiler .

25 quantities, 83 inequalities, 27 model fragments, and 15 situations .
Questions about the occurrences of processes, whether about a specific

process instance or about a set of process instances, are transformed for
model composition into the set of terms that name processes satisfying the
input pattern. Here, the union of Liquid-Flow and Gas-Flow processes was
sought .
The modeling environment for this query considers the existence of the

steam plant's four main components (i .e ., boiler assembly, turbine assembly,
condenser assembly, and pump assembly) and adopting the contained stuff
ontology . All geometry and thermal information was ignored, and all flows
were assumed to be inviscid . These are exactly the choices which minimize
the amount of extraneous detail, demonstrating that our system can ignore
perspectives which do not contribute to answering a given query.

4.1.3 . The smoking furnace

Q: What is causing black smoke to rise from the furnace?
A: Black smoke is rising from the furnace because it is

not the case that the fuel/air ratio of the furnace is
less than the F/A saturation point for the furnace .

24 quantities, 65 inequalities, 23 model fragments, and 21 situations .
The domain model includes black smoke as an individual view describing

one of the possible modes a furnace can be in, due to a fuel/air ratio that is
too rich . This is an interesting question for two reasons . First, black smoke
means the ship is burning fuel less efficiently than it should, which is bad
economically. Second, pouring out black smoke is not a good thing to do if
you wish not to be seen . Questions about what is required for an instance
of an individual view to hold are treated as questions about instances of
processes . That is, the query consists of the term (or terms) designating the
view instance .
The modeling environment for this query considers the existence of the

furnace in isolation from the rest of the system, using the contained stuff

Consider(f'iault(exhaust-type,furnace)) .

4.2. A quantitative question

L _V2
h i = fbT.

Compositional modeling

	

133

IFig. 12 . Two oil supply ldrums connected to a central reservoir. Find the level of the three
containers as a function Of time when the system is released from the given initial conditions .

ontology . Since the view in question is in fact a fault, the algorithm included
the additional assumption

Normally such fault's assumptions would not be included, since they lead to
extra complexity in Ia model. But this example shows that fault assumptions
can be included automatically, as necessary, if the domain model is organized
properly .

Here we describe la quantitative analysis problem concerning a hypothet-
ical set of lubrication tanks and pipes. We are given two oil supply drums
connected to a central reservoir, as shown in Fig. 12 . The task is to deter-
mine the behavior of the oil level in cani when the system is released from
the initial condition] Our current fluid flow models represent various simpli-
fications of the unst ady Bernoulli equation, which describes incompressible
flow along a streamline : 12

2

	

2

	

2
p + 21 T5

	

= P + 22 -I-gz2+ht+f asds
1

where p is the dens ty of the fluid, zi is the height at point i, l; is the fluid
velocity at point i, and hi is the head loss due to frictional effects

12Currently, we use the unsteady Bernoulli equation, which subsumes the steady and
unsteady flow cases .

134

	

B. Falkenhainer, K.D . Forbus

3.4dO

3 .2dO

3 .OdO

2 .8dO

2 .6dO

2 .4 dO

2 .2 dO

2.OdO

1 .8dO

1 .6dO

O .OdO ;

-

	

I.eve(c-s(oll, liquid,-3))
Level(c"s(oil, Iiquld,cem2))"""""" Level(o-s(oll,liquid,cemt))

20 .OdO 40 .OdO 60 .OdO 80.()d0 Time

MOO

50 .OdO

40 .OdO

30 .OdO

20 .OdO

10 .OdO

-O.OdO

-10 .OdO

'~(x 1 .Od3)

Fig. 13 . Behavior predicted by the laminar flow model.

fConsider(fluid-cs(:scenario)),
Consider(exists(cani)),
Consider(geometric-properties(canl))} .

{Consider(laminar(pipel2)),
Consider(laminar(pipe23)),
Consider(incompressible-flow(pipel2)),
Consider(incompressible-flow(pipe23)) .

RE(PIPE12)
RE(PIPE23)

20 .OdO 40 .OdO 60.OdO 80.OdO Time

The computation for the friction factor f is dependent on the flow regime
(laminar or turbulent), which is normally determined by Reynolds' number
(Re = pVD/,u) . For low Reynolds' numbers (low flow rates), the flow is
laminar; for high Reynolds' numbers (high flow rates), the flow is turbulent .
Although the transition occurs over an interval, flow in pipes is generally
taken to be laminar for Re<2300.
Based on the quantitative fluid flow model's dependencies, the initial

modeling environment for this problem is

The object expansion step extends this to consider can2 and can3. The
candidate completion procedure is then left with several final decisions.
Given only the initial conditions, there is no information about the flow
velocity or Reynolds' number for either pipe . Thus, it selects the simplest
options:

For laminar flow, the friction factor is inversely proportional to Reynolds'
number (f = 64/Re) . The behavior predicted by this model is shown
in Fig. 13 . The left plot shows the level of each container as a function
of time, while the right plot shows the Reynolds number for each flow.
At this point, our system inspects the predicted behavior and finds one

Compositional modeling

	

135

modeling environment violation: the Reynolds number for pipe23 reached
54,000, thus violating the laminar flow assumption for pipe23 . The model
composition procedure is repeated with this added information, producing
a new set of flow regime assumptions:

fConsider(laminar(pipe12)),
Consider(turbulent(pipe23))} .

This modeling environment models the flow through pipe12 as laminar and
the flow through pipe23 as turbulent (we use the Moody approximation
[22, p. 187] to compute the friction factor for turbulent flow) . The new
model predicts a lower amplitude oscillation for the flow through pipe23,
due to the greater dissipative effects of turbulent flow .
Note that because the Reynolds number for pipe 12 never exceeds 1100,

the laminar flow assumption for pipe12 remains consistent . This demon-
strates an important attribute of the compositional modeling approach. By
representing modeling assumptions as predications over individual objects
and phenomena, a scenario model is able to represent the same type of object
or phenomenon in different ways, depending on their individual conditions.
This ability is crucial for analyzing large systems.

5. Related work

Research on automatically formulating a model in response to a query
is relatively new. However, a number of methods have been developed for
managing and switching between multiple models . Much of our inspiration
comes from Sussman's slices notion [47,48], where results from multiple
perspectives could be combined in synthesizing engineered systems. In Suss-
man's system the language for specifying perspectives was domain-dependent
(i .e ., electronic circuits), and instantiation and use decisions were made by
hand . Our techniques aim to automate this decision-making process and
should work for any phenomena expressible in our modeling language .
The work closest to our own is the "Graph of Models" (GoM) effort by

Addanki, Cremonini and Penberthy [1,2] . In the GoM approach, the space
of possible scenario models is represented explicitly as a graph. Each node
represents a model of the system being analyzed, and each edge indicates
which approximations differ between the models it connects . Given a space
of possible models (the GoM) and an observation, the graph of models
task is to find the model whose predictions are sufficiently close to the
observation, where sufficiently close is evaluated by the user. Search begins
with the simplest model, moves to a new model when prediction fails to
match observation, and is guided by rules stating each approximation's
qualitative effect on the model's predicted behavior.

136

	

X. Falkenhainer, K.D . Forbus

In some ways, GoM addresses a more restricted version of our model
formulation problem. First, the models differ only in the approximations
made and other modeling dimensions, such as perspective, granularity, etc.,
are currently not considered . Second, no query is provided . Thus, the graph
of available models is assumed a priori to be both coherent and relevant .
Third, approximations are global, rather than applying differently to different
subsystems in the model. On the other hand, GoM introduces a general-
purpose technique for selecting approximations that does not rest on our
presupposition of an explicit set of constraints that delimit when each
approximation is valid.
Given domain models of equal detail, GoM incurs an exponential increase

in storage over compositional modeling because it must explicitly store all
consistent possible combinations of modeling assumptions . This also places a
heavier burden on the domain model developer, who must identify consistent
combinations of modeling assumptions in advance of reasoning . By contrast,
our model composition algorithm constructs such combinations as needed,
according to task demands. The builder of a compositional domain model
can more easily work on fragments of the model independently . We believe
these differences are advantages for compositional modeling . However, the
GoM approach makes the important insight that efficiency can be improved
by explicitly noting well-understood combinations of domains and tasks.
This may be done for compositional models as well, since the grain size of
model fragments is up to the domain modeler.
One very interesting aspect of GoM is the ability to reason about how

changing approximations qualitatively affects model/observation discrep-
ancies. Weld [51] presents an elegant extension to this for a specialized
class of approximation assumptions. Because Weld's approach is domain-
independent and does not depend on the presence ofan explicitly predefined
graph, we believe it could easily be adapted for compositional models. In
particular, the set of modeling assumptions that specify a scenario model
could be perturbed individually, generating "adjacent" alternatives by re-
peating our candidate completion procedure.

Davis' system for model-based diagnosis of digital circuits used multiple
levels of structural descriptions to control search [8] . Specifically, he used
the ability to rule out candidates at an abstract level to reduce an otherwise
unmanageable search space, and then moving to more detailed structural
levels to make a final diagnosis. In many respects our use of grain assump-
tions and system distinctions is similar. However, we are able to focus in
on individual objects in the system more easily, and do not require a fixed
hierarchy of finer-grained models .
The general issue of generating, specifying, and using theories having dif-

ferent abstractions, approximations, and perspectives is of central concern in
many areas of research . Some efforts have focused on specifying and making

use of the relationship between a given set of models . For example, differ-
ent models can be used in a cooperative fashion, such as moving between
microscopic and macroscopic ontologies [3,6,31,39] or changing time-scales
[23,29] . Fishwick [15] presents a classification of process abstraction meth-
ods and associated techniques for mapping from one abstraction level to
another. A growing area of interest is the automatic reformulation of a
given theory into a (sometimes equivalent) simpler theory via techniques
like aggregation, compilation, and re-representation [4,12,49] . Techniques
specifically aimed at analyzing physical systems include aggregation of dis-
crete, cyclic events into continuous processes [50], aggregation of variables
representing dynamic systems [26], and generating models of differing time-
scales [251 .

6. Discussion

Compositional modeling 137

Capturing the expertise of human engineers will require developing large-
scale, multi-grain, multi-perspective models of physical domains and tech-
niques which allow them to be flexibly and efficiently applied to a broad
range of tasks. As we attempt to use computers to automate more engi-
neering tasks, problems of effective model organization and task-relevant
formulation become paramount. We believe the compositional modeling
strategy described in this paper is an important step towards understanding
how to build and use the kinds of domain models sought .
By developing compositional domain models, model fragments can be

used in many distinct scenarios . Our techniques are domain-independent,
only requiring a modeling language rich enough to express a model's depen-
dence on structural setting, modeling assumptions, and operating conditions .
Importantly, we showed how much of the burden of developing a model
for a specific task could be carried by a simple, ATMS-based algorithm . By
predicating pieces of a domain model on explicit modeling assumptions, a
relevant model for a given task can be generated automatically, assuming
only that one has enough information about what kinds of entities and
properties must appear in the desired analysis .
We believe the insulation of the analyst from the details of the domain

model our model composition algorithm provides is very important . For
tutoring tasks, it is obviously a necessity : If a student's knowledge of the
domain were sufficient to select the appropriate simplifying assumptions,
there would be little need for the tutor . But we believe even expert engineers
will benefit from allowing the model composition algorithm to share the
burden of finding the right foundation for an analysis . First, the engineer's
task is simplified if she can specify just enough to make her intent clear, and
leave the rest to a (mechanical) assistant . Second, in practice, all too often

13 8

	

B. Falkenhainer, KD . F'orbus

one finds models where the underlying assumptions made in one part of a
model conflict with those made by another part . The automatic selection of
a complete set of explicit simplifying assumptions can help ensure that they
are used consistently across an analysis .

6.1 . Additional research issues
We view this work as an important first step towards understanding and

solving the model formulation problem. Progress has required making some
strong simplifications and ignoring some important aspects of the problem.
In this section, we consider a number of open problems in the current
compositional modeling framework.

6.1.1 . Decomposing the scenario
Probably the most limiting simplification is the presupposition that any

decomposition of the scenario must be taken from a single, strict part-of
hierarchy . For many systems this limitation is not severe-for example, part-
sharing only becomes evident at low levels of detail in structural descriptions
of power plants and chemical plants. However, as the depth of detail in struc-
tural descriptions increases, and as domain models include richer functional
vocabularies, the problem of choosing the appropriate reference frame will
become acute.
One aspect of this problem for models of thermodynamics is the ability to

automatically form control volumes (see (44] for some initial work in this
area) . In dynamics, the concept of p-component from QP theory provides a
definition of isolation which could potentially help in constructing reasonable
system boundaries . In general, determining appropriate system boundaries
will require more sophisticated representations of geometry than found in
current domain models .
An intermediate step would be to extend the current approach of taking the

set of possible groupings as input by allowing multiple, tangled hierarchies.
One consequence of moving to a tangled hierarchy is that there need not
be a unique minimal covering system . It is possible that our existing model
composition algorithm could be extended to tangled hierarchies. This would
require (a) a technique for mapping from a query to the types of clusterings
needed to answer it and (b) constraints between the paths in the hierarchy
to ensure a coherent view of the scenario .

6.1 .2. Improving query analysis
Our current query analysis technique is based on the recognition that the

terms in the query provide significant constraint in identifying an appro-
priate set of modeling assumptions and associated model fragments. It is
essentially a syntactic approach .

Compositional modeling

	

139

An important next step is the ability to reason about the information
requirements ofthe query and the information provided by the models . Does
the model (which syntactically has all the right terms) provide the behavioral
distinctions needed to answer the query? Is it possible to determine this prior
to actually using the model? In the general case, the answer is probably no
(e.g ., it would be similar to solving all planning problems without search) .
However, solutions for some restricted classes are probably possible . For
example, consider analyzing a spring-block oscillator and asking the question
"Will it stop?" . Clearly, a model which ignores dissipative effects would not
be sufficient .

6.1.3 . Estimating cost
Optimally answering a given query requires more sophisticated measures

of utility. One aspect is capturing the accuracy requirements of the query
and the information loss introduced by simplifying assumptions (discussed
partially in the next section) . Another aspect is evaluating the computational
(and perhaps cognitive) cost of a model. The ordering scheme described in
Section 3.4 makes the simplistic assumption that for all assumption classes
A and B, the cost of A 1 is the same order of magnitude as B1 , A2 is the
same order of magnitude as B2 , etc. In general, different approximations can
have widely different computational consequences (e.g., dropping a term in
a polynomial versus enabling a closed-form solution) . We do not know of
any general mechanism for estimating the cost of a given equational model.

6.1.4. Reasoning about approximations
Approximations introduce error. For some well-understood approxima-

tions, their region of validity can be delimited via explicit constraints on
parameter values (e.g ., Reynolds' number, Biot modulus, Mach number,
etc.) . This has two limitations. First, such constraints are not known for
many cases. Second, these constraints are rules of thumb based on "typical
case" task requirements (commonly f5%) .
Addanki et al .

	

[1] and Weld [51] present general techniques for se-
lecting suitable approximations via reasoning about qualitative {-, 0, +}
prediction/observation differences. The utility of focusing on qualitative
differences is unclear, particularly given the potential search cost . Falken-
hainer and Shirley [42] are currently investigating an alternate approach to
this problem. Our central intuitions are that (1) the accuracy requirements
of the task must be made explicit and (2) approximation selection is a
function of the approximation's cost savings and accuracy loss . This too can
be more expensive than simply not using approximations . We are seeking
ways to generalize successful problem-solving episodes such that the system's
adroitness in using approximations can improve with experience .

140

	

B. Falkenhainer, K.D. Forhus

In settings where little is known about a model's accuracy or range of
applicability, experimental evaluation is required and model formulation
blends into theory formation and revision . Methods for repairing a model
that diverges from observation are described in [1,13,38,51] . This is an
important aspect of the modeling process, and we would ultimately like
to integrate such empirical techniques into the compositional modeling
framework.

6.1.5 . Focused and lazy instantiation
Our current implementation fully instantiates the set of applicable model

fragments once for each scenario and then consults the ground dependencies
for each query about the scenario . For a large scenario and diverse domain
theory, this can result in a huge dependency structure . An alternate approach
would be to use the query to guide instantiation and instantiate as little of
the domain theory as possible . Additional constraints that we have not yet
explored include:

*Determining the ontology and objects required directly from the
query and then instantiating only those elements that are consistent
with the resulting partial modeling environment. In this manner, a
question about control volumes over a selected set of objects can
avoid instantiation of Lagrangian views over the entire scenario .

" Enforcing additional control over the rule-instantiation mechanism,
such as triggering rules only when their antecedents hold rather than
when they are merely present in the database [18] .

" Stratifying the rules into self-contained clusters of relevance [35] .

6.1.6. Optimizing model composition
Human tutors rarely seem to resort to first-principles reasoning to figure

out what perspective to use in answering student questions . Similarly, an
engineer who is designing her third distillation plant already has a pretty
good idea about the sequence of types of models that will be required .
It seems likely that achieving efficient use of compositional models in
applications will need both caching of models and acquiring knowledge of
common patterns of model usage. Explanation-based learning and analogical
reasoning seem to be promising ways to acquire such knowledge.

Acknowledgement

The authors wish to thank Brian Williams, Dan Weld, Mark Stefik, Mark
Shirley, Sanjay Mittal, Johan de Kleer and Danny Bobrow for productive
discussions about this work . John Collins provided valuable commentary

and technical assistance . Significant portions of our thermodynamics model
were developed in collaboration with John Collins [5] . We thank Mark
Shirley for providing the Runge-Kutta code, who in turn obtained it from
Elisha Sacks.

This research was supported in part by the National Aeronautics and Space
Administration, Contract No. NASA NAG-9137, by the Office of Naval
Research, Contract No. N00014-85-K-0225, and by an NSF Presidential
Young Investigator Award.

References

Compositional modeling

	

14 1

[1] S . Addanki, R . Cremonini and J .S . Penberthy, Reasoning about assumptions in graphs
of models, in : Proceedings IJCAI-89, Detroit, MI (1989) 1432-1438 .

[2] S. Addanki, R. Cremonini and J.S . Penberthy, Graphs of models, Artif Intell. 51 (1991)
145-177 (this volume) .

[3] F.G . Amador and D.S. Weld,

	

Multi-level modeling of populations, in : Fourth
International Workshop on Qualitative Physics, Lugano, Switzerland (1990) 210-219 .

[4] D.P . Benjamin, ed ., Change o/'Representation and Inductive Bias (Kluwer, Dordrecht,
Netherlands, 1989) .

[5] J . Collins, Building qualitative models of thermodynamic processes, in: Proceedings
Workshop on Qualitative Reasoning, Stanford, CA (1989) .

[6] J . Collins and K.D . Forbus, Reasoning about fluids via molecular collections, in :
Proceedings AAAI-8'7, Seattle, WA (1987) 590-594 .

[71 J.M . Crawford, A. Farquhar and B . Kuipers, QPC: a compiler from physical models into
qualitative differential equations, in : Proceedings AAAI-90, Boston, MA (1990) .

[81 R . Davis, Diagnostic reasoning based on structure and behavior, Artif. Intell. 24 (1984
347-410 .

[9] J . de Kleer, An assumption-based TMS, Artif: Intell. 28 (2) (1986) 127-162 .
[101 J . de Kleer, Problem solving with the ATMS, Artil: Intell . 28 (2) (1986) 197-224-
fill J . de Kleer and J .S . Brown, A qualitative physics based on confluences, Artif Intell. 24

(1984) 7-83 .
[t2] T . Ellman, R. Keller and J . Mostow, eds ., Working Notes of the Automatic Generation of

Approximations and Abstractions Workshop, Boston, MA (1990) .
[13] B . Falkenhainer, Learning from physical analogies: a study in analogy and the explanation

process, Ph.D . Thesis, Tech . Report UIUCDCS-R-88-1479, University of Illinois at
Urbana-Champaign, IL (1988) .

[14] B .

	

Falkenhainer and K.D .

	

Forbus,

	

Setting up large-scale qualitative models,

	

in:
Proceedings AAAI-88, St. Paul, MN (1988) 301-306

[151 P.A . Fishwick, The role of process abstraction in simulation, IEEE Trans . Syst. Man
Cybern . 18 (I) (1988) 18-39 .

[161 K.D . Forbus, Qualitative process theory, Artif. Intell. 24 (1984) 85-168 .
[17] K.D . Forbus, The qualitative process engine, in : D .S . Weld and J . de Kleer, eds., Readings

in Qualitative Reasoning about Physical Systems (Morgan Kaufmann, San Mateo, CA,
1990) 220-235 .

[18] K.D . Forbus and J . de Kleer, Focusing the ATMS, in : Proceedings AAAI-88, St. Paul,
MN (1988) 193-198 .

[19] K.D . Forbus and B . Falkenhainer, Self-explanatory simulations : an integration of
qualitative and quantitative knowledge, in : Proceedings AAAI-90, Boston, MA (1990) .

[201 K.D . Forbus and A . Stevens, Using qualitative simulation to generate explanations, in :
Proceedings Third Meeting of the Cognitive Science Societv, Berkeley, CA (1981) .

[21] R.W . Fox and A.T . McDonald, Introduction to Fluid Mechanics (Wiley, New York, 3rd
ed ., 1985) .

14 2

	

B. Falkenhainer, KD. Forbus

[22] 1 . Granet, Fluid Mechanics for Engineering Technology (Prentice Hall, Englewood Cliffs,
NJ, 1989).

[23] W.C . Hamscher,

	

Temporally coarse representation of behavior for model-based
troubleshooting of digital circuits, in : Proceedings IJCAI-89, Detroit, MI (1989) .

[241 P.J . Hayes, Naive physics 1 : ontology for liquids, in : J . Hobbs and R. Moore, eds.,
Formal Theories ofthe Commonsense World (Ablex, Norwood, NJ, 1985) .

[25] Y. Iwasaki, Causal ordering in a mixed structure, in : Proceedings AAAI-88, St . Paul, MN
(1988) 313-318.

[261 Y. Iwasaki and I. Bhandari, Formal basis for commonsense abstraction of dynamic
systems, in : Proceedings AAAI-88, St. Paul, MN (1988) 307-312.

[27] J. Katzenelson,

	

AEDNET : a simulator for nonlinear networks,

	

Proc. IEEE 54 (11)
(1966) .

[28] B.J. Kuipers, Qualitative simulation, Artif Intell. 29 (1986) 289-338.
[291 B.J . Kuipers, Abstraction by time-scale in qualitative simulation, in : Proceedings AAA1-87,

Seattle, WA (1987) 621-625 .
[30] B.J . Kuipers and D. Berleant, Using incomplete quantitative knowledge in qualitative

reasoning, in : Proceedings AAAI-88, St . Paul, MN (1988) 324-329.
[31] Z.-Y . Liu and A.M . Farley, Shifting ontological perspectives in reasoning about physical

systems, in : Proceedings AAAI-90, Boston, MA (1990) 395-400.
[32] D.A . McAllester, An outlook on truth maintenance, MITAI Memo 551, MIT, Cambridge,

MA (1980) .
[33] S. Mittal and B. Falkenhainer, Dynamic constraint satisfaction problems, in : Proceedings

AAAI-90, Boston, MA (1990) .
[34] D. Molle, Qualitative simulation of dynamic chemical processes, Tech . Report A189-107,

AI Laboratory, University of Texas at Austin, TX (1989) .
[351 K.S . Murray and B.W. Porter, Controlling search for the consequences of new information

during knowledge integration, in : Proceedings Sixth International Workshop on Machine
Learning (1989) 290-295.

[36] L. Nagel, SPICE2 : a computer program to simulate semiconductor circuits, Tech . Report
UCB ERL-M250, Electronics Research Laboratory, University of California, Berkeley,
CA (1975) .

[37] W.H . Press, B.P. Flannery, S.A . Teukolsky and W.T. Vetterling, Numerical Recipes
(Cambridge University Press, Cambridge, 1986) .

[38] S.A . Rajamoney,

	

Explanation-based theory revision : an approach to the problems of
incomplete and incorrect theories, Ph.D . Thesis, Tech . Report UILU-ENG-88-2264,
University of Illinois at Urbana-Champaign, IL (1988) .

[39] S.A . Rajamoney and S.H . Koo, Qualitative reasoning with microscopic theories, in :
Proceedings AAAI-90, Boston, MA (1990) 401-406.

[40] R. Reiter, On closed world data bases, in : H. Gallaire and J. Minker, eds., Logic and
Data Bases (Plenum, New York, 1978).

[41] E. Sacks, Hierarchical reasoning about inequalities, in : Proceedings AAAI-87, Seattle, WA
(1987) 649-654.

[42] M. Shirley and B. Falkenhainer, Explicit reasoning about accuracy for approximating
physical systems, in : Working Notes of the Automatic Generation ofApproximations and
Abstractions Workshop (1990) .

[43] R.

	

Simmons,

	

"Commonsense" arithmetic reasoning,

	

in:

	

Proceedings AAAI-86,
Philadelphia, PA (1986) 118-124.

[44] G.G . Skorstad and K.D . Forbus,

	

Qualitative and quantitative reasoning about
thermodynamics, in : Proceedings Eleventh Annual Conference of the Cognitive Science
Society, Ann Arbor, MI (1989) .

[45] D. Sleeman and J.S. Brown, Intelligent Tutoring Systems (Academic Press, New York,
1982).

[46] R.M . Stallman and G.J . Sussman,

	

Forward reasoning and dependency-directed
backtracking in a system for computer-aided circuit analysis, Artif Intell. 9 (2) (1977)
135-196.

Compositional modeling

	

143

[47] G.J . Sussman and G.L . Steele Jr, CONSTRAINTS : a language for expressing almost-
hierarchical descriptions, Artif Intell. 14 (1980) 1-39 .

[48] G.J . Sussman, SLICES : at the boundary between analysis and synthesis, AI Lab Memo
433, MIT, Cambridge, MA (1977) .

[49] J . Van Baalen, ed .,

	

Change of Representation and Problem Reformulation Workshop
(Informal Proceedings), Menlo Park, CA (1990) .

[50] D . Weld, The use of aggregation in causal simulation, Artif Intell. 30 (1986) 1-34 .
[51] D . Weld, Approximation reformulation, in: Proceedings AAAI-90, Boston, MA (1990) .
[52] J.R . Welty, C.E . Wicks and R.E. Wilson, Fundamentals of Momentum, Heat, and Mass

Transfer, (Wiley, New York, 2nd ed ., 1984) .
[53] E . Wenger, Artificial Intelligence and Tutoring Systems : Computational and Cognitive

Approaches to the Communication of Knowledge (Morgan Kaufmann, Los Altos, CA,
1987) .

[54] B.C. Williams, Qualitative analysis of MOS circuits, Artif Intell. 24 (1984) 281-346 .
[55] B.C. Williams, MINIMA: a symbolic approach to qualitative algebraic reasoning, in :

Proceedings AAAI-88, St . Paul, MN (1988) 264-269 .

