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This research explores the representational and computational complexities of qualitative 

reasoning about time-varying behavior. Traditional techniques employ qualitative simulation 

(QS) to compute envisionments (i.e. state-transition graphs) representing all possible behaviors. 

Unfortunately, QS exhaustively case-splits on all choices, regardless of specific task goals. It 

reasons with completely described states and explores every (ambiguous) future of each.

In this thesis we introduce a new representation, called sufficient discriminatory envision­

ments (SUDE’s), which addresses these problems. SUDE’s discriminate the possible behavior 

space by whether the goal is possible, impossible, or inevitable from each state in that space. 

Our techniques for generating SUDE’s strive to reason with the smallest state descriptions 

which are sufficient for making these discriminations.

We present algorithms for generating SUDE’s via a two-stage process. First, exhaustive 

regression sketches the space of possible paths between the initial and goal states. Second, 

we qualify these possible paths, identifying conditions under which the goal is impossible or 

inevitable and finding all possible transitions between these paths.

We formulate N ature’s regression operators in terms of minimal chunks of causality, ex­

ploiting the causal, compositional nature of Qualitative Process Theory models. We integrate 

continuity-based and minimality-based theories of change to support discontinuous change due 

to actions and modelling simplifications.

We discuss our implementation of these techniques and our test examples in three domains, 

which we call ball-world, tank-world, and kitchen-world.
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C hapter 1

In tro d u ctio n

The area of qualitative physics (QP) has enjoyed explosive growth over the last ten years or so

[52]. However, despite this growth, relatively little attention has been given to a fundamental 

issue: the computational complexity of reasoning about qualitatively-ambiguous behavior over 

time. Instead, the theoretical emphasis to date has been on soundness and completeness issues. 

Although that emphasis may have been necessary for defining this relatively new field, it has 

lead to a somewhat ironic result, given that many of the original motivations of QP arose 

from the area of commonsense reasoning. Specifically, current Q P algorithms typically do not 

make obvious qualitative conclusions about a particular system more quickly than less obvious 

ones. In other words, the complexity of QP algorithms tend to be far more dependent on 

the complexity of the particular model of the physical system than on the specific task being 

performed. This thesis is a direct attem pt to define and address this problem.

1.1 Q u a lita tiv e  P h y sic s

A defining characteristic of qualitative physics is the discretization of continuous param eters 

based on physical limit points such as boiling points, zero masses, and zero derivatives. Such 

discretization is useful because it partitions phase space into regions representing qualitatively 

different behavior. Reasoning with these regions instead of exact points in phase space (as 

traditional numeric simulation would), results in weaker but broader conclusions.

This broad-but-weak nature of QP can be appropriate in several common contexts. In earlier 

stages of design or diagnosis, QP can help systematically eliminate large sets of physical systems

1
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which are all qualitatively equivalent in ways that make them all unsuitable candidates. When 

the data  available for monitoring or prediction tasks are incomplete, QP still allows some useful 

(though weak) conclusions to be made, based 011 the qualitative regions covering those data. 

Furthermore, QP supports meaningful, causal-based explanations of why particular behaviors 

may occur.

For the most part, previous QP algorithms have employed static partitionings of phase 

space. Thus, if the comparison between a quantity and a limit point is made for some time 

point, it is made for all time points. There are two good reasons for taking th a t approach. 

First, it facilitates comparisons between the inferences made with QP and those made with 

numeric simulation (which employs the most extreme case of static partitioning: exact points). 

Second, it leads to relatively simple inference algorithms. Although these features have proven 

useful in studying soundness and completeness issues, static partitioning typically results in 

excessive computational and representational complexities. In order to explore this issue, we 

first summarize the nature of standard QP algorithms below.

1 .2  T h e  S tan d ard  A pproach : Q u a lita tive  S im u la tion

Most QP systems implemented to date have relied on qualitative simulation  (QS) to  make their 

inferences about behavior over time. QS takes a qualitative model and a description of the 

initial state and produces a directed state-transition graph, called an envisionment. Each path 

through the envisionment qualitatively summarizes a set of alternative possible quantitative 

behaviors over time.

Figure 1.1 outlines the fundamental algorithm of all standard qualitative simulators, such 

as ENVISION [12], GIZMO [23], QPE [27], and QSIM [39]. It is said to  generate a total envisionment 

(TE) if the initial state description I  is empty; otherwise it is said to generate an attainable 

envisionment (AE). For a given model, there is exactly one AE for each X. denoted A E (I), 

representing the subgraph of the T E  which may occur during or after I .

The completions of a state description correspond to the set of logical models (or interpre­

tations) containing that description. Thus, each completion corresponds to one region in the 

staticly partitioned phase space and no such region subsumes another. Each completion is often 

called a complete (or total) state.

2
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Procedure Q u a lS im (I):

Q <— C o m p le tio n s (I) .
States <r- 0.
While Q ^  0 do :

S  <- Pop(Q).
States <— States U {5}.
Nexts(S)  <— N e x tS ta te s (5 ) .
Q t— Q U Nexts(S) — States.

F ig u re  1.1: Generic qualitative simulation algorithm

The nexts of a complete state S  are intended to correspond to a subset of the set of complete 

states, representing the qualitative regions in phase space that are temporally adjacent to 5. 

More precisely, for each next state N  of S,  there is a t least one point in S ’s region and one 

point in TV's region such that the phase space trajectory between those two points starts  in S, 

ends in N . and involves no state transition other than the one from S  to N .

The heart of early work on QS was to  generate sound and complete sets of nexts. From 

a soundness/completeness perspective, the main problem with this framework is th a t global 

soundness is not guaranteed. Consider a path  of three complete states Si —> S 2 —> S3 . Let 

pi be a point in the phase space region represented by S i, let P3 be similar for S3 and let p t 

and pj be similar for S2 . Let these points be further constrained so that the exact trajectory 

through phase space from pi to p, starts in S i’s region and ends in S2 region and is always in 

one -of those two regions. Similarly constrain pj and P2 in terms of the regions of S 2 and S3 . 

Soundness of nexts guarantees that some such pair (pi,p;) must exist for QS to generate the 

transition Si —> S2 (and similarly for pair {pj.p-z) and transition S2 —> S3 ). Unsoundness arises 

when there is in fact no trajectory through the region of S2 which begins at p; and ends at pj.

This potential unsoundness should not be surprising. It is an inherent property of the 

envisionment representation, due to its inability to represent non-local constraints. In  principle, 

global unsoundness can always be avoided by refining the partitioning to include new limit 

point comparisons for which local constraints will adequately reflect the global constraints. 

Unfortunately, such refinement can, in general, require an infinite number of new comparisons,

3

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



essentially to subdivide critical regions (such as th a t of state S 2 above) as close to exact points 

as necessary.

Despite theoretical concerns, we claim that global unsoundness is typically not of prime 

pragmatic concern for most tasks, for two key reasons. First, it appears to be rather rare. In 

fact, it seems to arise as special cases, such as energy constraints [30] and feedback structures

[53], th a t can often be handled by other means. Second, and more importantly, most tasks for 

which we would employ QS are more concerned w ith completeness than soundness. Many tasks, 

such as monitoring, have a conservative bias, preferring false positives to false negatives. For 

most other tasks, such as diagnosis and design, global unsoundness generally can be detected 

at later (verification) stages, thus incurring costs (i.e. backtracking) only in those rare cases 

where unsoundness actually arises.

The main reason any task employs QS is to be able to reason under uncertainty by reasoning 

with a set of alternative behaviors. The user (implicitly) knows that only one of those behaviors 

is the “real” one. Thus, whether the others are globally consistent is not the primary concern. 

Instead, it is that the size of the set of alternatives is manageable in the first place. Which 

brings us back to the fundamental concern of our work: the computational and representational 

complexity of QS.

Based on the above rationale, our work does not address the global unsoundness inherent in 

envisionments. Our only concern with soundness will be to avoid introducing unsoundness as 

we move toward weaker, more manageable representations. Thus, whereas the “gold standard” 

for qualitative simulation has typically been differential equations, the gold standard for our 

work will be envisionments themselves.

1.3  T h e  P rob lem : E n v is io n m en ts A re E xcessive

One would like the complexity of performing a  task to reflect the complexity of that specific 

task, not the complexity of the physical system per se. Unfortunately, QS tends to reflect the 

inherent ambiguity in the qualitative model more than task-specific constraints. For example, it 

has been postulated that even an attainable envisionment based on a detailed qualitative model 

of a nuclear power plant might consist of more states than there are atoms in the universe. For

4
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many tasks it is not necessary, desirable, nor even possible to explicitly enumerate the entire 

envisionment space.

Such excessive complexity results from the two types of case-splits that QS makes, to rep­

resent uncertainty in both the current and the next states. We consider each type in tu rn  

below.

1 .3 .1  C a u se  1: C o n sid er in g  A ll C o m p le t io n s

Requiring all completions of the initial state I  can be a major source of complexity. A glance 

at the relatively simple examples explored in most of the QP literature might suggest th a t this 

might not be such a problem. However, for large real-world systems one is likely to observe 

only a small fraction of the initial state of that system. Thus, QS would require case-splitting 

on all consistent combinations of the initial statuses of all unobserved system parameters. 

Furthermore, when considering events which can change the connectivity of the system — 

like opening and closing valves — almost any state could potentially lead to any ether, given 

enough time. For such cases, an initial state alone does not even provide much constraint on 

the envisionment that must be generated; the attainable envisionment will be nearly as large 

as the total envisionment.

1 .3 .2  C a u se  2: C o n s id e r in g  A ll N e x ts

Considering all next states of each state, each at complete levels of detail themselves is the other 

major source of complexity in QS. Branching can occur whenever there are multiple quantities 

moving toward limit points but some of their relative derivatives and relative distances from 

those limit points are unknown. W ithout those relative constraints, it is usually ambiguous 

which quantity will converge to its limit point first; thus, QS will often branch on all possible 

orderings. In fact, there are only two types of exceptions:

1. one convergence must occur before another because of transitivity constraints and

2 . two m ust occur together due to correspondence constraints.

Consider the now classic QP two-container example: two containers of water connected at 

their bottoms by a horizontal pipe. Let B i , L,, and Pi refer respectively to container i's bottom  

height, water level height, and bottom  pressure. Imagine a state 1  where L\  is higher than  L 2 -

5
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T hat causes Pi > Po, which causes a flow of water from container 1 to container 2 , which causes 

L\ to drop and To to rise. An example of exception type 1 is that L\ equalizes with Lo before 

Li reaches B \.  Based on domain knowledge Lo > Bo and Bo = B i,  the transitive relation 

Li > L o >  B\ holds in I .  An example of type 2 is that P\ equalizes with Po when L\ equalizes 

with Lo. Domain knowledge indicates that the relation between Pi and P2 corresponds to the 

relation between LI and Lo.

QS has the especially undesirable property that two causally unrelated possible convergences 

will necessarily result in branching on which occurs first. Thus, QS does not gracefully scale-up 

when reasoning about the most common real-world systems: large, loosely-coupled systems (e.g. 

the common every-day world, automobiles, airplanes, power plants, and so on). Furthermore, 

even when convergences are related, it is often the case that some possible orderings will have the 

same result at some point in the future. Consider, for example, many tanks of water connected 

in series by pipes. Regardless of which two neighboring tanks equalize first, eventually all 

tanks will have equal water levels. This is an instance of a general problem called occurrence 

branching. It was first explored in some detail in the context of post-processing envisionments 

to identify occurrence branchings [41]. However, that approach fails when the envisionment 

cannot be computed in the first place. In fact, we claim that this is typically the case as one 

scales up to reason about real physical systems.

Branching is extremely common in QS because the necessary relative constraints on deriva­

tives and distances are often either insufficient, unmanageable, or even unrepresentable. For 

example, consider a quantity Qi at a limit point V) and converging up toward a  limit point L\ 

and similarly consider Q2 a t Vo and converging up toward L2 . Further assume th a t the relative 

distance relation L\  — V I  < L 2 — V2 always holds. If one can guarantee th a t relative derivative 

relation D (Q i) > D(Qo) will hold at least until either Qi or Q2 converges, then one can indeed 

infer th a t Q 1 will reach L t before Q2 reaches L2. In contrast, knowing D (Q i) > D (Q 2) and 

Li — Qi > L2 — Q2 (via assuming L\  — V\ > L 2 — V2 instead) is insufficient: Q\  is moving 

faster than  Q2 but also has farther to go. Thus, the use of relative relations cannot always 

prevent branching in QS. Order of magnitude reasoning can help; for example, one can infer 

th a t Q 1 converges before Q2 does if D(Q\)  is much larger than D(Q 2) and L\ — V) is only a 

little larger than Lo — V2. However, that only pushes the problem to the higher order relations, 

for which branching can still be a problem. In general, the level of detail necessary to always
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avoid branching is simply unrepresentable as a finite number of qualitative constraints. Fur­

thermore, relative relations are only representable if the units of the derivative and the distance 

are compatible for both converging quantities. For example, if a tem perature and a pressure 

are converging to respective landmarks, relative relations cannot be used to constrain one to 

happen first.

Relative constraints are sufficient to infer th a t one of two possible convergences occurs first 

only if two conditions are meet:

1 . the relative derivative relation and the relative distance relation are not in the same 

direction,

2 . the relative derivative relation holds at least until one of the convergences occurs.

Unfortunately, even when the first condition happens to be satisfied, the second condition is 

often difficult to guarantee. Essentially, the problem is that the relative derivative relation is 

itself often convergencing toward the derivatives becoming equal (at least momentarily). Just 

as order of magnitudes can provide higher-order constraint on the first condition, higher order 

derivatives can provide higher-order constraint on the second condition. However, again, this 

only pushes the underlying problem to higher levels. We explore such underlying problems in 

the next section.

1.3 .3  U n d erly in g  Issues

Many researchers have suggested (both implicitly and explicitly) that the above complexities 

are inherent to QP, due to the ambiguous, weak nature of qualitative constraints. Indeed, that 

perspective has driven much recent work on hybrid systems which merge symbolic, numeric, 

and qualitative constraints, such as MINIMA [55] and Q2 [40]. However, we argue that there 

are two other issues which have been largely overlooked in previous work, and yet which can 

significantly impact computational complexity. We consider those two issues in tu rn  below. In 

short, we claim that the bulk of the complexity is often more related to the nature of QS than 

the nature of QP.
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1.3.3.1 A dding Q ualitative D e ta il C an B e H arm ful

We alluded to a problem of infinite regress in the previous section on branching. Tracking higher- 

order relations over time in order to better constrain lower-order relations can easily result in 

higher complexity, not less, because of newly introduced ambiguities in how the higher-order 

relations themselves change over time. We will explore this phenomena in great detail in later 

chapters, as it plays a fundamental role in the complexity of any QP approach. For now, we 

will simply summarize our intuitions. We claim that it is generally sufficient (for soundness), 

and much more efficient, to include such higher-order relations in a state description only when 

they are inferable from existing constraints for that state or have necessarily persisted from a 

previous state. This avoids the complexity that QS suffers from having statically partitioned 

phase space so that every state makes a commitment to the status of every relation that one 

might wish to track over time. Its promise is based on the intuition that the deep inherent 

ambiguity in qualitative constraints usually makes it foolish to try to reduce lower-order case- 

splits by introducing higher-order case-splits.

1.3.3.2 G oal S tates P rov id e E xcep tion a l C onstraint for Q P

While qualitative ambiguity appears to  minimize the utility of higher-order detail, it conversely 

appears to maximize the utility of goal states. Because of the weakness of qualitative constraints, 

there is typically at least one path  through an envisionment connecting some completion of a 

given initial state I  with some completion of a given goal state Q, as long as there is some 

conceivable way that this might occur. Specifically, such paths often exist as long as there 

are some trees of causal directed influences over time which relate each quantity in Q back to 

quantities in X. If generating envisionments via QS is so complex due to ambiguity and yet 

the same goal achievability results can usually be determined via goal-directed search through 

influence structure, then the appropriateness of QS comes into question. After all, most real 

tasks are fundamentally concerned about the achievability of goals.

For example, if a ball is thrown to the right, then qualitatively that ball might eventually hit 

any target on the right. Try to imagine scenarios in which the qualitative constraints alone are 

sufficient to indicate that certain targets on the right are unreachable, and yet there is a  path
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of influences relating Q to X. In other words, consider how influence search might be unsound, 

relative to envisionments.

One scenario is that there is a force field between the ball and a given target which is 

stronger than the force due to the ball’s movement. However, qualitative ambiguity would also 

allow that that field might not be strong enough, so any target must be considered potentially 

reachable. So, consider an infinite force opposing the ball, say due to a tall wall that blocks 

the ball from some targets. However, the absoluteness of that force makes this case also easy 

to handle. One need only locally check that for some set of candidate influences (for moving 

a quantity Q between two values A and B) there is no opposing set of influences on Q which 

always dominate when Q is at some value between A and B.

Another scenario is that the ball is on a short, unbreakable tether line that would abruptly 

stop the flying ball before it reached some target T. Realizing that target T  is unreachable is 

trivial, for any reasonable qualitative model of that tether. Any goal specifying that the ball 

is at T would be inconsistent, because it would require the tether length being longer than its 

limit.

A more subtle scenario would be if there was some triggering device past T  which would 

release the tether if the ball hit that device. Here, the ball being farther from its initial location 

than the tether length would not be universally inconsistent, since the tether could be in its 

released status. However, even in this case, searching influence structure would be sufficient to 

realize th a t the ball will never reach T, if the tether was initially unreleased. To influence the 

ball all the way from its initial location to T  (via flying) would require the tether to be released. 

However, releasing the tether requires the ball reaching the trigger, which itself requires the 

tether to be released. This deadlock makes the goal unreachable.

These results may appear surprising, particularly from the perspective of general planning 

frameworks. Consider a planning framework where dynamical processes (like flows or flying) 

are modelled as STRIPS-like operators [22] available to  a special agent called Nature. The 

long-term dynamical effects of an event (e.g. a ball hitting a trigger) will be due to a sequence 

of Nature operators, not simply the add and delete lists of one action or N ature operator. So, 

it might appear that validation (via QS) would often be required to ensure that all possible 

dynamical effects are considered when predicting goal achievability. However, the point of the 

above exercise is to suggest that qualitative constraints are typically so weak that the resulting
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ambiguity makes predicting goal achievability, to the same degree of precision as QS would 

obtain, possible without such validation.

Nevertheless, QS can still be useful in showing, for example, that a tether might have to 

break if a ball is to reach a far away target. Indeed, one of the underlying motivations of QP is 

to provide such explanations, as opposed to simply making predictions. However, even then, it 

is often the case that the qualitative behavior which explains whether a goal can be achieved 

occurs relatively near to the goal occurrence itself. For example, a closed container might 

soon explode if pressure is increasing due to material flow into it from another container. The 

outcome is ambiguous because the flow might stop first (before the pressure gets too high). Note 

that this explanation indicates that the explosion is possible up until the very last qualitative 

change occurs. Generally, the critical point, after which all futures either lead to the goal or 

never lead to the goal, is one of the last states before the states consistent with the goal itself. 

Once again, this phenomena is due to qualitative ambiguity.

Although QS has been used in several task frameworks, such as diagnosis and monitoring 

[2 0 , 16], existing QS algorithms do not accept goal states as inputs. As a consequence, such task 

frameworks are intractable when the envisionments are too complex to compute, even though 

in the end only a small portion of the envisionment space would actually be searched for the 

specific task.

1.3 .4  A n  A n a logy  W ith  Logical R eso lu tion

Toward removing the excesses in QS, it is illuminating to consider an analogy between QS 

and logical resolution. In order to ensure completeness, resolution branches on case-splits 

represented by clausal disjunctions. Similarly, to ensure its completeness, QS branches on case- 

splits represented by completions and nexts. However, whereas efficient resolution algorithms 

seldom explicitly search all case-splits, QS algorithms always do exactly that.

Certainly, some resolution efficiency comes from being goal-directed; our emphasis on goal- 

directed qualitative reasoning promises to yield similar efficiencies. However, other efficiencies 

in resolution come from making simplifications in what degree of completeness is acceptable. 

For example, unit resolution is very efficient but is only complete for Horn clauses. Analogous 

simplifications on QS might similarly be useful.
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Since QS and resolution do differ in what they compute, it is im portant to understand 

when those differences might justify the more exhaustive nature of QS. Resolution is used to 

prove satisfiability and, less typically, to generate all prime implicates. QS analogs to these 

must reflect the additional dimension of time. A natural QS analog to satisfiability is whether 

every envisionment path  starting at every completion of I  contains some completion of Q. We 

will call this QS satisfiability. Based on tha t analog, the QS analog to prime implicates is a 

collapsed envisionment structure that minimizes case-splits while still being sufficient for QS 

satisfiability. We call such structures prime envisionments.

Those analogs suggest two interesting computational issues:

1. Transforming an AE envisionment £  into a prime envisionment £'.

2. Directly computing £', without having to compute £  first.

Understanding these issues will help us better understand how excessive QS is for QS satisfia­

bility problems.

An obvious transform ation to consider is one in which the next of each state S in £ 1 repre­

sents the intersection of the state descriptions of the nexts of all completions of S  in £. Starting 

with 5  being I ,  this transformation yields a chain of successively more partial states, which 

eventually subsumes Q if Q is QS satisfiable. This represents a most extreme type of £ ', where 

there are no case-splits a t all.

Although such £ '’s would be complete, they would typically be very unsound for QS satis­

fiability. In fact, due to accumulated ambiguity, states in £' just a few transitions away from 

T  would typically be “static” , containing only those facts which always persist after I .  The 

problem is that some distinctions among nexts in £  represent im portant disjunctions th a t must 

be tem porally projected to preserve the soundness of £. Trying to solve this problem, while 

also striving to keep as close to the £' formulation as possible, is a major theme of this thesis.

1.4  T y p es  o f  Q u a lita tiv e  R eason in g

At this point, it should be becoming clear that a key difficulty in assessing the complexity of QS 

is that it is actually not clear what the output requirements for reasoning about time-varying 

qualitative behavior really are. This issue has hardly been addressed since the early days of
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QP research, from which the envisionment-centered mindset originated. The overwhelming 

m ajority of previous work on QP algorithms can be viewed as either generating envisionments 

(i.e. QS) or transforming envisionments into task-specific outputs. For tasks where QS is 

prohibitively expensive, a steady-state assumption is often employed, where X specifies that all 

derivatives are zero. T hat reduces the complexity to only that of computing all completions of

I .  However, rather than resorting to limiting simplifying assumptions to make QS manageable, 

it is often more appropriate to use an approach which directly provides the output that is really 

desired.

We will use the term “qualitative reasoning” (QR) to refer to any type of reasoning about 

time-varying behavior based on QP. To better understand the capabilities and requirements of 

QR, we have found it useful to distinguish six types of QR, as enumerated below.

Precise QR is the qualitative analog of quantitative simulation. It partitions phase space as 

precisely as possible using the qualitative language of the model. It is the only type of QR for 

which the desired output is indeed the envisionment produced by QS using static partitioning. 

We claim that most tasks are actually better served by one of the other types of QR.. Indeed, 

perhaps the only task that truly requires precise QR is demonstrating th a t a qualitative model 

is sound and complete with respect to a quantitative model. For that task, precise QR seems 

necessary almost by definition; at the very least it makes the task extremely straight-forward.

Verification QR outputs whether or not it is inevitable (or impossible) for a goal state Q 

to occur sometime after an initial state X. Unfortunately, the weak nature of QP constraints 

typically makes Q neither inevitable nor impossible from X. Nevertheless, verification QR does 

have the potential to be much less computationally and representationally complex that precise 

QR, since only binary output is required. For example, only one pa th  from X to Q need be 

found to conclude that Q is not impossible after X.

Predictive QR is functionally equivalent to verification QR, with Q ranging over all of state 

space. A related task is temporal reasoning (TR) [14], which tells what facts hold at given 

time points. One can map from QR to TR representations by assigning start and end time 

points to every QR state. This might suggest that a reverse mapping would allow QR problems 

to be reduced to TR  problems. Unfortunately, existing TR  work does not adequately handle 

disjunctive time constraints. Thus, TR  does address the fundamental issue of QR: what case-
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splits to pursue. This means that TR-based verification QR would be potentially unsound and 

incomplete.

Explanatory QR provides causal explanations of particular behaviors. It does not simulate 

per se, but rather explain how a given behavioral path could arise. SIMGEN [28] is an ex­

ample: it uses explanatory QR both to explain the predictions of its quantitative simulator 

and to update its quantitative model as influence structure changes. When a given behavior is 

completely specified, as in the case of SIMGEN, explanatory QR totally avoids the complexity 

of case-splits, since the behavior makes a commitment for every case-split.

Differential QR indicates how differences in system structure or initial param eter values 

would result in different behavior. For example, if the mass of a spring-block oscillator is 

heavier, the period would be longer. Weld’s Differential Qualitative Analysis [51] and deKleer’s 

Incremental Qualitative Analysis [8] are examples of differential QR. Essentially, differential 

QR is a  form of explanatory QR in which the differences between two behavioral trees (nominal 

and perturbed) are explained.

Finally, discriminatory QR combines the later four types. It goes beyond verification and 

predictive QR to indicate not only whether Q might eventually occur from X, but what initial 

and intermediate conditions would determine whether Q becomes inevitable or impossible. Fur­

thermore, for states in which Q is neither inevitable or impossible, differential QR can indicate 

whether particular perturbations would make Q more or less likely to eventually occur.

All six types of QR could be performed by analyzing AE(Z) (and a corresponding AE(Z’), 

in the case of differential QR). For example, the output of predictive QR for each Q could be 

based on which subsets of AE state descriptions are inevitable or impossible after X. However, 

no type of QR besides precise QR seems to require the full complexity of QS.

We will focus on discriminatory QR for three reasons: novelty, generality, and significance. 

First, it has not been previously identified in QR literature, perhaps because of the emphasis 

on prediction over goal-directed reasoning. Second, it involves all other types of QR, so our 

results have general import. Third, it appears to be the most appropriate type of QR for most 

tasks.

Identifying discriminatory boundary states seems to be of particular importance for tasks 

that reason under uncertainty. For example, articulating when negative conditions become im­

possible and when positive conditions become inevitable allows a controller to expend minimal
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efforts if such cases arise, or even strive to achieve them. Furthermore, designers/planners would 

like to at least ensure that their device/plan is not destined to fail if certain conditions arise. 

In short, identifying boundary conditions seems to be one of the most im portant contributions 

th a t QR can make to the overall analysis of a system or procedure.

1.5  A  N e w  P e r sp ec tiv e  Is R eq u ired

As we noted earlier, static partitioning has played an im portant role in the development of QP, 

when the emphasis was on studying soundness and completeness issues. However, we argue 

th a t serious attem pts to study computational complexity now require a change of perspective, 

for which static partitioning is no longer appropriate. We call the old perspective precision- 

based because it stresses characterizing possible behaviors over time as precisely as one can in 

the language of the qualitative model. In that view, the key way to reduce complexity is by 

formulating qualitative constraints and inference mechanisms which are strong enough to limit 

the complete set of predictions to only a few possible trajectories through the qualitative phase 

space. As we have discussed, that approach does not scale up because the relevancy of specific 

comparisons with limit points changes over time and across goals.

In contrast, the key way to reduce complexity in our new view is by dynamically redefining 

the qualitative phase space partitioning over time, such that only a few possible trajectories are 

necessary to distinguish the complete set of ways in which goal conditions would be reached in 

the future from the complete set of ways in which they would not. We call this new perspective 

discrimination-based because it stresses characterizing possible behaviors over time only in 

enough detail to distinguish their outcomes relative to some goal.

In essence, this perspective addresses computational complexity by redefining what is com­

puted. We argue that this new output representation suffers less from the intractabilities men­

tioned earlier and provides a behavioral summary which is more appropriate for most tasks.

1.6  O ur N e w  A pproach: D iscr im in a to ry  E n v is ion m en ts

This thesis addresses the above problems and concerns by exploring the use of partial states and 

goal states to compute a new class of representations that we call discriminatory envisionments 

(DE). For a given I  and Q, we declare any envisionment X  to be a DE if it is sound and
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complete with respect to reachability of Q, to the same extent that A E (I) is. T hat is, for any 

complete state 5  in AE(2) and any partial state S \  in X  which represents a  subset of S ’s 

description, S\- always (never) reaches Q if and only if S  always (never) reaches Q. Although 

any AE trivially qualifies as a DE, we are interested in minimal structures which suffice to 

satisfy the relaxed requirements of DE’s.

1 .6 .1  A E -B a se d  C o n c ise  D E ’s

Let us first consider how an AE might be collapsed into alternative DE representations, denoted 

E t. This requires a  mapping from the complete states of AE(T) to the partial states of E t. 

Consider each state S  in AE(X), along with each of its nexts S n. If 5  and S n differ in their 

reachability relation with Q (i.e. always, possible, or never), then let them  each map to a 

different state in E t (with a transition between them). Otherwise, let them  m ap to  the same 

state in £). Since we desire minimal DE representations, our definition of E, must also include 

some means of compressing ECs state descriptions, to allow them  to each correspond to multiple 

AE states.

First, consider an extreme case, denoted E \. Let each state S  in E \ represent the intersection 

of the phase space regions represented by the AE states th a t map to S. Essentially, E \ collapses 

A E (I) into at most three states, which are respectively intended to correspond to all states from 

which Q is either inevitable, impossible, or neither.

Although E \ is extremely concise, it is unfortunately not a DE. The problem is th a t AE 

states which differ in their reachability of Q can map to the same E \ state. This occurs because 

compressing state descriptions via intersection is too aggressive. It can easily dilute the state 

description of a E\ state so much that it becomes a subset of the description of an AE state 

which does not map into it.

One way to modify the E i approach to produce D E’s is to (non-deterministically) decide 

to not intersect state descriptions whenever th a t would (eventually) result in many-to-many 

mappings. Denote the result of this approach as £>• To avoid an intersection, the AE state 

would be mapped to a new state in £ 2 - However, that approach has many problems as well. 

First, £ 2  would not be unique, since there will be many ways of retaining detail from one state 

while allowing detail in another to be abstracted away via intersections. Second, the worst-case 

cost of searching the space of which intersections to perform can be exponentially larger than
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that of QS itself, since collapsing each AE state can require consideration of the powerset of 

state descriptions. Thus, it could be extremely costly just to compute any such DE, let alone 

any maximally concise ones. Third, it is based on performing QS first; thus, we would still suffer 

from the computational complexities of QS even if the resulting representational complexity is 

improved. Fourth, the preference criterion among the admissible DE representations is based 

on shallow, information-theoretic grounds, as opposed to deeper causal or explanatory grounds. 

Thus, E 2 would not even be particularly useful for QR, despite the high cost they might entail 

to compute.

1 .6 .2  C a u sa l-B a sed  S u ffic ien t D E ’s

We propose a DE representation which, though typically not optimal in the information- 

theoretic sense, retains explanatory power. It also retains the reachability soundness and 

completeness of AEX while avoiding excessive complexities due to irrelevant case-splits. Our 

proposal is based on the simple fact that if I  does not always reach Q then it must reach some 

state N  from which Q is unreachable. Paths from I  to Q show how Q could arise, while paths 

from X to N  show how Q would never arise. Call these positive and negative paths, respectively. 

Any physical system follows at least one positive and one negative path  simultaneously until 

some critical state is reached, after which only either G or some N  is reachable. By using partial 

states to formulate these paths, we can restrict ourselves to only those case-splits necessary to 

represent changes over time which would be sufficient to possibly reach Q (or N). Consequen­

tially, we call envisionments composed of such paths sufficient discriminatory envisionments 

(SUDE’s). 1

For a given G, assume we knew of some set of states N \ . . .  N n , each known to never reach 

Q. Further assume that this set of states is complete, such that any state which never reaches 

Q must eventually reach one of them. Instead of generating all of AE(X) explicitly, imagine 

that we somehow were able to directly generate all the paths between X and G, as well as those 

between X and each N,. The resulting subgraph of AE(X) would suffice as a DE for X and G■ 

However, it would still be far from a minimal DE, due to the inherent excessive case-splits in 

AE states.

’We prefer to pronounce “SUDE’s” as “suds”.
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Imagine that we could instead generate sets of paths of partial states between X and each of 

G, N i , . . .  N n, such that there is necessarily at least one path through AE(X) corresponding to 

each and that together they correspond to every path in AE(X)  from X  to each of Q, N i , . . .  N n. 

Unfortunately, such paths would not be sufficient to form a  DE, because one path  to Q and one 

path  to some Ni might each contain a  partial state representing (different) subsets of the state 

description of some 5  in A E (I). Thus, they could conflict in claims about the reachability of 

G from S.  However, this problem can be rectified by interweaving each (positive) path  from I  

to G with each (negative) path from X  to each Ni. For a given pair of paths, this interweaving 

would explore all consistent temporal orderings of which path ’s pending transition occurs first. 

The result would show how behavior can proceed toward both G and some of the N  states for 

awhile, and then eventually end up at either G or some N t .

Interweaving of all positive and negative paths will generally lead to more distinctions than 

are required to form SUDE’s. The goal of this work is to explore and characterize how much 

interweaving must be done to meet the requirements of SUDE’s.

1 .7  E xam p le  S U D E ’s

We will now summarize some examples which highlight key aspects our SUDE representa­

tion. For this purpose, we use a  simple spatial/m otion domain, since trajectories through this 

domain’s phase space are especially easy to illustrate and discuss.

1.7.0.1 T he Ball-W orld D om ain

Consider the scenario illustrated in Figure 1.2. By convention, the ball’s height (y) being at 

limit point Yi means that the ball is touching the top of ledge i and y= Y i’ means that the ball 

is touching the bottom  of ledge i. For this scenario, the constraints among landmarks are as 

follows:

Y 0  < Y T <  Y l <  Y 2 ' < Y 2 <  Y 3' < Y3, TO <  Y4'  < Y4, and 

X 0  < X l <  X 2  < X 3  < X 4 <  X5.

We intentionally do not constrain the height of ledge 4 (relative to the height of the other 

three ledges), to illustrate that the complexity of SUDE’s decreases faster (relative to AE’s) as 

constraints are relaxed.
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Y3
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Y4

Y 4  '
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YO

XO XI  X2 X3 X4 X5

F ig u re  1.2: The ball-world scenario, with four ledges and one ball

Note: Despite graphical appearances, the height relation between ledge 4 and the other ledges 
is not specified.

We make two key simplifying assumptions. First, all collisions are inelastic, as if the ball 

is a heavy cannonball. Second, the ball never hits the side edge of any ledge, as if the ledges 

are infinitely thin. Our work does not alleviate the need for such modelling simplifications 

to manage complexity, nor do we address the issue of how to find appropriate simplifications. 

However, our work does help ensure that such simplifications will actually lead to tractable QR. 

As we shall see below, the above two simplifications lead to very concise SUDE’s, whereas the 

corresponding AE’s are still extremely complex.

1 .7 .1  E x a m p le  1: B a s ic  Id ea s

Let I  define the ball as initially being between X3 and X4, between YO and Y l’, and moving 

straight up and let Q define the ball as being at YO. Figure 1.3 illustrates the SUDE (SUDE1) 

for this example; it indicates that X  will always reach Q (specifically, state 1), after peaking 

exactly once (at state 3).

Note that SUDE1 ignores irrelevant details about which ledges the ball passes before peak­

ing. In fact, SUDE1 does not contain even a single case-split, whereas AE(Z) case-splits exten-
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F ig u re  1.3: SUDE1

Each shaded box indicates the region in phase space specified by the corresponding state. Note 
th a t state 4 is a generalization of state I, ignoring details about whether y is below Y l’ or not.

sively. For instance, A E (I) case-splits on whether the ball passes ledge 1 (i.e. y = Y l) before 

peaking (i.e. d(y)=0) or not. Furthermore, since Y4 is unconstrained with respect to Y l, Y2, 

and Y3, A E (I) almost fully case-splits on the set y < Y4 V y =  Y4 V y  >  Y4. For example, 

for every AE state specifying y > Y 4. there are corresponding AE states which only differ by 

specifying y <  Y4 or y =  Y4 instead. The only exceptions are states specifying y =  YO, which 

must necessarily specify y < Y  4 (due to transitivity).

SUDE1 essentially tracks over time only the relations between y and YO and between d(y) 

and 0. All other relations are specified in states only when they are inferable by those two 

relations and other relations that necessarily persist from X. This illustrates how SUDE’s avoid 

the two causes of excessive complexity that we mentioned earlier (case-splitting on all nexts 

and on all completions). First, SUDE1 does not track relations between y and landmarks Y l’, 

Y l, Y2’, Y2, Y3’, and Y3’, even though y is known to be less than each of them in X. This 

avoids case-splits on nexts of X that are irrelevant. Second, the relations between y and Y4’ 

and between y and Y4, which are unspecified in I ,  are never introduced in SUDE1. This avoids 

case-splits on completions of X  that are irrelevant.
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1.7.1.1 R egressing  W ith  Q ualitative D ynam ic O perators

We generate paths between 2  and Q by regressing with operators, much in the style of state- 

based planners such as STRIPS. However, unlike standard STRIPS-like operators, the effects 

of our operators do not necessarily hold once all the conditions are satisfied. Each dynamic 

operator specifies conditions under which the derivative of a particular quantity Q could have 

a particular sign and cause Q to change its relation with some particular landmark. Figure 1.4 

illustrates one dynamic operator used in this example.

A dynamic operator’s change might not actually occur, for one of two reasons. First, some 

of the conditions might stop holding before the derivative causes the change to occur. Second, 

competing operators corresponding to the same derivative but w ith opposite sign might also 

be active; this could prevent the change from occurring even if the conditions hold indefinitely. 

These two sources of ambiguity are unavoidable; they result from inherent limitations of QP 

constraints — the same limitations which make multiple nexts in QS so common. This precludes 

us from being able to simplify via the STRIPS assumption (i.e. that the explicit set of operator 

effects are complete).

Only in special circumstances can one formulate a dynamic operator using enough quali­

tative conditions to ensure that its change must occur if its conditions all hold. A theory for 

formulating dynamic operators should, at the very least, identify those circumstances. However, 

more generally, the theory should also identify sets of necessary and sufficient conditions under 

which it is consistent that a particular change might occur.

For example, x  >  A"3 is a  necessary condition of the operator OP1 of Figure 1.4; omitting 

it would suggest th a t the ball could reach YO by passing through ledge 1. Imagine that the 

model is enhanced to include the possibility of a upward wind from YO and downward wind 

from Y3. OP1 would still be correct unless the following constraints hold: the forces of the 

downward wind and gravity are individually less that the force of the upward wind but together 

are greater. In that case, OP1 must further be conditioned on the upward wind being inactive 

or both winds being active. T hat would resuit in multiple new operators to replace OP1.

We leave the details of our theory for automatically formulating dynamics operators from a 

qualitative model for later. For now, the im portant thing to note is that by regressing with our
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conditions: 
y > YO 
my < 0 
x > X2> 
x  < A'4 
(ay < 0) 

change: 
y = Y 0

F ig u re  1.4: Example qualitative dynamic operator (OP1)

This operator represents one instantiation of a negative influence on quantity y, due to gravity 
(ay).

dynamic operators, we are able to provide sufficient causal explanations of how any Q can arise 

from any I ,  without introducing the sort of irrelevant distinctions th a t are so prevalent in QS.

1 .7.1.2 Q u a lify in g  R eg re ssed  P a th s  to  F o rm  S U D E ’s

Regression paths only show the simplest ways in which Q can be achievable from X. They do 

not show how Q becomes impossible nor how facts in X can change even when such changes are 

not necessary for Q to occur.

In order to formulate a complete SUDE, we must consider all of the nexts of each regression 

state. This can invoke additional regression, to show how Q might be reached (or is impossible) 

from each of these nexts. We call this qualification of the regression paths. Qualification 

explores alternative behaviors that could occur before each regression operator has a chance to 

cause the desired change to occur.

SUDE1 itself involves no qualifications, because no case-splits are required to characterize 

the behavior of this simple example.

We refer to the propositions in the state description of a state S as the propositions to which 

S is committed. Thus, committing a state to a particular proposition means adding it to that 

s tate’s working description. A key role of qualification is deciding what commitments to add 

to the partial states articulated during regression.
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1.7 .1 .3  K ey  Issue 1: W hat Facts to  Regress

In addition to having a different sort of operator, our approach differs from STRIPS-like plan­

ning in that we do not necessarily regress all facts true in each intermediate goal state. The need 

for selective regression arises from our desire to avoid committing states to irrelevant details 

that can lead to excessive branching at qualification time. This issue does not arise in classical 

planning, which has no analog to our qualification stage.

For example, we do not regress the relation between y and Y l when regressing from state 

1 back to state 2 during the generation of SUDEl. Regressing that relation would yield a 

specialization of state 2 which also specified y < Y  1, since y < Y  1 is derivable in state 1 (from 

transitivity on y = YO and YO < Y l) and is not affected by the regression operator (O P l). 

In fact, regressing it would make all regressed states (on the path  from Q back to 2) specify 

y  < Y l, since y < Y l is already established in 2 . So, qualifying that regression path would 

introduce branching on whether y passes Y l before the ball peaks, an irrelevant case-split that 

SUDEl avoids.

Unfortunately, avoiding regression of derivable facts is not sufficient to avoid introducing all 

irrelevant case-splits that arise in QR. In particular, a major claim of this thesis is that derivative 

relations should generally not be regressed, even when they are not derivable. The intuition 

behind this claim is that derivatives are fundamentally different from non-derivatives in ways 

that warrant such special treatment. Generally, committing a particular state to a particular 

derivative relation does not constrain the SUDE in a useful way. For example, specifying that 

d(y < 0) holds in state 2 does not change the fact that y >  YO in state 2 could either change 

to  y =  YO (transitioning to state 1) or persist (transitioning to some other state because some 

other change occurs first).

SUDEl might appear to contradict the above claims about non-regression of derivable and 

derivative relations. For example, SUDEl appears to regress d{y) = 0 in state 1 to d(y) < 0 in 

state 2; but, in fact, that is not true. Instead, state 2 specifies d(y) <  0 because it is inferred 

from vy  <  0, a condition of O P l representing a downward velocity of the ball along the y- 

axis. Thus, it turns out that the derivative relation between d(y) and 0 is effectively regressed, 

but only because it is inferable from the regressed relation between vy and 0. This special
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circumstance fundamentally exists because there is only one influence on y, due to movement. 

Thus, when the conditions of that influence hold, the derivative relation necessarily holds.

This approach effectively tracks derivative changes only when they do not introduce branch­

ing. We will argue that such cases are the only ones for which tracking derivatives over time 

actually leads to interesting conclusions. For SUDEl, it results in identifying th a t the ball 

necessarily rises, peaks, and then falls during its trajectory from X to Q.

1 .7 .1 .4  K ey  Issue 2: W hat Facts to  P roject

Regression tends to make early states more detailed (i.e. specifying new facts) than  later states, 

due to  the backward accumulation of facts as operator conditions are added to the working goal 

state. In STRIPS-like planning, it is clear how to project such facts down the regression path, 

to make all states at the same detail (i.e. specifying the same propositions, or their negations). 

Specifically, the STRIPS assumption implies that each operator’s conditions persist through Q, 

unless deleted by th a t operator or by later operators in the plan.

W ithout the STRIPS assumption, similar projection would transform a regression path of 

successively less detailed states into a tree of same-detail states. This tree would represent every 

consistent way that facts in early states could change over time, eventually passing through each 

regression state. Such a tree would approach the complexity of AE(X), except that the its states 

would not necessarily be complete and its paths necessarily stop at states consistent with Q.

Having all states explicitly specified at the same detail might seem to be of particular 

im portance when the STRIPS assumption does not hold. The underlying intuition is the same 

one behind the motivation for case-splitting on all completions of X  to produce A E’s. Namely, 

that a pa th  of partial states might indicate a  transition between two states (i.e. SI and S2) for 

which there are no completions of SI and S2 (ie. S i’ and S2’) such that S i’ transitions to S2’ 

in AE(X). Of course, this issue does not arise under the STRIPS assumption, where operator 

conditions are sufficient to guarantee transition to their effects, by definition.

However, we claim that our formulation of dynamic operators precludes the need for such 

complete projection, even though these operators do not guarantee their changes will occur.

Nevertheless, projecting certain types of facts fromX can significantly reduce the complexity 

of regression. In particular, it is useful to project facts from X as long as branching is not 

required. It turns out that there are two such cases: when X has only one next state at the
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same detail as itself and when facts persist forever from I .  For the first case, I  is updated to 

be its necessary next state, before regressing. For the second case, forever-pei'sisting facts are 

added to each state  during regression.

For example, d(x) = 0 necessarily persists forever from X  in SUDEl because the model 

mentions no possible influences on x. Since X 3  < x  < X 4  holds in I ,  that means d(x) = 0, 

x  > A3, and x  < X 4  hold for every state after I .  These constraints ensure tha t regression does 

not explore possibilities such as the ball falling to Q from being under ledge 4 or ledge 1. We 

are not claiming th a t such application of projection for more efficient regression is especially 

novel. Instead, we are noting that it appears to be the only worthwhile use of projection, since 

other types of projection appear to introduce branching without particular benefits.

1.7.1.5 S U D E ’s A re N on-O ptim al

Note that SUDEl does not avoid all details which turn  out to be irrelevant to distinguishing 

behaviors in which Q occurs from those in which it does not. In particular, SUDEl does not 

collapse states S2, S3, and S4 into one, even though the result would still be a SUDE and would 

still show th a t the ball will eventually fall to YO due to gravity. In fact, the minimal DE for 

example 1 requires ju st two states:

(y > YO, X 3  < x <  XA, d{x) =  0) -»• (y = YO, X3 <  x  < XA,  d(x) = 0).

However, the relation between d(y) and 0 has causal relevance, as reflected by the conditions 

of operators such as O P l. There appears to be no general way to correctly anticipate whether 

such distinctions will actually turn  out to be necessary to partition phase space into regions 

which are on the trajectory from I  to Q and those which are not. So, we accept such relatively 

rare cases of unnecessary case-splitting. The most im portant thing to note is that SUDE’s tend 

to avoid the case-splits which are the biggest source of excessive complexity in AE’s, such as 

relations between y and the ledge heights in example 1.

1 .7 .2  E x a m p le  2: N o  E x p lic it  G o a l

The most extreme type of SUDE is one based on an empty Q. An empty Q suggests th a t all

behaviors from I  are potentially interesting. However, even in this case there are better SUDE’s

than A E (I) itself. From our discrimination-based perspective, an empty Q implies th a t what is
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most interesting is which states are inevitable or impossible from I ,  as well as what behaviors 

might occur to make some merely possible states become inevitable or impossible. Thus, a  

SUDE for an empty Q need only describe behaviors in terms of those states, not all states in 

AE(J).

The key insight for formulating such SUDE’s is that every system behavior eventually enters 

some minimal subgraph of A E(J), within which it remains forever. The two most common 

examples of such subgraphs are equilibrium states and oscillation cycles. By identifying the 

states of such subgraphs and treating each as a Q for goal-directed SUDE generation, we can 

develop a composite SUDE which indicates all causally minimal ways in which the system can 

reach one of these subgraphs. States which are inconsistent with every state in the resulting 

SUDE are impossible and states which are consistent w ith some state in every path  through 

that SUDE are inevitable. The main point is th a t we let the specific dynamical interactions of 

the system (which define the minimal terminal subgraphs) guide the SUDE-generation process, 

unlike QS (which is not goal-directed).

There are five states in which quantity y is in equilibrium, each indicating that the ball is 

at one of the five landmarks YO. . .  Y4. Let Ei denote the equilibrium state where y =  Yi .  For 

the same I  as example 1, only EO is consistent with the facts that always persist from X  (i.e. 

x  > X Z  and x < XA).  Thus, using EO as Q, the resulting SUDE is identical to SUDEl.

1 .7 .3  E x a m p le  3: O th er  Issu es

Now, let X  specify only that y is initially below Y l’ and let Q specify that the ball eventually 

rises above Y2. Figure 1.5 illustrates the SUDE (SUDE2) for this example. SUDE2 makes 

several case-splits: whether d(x) is initially negative, zero, or positive, whether d(y) becomes 

0 before the ball reaches Y2, and whether the ball falls under ledges 1 or 4 or between ledges 

2 and 1. Despite involving many more case-splits than SUDEl, SUDE2 still case-splits much 

less than AE(Z), and in fact each case-split is relevant to whether Q occurs.

We briefly note below some additional issues that this example illustrates.

1.7.3.1 O verlapping R egression  P aths

During regression, x  < XZ  in state 4 is achieved by committing state 5 to d(x) <  0 and x  — XZ.  

Eventually, d(x) < 0 regresses all the way back from state 5 to 2 , creating a refinement of X
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F ig u re  1.5: SUDE2
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States, transitions, and state refinements due to qualification are shown faded, relative to the 
portion of the SUDE due to regression.

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



(state 8). Symmetrically, d(x) >  0 is regressed from state 11 to create other refinements 

of I  (states 12, 13, and 14). However, regression does not lead to a refinement of X  for the 

remaining case (i.e. d(x) = 0); regressing from state 1 to state 2 does not require a commitment 

to d(x) =  0.

It turns out that committing state 2 to d{x) =  0 is appropriate. However, we are only 

able to make this realization at qualification time. At that time, we note that states 6 and 12 

may transition to state 1, which means that the only case in which state 2 is unique is when it 

commits to d(x) =  0; other cases are already represented by states 6,7,8 and 12,13,14.

This illustrates a general issue for the SUDE representation: some regression paths can 

overlap others. Essentially, these overlaps occurs when different partial versions of the same 

AE state are represented. In general, this could result is a SUDE having more states than a 

corresponding AE. However we have yet to notice such a situation and we suspect that such a 

situation would be extremely exceptional.

1 .7 .3 .2  Falling Off R egression  P ath s

Unlike SUDEl, SUDE2 is indeed affected by qualification. For example, state 6 has three nexts 

a t its specified level of detail, each representing one of the following changes: x  =  A'3, y  = Y 2, 

or d(y) = 0. Only the first change is represented in the regression paths (as a transition between 

states 6 and 5). The second change can be handled by recording a new transition between states 

6 and 1. However, the third change must transition to a new state. The corresponding next 

state  (call it N3) is inconsistent with all existing states (1-14).

We refer to this third case as “falling off” the regressed paths. Qualification attem pts to 

generate regression paths between N3 and Q. Since there are none, Q is impossible from N3.

One could record a transition from state 6 to N3 and label N3 as a negative state. However, 

th a t would lead to excessive case-splitting because, in fact, any change to d(y) < 0 in SUDE2 

makes Q impossible. As part of qualification, we isolate a portion of N3’s specification which 

makes Q impossible. In this case, that portion is d(y) < 0 y < Y 2, represented as state 15. This 

allows states 4, 6, 12, 10, 8, 2, and 14 to all transition to state 15, instead of their own specific 

next representing a change to d(y) =  0.
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1.7.3.3 Tradeoff: P recision  Versus S im plicity

Our ball-world model indicates that d(x) < 0 persists through any next of state 6. Similarly, 

d{x) — 0 persists through any next of state 2 and d(x) > 0 persists through any next of state 

12. Nevertheless, SUDE2 does not case-split state 1 by the relation between d(x) and 0; this 

allows state 1 to simultaneously represent a next of each of states 6, 2, and 12. In contrast, 

state 4 does commit to the d(x) <  0 that persists from state 6. W ithout th a t commitment, 

state 4’s nexts would (unsoundly) include one in which x  — A'3 occurs.

The key intuition is that we are willing to tradeoff precision for reduced complexity as long 

as path  soundness is maintained. For example, despite the imprecision of state  1, every next of 

state 1 is reachable from every previous state of state 1. We will argue that this tradeoff can be 

performed locally, without the need to case-split first and then collapse unnecessary case-splits.

1.8  R o a d  M ap

This thesis re-examines the very nature of envisionments from our new discrimination-based 

perspective. Thus, it seems appropriate to organize this thesis into chapters which successively 

focus on each of the four fundamental representations employed: states, transitions, paths, and 

graphs. Highlights of each of these four chapters are as follows.

Chapter 2 presents a detailed re-examination of the types of qualitative state  distinctions 

that one can make, with emphasis on when their inclusion in state descriptions is worth the cost 

of introducing higher-order ambiguities. As a consequence of systematically re-exploring these 

issues, oblivious to the complexities that static partitioning might bring, we have discovered 

some useful new classes of distinctions as well. As a result, we have found that envisionments 

can be globally unsound in more ways than previous QP work has suggested. In any case, 

this chapter lays the theoretical groundwork for one of the key underlying contributions of this 

thesis: exploring the utility and validity of reasoning with partial states, as opposed to complete 

states.

Chapter 3 re-explores the issue of how to define the set of nexts for a given state. We argue 

that previous approaches are both unsound and incomplete. For example, most work in QP only 

considers nexts th a t correspond to continuous changes, which makes them  incomplete unless 

tedious details are modelled and simulated. We show that when generalizing to account for
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discontinuous changes, such as those due to sudden actions, previous approaches are unsound 

as well. Furthermore, we show that such unsoundness extends to the related areas of model 

update and formal theories of change. We present a new approach to minimality-based change 

which avoids these problems. We argue that, using this new approach, QP provides appropriate 

representations for basing formal theories of change.

Chapter 4 explores the issue of generating paths between two states SI and S2. Naturally, 

this issue is related to  planning. However, whereas classical plans prove the achievability of goals 

via discrete actions, these paths indicate sufficient conditions under which S2 could arise from 

Si due to continuous and ambiguous dynamics. Thus, the emphasis in this chapter is not on 

goal-directed search per se but on the special issues that arise due to reasoning about derivatives 

and under ambiguity. A key contribution of this chapter is the autom atic formulation of our 

dynamic operators from a qualitative model.

Chapter 5 builds on the previous three chapters to show how paths between X  and Q can 

be qualified to form SUDE’s. The major concern in this chapter is how to ensure soundness 

and completeness without excessive case-splits.

Finally, Chapter 6 concludes with a summary and a discussion of future and related work.
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C hapter 2

R ep resen tin g  Q u alita tive  S ta tes

The issue of how to qualitatively summarize the possible states of the world is central to all work 

in qualitative physics. However, this issue has traditionally been explored from the perspective 

of qualitative simulation of states at a relatively uniform level of detail. Since the complexity of 

such simulation critically depends on the level of detail, such work has necessarily emphasized 

what distinctions are typically worth making across all states.

In this chapter, we re-explore this fundamental issue from a relaxed perspective in which 

states are allowed to vary in detail over time. From this new perspective, the key issues become:

• when particular classes of distinctions are useful and

e how to maintain an appropriate level of detail over time.

In order to understand these issues, the first half of this chapter explores the nature of 

qualitative constraints. The main result from this analysis is the realization that different 

classes of state distinctions can and should be treated differently. For example, it turns out that 

derivative conditions need not be explicitly tracked over time. The same degree of soundness 

can be achieved by tracking the more fundamental conditions that constrain them. Thus, the 

chattering derivatives problem [41, 29] disappears because we do not branch on ambiguous 

changes in derivative conditions.

Such insights suggest local sufficiency conditions for state descriptions. These conditions 

are discussed in the second half of this chapter. Later chapters will build upon these concepts, 

showing how further refinements of these states should be made to reflect global constraints 

due to state transitions and paths of transitions.
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2.1 Q u a lita tiv e  P ro cess  T h eory

We assume that the physical system is modelled using Forbus' Qualitative Process Theory 

(QPT) [24]. We will argue throughout this thesis that Q PT offers particularly useful leverage 

for goal-directed reasoning with partial states. This section highlights features of Q PT which 

are fundamental to this thesis. We presume that this thesis might also have general utility to 

other ontologies which share these key features.

2 .1 .1  Q u a n tity  a n d  D e r iv a tiv e  In eq u a litie s

Inequalities are the main primitives with which Q PT qualitatively partitions phase space. Each 

inequality refers to an assertion of a specific ordinal relation between two numbers. We refer 

to inequality between the values of two quantities as a quantity inequality and the inequality 

between the values of the derivatives of two quantities as a derivative inequality.

We will generally refer to quantity values as Qi, derivative values as D(Qy),  and numbers 

(which are either) as Ni. 1 For uniformity, we assume that the form of all inequalities is 

Ny vs No , with D(Qi)  vs D{Q2) referring to the derivative inequality of the quantity inequality 

Qy vs Qo, and vice versa. We reformulate exceptions (e.g. Qy > Qo + Q:y) by introducing 

equivalent internal numbers (e.g. Qy > Qyy and Qn  :=  Qo +  <?:;)■ Furthermore, we assume that 

both sides of a derivative inequality are derivatives; again, reformulating as needed to enforce 

this.

To facilitate partial state representations, we allow some disjunction in inequality relations. 

Since it rare to know only “Qy > Qo or Qy < Q2 " , without Qy = Q2 also being possible, it 

turns out to be most useful to represent all inequalities in terms of the relation > , as shown in 

Table 2.1. Despite their generality, soft inequalities even lead to more concise encodings, using 

only two propositions per relation instead of three.

'We deviate slightly from standard QPT notion, where the value (amount) of a quantity Q is referred to 
as A[Q]. The rationale behind the /![] qualifier is to distinguish equality of values from equality of quantities 
(which implies equality of all their higher-order derivatives). To avoid that problem, we use Q 1 := Q 2  to refer 
to definitional equality and Q\  =  Q 2 to refer to value comparisons.
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Ni > N j Ni > N j A N j 2 Ni
N = N j <£■ Ni >  N j A N j > Ni
N < N j Ni 2 N j A N j > Ni

N > N j

A
l

>

Ni

N 2 N j Ni < N j
N j 2 N i N i > N j

T ab le  2.1: “Hard” vs “soft” inequality representations 

N k signifies a number (either a quantity or its derivative).

2 .1 .2  F u n c tio n a l R e la t io n s

Q PT employs qualitative proportionalities (qprops) and correspondences to represent partial 

information about functional relations between quantities.

We denote each qprop with a Q + or a Q-, depending on the direction of proportionality. For 

example, the two qprop relations x l ^ t y  and x '2 ^ ty  qualitatively represent functional relations 

of the form y  =  f ( x l , x ' 2 , . ..), such as y :=  x l  — c ■ x2 +  d. Note that qprops commit to a 

particular causal ordering, in this case from xl and x2 to y.

A correspondence relation for a given set of qprops indicates a set of quantity/value pairings 

representing one point in a function underlying those qprops. For instance, the correspondence 

corr((j/, 0), (x l, 0), (x2 ,0)) implies /(0 ,0 ) =  0. Furthermore, if equality relations hold for all but 

two of the pairs, the ordinal relation of each other pair is inferable by the other. For instance, 

if the above correspondence holds then y — 0 => ((x l <  0 <4> x,2 <  0) A (x l =  0 x ‘2 =

0) A (x l >  0 x2 >  0)) holds as well.

We give special attention in this thesis to correspondences of exactly two pairs, which we 

call same-relations. Same-relations are defined as follows:

Sam e-R el((Q l,L l),(Q 2,L 2)) =

(Q1 < L l  / \ Q 2 <  L2) V (Q1 =  LI A Q2 =  L2) V (Q1 >  LI A Q2 > L2).

There are three good reasons to highlight same-relations. First, our Q PT modelling experience 

suggests that correspondences of more than two pairs are much rarer. Second, all correspon-
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dences can be reformulated more concisely in terms of same-relations; our previous example 

becomes:

y =  0 => Same-Rel((xl,0), (x2,0)),

x l  =  0 =>• Sam e-Rel((xl, 0), (y, 0)),

x2 = 0 =£• Sam e-R el((xl,0), (y ,0)),

x l  >  0 A x2 > 0 => y > 0,

x l  < 0 A i2  <  0 ^  y < 0.

Third, explicitly using same-relations in state definitions allows enforcing the (three-way) case- 

split without necessarily committing to a specific case.

2 .1 .3  In flu en ces

Saying that quantity Q l influences quantity Q2 is equivalent to saying that D(Q2) is functionally 

related to Q l. So, one could qualitatively represent an influence from Q l to Q2 as a chain of 

qprops connecting Q l with D(Q2), such as:

QI<U q 3<̂ D(Q4)^4D(Q2).

However, O P T ’s distinction between direct and indirect influences avoids the need to represent 

qprops both in terms of quantities and their derivatives. For example, Q PT represents the 

above influence chain as follows:

Q 1 ^ !Q 3 ^ Q 4 ^ Q 2 ,

where 1+ and I- denote direct influence relations. Whereas the influence from Q3 to Q4 is 

direct, the influence from Q3 to Q2 is indirect.

Direct influences essentially represent integration, giving an explicit modelling commitment 

of where causal feedback cycles should be broken.

2 .1 .4  P r o c e s se s  an d  V ie w s

Q PT organizes the conditions under which functional relations hold into views and processes. 

Figures 2.1 and 2.2 illustrate some of the processes and views used in our examples. A process 

or view instantiation is called active if all of its conditions hold; otherwise it is called inactive.
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Processes differ from views in that only processes specify direct influences; thus, processes 

represent the prim ary agents of dynamic change.

By allowing functional relations for a given quantity to be partially specified across multiple 

processes and views, QPT supports (and, in fact, encourages) composible models. Each qprop or 

direct influence relation from quantity Q, to quantity Qj  contributes to the composed functional 

definition of Q j. More precisely,

Q i ^ Q j  =  Qj  =  / ( . . . ,  Q i , . . . )  A ^7 >  0,

Q i ^ Q j  =  Qj  =  / ( • • • ,  Qi,  ■ ■ ■ )  a  <  o ,

Q /4 Q j  = D( Qj )  =  / ( . . . ,  Q i , . . . )  A >  0,

Q r+ Q j =  D( Qj )  =  / ( . . . ,  Q i , . . . )  A <  0.

Whereas previous work has stressed how Q P T ’s organizational and composibility proper­

ties support the task of modelling, our work demonstrates that these same properties can be 

exploited during QR itself. First, the process/view (PV) conditions indicate the prim ary con­

ditions to regress during goal-directed search. Second, Q PT ’s commitment to causal ordering 

provides an explicit direction for regression. Third, the decompositional nature of Q PT models 

allows us to focus on sufficient subsets of the model that make goal behaviors qualitatively

possible. Whereas QS hides many of these issues, we bring them out by reasoning with partia l

states and goal states.

2 .1 .5  D o m a in  T h e o r ie s  V ersu s S cen ario  M o d e ls

Throughout this thesis, we will assume that our model of the physical system is propositional; 

this is called the scenario model. It is obtained by instantiating a first-order domain theory of 

general physical constraints (such as process definitions) by a propositional scenario specific to 

the physical system and overall task.

The scenario provides three major types of constraints:

1. statics (e.g. configuration of containers and pipes),

2. limits on dynamics (e.g. pressure P  will always be below limit point L ),

3. modelling assumptions (e.g. ignore friction, consider gases).
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(defProcess (Flow ?qty-type ?obl ?ob2 ?rate)
Instance-of ((Flow-Rel ?qty-type ?obl ?ob2 ?rate))
Influences ((1+ (?qty-type ?ob2) ?rate)

(I- (?qty-type ?obl) ?rate)))

(defView (Fluid-Flow ?path ?rate ?src-port ?dst-port ?src-cs)
Instance-of ((Primed-Fluid-Flow ?path ?rate ?src-port ?dst-port ?src-cs ?dst-cs)) 
Conditions ((Aligned ?path))
Relations ((= ?rate (virtual ?rate))

(Flow-rel MASS ?src-cs ?dst-cs ?rate)))

(defView (Primed-Fluid-Flow ?path ?rate ?src-port ?dst-port ?src-cs ?dst-cs)
Instance-of ((Supports-Fluid-Flow ?path ?rate ?src-port ?dst-port ?src-cs ?dst-cs)) 
Individuals ((?path :type Pipe))
Conditions ((> (pressure ?src-port :ABS0LUTE) (pressure ?dst-port :ABS0LUTE))) 
Relations ((QpropO+ (virtual ?rate) (pressure ?src-port ?dst-port))))

(defView (Supports-Fluid-Flow ?path ?rate ?src-port ?dst-port ?src-cs ?dst-cs) 
Instance-Of ((Exposed-to ?src-port ?src-cs))
Individuals ((?path conditions (Fluid-Connect ?path ?src-port ?dst-port))

(?rate :bind (flow-rate ?path ?src-cs))
(?src-cs :form (C-S ?sub ?st ?src-can))
(?dst-port :form (?dst-pn ?dst-can))
(?dst-cs :bind (C-S ?sub ?st ?dst-can))))

(defView (Exposed-to ?pt ?cl)
Individuals ((?cl :type Contained-Liquid :form (C-S ?sub LIQUID ?can))

(?pt :type Portal :form (?pn ?can)))
Conditions ((> (height (liquid-in ?can)) (height ?pt))

(Positive (mass ?cl))))

F ig u re  2.1: Key definitions for fluid free-flow processes
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(defView (Pumped-Flow ?path ?rate ?src-port ?dst-port)
Instance-of ((Primed-Pumped-Flow ?path ?rate ?src-port ?dst-port ?src-cs ?dst-cs)) 
Conditions ((On ?path))
Relations ((= ?rate (virtual ?rate))

(Flow-rel MASS ?src-cs ?dst-cs ?rate)))

(defView (Primed-Pumped-Flow ?path ?rate ?src-port ?dst-port ?src-cs ?dst-cs)
Instance-of ((Supports-Fluid-Flow ?path ?rate ?src-port ?dst-port ?src-cs ?dst-cs)) 
Individuals ((?path conditions (Pump-Connection ?path ?src-port ?dst-port))) 
Relations ((:= (virtual ?rate) (spec-flow-rate ?path))))

(defEntity (Fluid-Pump ?pump)
(Positive (spec-flow-rate ?pump)))

F ig u re  2.2: Key definitions for fluid pumped-flow processes

(defScenario PUMP-CYCLE 
(State LIQUID)
(Substance WATER)
(Fluid-Path-Connection (bottom CAN1) (bottom CAN2)) 
(Fluid-Pump-Connection (bottom CAN2) (bottom CANi))
(= (height (bottom CANI)) (height (bottom CAN2))))

F ig u re  2.3: Simple pump-cycle scenario

Figure 2.3 gives a scenario description for a simple pump-cycle system that we will often use 

to illustrate key points; Figure 2.4 illustrates this system for a particular state.

The scenario model includes closed-world assumptions that the possible existence of indi­

viduals is limited to those explicitly mentioned in the scenario model. The main consequence 

of these assumptions is that the sets of possible influences on quantities are closed.

We denote the constraints of the scenario model as M .  Let V  denote the set of all propo­

sitions mentioned in M ,  plus their negations. V  includes the special proposition J_, indicating 

logical inconsistencies (e.g. A A A  => JL).

36

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



T op i Top2

CANI
Level1

Pump Level2

Bottoml Bottom2

F ig u re  2.4: The pump-cycle system in equilibrium

2.2  T h e  Q u a lita tiv e  Law o f  D im in ish in g  R etu rn s

Since the complexity of any search problem is proportional to the level of state detail, the 

choice of the state description language can be critical. Indeed, the worst-case cost of a  search 

problem can typically be transformed from exponential to polynomial by using an appropriate 

abstract language [38]. In most AI search problems this issue is not always so critical, since the 

worst-case complexity can often be avoided using best-first search. For example, planning in a 

static world typically will not require exploring the entire search space unless there is no valid 

plan.

Unfortunately, qualitative simulation must always explore its entire search space, since the 

world is in control of the dynamics. To completely cover the range of possible qualitative 

behavior, one must branch on whether each ambiguous change might occur. 2 For this reason, 

qualitative simulation is generally restricted to a finite set of states — otherwise it would not 

even be decidable.

W hat makes this problem especially difficult is that it is generally a losing proposition to 

try  to reduce ambiguity by adding more qualitative detail. This law o f diminishing returns 

arises for two reasons. First, there is a locality of utility for most distinctions. For example, 

in the pump-cycle scenario shown in Figure 2.4, case-splitting on whether the pump ra te  is

2Chapter 4 presents a restrictive form of qualitative simulation analogous to planning, which assumes that 
dynamics act cooperatively with respective to some specific goal state. However, such reasoning does not oblit­
erate the need for exhaustive search. Indeed, as explained in Chapter 5, a qualification stage is still required, to 
consider ways in which dynamics may defeat such fortuitous behavior.
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equal, stronger, or weaker than the flow rate tells whether the liquid level in CANI is steady, 

rising or dropping. However, if the valve of some other pipe into CANI is later opened, then 

the distinction between those two rates is no longer sufficient. In fact, without distinctions 

comparing those rates with the rate of the new flow, that distinction simply results in the 

number of future states being excessive by a factor of three.

Whereas the problem of locality could be addressed by changing the level of detail appropri­

ately over time, the second problem is more fundamental to the nature of qualitative constraints. 

Consider partially resolving an ambiguity in whether a pressure might rise to a critical point 

by case-splitting on whether that pressure is currently rising or dropping. The problem is that 

one has reduced that ambiguity but introduced new ambiguity — in this case, ambiguity in 

how the derivative of the pressure is changing. We call this the problem of ambiguity regress.

We suspect that the old precision-based perspective prevented earlier work in QR from 

identifying this problem of diminishing returns. In that perspective, every distinction always 

has some value, since it helps bring qualitative state descriptions closer to the precision of 

quantitative states. However, in our discrimination-based perspective, a state distinction’s 

value diminishes whenever it becomes irrelevant to whether goal state  Q can arise. Thus, any 

distinction which causes the number of envisionment states to  increase, without improving 

envisionment soundness with respect to goal reachability, should be avoided. In the following 

section we begin to address this question of when particular types of distinctions are relevant.

2.3  T y p es  o f  S ta te  D istin c tio n s

In general, any proposition in V  could serve as a state distinction. In fact, in many approaches, 

including QSIM, all propositions are treated equally as state distinctions. However, this section 

shows that Q PT actually imposes some strong constraints which make it useful to treat classes 

of propositions differently. The following subsections discuss the classes which define a subset 

V  of V  tha t is sufficient for defining Q PT states. Since this formulation facilitates efficient 

reasoning using assumption-based tru th  maintenance systems [9] [5], we shall also refer to 

propositions in V ' as state assumptions.
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2 .3 .1  P r o c e s s /V ie w  C o n d it io n s

We use the term influence structure to refer to a directed graph of quantity nodes connected by 

qprop and direct influence edges. The most im portant state distinctions are PV conditions, since 

a particular global influence structure holds only as long as a particular set of PV conditions 

holds. Thus, at a minimum, V  must include all PV conditions and their negations.

QPT classifies PV conditions into two m ajor types. First, a quantity condition (QC) is an 

inequality between a quantity value and a limit point, such as a tem perature being greater 

than a boiling point. Second, a precondition (PC) is a discrete boolean condition, such as a 

pum p being on. Generally, dynamics determine when QC’s change while external agents (such 

as operators) determine when PC ’s change.

2.3 .1 .1  U ser C onditions

Often models include views which identify conditions of general interest to the task user, but 

which have no causal influence on whether Q occurs. Such conditions are never relevant distinc­

tions for any states of a SUDE for Q. For example, imagine that our ball-world model includes 

a user view which is active when the ball’s height is at the vertical limit point L which is half 

way between the heights of ledges 1 and 2. Assume that the ball is on the ground (YO) in Q 

and just above the ground and rising in I .  In th a t case, it is irrelevant to f7’s reachability from 

I  whether the ball ever reaches L.

2 .3 .1 .2  P robab ilistica lly-R elevant C onditions

One might argue that some user conditions might provide discriminatory power by partitioning 

phase space where conditional probabilities of Q occurring change. For example, consider a 

model of the pump-cycle which includes a view that is active if container CANI is half full. 

Assume th a t CANI is empty in I  and overflowing in Q and CANI becoming half full is represented 

as state S jj. S h occurring does not causally impact whether G occurs; Q will eventually occur 

unless the flow from CANI to CAN2 ends up opposing the pumped flow with an equal rate before 

the water level in CANI reaches the top of CANI. However, the probability that Q occurs from 

S h is higher than from X. That result hinges on the facts that all paths from X  reaching G 

must first pass through some refinement of S h and that not all paths from X  reach Q.
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Such cases seem rare in QR because it is seldom determinable how conditional probabilities 

change over qualitatively partitioned phase space. Even assuming that each behavior path  is 

equally likely seldom helps. That is because one typically does not know how many quantitative 

behaviors map into each qualitative path; often there are an infinite number.

We call a condition probabilistically relevant if it always occurs at some point in every path 

from X  to G and yet does not always occur after X. We have been able to identify only one type 

of probabilistic relevance, which we define as follows:

D efin ition  2.1 (T ransitivity-induced  probabilistic-relevance) Assume q = a holds in X 

and q = b holds in Q. For every landmark Li for which a < Li < b necessarily holds, q =  Li is 

either probabilistically-relevant condition for Q or persists forever from X.

I t can be useful to update one’s belief that Q will occur once S h  is observed to occur; 

for example, a controller wishing to prevent Q should become more anxious if S h  occurs. 

Nevertheless, there are two good reasons why SUDE’s should not explicit represent occurrences 

of Sh- First, transitivity-induced probabilistic-relevance is a  simple consequence of the Mean- 

Value Theorem. Thus, it can be reasoned about locally for the particular quantity, external 

to SUDE representations. Second, not only is CANI being half full not causally significant, 

it is not especially probabilistically significant either. If we had defined multiple limit points 

between the bottom  and top of CANI, then the water level reaching each one of them would 

be probabilistically-relevant. Making a commitment to distinguish states by such conditions 

increases complexity without any clear benefit, simply to be consistent to th a t obligation.

2 .3 .2  D eriva tive  C onditions

Derivative conditions are of fundamental importance to QR, since without constraining deriva­

tives every QC is always free to change. There are multiple ways in which such constraint can 

be represented as state distinctions. In this section we explore these alternatives and determine 

under what contexts each is most relevant.

2.3 .2 .1  D erivative Inequalities

Derivative inequalities are the most general type of derivative conditions. The constraints 

imposed by derivative inequalities on the convergence and divergence (i.e. change) of quantity
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inequalities are as strong as possible using derivative conditions alone. Specifically, the quantity 

inequality x  > y cannot (continuously) converge to x  =  y  if the derivative inequality d{x) > d(y) 

holds. Furthermore, x  =  y will necessarily diverge (instantaneously) to x > y  if d(x) > d(y) 

holds, or to x  < y  if d(x) < d(y) holds.

Clearly, one never needs to consider a particular D (Q i) vs D (Q ‘2 ) if M  never refers to 

Q i vs Q '2■ However, we claim that it is actually sufficient (for soundness in computing valid 

possible changes) to include in V  only those D (Q i) vs DiQv) for which Q\ vs Qs is a QC. 

This claim is based on our later claim that representing states by their assumption closures is 

sufficient to capture all local constraints.

2 .3 .2 .2  D s V alues

Q PT defines a Ds value as the sign (i.e. -1,0,+1) of the derivative of a particular quantity. Since 

the derivative of any constant is 0, the Ds value for a quantity Q is equivalent to a derivative 

inequality of the form D(Q) vs D (0). For uniformity, we avoid explicit Ds values in favor of 

their derivative inequality counterparts. This avoids the need for special Ds-based qualitative 

algebra rules. For example, the constraint Q3 := Q1 +  Q2 implies (via qualitative algebra of 

Ds values) that D s(Q 3)=+ l whenever D s(Q l)= + l and D s(Q l)= + l. In terms of derivative 

inequalities, that is equivalent to D(Q1) > D (0) A D(Q2) > D (0) =>■ D(Q3) > D{0), which 

follows from general rules enforcing inequality transitivity over sums.

2.3 .2 .3  N et-In fluences and H igher-O rder D erivatives

Despite our avoidance of Ds values, we do adopt the standard Q PT convention of intro­

ducing net-influence terms for each quantity Q which is directly influenced. This involves 

introducing the quantity inequality N e t- in f l(Q )  vs 0 to V  and adding N e t- in f l(Q )  : =  

D(Q) to M .  The most im portant consequence of doing so is that the derivative inequality 

D (N e t- in f l(Q ))  vs D (0) will also be introduced, allowing the consideration of the second- 

order derivatives of Q. For example, these second-order derivative inequalities are the key to 

avoiding the problem of stu tter in the three-container example of [25].

The introduction of quantities such as net-influences which are equivalent to derivatives 

is how we represent higher-order derivatives in general. For example, the relation between 

distance, velocity, acceleration, and their derivatives is formulated naturally in Q PT in this
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way, without the explicit need to refer to terms such as D(D(distance)). The key point is that 

relevant higher-order derivatives are naturally introduced by QPT models as required. Thus, 

we need not postulate higher-order derivatives which the Q PT model does not introduce; they 

will not be required for soundness.

2.3 .2 .4  W h en  To D istin gu ish  S ta tes  B y  D erivative R elations

There appear to be only two cases in which distinguishing a state S by a derivative relation R  

is useful:

1. R  is inferable in S  or

2. for a transition from 5  to a possible next state S„, R  must necessarily hold at the start 

of that transition and R  necessarily persists across that transition and throughout S n.

Case one simply reflects the general rule that knowing the deductive closure of a state  is always 

useful. Case two suggests that it is most useful to introduce and track a derivative inequality 

across time when it is required to support a change and it then persists unambiguously. We 

claim that these cases retain all the constraining benefits of derivative relations without the 

case-split complexities that QS would suffer, such as chattering.

2.3 .3  R a te  R ela tion s

QPT compositionally defines the derivative of a quantity Q as a function of partial derivatives 

which each correspond to one active influence on Q. The process of determining the signs of 

derivatives is called resolving influences. Resolution is trivial when all influences on O  are of 

the same sign. For mixed influences, resolution requires knowledge about the relative strengths 

of the negative and positive influences.

For indirect influences, characterizing those relative strengths is difficult. Consider the 

function Q := Q l — 2  • Q2  +  5, whose qualitative representation as qprops is:

Q1 Q4  Q 

Q2 %  Q

The relation D{Q1) > D(Q2) is insufficient to infer D(Q) > 0; D{Q1) >  2 ■ D(Q2) is required 

for this case. Q PT models typically specify only the qprops for Q, not the exact underlying
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function, because it is either indeterminate from available data or even non-existent (when 

reasoning across multiple similar systems). Thus, we typically cannot appeal to derivative 

inequalities to resolve mixed indirect influences on Q.

Resolving indirect influences is not as critical as resolving direct influences, for two reasons. 

First, all quantity changes are ultimately caused by direct influences, making ambiguity at 

that fundamental level more serious. Second, direct influences tend to reflect specific system 

structure, whereas indirect influences tend to reflect general physical laws. Thus, whereas 

physics often happens to define unambiguous indirect influences, structure can be arbitrarily 

adjusted to force ambiguous direct influences. For example, connecting some new pipes to 

a container (or opening valves) can cause the direct influences on the mass of water in that 

container to become ambiguous. In contrast, the indirect influence from that mass to the 

container’s water level remains the same, due to underlying physical relations between mass, 

density, and volume and between volume, area, and height.

Fortunately, the compositional functions resulting from direct influences are always simple 

sums, unlike those of indirect influences. QPT calls the partial derivative corresponding to a 

direct influence a rate. Let D+ (Q) be the sum of the rates of all positive direct influences on 

quantity Q and D~(Q) be the sum of the rates of all negative direct influences on Q. The 

derivative of Q is simply the difference of those two rates:

D(Q) := D + (Q )-D -(Q ) .

For example, if the only influences on Q are:

ratei 4 q

r a t e 2 4 q

r a t e 3 4  Q 

r a te 4  4  Q

then the derivative of Q is defined as follows:

D{Q) :=  (ratei +  rate 2 ) -  (rate3 +  rat 6 4 ).

Knowledge that each rate of D~(Q) (D+ (Q)) is dominated by a unique rate of D+ (Q) (D“ (Q)) 

is sufficient to resolve the influences on Q. Thus, either of the following conditions is sufficient 

to infer D(Q) >  0:
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1. (r a te i  >  r a te s )  A (r a te 2  >  r a te 4 ),

2. (ratei >  rate,}) A  (rate2 >  rates).

We call inequalities such as r a t e i  > r a te s  rate relations. Since mixed direct influences are 

quite common and rate relations are the only qualitative constraints which can resolve them, 

it is im portant to be able to take full advantage of them whenever possible. A ra te  relation is 

useful for influence resolution only if it compares rates of the same sign (for opposing direct 

influences on the same quantity). For that reason, we assume that the Q PT model ensures that 

each rate is positive when its corresponding direct influence holds. 3

This modelling convention is reasonable because it usually seems natural to distinguish 

between positively and negatively influencing processes anyway. For example, the distinction 

between backward and forward flow seems very natural and useful (particularly for qualitative 

explanations), even though one could model their consequences using one bi-directional process. 

Sometimes this convention leads to some modelling ackwardness. For example, it is natural to 

consider any influence on velocity to be due to a single acceleration rate (based on a net force). 

However, to ensure a positive rate for the negative influence on velocity, we must introduce a 

local rate with the same magnitude but oppositive sign of acceleration. Interestingly, it seems 

that avoiding such ackwardness by allowing negative rates in such cases may be acceptable, 

without loss of ability to resolve influences via rate relations. For instance, there can be no 

influence on velocity which opposes the influence of acceleration, due to acceleration being the 

derivative of velocity.

Unfortunately, a particular set of rate relations is seldom useful for resolving the ambiguous 

influences of a particular state. Thus, distinguishing every state by all ra te relations typically 

has a high cost to benefit ratio, making rate relations ill-suited for QS. For example, QPE 

supports the optional use of some types of rate relations, but users seldom use that option in 

practice.

3Thus, whereas QPT allows a negative direct influence to be formulated either as an I -  with a positive rate 
or as an 1+ with negative rate, we insist on the former.
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2 .3 .3 .1  W h en  To D is t in g u ish  S ta te s  B y  R a te  R e la t io n s

We advocate a limited use of rate relations in which a rate relation R  appears in the description 

for state 5  only if one of the following two conditions holds:

1 . R  is inferable in S  or

2. Sp is a possible previous state of S, R  is inferable in Sp, and R  necessarily persists for the

transition from Sp to S.

The m ain consequence of this approach is that rare relations are only tracked across time when 

their behavior is unambiguous. We claim that this allows us to retain the constraining benefits 

of rate relations without the case-split complexities that QS would suffer.

One might argue that introducing case-splits in rate relations at some point might be nec­

essary for global soundness in state paths following that point. Consider an extreme example, 

where all initial rate relations would persist no m atter which case-split occurs. Figure 2.5 il­

lustrates such an example. If Q specified CAN2 overflowing, it might seem useful to refine T  by 

each of the following alternative conditions:

1. (rateA+ >  rate^_

2. (rateA+ >  rateA-

3. (rateA+ =  rateA-

4. (rateA+ > ra tec -

5. (rateA+ > ra tec -

6. (rateA+ =  r a te c -

7. (rateA+ <  ra teA - 

(rateA+ <  r a te c -

8. (rateA+ >  r a te A_

9. {rateA+ <  rateA- 

10. (rateA+ > ratec-

A (ratec+ >  ratec-),

A (ratec+ =  ratec-),

A (ratec+ >  ratec-),

A ( r a te c +  >  r a te A -) ,

A (ratec+ =  rateA_),

A (ratec+ >  rateA-),

A (ratec+ <  r a te c - ) 

A (ratec+ <  rateA-),

A (ratec+ <  ratec_),

A (ratec+ >  ratec-),

A (ratec+ <  rateA-),
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F ig u re  2.5: A four-pump, three-container system

Each pum p is always on, pumping at its own constant rate. The water levels of containers CANI 
and CAN3 are assumed to never empty.

11. (rateA+ <  ratec-) A (ratec+ >  rate^-).

Under any of conditions 1-6 , Q is inevitable and under condition 7, Q is impossible. Conditions 

8-11 cover the remaining cases, in which Q's reachability from X is ambiguous. However, in 

fact, case-splitting X by Z )(lev e l2 ) >  0  and its negation is sufficient to  show th a t Q is either 

inevitable or impossible from X, depending on whether that one derivative inequality is true or 

false in X.

So, even in this extreme case, case-splitting on rate relations would be lead to excessive 

complexity. This example illustrates an underlying observation: it is sufficient to case-split on 

a single derivative inequality rather than on the set of underlying rate relations from which that 

derivative inequality could be inferred, in those rare cases where case-splitting on either would 

be useful in discriminating Q’s reachability. Note, however, th a t the case-split on the status of 

U ( le v e l2 ) > 0 is useful in this example only because it turns out that it persists forever from X 

(satisfying case two of Section 2.3.3.1). For relaxations of this extremely constrained example, 

say where CANI or CAN3 could become empty, reachability of Q would not be discriminated by 

case-splitting on that derivative inequality.

To complete our discussion of rate relations, we identify some special types of rate relations 

below. We advocate the same limited use mentioned above for all of them. However, extending 

our definition of rate relations to include these additional types is necessary to ensure soundness.
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C A N I CAN2 CAN3

F ig u re  2.6: The two-pump, three-container, pump-cycle system in equilibrium

Furthermore, it is illuminating to explore the rich variety of rate relations that are unmanageable 

under earlier static-partitioning perspectives.

2 .3 .3 .2  C o n ju n c tiv e -R a te  R e la tio n s

In general, resolving the direct influences on a quantity Q may be possible by comparing the 

sum of an arbitrary subset of D+ (Q) against the sum of an arbitrary subset of D~ (Q). For 

example, consider an extension of our pump-cycle system, as shown in Figure 2.6. Let the goal 

Q be that CAN2 overflows. Assume that we do not know the initial statuses of the valves (i.e. 

open or closed) and the pumps (i.e. on or off). W ith no initial rate relations, Q is possible 

as long as either of the pumps is on. W ith initial relations r a t e f i OH- 2 to3 >  r a t e punip_ ito 2 

and ra te fio w -2 to3 >  r a t e pump_3 to2 i both pumps must be on for Q to be possible. W ith 

initial relation ( r a te pump- i to 2 +  r a t e pump_ 3t 0 2 ) <  r a t e f i OH_ 2 to3 , Q is impossible. We call 

( r a te pump_ i t o 2  -I- r a t e pump_ 3 t02 ) a conjunctive rate.

2.3 .3 .3  V ir tu a l-R a te  R e la tio n s

We introduce the concept of a virtual-rate to represent the value that a rate would have if all of 

the preconditions of its process held. A virtual-rate is defined in a view which is active exactly 

when all the quantity conditions necessary to define the actual rate hold. In Figure 2.1, view 

Prim ed-F lu id-F low  gives an example definition of a virtual-rate and view F lu id -F low  gives 

an example usage. We assume that the domain model explicitly identifies virtual-rates by using
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the predicate V ir tu a l  with a unary argument representing the actual rate. All rate relations 

involving the actual rate are duplicated with the virtual-rate replacing that rate.

Consider the initial state T  where r a te pipe >  r a t e pump >  0, which implies l e v e l i  > 

l e v e l 2 , the valve is open, and the pump is on. If the valve is then closed and the re-opened, 

r a t e pi pe >  r a t e pump should still hold. Otherwise, it would appear possible that CANI could 

overflow after the valve re-opens, when in fact it cannot.

Virtual rates are particularly useful when they are constants, such as the spec-rates of 

constant-flow pumps. That is because inferred relations between constant virtual-rates persist 

to all possible futures, since a relation between two constants never changes. Imagine two such 

pumps, one pumping into a container and one pumping out. If one observes the level dropping 

when both pumps are on, one should realize that, in all futures, if the output pum p is on then 

the level will be dropping. Note, however, that things are not so simple if the level was observed 

to be rising. If the input pump later empties its source container, the level will not be able to
4rise.

2 .3 .3 .4  QC R a te  R elations

Consider any particular QC Q i vs Q>- Corresponding to the generalization from Ds values of 

D (Q i) and D{Q2) to derivative inequality D{Q\) vs D (Q2), there is a generalization from the 

relations between the rates influencing Q i and Q2 individually to the relations between such 

rate pairs. In example, for the simple influence structure:

ratei^$Q[, rate2—̂Q2i

the rate relation r a te i  >  r a t e 2 indicates that Q\ >  Q2 cannot be converging toward Q i =  Q2 . 

We call such rate relations QC rate relations. Whereas other rate relations can be useful to 

resolve the Ds value of a particular quantity, QC rate relations might be useful to resolve how 

an entire quantity  inequality is changing. Such resolution occurs when the derivative inequality 

of that quantity inequality can be inferred from the available QC rate relations.

For simple examples such as the one above, there is no point in including the QC rate relation 

in V , since its status is logically equivalent to th a t of the corresponding derivative inequality.

‘’In reality, the pump rate would drop below the spec-rate before it reaches zero, at some point before the 
source empties. Modelling this behavior requires two modes for the pump, one where the spec-rate is constant 
and one where is it a linear function of the level in the source (when the level is low).
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Unfortunately, useful QC rate relations appear to be extremely rare, for two reasons. First, one 

quantity in many QC quantity pairs is a constant limit point, which has no influences. Second, 

QC quantities are often not directly influenced. For example, in our pump-cycle example, 

flow rates directly influence water mass, which indirectly influences the pressure differences 

that define the flow process QC’s. In fact, we have not been able to formulate an example 

within our test domains in which QC rate relations are useful; we mention them  simply for 

thoroughness.

2 .3 .4  D u ration

Finally, states can be distinguished by qualitative measures of duration. The simplest, and 

most common, distinction is instantaneous ( In s ta n t)  versus non-instantaneous ( In te rv a l)  

states. I n te r v a l  states can be further distinguished as either infinite or finite in duration, 

depending on whether the state could possibly last forever. Some QR frameworks introduce 

explicit propositions to distinguish finite and infinite durations. However, we have found it 

sufficient, and representationally elegant, to indicate that a state 5  could last forever via an 

explicit transition from S  to S. We call these self-transitions.

Traditionally, many QR frameworks characterize each possible behavior over time as a  strict 

alternation of In s ta n t  and In te r v a l  states. However, since we do not adopt the traditional 

precision-based perspective, we are merely interested in distinguishing by duration when that 

has practical import in discriminating goal-reachability. A major motivation in traditional QR 

for distinguishing between In s ta n t  and In te rv a l  durations is to disallow (interval) changes to 

equality with limit points simultaneous with (instant) changes from  equality with limit points. 

However, we argue in the next chapter that coincidental changes can be safely ignored in 

discrimination-based QR. Thus, our framework views simultaneous instant and interval changes 

as coincidental, eliminating the need for partitioning phase space by duration distinctions. In 

our framework, the most im portant duration distinction is to identify possible self-transitions.

2 .4  T y p e s  o f  S ta tes

There are several useful classifications of states that we will employ throughout this thesis. 

They are defined as follows:
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D efin itio n  2.2 (E x a c t S ta te s )  A n  exact state is a point, in phase space. It represents a 

conjunctive set o f exact quantitative values for every system parameter o f the model. Thus, 

there are an infinite number of exact, states. For a deterministic model, an exact state always 

has exactly one next, state and one previous state.

D efin itio n  2.3 (Q u a lita tiv e  S ta te s )  A qualitative state is a region in phase space repre­

senting a conjunctive set of qualitative propositions of V . We assume that the useful space of 

qualitative states is defined by the powerset o f V .  In this work we restrict this space to be finite 

by assuming that V ' is finite.

Unless otherwise noted, we use the term “state” to refer to a qualitative state. When we 

refer to a state, we are generally referring to the set of propositions logically inferable in it. 

Thus, for example, when we say that one state is a subset of another, we are saying that its 

propositions are a subset of the others. 5

D efin itio n  2.4 (C o n s is te n t S ta te )  A state S  is called consistent if it is logically consistent; 

otherwise it is called inconsistent.

D e fin itio n  2.5 (C o m p le te  a n d  P a r t ia l  S ta te s )  A state is called complete i f  it contains ei­

ther the negative or positive version of every proposition in V '. Otherwise, it is called partial. 

Essentially, each, consistent complete state represents a valid “model” or “interpretation” of 

classical propositional logic (for the set of literals V ) .

Typically, each qualitative state corresponds to an infinite set of exact states. Even a 

complete state can correspond to an exact state only if it implies that each quantity is at a 

named limit point; this typically will be true only for some equilibrium states.

D e fin itio n  2.6  (S ta te  A b s tra c tio n , R efin em en t, a n d  C o m p le tio n ) An  abstraction of a 

state S  is any state which is a subset of S . A refinement of S  is any state which is a superset 

of S  and does not contain the negation of any proposition in S . These definitions include S  

itself (unless prefaced by “proper”). By definition, a refinement o f S  also cannot contain the 

negation of any proposition in S . A completion of S  is a refinement which is complete.

•’’Note that there is a reasonable alternative interpretation of state subset: one state’s phase space is a spatial 
subset of another’s. That corresponds to a superset relation between state propositions.
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D efin itio n  2.7  (S ta te  C losures) The closure of a state S  is the logically complete set of 

propositions implied by SU  M . We denote the closure of S  as Cp(S).  Whereas we restrict the 

domain of S  to V ', the domain ofCp(S)  is all of P. S  is inconsistent exactly i fCp(S)  contains 

± .

D efin itio n  2.8 (E q u iv a len t S ta te s )  Two states are equivalent exactly if both have the same 

set of consistent refinements. That is, two states are equivalent exactly if  their closures are 

identical.

D efin itio n  2.9 (C o m p a tib le  S ta te s )  Two states are compatible exactly if their union is a 

consistent state. Equivalently, two states are compatible exactly if both are abstractions of some 

consistent complete state.

D efin itio n  2.10 (B ase  S ta te )  The base state represents the set of all propositions that are 

true in the scenario model, as well as any closed-world assumptions. We denote the base state 

as B. By default, a given state is assumed to be a refinement of B.

2.5  R ea so n in g  A b o u t C losu res o f  P a rtia l S ta te s

A major claim of this thesis is that generating all consistent completions of a partial state is gen­

erally excessive for QR tasks. However, generating the closure of a partial state is particularly 

useful. Closures are sufficient for the following key operations on a given state S:

1 . detecting whether S  is inconsistent;

2. detecting whether S  is equivalent to other known states;

3. maximizing local explanatory precision for state S.

Detecting inconsistent and equivalent states improves search efficiency because inconsistent 

states do not have to be considered and only one representative of a set of equivalent states 

needs to be considered. S ’s closure provides the maximal explanation of what propositions 

must hold if S  occurs.

Unfortunately, propositional satisfiability is NP-complete; thus, so is the general problem 

of computing closures (i.e. via refutation proofs). In this section we explore this issue and
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argue that reasonable ontological constraints on Q PT models can be exploited to address this 

problem.

2.5.1 T h e Sufficiency o f  C losu res for C om puting  N ex t S ta tes

Perhaps the most im portant use of closures is for defining what propositions must hold after a 

given transition between two partial states. For example, let state S  be {A > B, B  = C, D (B ) <  

D(C)};  its closure contains A > C,  via transitivity. Standard QR temporal constraints suggest 

that both A > B  and A  > C should persist to the next state of S,  since D{B)  < D{C)  indicates 

that B  = C  is instantaneously moving away from equality to B < C.  However, A > C  is not 

in the closure of {A  > B , B  < C , D ( B )  < D(C)}; thus it will not be realized to persist unless 

the temporal constraints are applied to the closure of S.

Thus, in lieu of reasoning with completions of S,  we must at least reason with the closure 

of S  in order to soundly capture the temporal constraints of QR over time. To analyze the 

sufficiency of closures, let us first define a few useful types of next state sets.

D efin ition  2.11 (P ossib le co m p lete  n exts) Let the possible complete nexts of a state S  be 

the set of all next states of all. consistent completions of S.  These next states are all consistent 

and complete.

D efin ition  2.12 (T ransition co m p lete  n exts) Let the transition complete nexts for a tran­

sition Si  —t Sj  be the states in S i ’s set of possible complete nexts that are refinements of Sj .  The 

other possible complete nexts represent other transitions from  5;. Let the transition complete 

successor be the intersection of all o f the transition complete nexts.

D efin ition  2.13 (P ossib le closure n exts) Let the possible closure nexts of a state S  be the 

set of the closures of the next states of the closure of S.

D efin ition  2.14 (T ransition closure n exts) Let the transition closure nexts for a transition 

from Si to Sj  be the states in S i ’s possible closure nexts that are compatible with Sj .  The other 

possible closure nexts represent other transitions from S{. Let the transition closure successor 

be the closure of the union of Sj  with the intersection of all of the transition closure nexts.
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Note that the transition closure successor, unlike the transition complete successor, must be 

unioned and closured with Sj .  This is because the transition closure nexts are not necessarily 

complete — so, they may not already contain all propositions in Sj.

Now, consider what it would mean for closures to  be insufficient for maximally defining the 

propositions which necessarily hold after a transition from a state  S', to a state Sj .  Closures 

would be insufficient exactly if the transition complete successor contains some propositions 

which the transition closure successor does not.

For the closure nexts to conceivably be insufficient, there must be some disjunction which 

is logically implied by Si bu t none of its disjuncts are in the closure of Sj;. Let us consider the 

simplest case, where the disjunction is X  V Y .  Let N ,  N \  and N y  be the transition closure 

successors for transitions S, —> Sj ,  Si U {X} —> Sj ,  and S{ U { Y } -> Sj ,  respectively. Clearly, 

N  can contain propositions that the closure of Sj  does not — such as .4 >  C  in the previous 

example. The real issue is whether N x  n  N y  can contain propositions that N  does not. If so, 

then closure nexts are insufficient.

We claim that N x  n  N y  cannot contain propositions that N  does not. It appears that 

counter examples would have to be of the following sort. Let X  be D(A)  > 0 and let Y  

be D(A)  < 0; thus, A" V Y  represents D(A)  7= 0. Let S ; contain A  =  0 and enough other 

propositions to somehow imply A  V b  A  ^  0 should be true immediately after A = 0 and 

D(A)  0. Yet, N  will not contain a proposition for d /  0. However, neither will N x  C Ny ,  

because A  ^  0 is itself a disjunction in our soft inequality representation scheme. This is not 

simply an oversight; we argue that /  derivative relations are not appropriate for defining states 

exactly because they lead to these sorts of disjunctions. Instead, we insist that states a t least 

commit themselves to >  or <  derivative relations when ^  derivative relations would hold.

2 .5 .2  T h e A d eq u acy  o f  A ssu m p tion  C losures

A particularly useful subset of state closures is:

D efinition 2.15 (Assum ption Closures) The assumption closure of a state S , denoted as 

C(S),  is the subset of its state closure Cp(S) defined by Cp(S) C \V . Each complete state is 

trivially equivalent to its assumption closure.
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We explicitly associate the assumption closure with each state. For efficiency, we approx­

imate state equivalency and consistency in terms of assumption closures, instead of explicitly 

referring to state  closures. Since we define V ' so that it contains all potentially relevant state  

distinctions, assumption closures are sufficient for our purposes. The key issue is under what 

conditions we can tractably compute logically complete assumption closures.

2 .5 .3  C o m p u tin g  A ssu m p tio n  C lo su res  V ia  C o m p le t io n s

A simple way to compute the assumption closures of a state 5  is to first compute all consistent 

completions of S  and then take the intersection of all of them. 6 We call this the completion- 

intersection approach. There are four (overlapping) cases when this approach can be efficient:

1 . V  is small;

2. S  is almost complete already;

3. the total number of consistent completions of S is small;

4. all consistent complete states have been precomputed.

Implicitly, this is how assumption closures are available from AE’s — via analysis of brute-force, 

exhaustive case-splits.

When the closure of S  is much smaller than any completion, as is typically the case, it 

can be much more efficient to compute the closure based on refutation proofs. Since we deter­

mine consistency by finding some consistent completion, we call this the completion-refutation 

approach:

1 . Let X  = S  (i.e. the set of assumptions initially defining state S).

2. Let InferChoices = V ' .

3. Let CheckChoices — V .

4. If 3P  € InferChoices such that there is no consistent completion C  (over CheckChoices) 

of X  +  {T*}, then add P  to X  and repeat Step 4.

6The process of generating all consistent completions is equivalent to what is called interpretation construction 
in the ATMS literature.
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5. X  is the assumption closure of S.

Determining whether a state is consistent typically requires much less work than  generating 

all completions. First, only one consistent completion is required to show th a t a  state is 

consistent. Second, if a state is inconsistent, most inconsistencies will be detected during the 

completion process well before each (inconsistent) completion has been fully generated.

Although we originally explored incorporating such techniques into our ATMS implemen­

tation to obtain assumption closures, we discovered over time that all observed instances in 

which they helped appeared to actually be special cases that could be characterized. After 

briefly discussing the logical completeness of ATMS’s, we discuss these characterizations be­

low. Whereas the above methods simply mirror the effects of logical resolution (in an indirect 

way), our attem pt below is to understand when we can avoid the general complexities of logical 

resolution completely for our particular purposes.

2 .5 .4  A p p r o x im a tin g  C lo su res  V ia  B o o le a n  C o n stra in t P r o p a g a tio n

Boolean constraint propagation (BCP) [11] is an efficient means of deduction which is commonly 

used in tru th  maintenance systems, including ATMS’s. It is logically equivalent to finding unit 

clauses via unit resolution. Thus, BCP is sound and is refutation complete for positive literals 

when all clauses are Horn.

Unfortunately, BCP is not necessarily refutation complete for an arbitrary  collection of 

non-Horn clauses. This incompleteness is due to BCP’s failure to consider case-splits. To 

converge towards logical completeness using BCP, one must augment a given collection of 

clauses with some of those that would have resulted from the full resolution rule. In order to 

better understand this issue, let us now analyze the nature of BCP more formally.

We adopt a view of BCP based on primitives called justifications, which allows for directed 

reasoning:

D e fin itio n  2.16 (Ju s tif ic a tio n s ) A justification defines a conjunctive set of antecedent propo­

sitions and a single consequent proposition which is logically implied by that set. Each proposi­

tion in a justification may represent a negative or a positive literal.

For implemented rules, we represent justifications as
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(==> (and antecedent-1  ... an tecedent-n) consequent),

or simply

(==> ante consequent)

when there is only one antecedent.

Computing the closure of a  state S  via BCP can be simply characterized as follows. S tart 

with a set of propositions C = S  and grow C  by the consequent of any justification whose 

antecedents are all currently in C; iterate until no further growth in C  is possible. '

This justification-based BCP algorithm can easily be extended to general clauses by inter­

preting each clause as multiple justifications:

D e fin itio n  2.17 (C lau ses  a n d  C lau sa l Ju s tif ic a tio n s )  We use the term  clause to refer to 

a clause o f classical propositional logic. A clausal justification of a  clause is a justification in 

which one of the clause propositions is viewed as the consequent and the others are viewed as 

negated antecedents. For example, one clausal justificat ion of clause A  V B  V C is A  A B  => C. 

BCP effectively interprets a clause of N  propositions as all N  of its clausal justifications. We 

further define the clausal justifications of a justification to be all of the clausal justifications of 

the clause corresponding to that justification.

For efficiency, most BCP implementations (including ours) treat clauses as one unit, not 

as multiple justifications. 8 In fact, one could instead adopt a clause-based view of BCP 

and interpret justifications as their corresponding clauses. However, we -wish to retain the 

clirectedness of justifications. In any case, a justification-based view of BCP is sufficient for 

discussing the logical properties of BCP, and so we adopt that here.

D e fin itio n  2.18 (B C P -co m p le ten ess )  The full level of completeness offered by BCP can be 

achieved by interpreting each justification and clause as their clausal justifications. We call this 

BCP-completeness. This is equivalent to the degree of completeness provided by unit resolution.

7T h is  p rocess is m ad e  e x tre m e ly  efficient by  a sso c ia tin g  a  co u n te r  w ith  each  ju s tif ic a tio n , re p re se n tin g  th e  
n u m b er o f a n te c e d e n ts  n o t y e t in  C.  B y d ec rem en tin g  th e  c o u n te r  w henever one o f th e  a n te c e d e n ts  g e ts  a d d e d  
to  C , th e  co n seq u en t is d ed u ced  a s  soon  as th e  c o u n te r  goes to  zero. T h u s , th e  w o rst-case  co m p lex ity  o f th is  
process is lin ear in  th e  to ta l  n u m b e r  o f p ro p o sitio n s  in all o f  th e  ju s tifica tio n s.

8T h e  c lause  c o u n te r  s ta r t s  o u t  b e in g  th e  size o f  th e  c lause a n d  g e ts  d ec rem en ted  w henever th e  n e g a tio n  o f a  
lite ra l in th a t  c lause  g e ts  a d d e d  to  C.  W h e n  th e  c o u n te r  g e ts  to  one, th e  lite ra l in th a t  c lause  w hose n e g a tio n  is 
n o t in C  is th e  o n e  th a t  is in fe rred .
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D efin itio n  2.19 (B C P -c lo su re ) The BCP-closure of a set of propositions is the closure of 

that set that is deduced by BCP for a given set of justifications.

D efin itio n  2.20 (B C P -co n sis ten cy ) A set of propositions is BCP-inconsistent if _L is in its 

BCP-closure. Otherwise, that set is BCP-consistent.

D e fin itio n  2.21 (In te rp re ta tio n -c o m p le te n e ss )  An assumption closure of a state S  is 

interpretation-complete exactly when it contains the same assumptions as the intersection of 

all BCP-consistent completions of S.

D efin itio n  2.22 (A p p ro x im a te  S ta te  C losures) The approximate closure of a state S  is 

the set of assumptions which are in the BCP-closure of S . We denote the approximate closure 

of S  as C'(S).  In general, we desire such closures to be interpretation-complete.

One way to improve the completeness of BCP is to add a nogood clause [10] whenever a state 

is recognized as inconsistent. For example, the nogood clause due to a state { A , B , C }  whose 

BCP-closure is found to include C  would be A  V  B  V  C.  The main utility of nogood clauses is 

for caching information deduced via proof-by-refutation during interpretation constructions, as 

case-splits are explored. This technique can be particularly useful if it results in only a few, small 

nogood clauses. However, it is typically not suitable for our task of generating the assumption 

closure of a state S.  Guaranteeing that the computed closure of S  is interpretation-complete 

would require explicitly generating all completions of S  anyway. So, caching nogood clauses 

when computing closures for other states would simply help reduce the amount of backtracking 

that would occur during interpretation construction on top of S.

BCP can be made complete by using all prime implicates. The prime implicates are identical 

to the clauses produced by full resolution, after discarding all subsumed clauses [11]. Thus, 

BCP-completeness is equivalent to logical completeness when the clauses represent all prime 

implicates.

Although we have explored the use of the above two techniques, we have found it more 

beneficial to try  to characterize the types of logical incompleteness that can result from applying 

BCP to Q PT models. This is the topic of the next section.
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2 .5 .5  E x p lo it in g  th e  N a tu r e  o f  Q P T  M o d e ls

Let Jo denote the base justifications specified by the Q PT scenario model M ,  where any 

clauses in M  are specified as their clausal justifications. For comparison, let Co denote the 

clauses corresponding to J q. Let J  denote a superset of Jo which is sufficient for BCP to 

generate the interpretation-complete assumption closure of any partial state S  specified from 

the set V .

In general, J  might require the clausal justifications of an arbitrary number of resolvents 

of Co, to account for case-splits. However, we claim that for QPT models one can do much 

better. In fact, we claim that through careful analysis of the local nature of Q PT models, we 

can encode Q PT models such that J  is typically identical to J7n. For cases where this does not 

hold, we argue th a t principled, local case-split search appears to be suffice. Although we have 

not been able to prove the sufficiency of this approach, we will justify our intuitions, based on 

both empirical and analytical evidence.

The key observation behind our argument is that most qualitative constraints do not appear 

to yield disjunctions which could lead to larger computed closures if case-splits were searched. 

Many disjunctions which can be produced via resolution are not useful for implying new propo­

sitions. For example, consider transitivity inferences for a model in which interesting quantity 

comparisons include: A vs B, B vs C, C vs D, and A vs D. For a state containing A > B  and 

B  > C, the constraint (B  > D) o  (A > D) also holds. However, we have never come across, 

nor been able to conceive of, any physical model for which resolving such a constraint could 

lead to a larger closure.

In the simplest case, case-splitting is required to infer C  given constraints like:

A v B , A = > C , B = > C .

Binary qualitative constraints such as same-relations fit this pattern. For example, consider 

Same-Rel((uo/ume,0), (level, bottom)). One clause implied by that same-relation is (volume > 

0) V  (level < bottom), which could theoretically play the role of A  V  B  above. The issue is 

under what conditions there would then exist analogs to both A =>• C  and B  => C  in a  QPT 

model. Although we can easily make up an artificial domain in which such rules exist, we have 

not been able to conceive of any such C for any real domain true to the semantics of volume 

and level.

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



(defScenario CAN-WITH-SIDE-PORT 
(State LIQUID)
(Substance WATER)
(Container CAN1)
(Portal (P0RT1 CAN1)))

(defState SI
(> (height (liquid-in CAN1)) (height (P0RT1 CAN1))))

Figure 2.7: Scenario CAN-WITH-SIDE-PORT and state SI

State SI should have (Positive (mass (C-S WATER LIQUID CAN1))) in its closure because 
there is only one contained-liquid in CAN1 (for substance WATER).

The intuition is that this phenomena is not coincidental to those particular quantities. Fun­

damentally, “magical", non-obvious local inferences arising only due the case-splitting provided 

by resolution do not appear likely, in large part because of the strong commitment that Q PT 

makes to specific causal orderings. Q P T ’s organizational structure reflects a natural flow of 

constraints from QC’s and P C ’s to derivatives, through influence structure. Indeed, it seems 

reasonable to argue that a Q PT model for which BCP is insufficient to compute a state clo­

sure can probably be reformulated to make BCP sufficient, while at the same time making the 

model more natural as well. We will explore this intuition via the case studies presented below, 

towards developing a principled basis for such model formulations.

2.5 .5 .1  C ase S tu dy  1: Inferring P ositive  M ass from  P ositive  Level

Consider state SI for a simple scenario, as defined in Figure 2.7. Figure 2.8 highlights some 

key constraints in the resulting scenario model. In particular, note that for this example we 

are using the defEntity of Figure 2.9 for containers. It infers whether the volume of liquid in a 

container is positive or zero based on whether there is any contained-liquid of positive mass in 

the container.

Due to justifications (5), (2) and (4), BCP deduces:

(> (height (liquid-in CAN1)) (height (bottom CAN1))) from 

(> (mass (C-S WATER LIQUID CAN1)) 0).

Similarly, due to justifications (6 ), (1 ), and (4), BCP deduces:
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from  (Container CAN!) defEntity (of Figure 2.9):
(1) (==> (not (Wet CAN1)) (<= (volume (liquid-in CAN1)) 0))
(2) (==> (Wet CAN1) (> (volume (liquid-in CAN1)) 0))

from  (Heighted-Container CAN1) defEntity:
(3) (Qprop+ (height (liquid-in CAN1)) (volume (liquid-in CAN1)))
(4) (Same-Relation ((height (liquid-in CAN1)) (height (bottom CAN1)))

((volume (liquid-in CAN1)) 0))

from  (Wet CAN1) defView:
(5) (==> (> (mass (C-S WATER LIQUID CAN1)) 0) (Wet CAN1))
(6) (==> (<= (mass (C-S WATER LIQUID CAN1)) 0) (not (Wet CAN1)))

from  (Contained-Liquid (C-S WATER LIQUID CAN1)) defEntity:
(7) (Qprop+ (volume (C-S WATER LIQUID CAN1)) (mass (C-S WATER LIQUID CAN1)))
(8) (Same-Relation ((volume (C-S WATER LIQUID CAN1)) 0)

((mass (C-S WATER LIQUID CAN1)) 0))
(9) (Qprop+ (volume (liquid-in CAN1)) (volume (C-S WATER LIQUID CAN1)))

from  (Side-Portal (P0RT1 CAN1)) defView:
(10) (> (height (P0RT1 CAN1)) (height (bottom CAN1)))

Figure 2.8: S o m e  scenario model constraints for CAN-WITH-SIDE-PORT

These constraints follow from applying scenario CAN-WITH-SIDE-PORT of Figure 2.7 to our 
d omain theory for the tank-world. Note that constraint (6) comes from closing the (Wet CAN1) 
proposition, since there is only one contained-liquid for CAN1.

(defEntity Container

;;; additional “causality skipping” relations:
(Fact-to-Close! (Wet ?self)) ;; in case no contained-liquid instantiated 
(when (not (Wet ?self)) (Zero (volume (liquid-in ?self))))
(when (Wet ?self) (Positive (volume (liquid-in ?self)))))

(defView (Wet ?can)
Individuals ((?cl :type Contained-Liquid :form (C-S ?sub LIQUID ?can))) 
Conditions ((Positive (mass ?cl))))

F ig u re  2.9: C o n ta in er defEntity augmented with “causality skipping” constraints
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(= (height (liquid-in CAN1)) (height (bottom CAN1))) from 

(= (mass (C-S WATER LIQUID CAN1)) 0).

However, BCP will not be able to make the reverse deductions based on those justifications.

Being able to infer that the mass is positive, given that the level of liquid is positive, is 

particularly im portant *or our thermodynamics test domain. W ithout knowing that the mass 

is positive, portal P0RT1 will not be known to be Exposed-To the contained-liquid of water in 

CAN1. That Exposed-To is a prerequisite for the F lu id-F low  view which enables the process 

of water flowing out through P0RT1.

If justifications (1 ), (2), (5), and (6 ) are interpreted as clausal justifications, then BCP is 

able to make those reverse deductions. Since the number of clausal justifications corresponding 

to all clauses and justifications is at most the total number of propositions in those clauses and 

justification, this may appear to be a relatively harmless way to achieve BCP-cornpleteness. 

However, the complexity of an ATMS does not grow polynomially in the number of justifications. 

Yet, we wish to use an ATMS to efficiently cache our inferences about state closures across 

all partial states simultaneously. Therefore, we carefully consider which justifications must 

actually be interpreted as clausal justifications in order to achieve BCP-completeness for QPT 

models. Furthermore, this analysis helps us understand the general case, where using clausal 

justifications is still not sufficient.

It should be noted that this issue typically does not arise when reasoning with complete 

states. Justifications (1), (2), (5), and (6 ) are sufficient to indicate that having positive 

level bu t non-positive mass is inconsistent. Thus, any consistent complete state which con­

tains (> (h e ig h t ( l iq u id - in  CAN1)) (h e ig h t (bottom  CAN1) ))  will also contain (> (mass 

(C-S WATER LIQUID CAN1)) 0). The issue of which justifications to interpret as clausal jus­

tifications is still im portant for complete states, since BCP-completeness helps the state com­

pletion process avoid exploring branches that would eventually lead to  inconsistent complete 

states. However, in that case the issue is one of efficiency, not logical completeness.

Constraints (7), (9), and (3) of Figure 2.8 define the following causal chain:
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(mass (C-S WATER LIQUID CAN1))

(volume (C-S WATER LIQUID CAN1))
Q-L

(volume (liquid-in CAN1)) -4

(height (liquid-in CAN1)).

Note that Figure 2.9’s use of the status of the (Wet CAN1) proposition to define the relation 

between (Volume ( l i q u id - in  CAN1)) and 0 effectively skips some links in this causal chain. 

It jum ps from (mass (C-S WATER LIQUID CAN1)) to (volume ( l i q u id - in  CAN1)) directly, 

skipping over (volume (C-S WATER LIQUID CAN1)).

Since such non-causal tricks are sufficient for BCP-completeness for complete states, they 

have been commonly used as modelling conveniences. In fact, the model fragment of Figure 2.9 

was originally used in models we had developed for QPE. Redefining (Wet CAN1) so that its 

quantity condition is (P o s i t iv e  (volume (C-S WATER LIQUID CAN1))) instead of instead of 

(P o s i t iv e  (mass (C-S WATER LIQUID CAN1))) would properly reflect causality. However, 

that would introduce new state assumptions that are not required in any other part of the 

model. Since the complexity of the ATMS is proportional to the number of state assumptions, 

modellers strive to avoid introducing quantity conditions which are not of general use.

A much better solution is to explicitly model the volume of liquid in a container as the sum 

of all of the volumes of the contained-liquids. Quantitatively, this assumes that the contained- 

liquids do not partially dissolve into each other. However, qualitatively, this sum relation is 

appropriate as long as no increment of a contained-liquid would fully dissolve into the existing 

contained-liquids.

For our example above, closing on sums leads to the following constraint:

(11) (Same-Relation ((Volume (liquid-in CAN1)) 0) ((Volume (C-S WATER LIQUID

CAN!)) 0)).

Together, constraints (8 ), (11), and (4) bidirectionally relate any two quantities in the causal 

chain described above, with (11) bridging the gap between (8 ) and (4).

Adding constraint (11) allows us to handle this example without the “causality skipping” 

constraints (1 ) and (2 ) and without interpreting any justifications as causal justifications.
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(defScenario CAN-WITH-WATER-AND-OIL 
(State LIQUID)
(Substance WATER)
(Substance OIL)
(Container CAN1))

(defState S2
(> (height (liquid-in CAN1)) (height (top CAN1))))

Figure 2.10: Scenario CAN-WITH-WATER-AND-OIL and state S2

State S2 should have (Increasing (height (liquid-in OUTSIDE))) in its closure, because 
some contained-liquid in CAN1 is above the top of CAN1 and overflowing.

2 .5 .5 .2  Case S tudy 2: C ase-Splits N eed ed  For M u ltip le  Substances

Unfortunately, avoiding causality skipping constraints (by using closed sums) is not sufficient for 

ensuring that assumption closures are interpretation-complete. Consider a  modification to  the 

previous example in which there are two substances, water and oil, as defined in Figure 2.10. 

Since some liquid is overflowing in state S2, the liquid level of OUTSIDE will be rising, even 

though we do not know whether it is oil or water (or both) which is overflowing. W ithout 

deducing that the level outside is rising, we will not realize that any next state of S2 will 

necessarily have a positive level of liquid in OUTSIDE.

Note that we cannot simply infer that the “mass” of liquid in CANA is positive, analogous 

to our solution for case study 1. First, there is no concept of mass of liquid in CANA, only 

for particular liquid substances. Second, and more importantly, the level of liquid outside is 

only influenced by the level of liquid in CAN1 when one of the influence structure’s alternative 

conditions for that influence holds, yet no one such condition holds in SI.

Making this deduction fundamentally requires a case-split, on at least one of the contained- 

liquids being Exposed-to the top of CAN1. Committing to either Exposed—to  view being active 

is sufficient to know that there is a  positive resolved influence on the level of liquid outside. 9 

Furthermore, boths views being inactive is inconsistent with S2’s assertion that the liquid level

9O u r  te s t  d o m ain  m o d el s ta te s  th a t  th e  o u ts id e  level o f liqu id  is a lw ays below  a n y  n am ed  n o n -b o tto m  level 
(such  as to p s) , reflec ting  an  a s su m p tio n  th a t  th e  cross-sec tio n a l a re a  o f  OUTSIDE is effective ly  in fin ite .
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is above the top. Thus, the issue is what justifies us to focus on this case-split, over all of the 

other case-splits that resolution would consider.

The underlying justification comes from the way in which inequalities referencing com­

posed quantities are fundamentally different from other propositions. Composed quantities are 

quantities which are defined across multiple views/processes, such as derivatives. Determining 

whether a composed inequality relation holds requires considering the disjunction of the closed 

set of alternative conditions defining its negation. Although composed qualitative constraints 

are usually especially ambiguous, demonstrating that no such alternative condition holds is 

sufficient to infer the inequality relation.

Thus, we infer (> D (h e ig h t( l iq u id - in  OUTSIDE)) 0) (call it relation R) in SI via proof 

by refutation as follows. First, we identify the closed set of alternative Q C /PC  conditions in 

which that relation is possible. 10 Second, we check if there is any set consisting of one conjunct 

from each alternative such that the conjunction of their negations is consistent with SI. Since 

there is not, we infer R in SI, because it is impossible for its negation to hold in SI.

I0S ec tio n  4.3.1 d escrib es how  th is  is done. E ssen tia lly , i t  involves b ack -ch a in in g  th ro u g h  th e  ju s tif ic a tio n  
s t ru c tu r e  d efined  by F ig u res 4.5 a n d  4 .6 , s ta r t in g  a t  ( P o s s ib ly  R ) a n d  g ro u n d in g  o u t  a t  Q C ’s a n d  P C ’s.
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C hapter 3

C om p u tin g  S ta te  T ransitions

Computing possible state transitions is the heart of qualitative simulation. In fact, it is fun­

damental to any sort of qualitative reasoning about time. To properly reflect the ambiguity 

inherent in qualitative models and states, it is im portant that one be able to generate a com­

plete set of possible transitions out of a given state. At the same time, it is im portant to be able 

to keep unsound transitions out of that set — both for precision of inference and for keeping 

the branching factor more manageable. Thus, the QR community has expended much effort in 

attem pts to develop sound and complete techniques for generating transitions.

Unfortunately, existing techniques generate transition sets which are neither sound nor 

complete, with respect to the gold standard of quantitative simulation. In particular, they are 

unsound because they predict that two independent changes may coincidentally occur at the 

same instant. Such coincidences do not follow as mathematical consequences of the idealized 

qualitative model (since they have probability of zero in the limit) nor will they ever be observed 

in the real world (without observational uncertainties which would also suggest that one change 

could have occurred first). 1 Furthermore, existing techniques are incomplete because they do 

not predict all of the possible effects of a discontinuous change, such as when a valve is instantly 

opened. Few approaches even allow discontinuous changes; those th a t do (such as in [26]) will 

sometimes improperly prefer continuous changes over discontinuous changes.

'O u r  c laim  th a t  co inc id en ta l ch an g es a re  u n so u n d  w ith  re sp ec t to  p red ic tio n  d o es  n o t  m ean  th a t  conceiv ing  
o f th e m  is useless. W e d iscuss th is  p o in t in S ection  3.2.2.2
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We begin this chapter by presenting a generalization of the standard, continuity-based 

means of computing transitions. After explaining the incompleteness and unsoundness of that 

approach, we explore approaches based 011 minimal change which overcome those problems. 

Finally, we contrast our approach with those of the minimal change community, arguing that 

our QR perspective adds to the general understanding of the proper roles of continuity and 

minimality in formal theories of change.

3.1 C o n tin u ity -B a sed  C h ange

There are many algorithms for computing the complete set of next states which could result 

from continuous changes from a given state S, including those described in [12, 23, 27, 39]. 

Despite their algorithmic and ontological differences, they all compute essentially the same set 

of next states as the following generic algorithm does:

1 . Let S(, be the set of base propositions that any next state of S  must be consistent with.

2. For each proposition p in S  whose negation is consistent with St, consider each consistent 

completion of Sb U {p} to be a next state of S.

In short, step 1 defines the base constraints on the next states and step 2 considers what next 

states could occur if at least one proposition in 5  changes status (i.e flips).

For specific techniques, the completions computed in step 2 are often slightly different 

from classical propositional logic interpretations. New propositions may be created to serve as 

historical markers, due to landmark introductions [39]. Also, known propositions may become 

irrelevant (or relevant), due to existence changes [27], and thus should not be (or should be) 

included in the completions. 2

Nevertheless, such details do not change the basic nature of this class of algorithms: the 

base set of next propositions Sb is independent of any particular transition, being based solely 

on constraints such as continuity which are local to individual quantities and their derivatives.

f u r t h e r m o r e ,  for a lg o r ith m s  su c h  as QPE w hich  exp lic itly  c o m p u te  all co m p le te  s ta te s  u p -fro n t, a  s ta te  S  can  
be  co m p le ted  sim p ly  by g a th e r in g  all know n co m p le te  s ta te s  w hich a re  su p e rse ts  o f S.
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3 .1 .1  B a se  T em p o ra l C o n stra in ts

Table 3.1 concisely generalizes the standard continuity-based rules which define the base con­

straints on the next state. For example, these seven rules subsume all twenty cases in Ivuiper’s 

table of legal transitions without landmark introductions (i.e. Table 2 of [39]). Using these 

rules, the base propositions of the next state are defined by:

St =  {p | Next(p) e S } U 6 ,

where B is the base state of fixed background knowledge. Thus, the unary argument of any 

proposition of predicate Next denotes a fact which necessarily holds in any continuous next 

state of S.

Only continuous changes due to dynamics are considered in this approach. Thus, B must 

define the status of each proposition which is not a relation between quantities or their deriva­

tives nor always inferable from such relations and B. For example, this typically means that 

the status of all Q PT preconditions must be defined in B.

Rules F I and F2 integrate two constraints: continuity and the standard QR constraint that 

no change to equality can occur at the same time as a change from equality. Note th a t further 

constraints follow from these rules due to the relations between soft and hard inequalities. For 

example, the following fundamental continuity rule follows from rule F2:

Interval A  N{ >  Nj => Next (Ni ^  Nj).

Rules F3 and F4 encode derivative consistency — the constraints that derivatives have on 

their quantities. Finally, rules F5, F 6 , and FT enforce classical continuity. This requires a 

strict alternation of Instant and Interval states, allowing what is called unstable equilibrium. 

Disallowing unstable equilibrium requires omitting rule F5 (to allow an Instant state to be 

followed by another Instant state) and replacing F7 with f7.

Analogous constraints on the previous state can also be obtained, by reversing each relation 

between derivatives, as shown in Table 3.2. 3 Using such constraints to perform backward qual­

itative simulation (i.e. postdiction) does not seem to have been explored in the QR literature.

3N o te  t h a t  th e  an a lo g  to  ru le  f7 (i.e. b7) is g enera lly  n o t used  in q u a lita tiv e  reaso n in g . I t  w ould  disallow  
tech n ica lly  a s y m p to tic  ch an g es , such  as tw o w a te r  levels eq u a liz in g  d u e  to  a  flow betw een  tw o co n ta in e rs , from  
o ccu rrin g .
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Fl: Instant A iV; >  Nj Next (/Vi > Nj)
F2: Interval A iV; >  Nj => Next( N  >  Nj)

F3: Instant A  D{Qi) > D(Qj)  A Q, > Qj Next (Qi > Qj)
F4: Interval A D(Qi) > D( Qj) A Qi > Qj Next (Qi > Qj)

F5: Instant Next(Interval)
F6: Interval =*• Next(Instant)
F7: Instant A  Qi = Qj => Next(Same-Rel((Qi, Qj),  (D(Q{), D(Qj))))

f7: Instant A  D(Qi) = D(Qj)  A Qi =  Q} Next(Q; =  Qj)

T ab le  3.1: Temporal constraints on the next state

iYfc signifies a number (either a quantity or its derivative) and Qk signifies a quantity.
Recall that proposition In s ta n t  denotes an instantaneous state and I n te r v a l  is equivalent to 
the negation of In s ta n t .

Bl: Instant A AT; >  Nj => Prev(jVi >  Nj)
B2: Interval A Ar, >  Nj => Prev(Ar, >  Nj)

B3: Instant A D(Qj)  > D(Qi)  A Qi > Qj Prev(<3; >  Qj)
B4: Interval A D(Qj)  > D(Qt) A Qt > Qj Prev(Qi >  Q3)

B5: Instant Prev(Interval)
B6: Interval => Prev(Instant)
B7: Instant A Ql — Q} => Prev(Same-Rel((Q{, Qj),  (D(Qj),  D(Qi))))

b7: Instant A D(Qj) — D(Qi) A Qi =  Qj Prev(Qi =  Qj)

T ab le  3.2: Temporal constraints on the previous state

Such oversight may indeed be appropriate; as will be explained in the following two chapters, 

explicitly branching backward on all consistent pasts does not seem to be particularly useful 

for goal-directed qualitative reasoning.

Table 3.3 shows the temporal constraints on S  itself. These are necessary to ensure that the 

forward and backward tem poral rules are applied when needed. For example, rule N1 detects 

when a change from equality is occurring, insuring that rule F I applies.

3 .1 .2  T em p o ra l C o n stra in ts  F a c ilita te  P a r t ia l S ta te  R e a so n in g

The above rules are represented in the most general form possible to  support reasoning with 

partial states. This is facilitated by the use of soft inequality representations. For example,
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Nl: D(Qi) > D(Qj)  A Qi — Qj  => Instant
N2: Interval A D(Qi) /  D(Qj)  A Q i >  Qj Qi > Q>
N3: Interval A Qi = Qj  =>• D(Qi)  = D(Qj)

T ab le  3.3: Temporal constraints on the current state

consider the pump-cycle system of Figure 2.4, with the pum p off and the valve open, le v e ls  

>  bottom i is always true for this system. So, for any interval state in which lev e l*  is not 

steady, rule N2 implies that le v e l i  >  bottom i. Whereas, for any state which is instantaneous 

and l e v e l i  is rising, rule F3 implies that l e v e l i  >  bottom i holds in the next state. Explicit 

case splits on whether l e v e l i  > bottom i or l e v e l i  =  bottom i a^e not required to make these 

inferences.

To illustrate the potential computational benefits, consider a large liquid system of many 

containers and pipes, where the bottoms of all containers are the same height and all pipes are 

connected at the bottoms. Given an initial state in which the liquid level of one container (X ) 

is specified to be above the bottom  and all valves are specified as open, we can deduce that all 

of the levels will be above the bottom  in the next state following this initial state. The tem poral 

rules allow this deduction without requiring us to complete the initial state. Thus, we avoid 

the cross-product of the case splits on whether each level is above the bottom or not and which 

levels are higher than others, which would be required by standard qualitative simulation. We 

summarize below how this is done.

W ithout loss of generality, we always consider the initial state  to be instantaneous by default. 

This assumption is sound so long as we are willing to consider a special transition from the 

initial state which involves only a  change in duration (in case there is no causal reason why the 

state must last for only an instant). So, for the above example, we consider the initial state 

instantaneous. Rule F5 tells us that the next state  is an interval. Rule FI tells us that the 

liquid level of X  is still above the bottom  in the next state. Rule N2 tells us that the liquid 

levels of containers connected to X  also must be above the bottom . Being at the bottom  would 

make their derivatives positive (due to a flow from X ), which contradicts the constraints of rule 

N2. Similar proofs by negation hold for containers connected to them, as so on, recursively. 

These inferences are propagated using our procedure for computing deductive closures , whose 

worst-case complexity is quadratic in the final size of the next state. In contrast, the worst-case
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complexity of completing the initial state would be exponential in the size of V . This example 

typifies the many cases in which standard qualitative simulation techniques are truly overkill 

for a particular QR task.

3 .1 .3  A c t io n -A u g m e n te d  E n v is io n m en ts

In [26], Forbus extends the continuity-based approach to consider changes due to actions, em­

phasizing the need to allow discontinuities. He called this the action-augmented envisionment 

approach (AAE). Although AAE was originally formulated in terms of total envisionments, 

here we generalize it in terms of the continuity-based algorithm given above.

Assume a STRIPS representation [22] for actions, where the add and delete lists of an 

operator instance /l, are defined as propositional sets A f  and Af ,  respectively. Modelling the 

effects of such actions requires removing from B those background propositions which are in 

the add or delete list of any operator instance or can be indirectly changed by them. Call such 

propositions manipulable. Let Ps be the set of manipulable propositions which are in a given 

state S.

Transitions from S  due to dynamics are computed as before, with a slight redefinition of Sb 

to ensure that all propositions in Ps are persisted:

Sb = {p | Next(p) €  S J u B U  Ps-

For simplicity, AAE makes two assumptions. First, a t most one action can occur at a time. 

This single action assumption is sufficient because compound action operators can model the 

effects of simultaneous actions. Second, actions are forbidden from occurring in instantaneous 

states (from which some dynamical change from equality is occurring). Actions are easiest to 

integrate with dynamics if viewed as (instantaneous) trigger events which eventually will result 

in their stated effects. Since it would be a coincidence for such a  trigger event to occur at 

the same time th a t an instantaneous dynamic change is occurring, it is sound to ignore such 

possibilities. When an action is not appropriately represented as a trigger event with effects 

that are certain, it should instead be reformulated as an action which triggers some continuous 

dynamical changes which might eventually result in the intended effects.

Transitions from state S  which might occur due to an applicable action A  are computed as 

follows:
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1. Let Sb = {p | Next(p) e  S} U B (as before).

2. Let P's  =  (Ps -  A d) U A a.

3. Let C  =  the set of consistent completions of P$ U S&.

4. If C = 0 then Let C  =  the set of consistent completions of P's  U B.

5. Consider each state in {5; G C \ f l S j  G C  such th a t (|S; n  S| >  |S j  fl S |)} to be a next

state of S.

Essentially, this algorithm insists that all of the direct effects of the action occur while 

only allowing minimal changes in the other propositions. As shown in Step 5, it employs 

a cardinality-based measure of minimality. Specifically, since Q PT states can be sufficiently 

represented by their state assumptions, the measure of minimality is literally the num ber of 

assumptions which persist over the transition.

Forbus argues in [26] that it is im portant that this cardinality measure is based only on the 

state assumptions and not on all state propositions. Essentially, he correctly notes that since 

the non-assumption state propositions are consequences of the assumptions, intuitive notions 

of causality can be violated if the minimality measure includes such consequences. Recently, 

this point has also been argued by the minimal-change community [42, 3]. However, he fails to 

account for those rarer cases where it also matters that some state assumptions are themselves 

consequences of other assumptions.

Consider his example of a pan of water resting on two burners, one on and one off and an 

action of turning off the first burner. Intuitively, that action should result in no heat flows 

to the water. Minimizing changes in all state propositions would suggest tha t possibility but 

would also suggest th a t the heat flow persists while the second burner (magically) turns on. In 

the first case, the changes are: heat-flowl is inactive, burnerl is off, and tem perature of water 

is dropping (due to a cooling process that remains active). In the second case, the changes are: 

heat-flowl is inactive, burnerl is off, heat-flow2  is active, and burner2  is on.

However, minimizing changes in state assumptions also suggests those same two possibilities. 

In the first case, the two assumption changes are: burnerl is off and the water tem perature is 

dropping. In the second case, the two assumption changes are: burnerl is off and burner2 is 

on. The problem is that the assumption that the derivative in the tem perature of the water is
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negative is inferrable when both heat flow processes become inactive. Thus, there is really only 

one primitive assum ption change in the first case, and so case one actually represents minimal 

change (versus case two). Yet, AAE would not prefer either over the other. 4 Furthermore, 

if the water tem perature is originally rising (due to burnerl being on), AAE would actually 

prune case one (where the tem perature immediately drops due to cooling with no burners on), 

since it violates continuity. Since case two does not violate continuity, that means AAE would 

actually prefer the magical case over the reasonable one.

3.2  P ro b le m s W ith  C o n tin u ity -B a sed  A p p roach es

As mentioned in the introduction to this chapter, continuity-based approaches have two key 

limitations: failing to predict all valid discontinuous changes and failing to avoid predicting 

coincidental changes. We discuss each of these issues in turn below.

3 .2 .1  D is c o n t in u ity

Although the real world may be fully continuous, it is doubtful that practical models of real 

world systems can be. Always modelling discontinuities as continuous qualitative changes re­

quires details th a t may lead to excessively complex explanations and/or intractable reasoning. 

Thus, a strict continuity-based approach to change does not appear to be feasible or desirable.

Unfortunately, the extensions provided by AAE do not always correctly handle discontinuous 

change. AAE is incomplete for three reasons:

1 . it can prune a valid change whose cardinality measure of minimality is inflated due to 

consequential state assumptions;

2 . it can prefer a continuous change over a discontinuous change even when both are valid;

3. it does not account for discontinuous changes due to dynamics.

We explore these issues in detail below.

4IF burner2 being on is a manipulable proposition (i.e. a member of Ps),  then AAE would actually prefer case 
two. However, that is simply an example of getting the right result for the wrong reason. If the burner2 being 
on was instead determined by dynamics (i.e. not a member of Ps)  then AAE would fail as we have described 
above.

72

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



3 .2 .1 .1  Four M o tiv a tin g  E x a m p les

Discontinuities seem to be more common for changes due to actions than those due to dynamics. 

This is not surprising given that action operators can specify arbitrary effects, whereas dynamics 

result in continuous changes for at least as long as the process structure remains the same. In 

any case, the general problem of determining when to allow discontinuous changes, and what 

other changes should accompany them, can be subtle, as the following examples illustrate.

First, consider a one-dimensional world with a t least four named points: A'i >  AA > A 3 >  

X j. Assume the move operator for object B  when B  is between positions A'i and AA has the 

effect of B  being between positions A 3 and AA. Thus, the move action results in a discontinuity 

in the position quantity. Imagine there are some dynamics which would be triggered by B  

being somewhere between X 2 and A 3 , such as a photoelectric-cell detector sounding an alarm. 

W ithout explicitly reasoning about B  being between AA and AA “during” the discontinuity in 

position of the action, the alarm will not be predicted.

Now, consider an explosion due to dynamics, such as a spark plug causing a discontinuous 

change in gas pressure. Here it is more difficult to imagine any intermediate limit points of 

interest that the pressure could go through before reaching the pressure that results from the 

quick explosion process. So, unlike the previous example, it does not appear that one would 

miss any im portant intermediate behavior during the discontinuity. This dichotomy seems to 

be due to the fact that the arbitrary effects of actions can model forced discrete jum ps through 

time that qualitative models generally do not and cannot, due to qualitative ambiguity. For 

example, movement of B  due to an explosion would directly result from higher pressures, not 

the explosion itself. So, the alarm would be predicted if B  moved due to an explosion.

In contrast, consider the action of turning on the pump in the pump-cyclc system when 

le v e l i  >  le v e l 2 and the valve is open. We will call this the pump-cycle sudden-pump example. 

Before the action, l e v e l i  is dropping due to liquid flow from CAN1 to CAN2. This action could 

conceivably result in three possibilities: l e v e l i  could continue to drop (if the flow is stronger 

than the pump); l e v e l i  could suddenly rise (if the pump is stronger); or l e v e l i  could suddenly 

stop (if the pump is exactly as strong as the opposing flow). Note that AAE incorrectly prunes 

the second case because it involves more change than the first case, due to the discontinuity in
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the derivative of l e v e l i .  Ignoring the second case would ignore the possibility that CAN1 might 

overflow due to this action — which could be disastrous, say, if the liquid was a dangerous acid.

Discontinuities in higher-order derivatives can also occur. For example, a ball rolling off a 

table would result in a discontinuous change in the derivative of the ball’s vertical velocity as 

soon as the ball goes past the edge of the table. Essentially, the process providing an opposing 

force to gravity becomes inactive when the table no longer supports the ball. Thus, the vertical 

acceleration of the ball discontinuously becomes solely that of the gravity process at the moment 

the ball passes the edge of the table. AAE handles such a case correctly only because there is 

no continuous possibility to prefer over that discontinuous behavior.

3.2 .1 .2  Claim : M ost D iscon tin u ities Occur in D erivatives

Most discontinuities that arise, whether due to dynamics or to actions, seem to occur in deriva­

tives. We claim th a t this is because most discontinuous changes arise from sudden changes in 

process structure, which defines the influences which determine the derivatives. The latter two 

examples above are typical of such changes.

Exceptions are due to instantaneous movements through quantity space, such as the first two 

examples of the previous section. As noted, only changes due to actions seem to cause predictive 

problems for such cases. Reformulating such actions as triggers of continuous behavior would 

avoid such problems. For example, modelling the move action as an instantaneous push action 

followed by sliding due to dynamics might be the more precise definition of the actual move 

operator and would allow qualitative simulation to predict the alarm detector being tripped. 

However, i£~we are sure that such pushes will always be strong (and weak) enough to make B  

rest between X j  and X 4 when it was between Ah and X 2 , then the earlier formulation of the 

move operator provides some useful predictive constraints that would be lost. There appears to 

be no general way to resolve this tradeoff between encapsulating domain constraints in discrete 

action effects and using continuous processes to robustly detect intermediate possibilities.

3.2 .1 .3  R eason ing  A b ou t D iscontinu ities in D erivatives

Since discontinuities in derivatives seem so common, it is particularly important that we handle 

them correctly. As the pump-cycle sudden-pump example above illustrates, minimal change is 

not a sufficient criterion. Instead, we must explicitly reason about the influence structure that

74

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



defines the derivatives. The essence of our solution is based on a simple observation: adding a 

positive influence to an already increasing quantity will not cause that quantity to tu rn  around 

(discontinuously), whereas adding a negative influence might (and vice versa).

Later, we will present the details of how this analysis of influence change is performed and 

present our full solution to the pump-cycle sudden-pump example. However, first we must 

discuss coincidences, since it turns out that the levels stopping as soon as the pum p is turned 

on happens to be a  coincidence.

3.2 .2  C oin cid en ces

We claim th a t there are no valid reasons for predicting coincidental changes, such as two 

independent pots of water both starting to boil at the same time. First, the probability of 

coincidences is effectively zero. Although at the qualitative level a coincidence may appear the 

same as any temporal ordering between the two events, a t the quantitative level the number 

of ways th a t the coincidence might occur is infintestimal compared to the number of ways that 

it would not occur. Second, a coincidence generally has no causal significance over its non- 

simultaneous counterparts. It is difficult to even imagine of an example where two dynamic 

events occurring at the same exact time leads to  dynamic behavior that could otherwise not 

also happen if one event occurred a little bit before the other. Furthermore, consider the classic 

example of a coin landing on its edge. Although we can conceive of such an occurrence, we 

would never seriously consider it in the course of trying to generate a winning strategy for a 

toss-a-coin-in-the-bottle carnival game.

While there appear to be no valid reasons to predict coincidences, there certainly are valid 

reasons to  avoid predicting them. W ithout coincidences, the worst-case number of next states 

is linear in the size of S.  Allowing coincidences makes the worst-case exponential in the size of

S.

3.2 .2 .1  N on-C oincidental C hanges

The problem, of course, is that not all non-singleton changes are coincidences. From a phase- 

space point of view, we want to predict only those changes which (must) occur from at least 

one exact state consistent with S.  This criterion covers two types of changes at the qualitative 

level:
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1 . inferred necessary changes;

2 . justified possible changes.

Examples of the first case arise from Q PT correspondences, such as a container’s level of liquid 

necessarily being above its bottom  when the mass of some liquid in it becomes positive. An 

example of the second case is the derivative of l e v e l i  possibly reversing when the pum p is 

turned on in the pump-cycle sudden-pump example.

The essence of our handling of coincidences is to use minimal change to account for the 

first type of non-coincidental changes while using the results of our influence change analysis to 

avoid including possible discontinuities in derivatives in our measures of minimality. We discuss 

this approach in detail in Section 3.3.1.

3.2 .2 .2  C on ceiv in g  o f C oincidences Versus P red icting  T hem

Although there appear to be no reasons to predict coincidences, it may be desirable to  verify 

a user query as to whether such changes are conceivable. For example, the user may wish to 

determine whether two changes from a state could occur arbitrarily close to one another, by 

seeing whether they could theoretically happen at the same time. The fact th a t people seem 

to be fascinated by the possibility of coincidences suggests that reasoning about such limits is 

potentially valuable.

Such queries are easily answered within our framework by simply including all changes of 

interest in the base next state Sb- Essentially this focuses the search on whether all such changes 

can occur together from 5.

Although such queries may be of local interest, our main point is that coincidences are not 

of global interest. As discussed earlier, it is difficult to imagine how coincidences could have 

causal significance. Thus, whether they occur during intermediate behavior does not affect 

which final result states are possible from a given state.

3.2 .2 .3  U sin g  C oincidences to  A void  O rdering C om m ittm ents

One might argue that a valid reason to allow coincidental changes is to avoid the need to  branch 

on which independent change occurs first. For example, consider two independent heated vats 

of oil whose tem peratures are both approaching their boiling points. It might make sense to
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consider only that the oil in both vats starts to boiling at the same time, even of each one 

boiling first is actually possible. Although this could significantly reduce branching factors, 

there are two im portant points to realize.

First, there is a difference between forcing coincidental changes and allowing them. Allowing 

coincidental changes along with all other orderings simply makes the branching factor worse. 

Thus, we still insist tha t it never makes sense to mix both coincidental and non-coincidental 

changes for the same quantities.

Second, if two subsystems are not globally independent, forcing coincidental changes for 

them can introduce incompleteness — beyond the local incompleteness due to pruning orderings. 

Determining such global independence is not trivial, which is why we have not pursued the use 

of coincidences to reduce branching. For instance, one change occurring before another might 

be the only way th a t a third change could occur later. At the very least, one could identify 

subsystems which are always independent of each other, regardless of context. But for such 

extreme cases, it would be even better to simply reason about them separately in general, not 

just for computing transitions.

3.2.2.4 Im p lic it C losed-W orld A ssum ption  On C orrespondences

Perhaps the strongest argument against avoiding coincidences is the following. A key motivation 

for using qualitative models is to relax the need for precise constraints, which may be unavailable 

or expensive to use. Now, if a correspondence constraint exists for the physical system but is 

missing from the qualitative model, then we would fail to predict any changes which appear 

to be coincidences bu t are actually required by that missing correspondence. Although our 

predictions would be complete with respect to that model, they would be incomplete with 

respect to the real world. Thus, our predictions will suffer incompleteness due to relaxing 

constraints, opposing the guiding principle behind QR.

Implicitly, we are making a closed-world assumption tha t the model contains all of the 

relevant correspondences. QR accepts the need for other CWA’s, such as those on influences, 

why should correspondences be treated differently? In fact, if we do not make all such CWA’s, 

then the use of minimal change to filter discontinuous possibilities is incompatible with Q R’s 

attem pt to preserve predictive completeness. Lack of CWA’s prevents inconsistencies (due 

to negations by failure) from being detected, which can result in minimal change favoring
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outcomes which are in reality inconsistent. In fact, lack of CWA’s is exactly what prevents 

nonmonotonic approaches based on minimal change from achieving the predictive completeness 

of envisionments.

We can also appeal to likelihood. We argue th a t we can safely assume that it is unlikely 

that correspondences will exist and yet the model will not contain them. Relatively few corre­

spondences are causally fundamental to the general physics (like one implying that fluid mass 

is positive when volume is positive); such correspondences will be included in any reasonable 

model. O ther possible correspondences simply reflect global quantitative constraints of specific 

systems. They are mathematically very unlikely to hold for any specific system for which we 

apply the general qualitative model.

3.3  C om b in in g  M in im a lity  and C o n tin u ity -B a sed  C h an ge

In this section, we explore the use of minimal change to correct the above problems with the 

continuity-based approaches. In moving away from a  continuity-based approach and toward a 

minimality-based approach, the challenge is to not discard valid continuity constraints. We will 

argue tha t this requires a more careful consideration of the justification structure of constraints 

than is typical of other work based on minimal change.

3 .3 .1  C o r r e c tin g  th e  C o n tin u ity -B a se d  A lg o r ith m s

Now we are prepared to use minimal change to find all possible transitions out of a given state 5  

which do not involve coincidental changes but which do reflect all valid (possibly discontinuous) 

changes.

3.3 .1 .1  T h e S ingle B ase Change A ssum ption

We claim that it is both useful and sufficient to generate non-coincidental dynamic transitions 

by focusing on one proposition as the base change. This is analogous to AAE’s focus on 

one action as the base change. However, whereas an action may have several base effects, a 

non-coincidental dynamical change has only one base effect — a change in some quantity or 

derivative. This can be clearly seen by viewing dynamic changes as due to operators of nature, 

such as those of Figures 4.3 and 4.3. For generality, we will refer to each action or base dynamic
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change as an operator and its set of direct effects as its effects. The effects of an action consists 

of its add list propositions and the negations of its delete list propositions.

3.3.1.2 A p p ro a ch  1: A lm o st Sufficient for Q P T  M odels

One could attem pt to compute the next states of 5  due to operator O as follows:

1. Let 5ft =  {p | Next(p) 6  S} U B.

2. Let E  = Effects(O).

3. Let Ci — M in im a lC h an g e (N o n D eriv s(5 ), E  + N onD erivs(5ft)).

4. For each S'  in Ci do:

(a) Let D  =  P o ss ib ly D isco n tin u o u s(5 , S').

(b) Let D'  =  {di\di E D}.

(c) Let C2 =  M in im a lC h an g e (5  — D, S'  +  5ft — D').

(d) For each S'  in Co do: Next.s(S) (Next.s(S) U C o m p le tio n s (5 ',5 )) .

All of these state operations work with state assumption closures.

N o n D e riv s(5 ) returns the state assumption closure minus any derivative conditions. Recall 

that these conditions not only include derivative inequalities, bu t also quantity inequalities 

which are equivalent to derivative inequalities (such as net-influences) or higher-order derivative 

inequalities (such as acceleration quantity inequalities being equivalent to velocity derivative 

inequalities). C o m p le tio n s(5 ,,5 j)  computes all completions of S t, using only the set of V  

propositions in Sj  (as their negations). When 5; is a complete state  (in terms of V ) ,  Sj  will 

necessarily be so also.

As explained later, M in im a lC h an g e(5 ;,Sj)  computes states representing minimal changes 

from Si  consistent with base next state Sj  and P o ss ib ly D isco n tin u o u s(5 ,,5 j)  determines 

which (derivative) conditions in Si  could change discontinuously due to influence structure 

changes which occur for the transition from 5, to S3. and

Essentially, this algorithm first finds the set C\ of candidate partial next states which are 

minimally changed from 5  and which do not contain (non-inferrable) derivative conditions. For 

each such partial state 5 ', it determines which derivative conditions (D ) in 5  might change
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discontinuously because of influence changes due to the minimal changes from 5  to S '. It then 

recomputes minimal changes from S,  this time enforcing continuity on all derivative conditions 

except for those of D.  Finally, it computes completions to represent the ambiguities in whether 

each potentially discontinuous derivative relation D  changes or not.

3.3 .1 .3  A pproach 2: Sufficient for Q P T  M odels

Although the above approach correctly handles discontinuities in derivatives, it does not allow 

for discontinuities in quantity conditions or rate relations. Such discontinuities seem to be 

much rarer, bu t examples do exist (see Section 3.2.1.1), mainly for actions which jum p through 

quantity space. The following modified version fixes this problem, by not explicitly enforcing 

continuity except in some very special cases involving Instant states. This approach is based 

on the observation that minimal change can be sufficient for enforcing continuity constraints, 

as discussed in the next section.

The next states of S  due to operator O are given by:

1. Let Sb =  {p | Next(p) € 5} U 6 , where temporal rules F I, F2 and F4 are not used to 

define the Next propositions of Table 3.1

2. Let E  = Effects(O).

3. Let Ci =  M in im alC h an ge(5 ,E  +  Sb).

4. For each S'  in Ci do:

(a) Let D  =  P ossibIyD iscontin u ous(5 ,S').

(b) Let C'2 =  M inim alC hange(S  — D , E  + Sb)-

(c) For each S'  in C2 do: Nexts{S) (Nexts(S) U C om pletions(S', S)).

3.3 .1 .4  C on tin u ity  R u les Are S till Im portant

An im portant consequence of removing most continuity constraints from Sb is that determining 

whether O is applicable to S  requires special care when O is a dynamic operator. Not only 

must we check th a t O ’s conditions hold in 5, we must also check that they are continuous 

through the transitions generated above. This is done by applying all forward tem poral rules
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to O ’s conditions (augmenting Step 1 of Approach 2 above), to ensure that the dynamic op­

erator can hold throughout those transitions. Whereas an action can arbitrary impose sudden 

discontinuous change, Nature is more gentle. Specifically, any discontinuities due to dynamic 

changes will arise from indirect effects of O, reflecting our modelling simplifications that violate 

the underlying continuous nature of N ature’s real model.

This application of O-specific continuity constraints on top of minimal change is very im­

portant. For example, w ithout it, minimal change could suggest that a container CAN1 might 

overflow due soley to gravity flow from a source container CAN2 when CAN2’s water level was 

initially above CANl’s water level but below CANl’s top. However, that overflow could not occur, 

since the flow would first stop once the levels in the two containers became equal. Minimal 

change alone would “fix” th a t obstacle by insisting that the flow’s conditions discontinuously 

change so th a t the water level of CAN2 is no longer below the top of CAN1. Effectively, minimal 

change would insist that a change in the levels relation would happen at the same instant that 

CANl’s water level rises to  its top. Such behavior violates our base change assumption, as well 

as the basic tenants of causality.

By ensuring that continuity holds for the (local) behavior of O ’s immediate conditions 

and effects, we ensure th a t minimal change will not violate the local continuous behavior of 

Nature. Any other discontinuous changes are fair game, reflecting discontinuities induced by 

simplifications in how we model the propagation effects of Nature’s base change.

3 .3 .1 .5  E ncodin g C on tin u ity  as M inim al Change

At first glance, it might appear that syntactic measures of minimal change cannot enforce 

continuity when appropriate. Consider the following three sets of propositions, representing 

A < B,  A — B,  and A >  B  respectively:

{A < B , A ? B , A ?  B},

{A £  B , A  = B, A  B},

{A ■£ B,  A B, A > B}.

Using those encodings, a  change from A < B  to A = B  involves as many proposition flips (two) 

as a change to A > B.  Yet, the former change should be preferred because it is continuous.
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However, it turns out that our soft inequality representations enforce continuity when using 

minimal change measures. Using these encodings, a change from A < B  to A = B  involves 

only one propositional flip, whereas a change to A > B  involves two:

A < B  =>• {A B , B  > A},

A =  B  =>• {A > B , B  > A},

A > B  => {A > B , B  Z  A}.

The use of special syntactic encodings to get minimal change to do the “right thing” is not 

a general solution. Usually, syntactic measures are mainly employed as a  convenience, to avoid 

the complexity of fully addressing deeper issues. However, our use of soft inequality encodings is 

not simply an encoding trick because it is symmetric. There is no unfair bias for any particular 

change among inequalities. In a sense, minimal change of soft inequalities simply reflects the 

basic qualitative nature of the Mean-Value Theorem.

Note that AAE’s use of minimal change when there are no continuous nexts usually works 

because in such cases other inequalities are not required to change, so minimal change does not 

have to decide between =  or >  from <  for them. Thus, the inequalities that must change have 

already been told how to change by the base effects of the operator.

Temporal rules F I and F4 follow directly from minimal change because changes in >  rela­

tions are minimized. Only rule F2 depends on this special encoding based on soft inequalities. 

Note in particular, however, that rule F3 is still required, to insure th a t all instantaneous 

changes from equality occur.

It is im portant to also note that either encoding scheme will prefer shorter discontinuous 

changes. Minimal change measures for quantity spaces with multiple, ordered limit points 

will lead to this preference due to the nature of transitive closures. For example, consider a 

quantity space for X  with known limit points X \  <  X 2  < X3. Changing from X  < X \  to 

X  =  X 3  involves more proposition flips (5) than changing to X  =  X 2  (3):

X  < X i  => { X  2  X i ,  X i  > X ,  X  2  A 2, X 2 > X,  X  t. A 3 , X 3 > A } ,

X  = X 2 = > { X >  X u X i  2  X ,  X  > X 2, X 2 >  A ,  A  ^  X 3, X 3 >  A } ,

X  =  X 3  => { X  >  A i , A i  2 A , I >  A 2 , A 2 2  X , X  >  X 3, A s  >  A } ,

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Since we are assuming that discontinuities arise clue to quick changes, this preference on 

shorter discontinuous changes has some merit. After all, X  can only travel so far in the time 

in which the primary change occurs. However, a more accurate way to represent this intuition 

would be to limit the change in X  to within some range of limit points, based on the duration of 

the prim ary change and the speed at which X  travels based on that change. Unfortunately, such 

representation would require much knowledge specific to the primary change and its relation 

to A". It is particularly doubtful that such knowledge could be represented qualitatively. As it 

is, preference on shorter discontinuous changes introduces a certain amount of incompleteness 

in qualitative prediction. If such incompleteness is significant, minimality measures must be 

tailored to avoid this.

3 .3 .1 .6  In fluence C h an g e  A nalysis

P o ssib ly D isco n tin u o u s(S ,,S j) determines which derivative conditions in state S) could change 

discontinuously due to influence structure changes which occur for the transition from Si to Sj.

Influence change analysis reflects a simple but im portant principle: adding a positive influ­

ence to an already increasing quantity will not cause that quantity to turn  around (discontin­

uously), whereas adding a negative influence might (and vice versa).

More precisely, for a qualitative change in a derivative to occur, the enlarged conjunctive 

set of negative influences must not be Overwhelmed by the existing conjunctive set of positive 

influences. Thus, known rate relations must be considered as well.

Our approach is roughly as follows. Consider each proposition P  in Si which is not in 

N o n D e riv s(S ) 5 Assume the form of P  is £>(1) vs D(2). Consider the influences on Q\ and 

Qo in tu rn  as quantity Q. Gather all minimal support states in which Q could be influenced 

in the direction opposing P. This set of states (call it M)  is effectively either the ATMS label 

of (PossibleD + Q) or (P ossib leD - Q). For each state Mi in M , if Mi is compatible with 

Sj  but not Si then P  and its equivalents are among those propositions returned as “possibly 

discontinuous”.

5In  th e  case o f P  be ing  a  q u a n tity  in eq u a lity  like a  ne t-in fluence , le t P  be  its  eq u iv a len t d e r iv a tiv e  inequality .
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3 .3 .1 .7  C o m p u tin g  M in im a l C h an ge

M in im alC h an g e(S ;,S j) computes the minimal changes of state S,'s propositions consistent 

with base new state Sj.

The literature on minimal change is large, with many measures of minimality and many al­

gorithms for each. We will discuss some of these alternatives in Section 3.4, to better understand 

the approach we have taken. For now, we simply state our approach below.

The set of propositions we minimally change is the state assumption closure of 5). For our 

purposes, it has proven adequate to compute minimal changes by performing a  limited form of 

depth-first interpretation construction on Sj  that is biased to prefer the assumptions true in 

S i . Consider any point in the construction process, for working state S  D Sj  and a  choice of 

assumption A  or A , where A  is true in Si. We explore 5  +  {A} only if there are no consistent 

interpretations of 5  +  {.4}. For each S, we must consider each assumption in S, in tu rn  as A.  It 

is not sufficient to simply select as A  for S  the first in some strict ordering of assumptions which 

is neither true nor false in S  (as is sufficient for standard, unbiased, depth-first interpretation 

construction). This approach reflects a set-inclusion measure of minimality.

We have found that representing each 5  as its assumption closure is sufficient to avoid 

backtracking in almost all cases. In fact, we have found it equally sufficient to simply first 

commit to choices whose negations are inconsistent with S,  without computing closures of each 

S  during construction. These results, which violently conflict with worst-case analysis, seem to 

be due to the predominance of binary constraints in QP. For example, for a transition in which 

mass of a sole contained liquid becomes zero, the level of the contained liquid will become that 

of the bottom  of the container, fundamentally due to a same-relation of mass vs zero and level 

vs bottom . Once interpretation construction commits to the choice of the mass being zero, the 

liquid level’s relation to bottom  is inferrable in the assumption closure.

For general constraint sets, a large Si, and a small Sj ,  it would intuitively seem more efficient 

to compute minimal change using a top-down approach, which would try to minimally “debug” 

Si  to make it compatible with Sj .  In contrast, we perform bottom -up reasoning from Sj,  

adding back each assumption of Si unless doing is ultimately detected as inconsistent. In the 

final analysis, our experience that the bottom-up approach is adequate is a direct result of our 

experience that BCP is typically sufficient to compute assumption closures for Q PT models.
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3.3.2 Handling the Pump-Cycle Sudden-Pump Example

Now we are prepared to discuss our solution to the pump-cycle sudden-pump example in detail. 

Given an initial state in which water is flowing through the pipe from CAN1 to CAN2, we wish 

to determine the possible immediate consequences of turning on the pump. Thus, the problem 

is to compute the next states of X due to the action change (.4):

Not(0n(PUMP)) ->■ On (PUMP).

Minimal change results in le v e l i  >  l e v e l 2 , Open(VALVE), and On(PUMP) necessarily hold­

ing in any next state of X due to A.  However, influence change analysis indicates that minimal 

change should not be applied to D (lev e l* ) < 0, because A  adds a positive influence on le v e l*  

that could qualitatively change influence resolution for lev e l* . Thus, there are three candidate 

next states:

• SI: £>(level*) <  0 (i.e. no qualitative change),

• S2: £)(level* ) =  0, and 

® S3: D ( le v e li)  >  0.

We will now demonstrate that S2 is not a valid next state, due to coincidence pruning, whereas 

both SI and S3 are valid next states.

Table 3.4 summarizes the state descriptions for this example. II, 12, 13 represent the re­

finements of I that necessarily hold at the end of I in order for SI, S2, S3 respectively to  occur

next. Most of the propositions in the closures of these states are inferrable from others. In 

particular:

• D (le v e li)  vs D(0) is inferrable from lev e l*  vs le v e ls  in I, II, 12, and 13 (since there is 

only one influence on lev e l*  when Qpen(VALVE) and Not(0n(PUMP))),

• D ( le v e ls )  vs D(0) is similarly inferrable from lev e l*  vs le v e ls ,

• £ > (v ir tu a l( ra te pipe)) vs D(0) is inferrable from £>(level*) vs D(0), as is 

D ( v i r tu a l ( r a te pipe)) vs jD (v ir tu a l( ra te pump)), since v i r t u a l  ( r a t  epump) is constant,
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• v i r t u a l ( r a t e pipe) vs v i r t u a l ( r a t e pump) is inferrable in SI, S2, and S3 from

D (le v e li)  vs D{0), since the virtual and real rates are equivalent for each flow in those 

states.

The inferred relation of D ( v i r tu a l ( r a t e pipe)) vs £ ) ( v ir tu a l ( r a te pump)) in 11/12/13 and 

the inferred relation of v i r t u a l ( r a t e pipe) vs v i r t u a l ( r a t e pump) in S1/S2/S3 together suggest 

the relation of v i r t u a l ( r a t e pipe) vs v i r t u a l  ( r a t  epump) for 11/12/13. For example, 

v i r t u a l ( r a t e pipe) >  v i r t u a l  ( r a t  epump) holding in II is the only way that it can also hold in 

SI. given that v i r t u a l  ( r a t  epipe) is dropping faster than v i r t u a l ( r a t e puinp) in II. We know 

that changes in v i r t u a l  ( r a t  epipe) vs v i r t u a l ( r a t e pump) due to A  must be continuous because 

A  does not immediately effect the QC’s that constrain those two quantities. This is an exam­

ple of how explicit reasoning about continuous change is im portant in QR, beyond computing 

constraints on the next states.

Note that continuity between 13 and S3 only warrants inferring v i r t u a l ( r a t e pipe) < 

v i r t u a l  ( r a t  epump) in 13. However, we also know that In te r v a l  holds in II ,12,and 13 because 

A  is an action, which we insist cannot occur in an instant state. Thus, rule N2 of Table 3.3 

leads to the stronger constraint on that quantity inequality for 13.

Most importantly, the continuity-based inference we make for 12 indicates the change

(virtual(ratepipe) >  virtual(ratepump)) -+ (virtual(ratepipe) =  virtual(ratepump))

would occur for the transition between 12 and S2. However, this change is not required by 

A.  In particular, II is identical to 12 but transitions to SI, which does not entail th a t change. 

Therefore, we justify pruning S2 as a valid next state for I  because it involves a coincidental 

change.

There are a few interesting things to note about this example. First, X does not commit 

to  D ( v i r tu a l  ( r a te pipe)) vs I) ( v i r tu a l  ( r a t  epump)) and it is not inferrable in X. This is one 

example of how relevant case splits in X  can be introduced as needed, as opposed to relying on 

blind completions, as in QS.

Second, if I is case-split by v i r t u a l ( r a t e pipe) vs v i r t u a l ( r a t e pump), set-inclusion based 

minimal change would be sufficient to realize that Si and S3 are valid next states bu t S2 is not. 

However, in more complex examples, case-splitting on all consistent combinations of conjunctive 

rate relations would be required for standard minimal change to work. In contrast, by using
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I n 12 13 SI S2 S3
levels vs level2 > > > > > > >
Open(VALVE) T T T T T T T
On(PUMP) F F F F T T T
. D (lev e li) hline r-b .-b Z}(level2)

vs 0 « ) « ) (<) (<) < = >
vs 0 ( » ( » ( » « ) ( » (=) K )

D (v ir tu a l(ra tep ip e)) vs 0 «) «) (<) (<) «) (=) (»
D (v ir tu a l(ra tepump)) vs 0 N [=] H N N [=J N
D (v ir tu a l(ra tep ipe)) vs D (v irtu a l(ra tepump)) «) «) (<) K) K) (=) (»
virtua r̂atep^pg) vs v ir tu a lf ra te p ^ p ) > > < (» (=) K)
In te rv a l T T T

T ab le  3.4: Summary of states for pump-cycle sudden-pump example

influence change analysis to avoid enforcing minimal change on possibly affected derivatives, 

we avoid the need to explicitly consider all such combinations. Only rate relations inferred on I 

by the alternative next states, via temporal constraints, need be considered. The main reason 

even that is required is simply to prune states like S2 which are due to coincidental changes in 

rate relations.

Third, it is im portant to realize that the coincidence of the transition from X to S'2 is not 

that the two virtual rates became equal per se, but that action A  would happen to occur at 

the exact instant that those rates became equal.

Fourth, dynamic changes coinciding with action changes seems particularly worthy of ig­

noring, since action occurrences are presumably never caused by dynamics. In contrast, two 

apparently coinciding dynamic changes might at least conceivably be related in ways th a t the 

particular model does not reflect.

3 .4  C om p arison  to  M in im a lity -B a sed  A p p roach es

In this section, we survey some key work on minimal change and relate it to our use of minimal­

ity. Our ultim ate goal is to offer a  better understanding of the relationship between continuity 

and minimality that our work brings out.

Work on minimal change can be broadly characterized as addressing the problems of belief 

revision and belief update [36]. T hat distinction depends on whether the correct set of beliefs
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is static (e.g. a historical data  base) or dynamic (e.g. an evolving physical system). Naturally, 

our interest is in the later, so we will focus on theories of minimality-based update.

3.4.1 Possible Worlds Versus Possible Models

The use of complete states in QS corresponds most directly to the use of possible models [56] 

in update systems such as IMMORTAL [3], By reasoning with complete state descriptions, these 

approaches avoid the possibility of not tracking over time changes in specific propositions which 

turn  out to be critical later in pruning certain invalid state transitions. However, as a conse­

quence of such conservatism, they are likely to require reasoning over many more alternative 

state descriptions than necessary.

Ginsberg and Smith present an approach in [31], called the possible worlds approach (PWA) 

that does not work directly with logical models, as W inslett’s possible models approach (PMA) 

does, but rather with logical formulas. Thus, PWA minimizes changes in logical formulas (i.e. 

incomplete state descriptions), whereas PMA minimizes changes in logical models (i.e. complete 

state descriptions). Unfortunately, as W inslctt shows in [56], PWA can lead to inferences which 

are unsound with respect to PMA. For example, consider a state description formula

F I :  A  A B  A C

and an update formula

F 2 :  A

for a simple theory consisting of just two formulas:

T l :  A  =» C,

T2 : A  =» D.

Update via PWA would result in

F3 : A  A B  A C ,  

whereas update via PMA would result in

F 4  : A  A B  A C  A £>.

Minimal change via PMA results in D necessarily persisting because D is in every model of FI.

88

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



Performing PWA update by F2 on the closure of formulas F I, T l, and T3 would give 

the correct result for that example, but would introduce new problems for other examples. 

However, specific new problems mentioned by W inslett are due to PWA’s employment of the 

“when in doubt throw it out” approach, which gives a final result which is the intersection of 

every minimal change extension. Our approach, which describes states by their assumption 

closure and explores all minimal extensions (i.e. does not intersect them), seems as correct as 

PMA for W inslett’s examples. In order to see how our partial state approach might fail, we 

now explore the issues that del Val raises in his attem pt to directly manipulate formulas while 

achieving the same semantics as PMA.

3.4.2 PMA Update Using DNF States

In [18] and [17], del Val provides syntactic characterizations of the PMA update operator. His 

results are general, handling formulas in disjunctive normal form (DNF), conjunctive normal 

form (CNF), and negation normal form (NNF). In order to better understand our approach, 

we reformulate some of his results in terms of partial state definitions below.

Let the update problem be to minimally change the propositions of state I  to be consistent 

with state G according to PMA semantics. Recall that wc view each state as a  conjunctive 

set of propositions. To directly interpret del Val’s work, we assume for now th a t states are 

described using all propositions in V,  not just the assumptions defined by V ' . Let DNF(S) for 

state S  denote a DNF formula representation of the union of a CNF formula corresponding to 

the scenario model M  and a CNF formula corresponding to S ’s defining set of propositions. Let 

DNF-STATES(S) be the set of states representing DNF(S), one state per disjunct of DNF(S). 

In our terminology, del Val’s work indicates how one can update DNF-STATES(J) using DNF- 

STATES(G), resulting in a set of states whose completions correspond exactly to the models 

given by PMA.

We can view del Val’s update operation as updating each state  Si in DNF-STATES(Z) 

independently for each Sg in DNF-STATES(G) and then unioning the results into a final set of 

DNF-STATES. For each Si,Sg pair, let the base of the update be S  = Si U Sg — D i f f ( S i ,  S g), 

where D i f f ( a ,b )  = {p 6 a| /p £ 6} defines the difference between two conjunctive sets. Then, 

“patch” S by adding to it all consistent combinations of one proposition being negated from 

each Sk in DNF-STATES(Sg) for which D i f f ( S g,Si)  g  5*. Actually, only the propositions of
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Sk — (Si U S g) are candidates for these negations, since doing otherwise would contradict the 

unpatched S.  The purpose of these negations is simply to ensure that no other resulting DNF- 

STATES will have completions which are set-inclusion closer to Si than  the patched versions 

of S.

For a simple example, consider the following version of our previous example:

I  : A A B  A C,

G : A

for the scenario model M

T1 : A C,

T2:  A => D,

T 3 : A ^ C ,

T4 : X  V Y  V Z.

DNF-STATES(I) yields { / l , /2 , /3 } ,  defined as follows:

11 = { A , B , C , D , X } ,

12 = {A, B,  C, D, Y} ,

13 =  { A , B , C , D , Z } .

Similarly, DNF-STATES(G) yields {G1,G2,G3}, defined as follows:

Gl  = ( A , C , X } ,

G2 = { A , C , Y } ,

G3 = { A , C , Z } .

Updating I by G via our state-based interpretation of del Val’s approach yields a DNF-STATES 

set of three states:

51 =  {A , B , C , D , X },

52 =  {A, B , C , D , Y } ,

53 =  { A , B , C , D , Z } .
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A key thing to note about this example is that each state 5  in any DNF-STATES set has 

the property that every conceivable completion of S  is consistent except for those adding the 

negation of some proposition in S. For example, state SI above has four completions, reflecting 

all combinations of the statuses of Y and Z. Essentially, this approach satisfies each disjunctive 

clause of M  for I  and for G in all consistent ways and operates with each resulting partial state 

(which also corresponds to a partial logical model). Note also that this approach operates, at 

the very least, with the closure of 5 , since every state in DNF-STATE(S) will contain every 

proposition in the closure of S.  In general, the level of state detail articulated by this approach 

is between that of ours and that of QS. This approach indicates one way in which a QR approach 

adhering to PMA update semantics could avoid reasoning with complete states.

In terms of addressing the problem of irrelevant state detail in QR, the utility of such an 

approach is unclear. One the one hand, it provides a formal basis of defining state descriptions 

which are sufficient for guarantying PMA update semantics. Thus, it defines a maximal level 

of detail that might be required. At first glance, defining such a level might seem to be an 

insightful accomplishment, Unfortunately, it appears that for QR. tasks that the states in DNF- 

STATES^) would generally not be much smaller than complete QS states. This hypothesis 

is not based on the fact that DNF-STATES (I) distinguishes on all propositions in V  whereas 

QS states distinguish only on those of V . T hat difference seldom m atters, since states which 

completely commit to statuses of all V  propositions will also commit to the statuses of all 

propositions in V,  due to strong closed world assumptions. The real problem is that significant 

representational savings relative to QS might occur only if there are many large disjunctions in 

M .  For example, the three states Sl,S2,S3 above represent eight complete states, due to the 

size-three disjunct X  V  Y  V  Z.  Unfortunately, large disjunctions are relatively rare in QPT 

models; mainly arising due to closed-world assumptions on large influence sets. Furthermore, 

it is our experience that general Q PT domain models usually relate almost every proposition 

to every other one, under some contexts. Thus, large, isolated disjunctions, analogous to 

X  V  Y  V Z  in the above example, would seem to be very rare indeed.

Perhaps an even more fundamental problem with this approach is that propositions cor­

responding to independent physical subsystems would nevertheless be intermingled in DNF- 

STATES^) and DNF-STATES(G). For instance, if we extend our example to include “T4 : 

V  V  W''  in M  then this approach would consider states containing both X and V, even though
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their constraints do not interact. Although this problem arises in QS as well, our goal-directed 

approach does avoid this problem, at least when the goal Q does not contain propositions from 

multiple subsystems.

3.4.3 Justification-Based Measures

Minimal change, even on state assumption closures, is generally insufficient to reflect the under­

lying QR constraints. Changes which look non-minimal at a partial state level can actually be 

minimal at the complete state level. For instance, this phenomena can arise when rate relations 

are unspecified, as in the initial state for our pump-cycle sudden-pump example. The m ain 

reason that we perform influence change analysis is to avoid the need for explicitly distinguish­

ing states by all possible conjunctive rate relations. T hat allows us to handle special cases like 

the pump-cycle example without requiring complete states. In this section we explore the more 

general issue of whether other special types of cases can arise, at least for Q PT models, th a t 

require explicit reasoning about the underlying justification structure of state propositions.

The need to reason about underlying justification structure to determine how to properly 

persist derived information was explored by Myers and Smith in [42]. They presented three 

simple examples. Example 1 notes that a  state  containing the proposition A necessarily implies 

clause A  V B  as well. Yet, a change to th a t state which causes A  to hold removes the justifi­

cation for persisting A  V B.  Furthermore, example 3 notes that the semantics of the dom ain 

rule

Erapty(Cup) =>■ L iftab le(C up)

does not warrant L if ta b le  (Cup) persisting over a change in which Empty (Cup) is negated. O n 

the other hand, example 2 notes that the semantics of the domain rule

OnTable(Cup) =>■ L iftab le(C up)

may warrant L if  ta b le  (Cup) persisting over a change in which OnT ab le  (Cup) is negated. For 

example, imagine that that domain rule simply reflects knowledge that a cup must have once 

been liftable if it ends up on the table top. Their solution to reflecting these semantics is to  

explicitly note in the domain model that Empty is essential to the persistence of L i f t a b le  

whereas OnTable is inessential. Their result is roughly that a proposition P  persists by default
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from a state  I  to a state G only if P  is true in I  and that, for some justification of P  holding 

in I,  each antecedent is either true in G or is inessential to P.

To consider how their results might apply to QR, we first need examples of both essential 

and inessential relations between state assumptions. Imagine that domain knowledge tells us 

that, when the water level (L) of a container is above a particular height (H), the resulting 

pressure due to gravity guarantes that the flow rate (F) of water flowing out is greater than 

the rate of a constant-flow pump pumping water in. The relation between L > H  and F seems 

essential, since when L drops below H the resulting pressure might well result in F being lower 

than the pum p rate. Consider the water level L again, this time in relation to the mass (M) 

of water in the container. The relation between L > bottom and M  > 0 might also seem very 

essential, since when L > bottom becomes false, M  > 0 necessarily cannot persist.

Now, consider two pumps, one pumping in and one pumping out, connected to a container, 

each pum p having its own constant flow rate. In that case, the direction of the derivative of 

the water level of that container is inessential to the inequality of the virtual rates of those 

two pumps, even though the direction may imply the virtual rates relation in some states. For 

instance, if the derivative is negative when the inward pum p’s source is not dry, then the inward 

pum p’s virtual pump rate is less than the outward pum p’s virtual pump rate. Regardless of 

other future changes in the on/off status of the pumps or that derivative, that relation between 

the virtual rates will persist. The key point here is that the virtual rates are constant, therefore 

they necessarily persist. Their being constant is the reason that their comparison is clearly 

inessential to the direction of the water level’s derivative.

However, a deeper analysis suggests that most relations between state assumptions of QPT 

models will, in fact, be inessential in the Meyers and Smith sense. The underlying reason is 

that QR models are inherently biased toward continuous behavior. Therefore, they generally 

identify (symbolically, though usually not quantitatively) the exact turning point at which the 

negation of one proposition causes the negation of another related proposition.

For example, a reasonable QPT scenario model of their example 3 would involve constraints 

like the following:

(mass(in-cup) <  critical-mass) liftable(cup),

(mass (in-cup) =  0) =>• (mass(in-cup) <  critical-mass),
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(mass(in-cup) =  0) empty(cup),

where l i f t a b l e  (cup) and empty (cup) are views and the other propositions are quantity con­

ditions. Therefore, when the mass of the contents inside the cup is zero (i.e. the cup is empty), 

the cup is inferred to be liftable. When the mass becomes greater than zero, the cup is no 

longer empty, yet the cup is still liftable. Eventually, if the mass becomes great enough, the 

cup becomes unliftable. Even though the model does not commit to a specific value for the 

critical mass for liftability of the cup, QR refers to that concept to properly model changes over 

time.

Similarly, to model our earlier example above, we would typically define a critical height 

H c II a t which the flow rate equals the pump rate. Furthermore, the relation between L  

bottom and M  > 0 need not be viewed as essential because the constraint (L  < bottom) => (M  < 

0) (due to Same-Rel{(L,bottom)(M,0)))  directly indicates the conditions in which the persis­

tence of M  >  0 should be defeated.

In summary, we treat all justification relations between assumptions as inessential because 

QR models are naturally at a sufficient level of detail, due to modelling predominately contin­

uous behavior, to  allow doing so.

3.4.4 Priority-Based Measures of Minimality

From our perspective, it seems fair to say that priority-based measures of minimality essentially 

encode the hierarchy of the justification structure as priority levels. This approximation of 

justification-based minimal change appears to often suffice for examples in the minimal change 

literature. For example, the IMMORTAL work [3] dem onstrated the application of priority- 

based PMA on a couple of small qualitative simulation examples. However, that approach 

is not sufficient for reasoning about discontinuities in derivatives like those that arise in the 

pump-cycle sudden-pump example. In this section, we explore the issue of why we do not need 

to prioritize state  assumptions, even though we do not use a  justification-based measure of 

minimality.

To reflect justification structure, antecedents would be given higher priority than conse­

quences. Changes at lower priority levels are less im portant because they generally do not 

affect as many propositions. Consider complete states I, G l, and G2, where some update of 

I leads to two candidate results, G l and G2. Let i denote the highest priority level for which
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pairs (I,G1) and (I,G2) differ in their minimal change measures of closeness when it is applied 

to exactly those propositions at priority level i. A natural priority-based measure of minimal 

change is to prefer G l over G2 if G l’s level i priority propositions change less from I than G2’s 

(and vis versa). That is the approach taken by prioritized PMA.

3.4 .4 .1  A ssu m p tions P rovid e th e  K ey P rioritization

For Q PT models, the most significant priorization occurs in our selection of what propositions 

to consider as assumptions. Assumptions are trivially at higher priority that non-assumptions, 

since we do not even explicitly consider changes in non-assumptions. In particular, non­

assumptions such as process/view statuses are always inferrable from quantity condition and 

precondition statuses.

To appreciate the way in which our assumption/non-assumption distinction seems to nat­

urally define the only necessary prioritization, consider an variant of W inslett’s living room 

domain. In W inslett’s formulations, the domain contains constraints such as:

on(box, duct) =t- b locked(duct),

blocked(duct) => stuffy(room ).

If on predicates are not prioritized higher than b locked  and s tu f f y  predicates, one can get 

counter-intuitive results. For example, moving the box off of the duct could allow some other 

box to move onto the duct, preserving the status of b lo ck ed (d u c t) in exchange for changing 

the on status of the second box. W ith prioritization, the exchange would not be equal, the duct 

becomes unblocked would be preferred over the second box jum ping to the duct.

In natural Q PT formulations of that domain, continuous quantities would be introduced to 

define this concept of on as a view, leading to constraints such as:

lo c a tio n (d u c t)  =  loca tion (box) => on(box,duct).

Since the quantity condition lo c a tio n (d u c t)  =  lo ca tio n (b o x ) is a state assumption, its 

changes will be minimized, whereas the other propositions (which are simply view statuses) will 

not. Thus, the QPT formulation effectively automatically creates the appropriate prioritization 

for such examples.
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3 .4 .4 .2  W h y  W e D o  N o t  N e e d  to  P r io r it ize  A ssu m p tio n s

The natural question to ask now is whether there might be cases in which some assumptions 

should be prioritized over other assumptions. After all, clearly there are justification structures 

in which assumptions justify other assumptions and priorities are really just an approximate 

way to reflect justification structure. However, we have not been able to imagine, nor come 

across during our Q PT modelling experiences, examples requiring multiple priority levels for 

assumptions. In the end, it seems that the reason prioritization is not required among assump­

tions is the same reason that we can view all relations between assumptions as inessential, as 

discussed at the end of Section 3.4.3.

3 .4 .5  S e t-In c lu s io n  V ersu s C a r d in a lity  M ea su res o f  C lo sen ess

Cardinality is an extremely efficient measure of minimality: simply count the number of propo­

sitions which change status. Unfortunately, it can also be extremely syntax-dependent. For 

example, consider updating a state {A, B ,C , D} by A, with M  containing 4 V S V C  and 

C <3 - D. Cardinality-based minimality would prefer the update result {A, B, C, D}  (2 changes) 

over {A, B ,C ,  D}  (3 changes). In contrast, set-inclusion measures would prefer neither result 

over the other, since neither is a proper subset of the other. Thus, the set-inclusion result is 

not unreasonably biased by the particular encoding used to define the domain.

Forbus1 AAE approach use a cardinality measure based, whereas our approach uses set- 

inclusion. AAE often gets away with the simpler cardinality measure because it does not 

consider a proposition an assumption when its status is inferrable in every state by other 

assumptions. For example, AAE does not consider as an assumption the sign of the derivative 

of a  water level if there is only one process influencing that level. The statuses of the quantity 

conditions and preconditions (which are assumptions) of that process are sufficient to infer the 

Ds value of the water level, so AAE does not bother making it an assumption because it is 

never needed to distinguish a state.

In contrast, we consider all propositions suitable for V' as assumptions. Thus, we require 

set-inclusion measures of minimality because our assumption closures would otherwise lead us 

to the problems mentioned above.
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3.4 .5 .1  W h y  A A E ’s C ardinality M easure Is Insufficient For QR

Essentially, AAE avoids treating as assumptions those propositions which are equivalent to 

propositions which are already considered assumptions. The key point to make is that such 

an approach is insufficient to avoid the general problems with cardinality-based measures. One 

reason is that some assumptions will effectively be equivalent to others only in certain contexts.

For example, the pressure (P) at the bottom  of a container might be zero when the level (L) 

of contained liquids is at the bottom, but only if the gas pressure (Pg) is assumed to be zero. If 

the gas pressure is positive, then the equivalence between P  =  0 and L  =  bottom does not hold. 

Thus, if P  = 0, L = bottom , and Pg — 0 are all quantity conditions, then AAE would consider 

all three to be assumptions. Let proposition C  denote P  =  0 and D  denote L — bottom, and 

proposition X  denote Pg — 0. With X  holding in all states for the example defined in terms 

of A,B,C,D above, these denotations illustrate how AAE’s cardinality measure would lead to 

improper, syntactically-biased results — if the change in A  represented a discontinuous action 

change.

Such contextual constraints on the equivalences of assumptions appear to be rare in the 

relatively simple examples that have been rigorously examined in the QR literature to date. 

Their rareness is probably why such phenomena, and the importance of set-inclusion based 

measures of minimality, was not realized in the earlier AAE work. But for what it is worth, 

our analysis of the proper interplay of causality and minimality seems to put us on much firmer 

ground now.
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C hapter 4

F in d in g  S ta te  P a th s

In this chapter we address the problem of finding paths of partial states sufficient to summarize 

all of the ways that any state compatible with goal state Q could arise from any state  compatible 

with initial state X. Such a set of paths forms the “backbone” of our SUDE representation.

There are many techniques that one could use to search for sequences of s ta te  transitions 

which transform an initial state I  into a goal state Q. Our work has focussed on the use of goal 

regression, analogous to STRIPS-like planning. Our main emphasis is identifying and addressing 

the special issues that arise due to the special nature of regression through Q P constraints. 

Fundamentally, this involves fully appreciating the subtle differences between change due to 

derivatives and change due to actions.

4 .1  S u ita b ility  o f  R eg ress io n  for Q u a lita tive  R e a so n in g

First, we present some brief justification of why regression seems particularly well-suited for 

QR. After all, regression would typically be intractable for the related problem of showing all 

ways that a goal quantitative state could arise. The well-known general problem w ith regression 

is th a t it can explore pasts that cannot actually arise from the initial state. However, we suggest 

th a t qualitative regression should generally lead to less “dead ends” than  qualitative simulation 

in connecting X  with Q. First, for many tasks, Q will be smaller than X. For example, Q for 

diagnosis or control tasks might be specified as a couple of fault/desired propositions, whereas 

X  might be a complete set of observable propositions. Second, qualitative ambiguity appears 

to make excessive forward branching in QS common while at the same time minimizing the
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(defOperator (Open-Valve ?pipe)
Individuals ((?pipe :conditions (Has-Controllable-Valve ?pipe))) 
Conditions ((Interval)

(not (Aligned ?pipe)))
Effects ((Aligned ?pipe)))

F ig u re  4.1: Example action operator

need for regressing on large sets of conditions. For example, many physical processes have few 

conditions (on which to regress) and often one process being active is sufficient for a  particular 

qualitative effect to be achievable.

Even if the backward search space is larger than the forward search space for a  particular 

task, we suggest that the backward search space is more likely to be reusable across many 

future tasks. Compiling a large backward space from key goals is mere likely to be useful over 

many tasks than compiling a large forward space from the particular initial states seen so far. 

The intuition is that for many tasks it may be more typical that there is a small common set 

of goal states than a small common set of initial states. For example, particular components 

may be most likely to fail or certain conditions (such as overflows) might be most im portant to 

control to avoid. Useful applications of QR for knowledge compilation, one of the motivations 

for constructing envisionments, seem more promising if the emphasis is on all ways to achieve 

specific S's  rather than all futures of specific X’s.

4 .2  T y p es  o f  R egress ion  O p erators

4 .2 .1  A c t io n  O p era to rs

We adopt standard STRIPS-like operators for actions by merging add/delete lists into one 

effects list. Figure 4.1 gives an example operator for opening a valve on a pipe.

Recall th a t we insist that actions occur in I n te r v a l  states, for reasons described in Sec­

tion 3.1.3.

In continuity-based modelling, the effects of actions usually directly control the preconditions 

of processes or views. It is rare, and a dangerous modelling practice, to have actions in a 

dynamical world which directly assert quantity conditions. Since there is often a  one-to-one

99

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



(defOperator (Flip-Precondition ?PC)
Individuals ((Controllable ?PC))
Conditions ((Interval)

(not ?PC))
Effects (?PC))

F ig u re  4.2: Simple action operator to flip preconditions

correspondence between P C ’s and actions, we introduce the following simplifying convention. 

Preconditions which are defined as controllable, such as

Controllable(Aligned pipel2),

are interpreted as being controlled by action operators of the form specified in Figure 4.2.

Of course, one could model actions with multiple conditions and effects around single PC 

flips. The existing Q PT modelling mechanisms are sufficient for doing so. Simply define views 

whose conditions are the multiple conditions and whose relations field asserts the C o n tro lla b le  

proposition for a PC and define additional views conditioned on th a t PC whose relations field 

define the multiple direct effects. However, we have not explored specific examples of such ex­

tensions, since our focus has been on reasoning about dynamics — not the problem of regressing 

action operators.

4 .2 .2  D y n a m ic s  O p era to rs

It is natural to distinguish the dynamic operators available to Nature into two broad categories: 

divergence and convergence. Figures 4.3 and 4.4 illustrate the general form of these two types 

of dynamic operators.

Note th a t we use a soft-inequality to represent the effect of each convergence operator. 

Doing so is convenient because then each soft-inequality proposition P  has exactly one generic 

operator that has P  as its effect. Thus, we can talk in terms of the generic operator for 

achieving a given soft-inequality QC proposition. In particular, we can achieve Q l  =  Q2 either 

by explicitly achieving either Q 1 <  Q2 or Q l > Q2. The other one will be implicitly achieved 

because we enforce continuity on all conditions of a dynamic operator. Which one we attem pt
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(defOperator (Divergence ?Q1 ?Q2)
Instance-of ((Quantity-Condition ?Q1 ?Q2))
Conditions ((Instant)

(= ?Q1 ?Q2)
(> (D ?Q1) (D ?Q2)))

Effects ((> ?Q1 ?Q2)))

F ig u re  4.3: Generic divergence operator

(defOperator (Convergence ?Q1 ?Q2)
Instance-Of ((Quantity-Condition ?Q1 ?Q2))
Conditions ((Interval)

(< ?Q1 ?Q2)
(> (D ?Q1) (D ?Q2)))

Effects ((>= ?Q1 ?Q2)))

F ig u re  4.4: Generic convergence operator

to explicitly achieve during regression search will depend on which one is known to be false in 

1 .

The derivative inequality condition of each dynamic operator indicates an assumption that 

the quantity condition is changing in the way required for the desired effect. For the sake of 

regression, we make that assumption as long as we can find a portion of influence structure, 

involving at least one process that could cause that change, which is sufficient for that derivative 

inequality to be consistent. Each such portion results in an alternative instantiation of the 

generic dynamic operator for a given quantity condition. We will discuss our mechanisms for 

performing such instantiation soon.

Compared to action operators, dynamics operators have two additional requirements for the 

effects to hold:

1. the conditions must last “long enough” (for a convergence to occur);

2. the influences supporting the derivative inequality assumption must not be dominated by 

opposing influences.
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In short, an effect of a dynamics operator does not necessarily hold at any time after all the 

conditions hold.

Satisfying requirement 2 depends on the closed-world assumption on influences and the 

specific state it is applied in.

Some dynamics operators satisfy requirement 1 trivially. For example, consider a transition 

from X  > 0 to X  =  0 for a simple spring-block system, where X is the position of the block. X  >  

0 is the sole condition for a  negative influence on X, ultimately due to the spring force. Thus, 

requirement 1 is satisfied until the change to A' =  0 occurs. Unfortunately, such phenomena 

seem quite rare in QR.

In the majority of cases, where neither requirement is satisfied, we simply assume during 

regression that Nature cooperates as needed to allow X to reach Q. Accounting for situations 

in when Nature does not cooperate is the focus of the next chapter.

4 .3  F orm u la tin g  D yn a m ic  O perators

One way in which our work differs from classical planning is that we automatically formulate 

our operators from the constraints of qualitative models. In particular, we refer to influence 

structure to instantiate the generic convergence and divergence operators in all possible minimal 

ways that could consistently support a particular dynamic change. In this section, we explain 

how we do this.

4 .3 .1  S u ffic ien t S u p p o r t  S ta te s  for D e r iv a tiv e  In e q u a lit ie s

We define the sufficient support states for a derivative inequality D(Q  1) <  D(Q2) to be those 

partial states which minimally describe the conditions under which the proposition (P o ss ib ly  

(< (D Ql) (D Q2))) is necessarily true. Figures 4.5 and 4.6 present the rules with which we 

augment Q PT models to support this reasoning. The basic idea behind these rules is that 

a particular derivative inequality can possibly hold as long as there some influence on one of 

those quantities in the necessary direction and it is not overwhelmed by other influences in 

the opposite direction for the same quantity. An influence is overwhelmed when there is an 

opposing influence whose rate is a t least as strong.
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More precisely, these rules will define the smallest alternative sets of influences necessary 

to overcome known competing influences. To support this, we introduce conjunctive rates as 

needed to define new propositions representing conjunctive direct influences, based on multiple 

processes, which together are not overwhelmed by those competing influences. Our generaliza­

tion of direct influences into conjunctive direct influences is why we use the predicates : 1+ and 

: I -  to  represent direct influences in our possible derivative rules.

For example, consider a quantity Q with its only three influences being

(1 + Q ratel),

(1 + Q rate 2 ),

(I- Q rate3)

and a single universal rate constraint

(Rate>= rate3 ratel).

(Overwhelmed (: 1+ Q r a t e l ) )  will hold under the conditions in which ( I -  Q r a te 3 )  holds. 

In contrast, (Overwhelmed ( : I+  Q (+ r a t e l  r a te 2 ) ) )  will be false under those same condi­

tions, due to our enforcing CWA’s on all Rate>= propositions. So, the conditions supporting 

the conjunctive direct influence is the union of the conditions support the individual direct in­

fluences. This is reflected by adding justifications like the following for each conjunctive direct 

influence introduced:

( : 1+ Q ratel) A  ( : 1+ Q rate2) =>• (1+ Q (+ ratel rate2) ).

For example, we have used this approach to determine that the minimal support for a  water 

level rising when there were two pumps into the container and one pump out required both 

pumps, because the pum p out was known to be stronger than either other one individually. We 

have also explored the use of Rate>= constraints to model noil-universal constraints, such as 

a pum p strong weaker than a gravity flow when the water level is below some particular limit 

point. However, we have not thoroughly explored the ramifications of their use. Our primary 

concern was to identify a plausible general view of how we should define sufficient support states 

in terms of influence structure.
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(==> (and (Quantity-Condition ?Q1 ?Q2)
(or (Possibly-Decreasing ?Q1) (Possibly-Increasing ?Q2)))

(Possibly (< (D ?Q1) (D ?Q2))))

(==> (or (PossibleD- ?Q ?rate)
(and (PossibleD- ?Q1 ?rate) (:Q+ ?Q ?Q1))
(and (PossibleD+ ?Q1 ?rate) (:Q- ?Q ?Q1)))

(Possibly-Decreasing ?Q))

(==> (or (PossibleD+ ?Q ?rate)
(and (PossibleD- ?Q1 ?rate) (:Q- ?Q ?Q1))
(and (PossibleD+ ?Q1 ?rate) (:Q+ ?Q ?Q1)))

(Possibly-Increasing ?Q))

(==> (and (: 1+ ?Q ?rate) (not (Overwhelmed (: 1+ ?Q ?rate))))
(PossibleD* ?Q))

(==> (and (:I- ?Q ?rate) (not (Overwhelmed (:I- ?Q ?rate))))
(PossibleD- ?Q))

(==> (and (:1+ ?Q ?rate+) (:I- ?Q ?rate-) (Rate>= ?rate- ?rate+))
(Overwhelmed (:I+ ?Q ?rate+)))

(==> (and (:1+ ?Q ?rate+) (:I- ?Q ?rate-) (Rate>= ?rate+ ?rate-))
(Overwhelmed (:I- ?Q ?rate-)))

(==> (1 + ?Q ?rate) (:1 + ?Q ?rate))

(==> (I- ?Q ?rate) (:I- ?Q ?rate))

F igure 4.5: Possible derivative rules

Recall from Section 2.3.3 that we assume that all rates are non-negative. T hat assumption also
avoids the need to include here support for PossibleD+ (PossibleD-) propositions due to I-
(1+) propositions.
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(==> (or (Qprop+ ?Q1 ?Q2)
(M+ ?Q1 ?Q2)
(and (:Q+ ? Q 1 ?Qi) (:Q+ ?Qi ?Q 2 ))
(and (:Q- ? Q 1 ?Qi) (:Q- ?Qi ?Q 2 )))

(:Q+ ? Q 1 ?Q 2 ))

(==> (or (Qprop- ?Q1 ?Q2)
(M- ?Q1 ?Q2)
(and (:Q- ? Q 1 ?Qi) (:Q+ ?Qi ?Q 2 ))
(and (:Q+ ?Q1 ?Qi) (:Q- ?Qi ?Q2)))

(:Q- ? Q 1 ?Q 2 ))

F ig u re  4.6: Qprop chain rules

We also note that we actually implement the qprop chain rules procedurally rather than 

declaratively, because it is much more efficient to do so. Otherwise, excessively many interme­

diate :Q+ and :q - propositions get introduced that are never useful in providing justification 

structure to the P o ss ib ly  propositions that wc arc interested in. It is for similar reasons that 

we introduce conjunctive direct influences procedurally as well.

4 .3 .2  C o m p u tin g  C o m p le te  S e ts  o f  S u ffic ien t S u p p o r t S ta te s

There is a one-to-one correspondence between sufficient support states and ATMS labels. In 

particular, the complete set of sufficient support states for a P o ss ib ly  proposition is the ATMS 

label of the ATMS node representing it. The ATMS label represents minimal alternative sets 

of QC and PC assumptions that support that particular proposition being true. Each ATMS 

environment (i.e. set of assumptions) corresponds to a sufficient support state. Because we 

explicitly make CWA’s that the model Ad’s influence structure is complete, we can assume that 

the label represents a complete set of sufficient support states.

Unfortunately, the overall complexity of an ATMS can easily be prohibitive for this task. 

A standard ATMS precomputes and maintains the labels of all nodes, not just the ones of 

particular interest, such as our P o ss ib ly  propositions. A key underlying intuition of an  ATMS 

is that doing so may provide amortized savings versus a node by node computation as needed. 

However, we have found this not to be the case for us.
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During the development of this work, we have come to realize that the only labels of explicit 

interest to us are, in fact, those of the P o ss ib ly  propositions. It turns out to be extremely 

efficient to compute the label for each such proposition via straight-forward backdiaining from 

its node through the ATMS justification structure and grounding out at QC and PC assum p­

tions. By computing assumption closures on each environment in the resulting label, we are 

guaranteed that those labels are sound, minimal, and complete.

The reason that backchaining to compute the labels of P o ss ib ly  nodes is particularly ef­

ficient comes from the causal, hierarchical nature of QPT process/view structure. The ju sti­

fication structure of each 1+ or I -  proposition forms a simple acyclic AND /OR graph, whose 

leaves are all QC and PC propositions and whose internal AND nodes represent the status 

propositions of views. The top-level AND represents a process status proposition, whose single 

justification’s antecedents are the quantity conditions, preconditions, and the view propositions 

referenced in the individuals and instance-of fields. The OR nodes represent the fact th a t we 

allow the same view status proposition to be justified more than once, representing alternative 

ways for that view to hold.

Note that the individuals of processes and views generally act like plan filters [7]. No 

attem pts to achieve them will be made during regression, since they are either true or assumed 

false due to CWA’s. The exception is when individuals contain views, but generally we place 

views in the instance-of field.

For efficiency, we cache the resulting labels of all nodes we touch during backchaining. 

We further cache updates to labels that occur during BCP, when we discover that particular 

nodes are true for particular query environments (such as the computation of state assumption 

closures). Essentially what we have done is provide an incremental means of computing ATMS 

labels on an as-needed bias. It essentially starts out acting like a JTMS [19] but over time 

compiles enough label information to begin reaping the benefits of an ATMS. Our experience 

suggests that such hybrid TMS approaches are necessary to avoid the up-front overhead of an 

ATMS, which would otherwise defeat our attem pts to conform the complexity of QR to the 

task as hand, as opposed to the complexity of the specific model.

4 .3 .3  U s in g  S u ffic ien t S u p p o rt S ta te s  to  F o rm u la te  D y n a m ic  O p era to rs

We formulate each dynamic operator as follows.
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1. Let P  be a QC soft-inequality proposition.

2. Let OP represent the generic dynamic operator for P.

3. Let SSS be the set of sufficient support states for the P o ss ib ly  proposition for the deriva­

tive inequality (D) in O P ’s conditions.

4. For each state S’ in SSS do:

(a) Initialize state  S as O P ’s conditions minus D.

(b) Union S’ into S (i.e. replacing D with S’).

(c) Update S to be its state assumption closure.

(d) Apply all forward temporal rules (of Figure 3.1) for S.

(e) Initialize effect state E to be the set (P |N ext(P) e  S}.

(f) Union O P ’s effects (namely P) into E.

(g) U pdate E to be its state assumption closure.

(h) If E is contradictory, then the transition 5  —t E  cannot occur (no m atter how long 

S lasts).

(i) Otherwise, store a new dynamic operator for P, with the conditions being S and the 

effects being E.

We will explain a  specific example of this process below shortly.

Notice tha t we replace D with S’ to provide base Q C /PC  conditions for the instantiated 

operator. We drop D to maximize the opportunities that other SUDE paths will be able to 

pass through states we build upon S during regression. The fact that D must hold at least at 

the end of S in order for it to transition to E can easily be recovered by local reasoning with the 

specific state built upon S and state build upon E. In general, our regression techniques follow 

the principle of only adding state details which are necessary in order to propagate global 

constraints. If D necessarily holds in S, it will be recovered when S’s assumption closure is 

computed.
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4.3 .3 .1  P run ing O perators D ue To D iscontinuities

It is im portant to realize th a t effect state E becomes contradictory if sufficient support state S’ 

would have to change discontinuously to allow P  to occur in the next state of S’.

For example, consider the goal of emptying a container of liquid. W ith L  representing the 

liquid level in the container, that, goal is specified as L = bottom. One sufficient support state for 

possibly decreasing L is based on an overflow process, whose key quantity condition is L > top. 

However, trying to empty a  container by overflowing it is futile. 1 Forward continuity on 

L > top insists that L > top holds in E. Since top > bottom universally holds for containers, the 

closure of E will contain L > bottom. Yet, that is inconsistent with P insisting th a t L  =  bottom 

is in E. Thus, E is inconsistent and the operator is not produced, indicating that overflow is 

not a valid process for achieving L — bottom.

4.3 .3 .2  R efin ing O perators D ue to  C ontinuity

Sometimes continuity constraints also indicate additional conditions for the operator. Having 

preidentified such conditions during formulation is particularly valuable when it comes time to 

order candidate operators during regression.

Consider the example of two containers of water (CAN1 and CAN2) connected by a horizontal 

pipe connecting their bottoms. Let us consider a change toward overflowing CAN1, represented 

by

P  = l e v e l i  >  to p j.

The sole sufficient support state for l e v e l i  rising is based on a water flow process from CAN2 

to CAN1. Continuity constraints further tell us that le v e ls  >  to p j is required in order for this 

flow process to last long enough to achieve P. Below we present a successive formulation of the 

dynamic operator which reflects these constraints. When presenting the results of closures and 

continuity, we only show enough to justify the resulting operator, since there are many other 

equivalent assumptions whose presentation would merely be distracting.

'Of course, one can imagine special cases, such as overflowing allowing enough liquid to be lost that some 
limited pump process, that might otherwise fail, finishes the job. However, explicit qualitative conditions spec­
ifying exactly when overflowing before pumping is required seem difficult to formulate. In any case, when such 
conditions are not present, there seems to be no point in bothering to consider both happening in the same 
behavior path.
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c onditions:
(Interval)
(< (height (liquid-in CAN1)) (height (top CAN1)))
(> (D (height (liquid-in CAN1))) (D (height (top CAN1)))) 

e f f e c t s :
(>= (height (liquid-in CAN1)) (height (top CAN1)))

F ig u re  4.7: Stage 1: Instantiating the generic convergence operator for P

c onditions:
(Interval)

* (< (pressure (bottom CAN1) :ABSOLUTE) (pressure (bottom CAN2) :ABSOLUTE))
(< (height (liquid-in CAN1)) (height (top CAN1)))

* (> (height (liquid-in CAN2)) (height (bottom CAN2)))
* (> (mass (C-S WATER LIQUID CAN1)) 0)
* (> (mass (C-S WATER LIQUID CAN2)) 0)
effects:

(>= (height (liquid-in CAN1)) (height (top CAN1)))

F ig u re  4.8: Stage 2: Inserting sufficient support state (before closure)

We use *’s to denote additions from the previous stage.
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conditions:
(Interval)
(< (pressure (bottom CAN1) :ABSOLUTE) (pressure (bottom CAN2) :ABSOLUTE))

* (< (height (liquid-in CAN1)) (height (liquid-in CAN2)))
(< (height (liquid-in CAN1)) (height (top CAN1)))
(> (height (liquid-in CAN2)) (height (bottom CAN2)))
(> (mass (C-S WATER LIQUID CAN1)) 0)
(> (mass (C-S WATER LIQUID CAN2)) 0)

e f f e c t s :
(= (height (liquid-in CAN1)) (height (top CAN1)))

* (<= (height (liquid-in CAN1)) (height (liquid-in CAN2)))

F ig u re  4.9: Stage 3: After conditions closure and forward tem poral constraints

Note that there is a condition that the water mass of CAN1 must be positive, which might 

at first glance appear unnecessary. T hat condition in the sufficient support state comes from 

the domain constraint that a qprop relation between mass and level only holds when mass is 

positive. Mass is what is directly influenced by the flow process, so tha t qprop is what conveys 

the sufficient support state of increasing mass' to increasing level. If the domain stated that the 

qprop relation held when mass was zero, that would incorrectly imply th a t decreasing zero mass 

would negatively influence level. The bottom  line is that such tedious attention to detail that 

Q PT requires due to its continuity-based nature will be reflected in the dynamic operators.

Note that stage 3 infers the weak effect l e v e l 2 >  level].. The stronger le v e ls  >  le v e l ]  

is not warranted by local continuity constraints, even though a local minimal change approach 

would make th a t strong inference. In fact, l e v e l 2 =  le v e l]  is a valid result of this operator. 

For example, if there is another container (CAN3) flowing into CAN2 and l e v e l 2 =  to p ], then 

l e v e l 2 might remain steady while, in effect, CAN3 flows into CAN1. Such a special case requires 

that the flow rates from CAN1 to CAN2 and from CAN3 to CAN2 are identical. The point is that we 

avoid inferences due to minimal change during the formulation of dynamic operators to avoid 

the unsoundness that could result, as the above example illustrates.

The key to making the new inference in the conditions of Stage 4 is to realize that if 

l e v e l 2 <  to p 1 was added instead, then transitioning to the effects closure would be impossible. 

We perform this reasoning by checking, for each proposition p in the effects closure, whether 

adding p to the conditions of the operator would make the operator inconsistent.

110

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



conditions:
(Interval)
(< (pressure (bottom CAN1) :ABS0LUTE) (pressure (bottom CAN2) :ABSOLUTE)) 
(< (height (liquid-in CAN1)) (height (liquid-in CAN2)))
(< (height (liquid-in CAN1)) (height (top CAN1)))

* (>= (height (liquid-in CAN2)) (height (top CAN1)))
(> (height (liquid-in CAN2)) (height (bottom CAN2)))
(> (mass (C-S WATER LIQUID CAN1)) 0)
(> (mass (C-S WATER LIQUID CAN2)) 0)

ef fects:
(>= (height (liquid-in CAN1)) (height (top CAN1)))
(<= (height (liquid-in CAN1)) (height (liquid-in CAN2)))

* (>= (height (liquid-in CAN2)) (height (top CAN1)))

F ig u re  4.10: Stage 4: After effects closure and new change checks

T h e  reason that a condition of level 2 <  topt would conflict with the effects is f u n d a m e n ­

tally that it would require both leveli and level 2 to converge to topi at the same time. Since 

level 2 begins higher than leveli, there is no wa y  for that to be the next change involving 

these particular conditions. Either level 2 converging to topt or leveli converging to level 2  

would occur first. In either case, those changes would violate the conditions of the operator 

before the effects are achieved.

conditions:
(Interval)
(< (height (liquid-in CAN1)) (height (liquid-in CAN2)))
(< (height (liquid-in CAN1)) (height (top CAN1)))
(>= (height (liquid-in CAN2)) (height (top CAN1)))
(> (mass (C-S WATER LIQUID CAN1)) 0)
(> (mass (C-S WATER LIQUID CAN2)) 0)

e f fects:
(>= (height (liquid-in CAN1)) (height (top CAN1)))

F ig u re  4.11: Stage 5: Final operator for P (minimized conditions/effects)
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Finally, after stage 5, we obtain the final dynamic operator. For presentation purposes, we 

have removed all propositions for which closures or forward temporal rules would immediately 

recover. However, the pre-minimized conditions and effects are retained, since they provide 

seeds for later closures upon these conditions and effects sets during regression.

Note that this particular operator assumes that le v e ls  is above or at top^ already. It is 

certainly conceivable, however, that the flow process underlying this operator could be moving 

l e v e l i  toward to p i even while le v e l 2 < to p i holds. If there was some other process (like a 

flow from a CAN3) which was simultaneously rising le v e l 2 , then certainly the l e v e l 2 >  top-^ 

condition is not required when the actual flow from CAN2 to CAN1 begins. All our opera­

tor specification is saying is that the portion of behavior space which is sufficient to achieve 

le v e l i  =  to p i can be captured by focusing on behavior once l e v e l 2 > t° P i  occurs.

4 .3 .4  U s in g  D y n a m ic  O p era to rs  to  A sse ss  Q P  M o d e ls

We have found the exercise of formulating all dynamic operators for all quantity conditions 

to be a useful modelling tool as well. Dynamic operators indicate interesting local chunks of 

causality. Many types of bugs in a qualitative model can be deduced from the absence of 

expected dynamic operators or the identification of counter-intuitive ones. We suggest that 

such analyses might offer much higher insight-to-cost ratios than those based on examining 

QS-generat.ed envisionments.

4 .4  G oa l-B ased  R egression

Armed with a set of action and dynamics operators, we regress from Q to X in a manner similar 

in style to state-based planners. In this section wc outline the control strategy we use. In 

the next section we discuss a  variety of special issues that arise due to the differences between 

dynamics-based QR and action-based planning.

Calling FIND-PATHS with arguments I  and Q results in a forest of trees, each tree having as 

its root a refinement of Q and its leaves being refinements of X. Call this forest SUDEbase(F, G)- 

Generally, the leaves will be larger than the roots, since regression picks up additional conditions 

but we do not forward project such conditions unless they necessarily persist.
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Procedure FIND-PATHS (I,G)

1. L e t  g l o b a l  p r i o r i t y  q ueue  PQ c o n t a in  s i n g l e  e n t r y  I ,G .
2 . U n t i l  PQ i s  em pty  do :
3 . L e t  i , g  = D equeue(P Q ).
4 .  REGRESS( i , g )  .

F ig u re  4.12: Procedure FIND-PATHS

P ro c e d u r e  REGRESS ( I , G ) :

1. L e t  FLIPS = Falses(I,G).
2. I f  FLIPS + 0

th e n
3. Let D  = 0.
4. For each F G FLIPS do: Let D = REGRESS-TO-FLIP(I,G,F,D).
5. HANDLE-DISCONTINUOUS-OPS(I ,G ,D ,F L I P S ) . 

else
6 . S = UNION-STATES(I.G).
7. if S is consistent
8 . then
9. Add S to Refinements ( I ) and to Refinements (G) .

10. Record ''transition’’ from S to  G, say due to "I-G-collapse".
11. else REGRESS-TO-FLIP-DURATION(I,G).

F ig u re  4.13: Procedure REGRESS

Summary: For each PC  and QC proposition in G which is false in I, explore all regressions for 
achieving it (i.e. “flip” it). If there are no differences and the union of I and G is consistent, 
paths from I  to Q has been found. Otherwise, try flipping the duration proposition of G, in 
case I happens to conflict from G only in duration.
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Procedure REGRESS-TO-FLIP (I,G,F,D):

1. For each OP E  OPS(F) do:
2. Let PREVS = PREVIOUS-STATES-VIA-OP(G,OP).
3. I f  PREVS = 0
4. then. Add OP to D.

else
5. Let global RegressFlag = true.
6 . For each S E PREVS do:
7. Record transition from S to G via OP.
8 . Enqueue (I,S) onto PQ.
9. Return D .

F ig u re  4.14: Procedure REGRESS-TO-FLIP

Summary: Regresses on all applicable operators for flipping proposition F from false to true 
and also returns operators which cannot regress (due to discontinuities between G and O P ’s 
conditions).

Procedure HANDLE-DISCONTINUOUS-OPS (I,G,D,FLIPS):

1. Let NEWS = 0 .
2. For each OP G D do:
3. L e t  S = CONDITIONS(OP).
4. F o r  e a c h  F G FalsestS,G ) d o : I f  F ^  FLIPS th e n  Add F t o  NEWS.
6 .  D = 0 .
7 .  F o r  e a c h  F G NEWS d o : L e t  D = R EG RESS-TO -FLIP(I,G , F , D ) .
8 . I f  D ^  0 th e n  HANDLE-DISCONTINUOUS-OPS(I,G,D,FLIPS U NEWS).

F ig u re  4.15: Procedure HANDLE-DISCONTINUOUS-OPS 

Summary: Provides a simple way for handling conflicting conjunctive goals.
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•  UNI0N-STATES(S1 ,S 2 ) un ions th e  as su m p tio n  closures of S i an d  S2 an d  re tu rn s  th e  as­
su m p tio n  closure of th e  union.

•  OPS(P) re tu rn s  all o p e ra to rs  app licab le  to  p ro p o sitio n  P.

•  PREVIOUS-STATES-VIA-OP(G,OP) app lies ou r m in im al change a lg o rith m  (see Sec­
tio n  3.3.1.3) to  G un ioned  w ith  th e  effects of OP. T h e  u p d a te  is th e  co n d itio n s of o p ­
e ra to r  OP. R ecall th a t  th e  effects o f O P  inc lude th e  forw ard te m p o ra l c o n s tra in ts  from  
its  cond itions. T h u s, PREVIOUS-STATES-VIA-OP re tu rn s  0 w hen  G w ould req u ire  one of 
O P ’s cond itions to  change discontinuously.

F ig u re  4.16: Summary of functions referenced by calls to FIND-PATHS

4 .4 .1  C on ju n ctive  Subgoal C onflicts S eem  R are

HANDLE-DISCONTINUOUS-OPS provides a simple way to handle cases of Sussman’s Anomaly, 

where one must move away from some subgoal proposition g 6 G which is consistent w ith I, in 

order to solve some other subgoal proposition /  € G which is false in I. These cases arise when 

there is some operator for achieving /  whose conditions include g.

Figure 4.17 shows an example that arose in our work. T hat dynamic operator requires 

a discontinuous change in lo c a t io n ’s relation to r ig h .t-e n d (s to v e ) . This is detected by a 

conflict between G and the effects of the operator for that inequality.

Note that an approach based purely on minimal change would, incorrectly, assume th a t it. 

could achieve the base effect of this operator. It would not realize there are other effects, due to 

continuity holding on the other conditions of this operator. Thus, it would simply update G as 

needed to be consistent with its conditions. T hat would cause lo c a t io n  < r ig h t- e n d ( s to v e )  

to hold in the new resulting subgoal — essentially performing wishful thinking which violates 

causality.

It should be noted that we have found conjunctive subgoal conflicts to be very rare in 

qualitative models. Our experience is that they mainly arise due to spatial conditions conflicting 

with other dynamic conditions, as was the case in the example given above. Few domains that 

have been explored by the QP community have sufficiently complex interaction constraints for 

such conflicts to arise. Furthermore, it has proven difficult to imagine many such interactions
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I: location > right-end(stove) 
mass(gas) = 0

G: location > right-end(stove) 
mass(gas) > 0

O p e r a t o r :
Conditions: location < right-end(stove)

location > left-end(stove) 
mass(water) > 0 
mass(gas) = 0 

Effects: mass(gas) > 0
location <= right-end(stove) 
location >= left-end(stove) 
mass(water) >= 0

F ig u re  4.17: Example of a Discontinuous Dynamics Operator for I and G 

This operator is based on a boiling process which is active when a pot of water is on a stove.

for arbitrary domains. This seems to be part of the reason that our regression techniques tend 

to not lead to many dead ends.

4 .4 .2  T yp es o f  Subgoals

Figure 4.18 partitions the propositions of G into four disjoint sets. To compute these partitions, 

we first compute a set of BaseFacts for G. BaseFacts consists only of PC and QC propositions, 

since those are the only propositions which can have operators in our approach. Furthermore, 

BaseFacts is minimized to not include propositions which are inferable from the others in that 

set. Of course, such minimization can result in alternative sets. For our purposes, finding an 

optimally small set is not critical. In fact, our only reason for computing BaseFacts is to avoid 

redundant regression.

We use a simple three-step greedy heuristic to compute BaseFacts. First, initialize Base­

Facts to the set of base PC and QC propositions in G. 2 Second, remove from BaseFacts all 

propositions which necessarily persist from I (including all universally propositions). Third,

2W e cache th e  in itia l se t o f (base) p ro p o sitio n s  used  to  specify  a  given s ta te  S. T h u s , even  w hen  we u p d a te  S 
to  b e  its  a s su m p tio n  c losure, we have access to  t h a t  b ase  su b se t, for seed ing  th e  c o m p u ta tio n  o f BaseFacts.
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Falses(I , G) = { ip  £ BaseFacts(G) | p £ 1}

Trues (I, G) = { ip  £ BaseFacts{G) \ p £ 1}

Unknowns(I,G) = { ip  £ BaseFact.s{G) \ p 0  I  A p  0  /} 
NonBaseFacts(G) = { i f £ G \ f g  BaseFacts(G)}

F ig u re  4.18: Four Types of Subgoals

remove from BaseFacts each proposition known to be universally dependent on others still in 

that set.

One could try  further removals, computing a new closure set after each so th a t it can be 

returned if the closure does not infer it. However, we found the complexity of such reasoning, 

even if done once per proposition, unnecessary. Our three-step approach tends to be sufficient 

to find optimal BaseFacts. This seems to due, in part, to the heavy bias in QR on binary 

constraints that we noted in Chapter 2. Besides, we can safely restrict regression to those 

propositions in BaseFacts only if we can ensure that achieving each of those propositions will 

necessarily result in the full closure of G being achieved. In any case, we are willing to accept the 

small possibility of slightly redundant regression search time in exchange for fast computation 

of BaseFacts (which must be done for every regression state).

4 .5  S p ec ia l Issu es

Having presented the basic ideas of our regression algorithm, we now turn  to discusing several 

special issues that we have identified.

4.5 .1  In com p lete  In itia l S ta te

We typically compute all of SUDEbase(T, G) while only subgoaling on propositions in falses. 

We only subgoal on trues in those rarer cases where HANDLE-DISCONTINUOUS-OPS realizes that 

doing so is necessary to handle goal conflicts. However, it is im portant to realize that we never 

subgoal on propositions in unknowns during the development of SUDEbaseC^i Q). This reflects 

an assum ption th a t it is sufficient to know how Q can arise from the states on the outer fringe 

of T s  corresponding phase space region. The main consequence of this assumption is that
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SUDEt,ase ( I ,  Q) does not a r ticu la te  th e  space of behav io r within p a rtia l s ta te  I ,  w hereas A E (I )  

does.

Subgoaling on propositions in unknowns is particularly im portant when one wants to identify 

the states within 1's phase space region from which Q would never arise. We explore this issue 

in the next chapter.

4 .5 .2  T h e N eed  For S im u ltaneous D yn am ic O perators

Enforcing continuity constraints between the conditions and effects of operators can lead to 

subtle results that do not arise in planning with discrete operators. In particular, we discovered 

that there are cases in which we must regress on multiple dynamic operators conjunctively, to 

account for simultaneous processes which necessarily depend on each other to cause a desired 

change.

C onsider o u r earlier exam ple of two con tainers (CAN1 an d  CAN2) connected  a t  th e ir  b o tto m s  

by a  h o rizon ta l pipe. Now, ad d  a  th ird  con tainer (CAN3), w hose b o tto m  is lower th a n  th e  o th e r 

two, an d  connect a  ho rizontal p ipe  from  th e  b o tto m  of CAN2 to  th e  side of CAN3. C onsider only 

w ate r in  th e  containers. In  o rd er to  achieve a  goal o f g e ttin g  CAN1 em pty, i t  is necessary  for 

CAN2 to  em p ty  in to  CAN3 w hile CAN1 em pties in to  CAN2. T hus, a  flow process from  CAN1 to  CAN2 

a n d  a  flow p rocess from  CAN2 to  CAN3 are  b o th  requ ired  to  occur sim ultaneously .

F igu re  4.19 ou tlines th e  flow of o u r a lgo rithm  on th is  exam ple. W e only  p resen t enough 

de ta ils  of each  s ta te  to  illu s tra te  how con tinu ity  an d  closures a re  used  to  infer th e  need  to 

regress on  a  con junction  o f dynam ic opera to rs .

The key enhancement required to the algorithm we presented earlier is the realization that 

one should regress on new propositions like L2 < B 1. We assume that L2 <  B l  being newly 

inferable in the closure of G’, after applying forward continuity from SI to G, makes it worth 

regressing on. 3 In general, we assume that we should regress on any new propositions which 

are inferable in the closure after applying forward continuity.

3N o te  th a t  we regress on  L2 <  B l  (o f G l )  in s te a d  of L2 =  Bl .  R ecall t h a t  h a rd -in e q u a lity  L2 =  B l  is 
ac tu a lly  en co d ed  as th e  co n ju n c tio n  o f so ft-in eq u a litie s  L2 < Bl  a n d  L2 > Bl .  S ince L2 >  B l  is un iv ersa lly  
tru e , we need  on ly  regress on L2 <  Bl .
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Notice that our approach also realizes that achieving Q requires that CAN3’s water level is 

initially below its side portal height. If le v e ls  was above its side port height, there would be 

no way for CAN2 to empty into CAN3.

Admittedly, the need for conjunctive dynamic operators appears to be a quite rare phe­

nomena. Perhaps it is even unique to non-turbulent flows. In any case, it does appear to be 

an issue which is unique to continuous domains and thus has not arisen from previous work in 

classical planning.

4 .5 .3  A llow ing  In stan t-In stan t Transitions

As discussed in Section 3.1.1, allowing unstable equilibrium is a standard way to account for 

changes in higher-order derivatives. It requires strict alternation of I n s ta n t  and In te r v a l  

states. However, it turns out that allowing successive In s ta n t  states leads to a more natural 

regression algorithm.

For example, consider our previous three container example. Assume that Q specifies that 

CAN1 contains water and X  specifies that CAN1 and CAN2 arc empty but le v e ls  is above CAN3’s 

side portal. The natural solution is that CAN3 instantly starts flowing into CAN2 and then CAN2 

instantly starts flowing into CAN1. Our regression algorithm finds this solution because it uses 

forward temporal rule f7 instead of rule F7.

4 .5 .4  A void ing  Forced C lobberings

Assume that regression is currently considering the transition

S  -» G

to achieve currently subgoal G. Before regressing on S, it might be useful to consider what 

further conditions on S might prevent that transition from occurring For the most part, we do 

not reason during regression about how a  transition may or may not occur, since we advocate 

doing that in a later qualification sweep over SUDEbase(T, G). However, toward ensuring that 

SUDEbase(T, Q) is sound and to avoid garden-path regression, we have found it useful to allow 

one exception. In particular, we refine S as needed to ensure that the transition is possible.

For example, consider an example from our kitchen-world domain. Our goal is for our 

container to have steam but no water, given an initial state in which the container is empty. In
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Initial problem definition: 
I: LI > Bl
G: LI = Bl

11Vr<in regressing on G for dynamic operator for flow from CAN1 to CAN2:
SI: LI > Bl

LI > L2 ;; due to process conditions for flow
G: LI = Bl

G1 <— closure of applying forward continuity from SI to G:
SI: LI > Bl, LI > L2
Gl: LI = Bl

LI >= L2 ;; via forward continuity from SI
L2 <= Bl ;; via transitivity on B1=L1 and L1>=L2
L2 <= B2 ;; via transitivity on L2<=B1 and universal B1=B2
L2 = B2 ;; via L2<=B2 and universal L2>=B2

S2 <— regressing upon SI for L2=B2, via op for flow from CAN2 to CAN3:
S2: LI > Bl, LI > L2, L2 > L3
Gl: LI = Bl, LI >= L2, L2 <= Bl, L2 = B2

G2 <— closure of applying forward continuity from S2 to G ’:
S2: LI > Bl, LI > L2, L2 > L3
G2: LI = Bl, LI >= L2, L2<= Bl, L2 = B2

L2 >= L3 ; ; via forward continuity from S2
L3 <= B2 ; ; via transitivity on B2=L2 and L2>=L3
L3 <= SIDE3 ; ; via transitivity on L3<=B2 and universal B2=SIDE3

S3 <-- try to regress on L3 <= SIDE3, realize that has no dynamic operators:
S3: LI > Bl, LI > L2, L2 > L3

L3 <= SIDE3 ; ;  back persist from G2 since otherwise G2 is impossible
L3 < SIDE3 ; ;  since L3=SIDE3 would not allow transition to G2

G2: LI = Bl, LI >= L2, L2 = B2
L2 >= L3, L3 <= B 2 , L3 <= SIDE3

Detect no more regression from G2 possible, ready to regress from S3.
Detect that S3 is compatible with I, so stop regression.

Result: S3 is refinement of I which must hold for G to be a next of I.

F ig u re  4.19: Handling the multiple emptying containers example

For presentation simplicity we use the following abbreviations for container i. SIDE3 refers to 
the height of the side portal in CAN3, Li refers to l e v e l i ,  and Bi refers to bottom i.
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our kitchen there is a faucet between our goal destination (counter3) and a stove. A reasonable 

plan is to move to the faucet, turn on the faucet, move to the stove, tu rn  on the stove, wait 

until all water is boiled into steam, and finally move back to counter3. Unfortunately, if wc 

forget to tu rn  off the faucet, we will necessarily add water back to the container when we pass 

under it on the return trip. Thus, it is im portant to realize that we must tu rn  off the faucet 

before we pass under it on the return  trip.

We handle such cases by ensuring that we augment S in all minimal ways to be inconsistent 

w ith some conditions of all dynamic operators whose necessary effects include the negation 

of some proposition in G. The operator representing flow from the faucet causing a positive 

liquid level in the container is such an operator, since we model no negative influences on the 

container’s water mass when it is under the faucet. That operator is conditioned on:

1. the faucet being on,

2. the container being under the faucet, and

3. the level of liquid in the container being empty.

We cannot negate condition 3, since that would clobber a condition we are trying to regress. 

Similarly, we cannot negate condition 2, since that would be discontinuous with the goal of 

moving to the limit point between the faucet region and the counter3 region. So, for this 

example, we merely include in S th a t the faucet must be off.

Even for cases where more than one condition is added to S, we believe that it is generally 

desirable to explicitly regress such alternative necessary conditions. However, if G is ultimately 

unachievable, introducing these alternative ways to regress will multiple the cost in undesirable 

regression search. Clearly, better control strategies will be required to address this issue.

It is im portant to acknowledge th a t clobberings due to necessary effects are rather special. 

Ultimately, they are based on the simple notion that a quantity being at a limit point will be 

clobbered if there is an unopposed influence on it. This approach does not address the related 

notion th a t turning off the faucet would maximize the chance of achieving a goal of keeping the 

final water level below some limit point.
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C hapter 5

Q ualify ing  S ta te  P a th s

The SUDEbase(2\ 0)  trees resulting from the regression m ethod of the previous chapter do not 

present a full discriminatory-based account of the possible behavior of the system. The paths in 

SUDEfcase(21, Q) identify sufficient conditions for Q to possibly arise fromX, if Nature cooperates. 

In particular, SUDEbase(Z, G) does not account for:

• refinements of I  which would make Q impossible.

• refinements of I  which would make Q inevitable.

® for each state  S in SUDEbaSe(Z, f/), what happens if S transitions to a next state incom­

patible with the nexts recorded in SUDEbase (^ ,5)- We refer to such behavior as “falling

off” the regression paths.

In this chapter, we present techniques for addressing these shortcomings in SUDEbaset^f?), 

resulting in a  complete SUDE, which we will refer to as SUDE(Z, Q). We refer to the transfor­

mation of SU DEbase(Z , Q) into SUDE(X, Q) as qualifying SUDEbaSe(Z> Q)-

We believe tha t our two-stage approach to developing SUDE’s — sketching possibilities 

with regression and then qualifying those possibilities — is well-suited for many tasks. For 

example, consider the task of controlling to avoid negative conditions. It seems reasonable to 

first be aware of how those negative conditions might arise due to dynamics, before expending 

significant effort to understand exactly what conditions will decide whether they really happen. 

For instance, if we identify that one way the negative conditions might occur would involve a
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slow process (such as evaporation), we may wish to forego deeper analysis of that portion of 

the possible behavior space.

Although somewhat similar in spirit to hierarchical planning, our approach actually seems 

more like the opposite: we always consider all conditions of an operator, but successively 

consider more details about its alternative (qualitatively ambiguous) effects.

5.1 Im p o ss ib ility

Let us first consider the problem of finding all minimal refinements of X  from which Q is 

impossible. If SUDEbase(Z, Q) contains no paths, and yet X  and Q are incompatible, then Q is 

(trivially) impossible from X.  Otherwise, impossibility basically arises when some unknowns 

of X  are actually false (in a complete version of X) and together their falsity prevents the 

achievability of the conditions of some operator m each path  from X  to Q in SUDEbase(Z, Q)-

Recall that our regression assumes that unknowns are true as needed. For determining 

impossibilities, we essentially reverse that assumption, assuming unknowns are false whenever 

that conflicts with conditions of operators that would otherwise be applicable. The idea is to 

see how bad the initial conditions have to be before a cooperative Nature is no longer enough 

to make Q possible.

For instance, consider three containers of water, where CAN1 and CAN2 are connected by a 

valved horizontal pipe, as are CAN2 and CAN3. Figure 5.1 notes the results of our technique 

for X  being that CAN3 is not overflowing and Q being that it is. Figure 5.2 depicts those 

results graphically. Figure 5.3 notes the results for X  being that CAN2 is not overflowing and 

Q being that it is. Note that these refinements of X  which lead to impossibility are minimal. 

For example, none of these refinements refer to valves being open, since those conditions are 

not necessary for impossibility to arise. Further note that the second example is slightly more 

complex than the first. This is because in the both flows (into CAN2) must always be defeated 

for the second example, whereas sometimes only one flow (into CAN3) need be defeated for the 

first example.

Consider an arbitrary transition Si  —> Sj  in SUDEbase(T, G), where S c C S, represents the 

conditions of the operator which causes that transition. We alternatively consider refining X  

by the negation of each unknown which is true in Sc, and then perform regression with X  being
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I: L3 <= T3

G: L3 > T3

Minimal refinements of I from which G is impossible:

II: closed23

12: closed.12 and L2 <= T3

13: LI <= T3 and L2 <= T3

F ig u re  5.1: Impossibles for the Overflow-Can3 example

For presentation simplicity we use the following abbreviations for container i. Li refers to the 
water level in container i (i.e. le v e l i) .  Ti refers to the height of the top of container i (i.e. 
to p i) . Furthermore, openl2 refers to the valve on the pipe between CAN1 and CAN2 being open 
(i.e. allowing flow), whereas closed23 refers to the valve on the pipe between CAN2 and CAN3 
being closed.

Icvel2 <=  top3 level 1 <= top3 !evel2 < =  top3

JJiU-J LWJJ LUili
? closed closed p p

I I  1 2  1 3

Ievel3 >  top3
lcve!3 <=  top3

C A N l  ̂ CAN 2 -j CAN3 CAN1 ^  CAN 2 9  CAN3

I  G

F ig u re  5.2: Graphical depiction of the Overflow-Can3 example
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I: L2 <= T2

G: L2 > T2

Minimal refinements of I from which G is impossible:

I I : closed.12 and closed23

1 2 : closedl2 and L3 <= T2

13: LI <= T2 and closed23

14: LI <= T2 and L3 <= T2

F ig u re  5.3: Impossibles for the Overflow-Can2 example

the newly refined version and G being Sj .  However, for these regressions, we continue the bias 

in assuming unknowns are false, when the]/ conflict with operator conditions. When a refined 

version ( I ’) of X  is sufficient to prevent the achievement of Sj  (i.e. no applicable operators), we 

cache I ’ in S j ’s IMPOSSIBILES set. In the end, the IMPOSSIBLES set for state Q itself tells 

us which refinements of X  cause Q to be impossible.

Armed with the above sketch of our approach, we are now ready to  examine some of the 

im portant details that arise in getting it right.

5 .1 .1  E x te n d in g  R E G R E S S  t o  C o m p u te  S eed  I m p o s s ib ility  S e ts

To support the computation of IMPOSSIBLES sets, wc add a call to the new procedure 

HANDLE-UNKNOWNS( I ,G )  as the new first line of the procedure REGRESS that was presented 

in the previous chapter. However, this does not add significant overhead during the computa­

tion of SUDEbase {X, G). As suggested below, the cost of HANDLE-UNKNOWNS involves processing 

th a t is local to the given states, mainly to decide what refinements to unknowns should be con­

sidered. Lowest priority is given to entries to FIND-PATHS’s priority queue (PQ) (used to invoke 

REGRESS) which are made during the execution of HANDLE-UNKNOWNS. T hat ensures that the 

com putation of SUDEbase(^, G) completes before incurring the costs of regressions for updating

IMPOSSIBLES sets.
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Procedure HANDLE-UNKNOWNS(I,G)

1. Let U = UNKNOWNS-TO-NEG-FOR-I(I,G).
2. For each F 6  U do:
3. REF = UNION-STATES(I.F).
4. Let global RegressFlag = false.
5. Let D = REGRESS-TO-FLIP(REF,G,F,0).
6 . HANDLE-DISCONTINUOUS-OPS(I ,G ,D ,F ) .
7. When RegressFlag = false do:
8 . Add REF to IMPOSSIBLES(G).
9. Add G to HAS-SEED-IMPOSSIBLES.

Figure 5.4: Procedure HANDLE-UNKNOWNS

HANDLE-UNKNOWNS first decides which unknown propositions are worthy of considering as 

refinements of I. For each of them, it refines I by it and checks if there are any applicable opera­

tors. If not, then that refinement is a candidate for G’s IMPOSSIBLES set. Otherwise, the calls 

of lines 5 and 6 queue-up regressions to perform later. It will be during those regressions that 

further refinements of I, by the remaining unknowns, will be considered (in HANDLE-UNKNOWNS).

N o te  th a t  a lth o u g h  R E F  is used for th e  call to  REGRESS-TO-FLIP, on ly  I is u sed  for th e  call to  

HANDLE-DISCONTINUOUS-OPS. T h is  d is tin c tio n  is c ritica lly  im p o rta n t to  th e  overall com plex ity  of 

c o m p u tin g  im possib ility  sets. In  fact, before we m ad e  th is  im p o rta n t rea liza tion , o u r a t te m p ts  to  

c o m p u te  im possib ility  se ts  lead  to  enorm ous search  spaces for very sim ple p rob lem s. T h e  reason  

is t h a t  th e  version  of I  given to  th o se  two functions w ill b e  th e  one queued  for la te r  regressions. 

F or every  refinem en t o f I, we will d u p lic a te  m any  o f th e  sam e regression p a th s  b eyond  G , as 

reg ression  m oves tow ards th a t  refinem ent. T h e  on ly  differences will involve reg ressions ach ieving 

th e  co n d itio n s o f o p era to rs  achieving th e  tru e  versions o f th e  falsied unknow ns.

In short, we would rather queue on PQ simply {G}, rather than some { /', G}, since most 

of the regression work for G will be identical regardless of which I’ is used. Unfortunately, we 

must be aware of version of I for which we are performing these regressions, otherwise we will 

not know what versions ultimately make Q impossible. Nevertheless, the key point is that the 

call to HANDLE-DISCONTINUOUS-OPS does not need this information. The reason is that its sole 

purpose is to ensure that we regress on any remaining unknowns (other than F) which would 

have to be achieved in G before F is. Recall that the reason we call the operators of set D
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Procedure UNKNOWNS-TO-NEG-FOR-I(I,G)

1. If there is a transition from G (via OP) and OP is not a duration flip
2. then Let S = CONDITIONS(OP) else Let S = G.
3. Let REFS = 0.
4. For each U 6  Unknowns ( I, S) do:
5. Add UNI0N-STATES(I,t7) to REFS.
6 . For each U G Unknowns (/, G) do:
7. REF = UNION-STATES(I,(7) .
8 . If REF is proper subset of some state in REFS then Add REF to REFS.
9. Remove all proper supersets from REFS.

10. Let FS = 0.
11. For each U G  Unknowns (/, G) do:
12. If UNI0N-STATES(I ,U) G REFS then Add F to FS.
13. Return F S .

F ig u re  5.5: Procedure UNKNOWNS-TO-NEG-FOR-I

“discontinuous” is that their effects, in addition to containing F, contain the negations of other 

propositions in G.

5 .1 .2  D e te r m in in g  W h ic h  U n k n o w n s to  F a lsify

HANDLE-UNKNOWNS determ ines w hich unknow ns to  falsify in  refinem ents o f  I by calling  

UNKNOWNS-TO-NEG-FOR-1. B y defau lt, UNKNOWNS-TO-NEG-FOR-1 firs t considers on ly  th o se  u n ­

know ns in  th e  cond itions in  th e  regression o p e ra to r  leading to  G. Since Unknowns is defined in 

te rm s  o f th e  BaseFacts of G, th a t  se t is typically  ra th e r  m in im al already.

This default restriction is very im portant for avoiding nonsensical refinements of I. For 

example, consider our domain fact that the top of every container is above the bottom  of the 

special container named OUTSIDE. If G knows that a water level L is at the top of a container, 

it also knowns (via transitivity) that L above the bottom  of OUTSIDE. Refining I by L being 

at or below the bottom  of OUTSIDE would be a major mistake. First, it has no impact on 

the applicability on any operators in our domains, so it cannot make any behavior impossible. 

Second, as we noted above, excessive refining of I would greatly increase our complexities (due 

to duplications of regression subspaces).
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I: level3 < middle3

G: le v e !2  > le v e l3  
le v e l3  = m iddle3
le v e !2  > m iddle3 ; ; ;  in f e r r e d  by t r a n s i t i v i t y  over o th e r  two

I - R E F l : level3 < middle3
level 2 <= level3
level 2 < middle3
level 2 <= middle3

I -REF2: level3 < middle3
leve ! 2 <= middle3

can d id a te  n e g a tio n  to  add to  I
in f e r r e d  by t r a n s i t i v i t y
s o f t  in eq  t r i v i a l l y  t r u e  g iven  h a rd  in eq

can d id a te  n eg a tio n  to  add to  I

F ig u re  5.6: Example of selecting the proper I refinements

We choose I-REF2 over I-REF1 since I-REF2 is a subset of I-R E Fl (i.e. more precise). By 
default, we would have expected le v e l3  > le v e l3  to be the one to negate, since it is a condition 
for the operator underlying G (due to a flow process).

Unfortunately, that default set is not always minimal enough. Figure 5.6 gives a counter 

example. Whereas lines 3 -  5 compute the default set of refinements, lines 6 - 9  update that 

set to  account for such counter examples. Lines 10 -  12 translate the chosen set of refinements 

into a  set of single alternative propositions to refine by.

Note that lines 1 and 2 of UNKNOWNS-TO-NEG-FOR-I makes the simplifying assum ption that 

all states other than refinements of Q have exactly one effect transition recorded for them 

during regression. T hat assumption is not particularly critical to our theory for computing 

impossibilities, but it is interesting to note that we have observed no counter examples.

5.2  F alling  O ff R eg ress io n  P a th s

5 .2 .1  P r o p a g a tin g  Im p o ss ib ility

After PQ has been exhausted for the call FIND -PA TH S(Z ,Q), SUDEbase(Z, G) and seed IM POS­

SIBLES sets will have been computed. However, at this point IMPOSSIBLES(17) will yet not 

contain the minimal refinements of Q. Only those states for which impossibility was first de-
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Procedure GATHER-IMPOSSIBILITY(G)

1. L e t  g l o b a l  TODO = 0.
2 . F o r  e a c h  S £  HAS-SEED-IMPOSSIBLES do :
3 . F o r  e a c h  N £  REGRESS ION-NEXT-STATES (S ) d o : Enqueue N o n to  TODO.
4 . U n t i l  TODO = 0 d o :
5 . L e t S = D equeue(TO D O ).
6 . UPDATE-IMPOSSIBLES(S) .

F ig u re  5.7: Procedure GATHER-IMPOSSIBILITY

tected will have non-empty IMPOSSIBLES sets. Those states are the ones pu t into the set 

HAS-SEED-IMPOSSIBLES by HANDLE-UNKNOWNS

To compute the final IMPOSSIBLES(<7), we must propagate IMPOSSIBILITY sets from 

states in HAS-SEED-IMPOSSIBLES to Q itself. T hat is what a call to

GATHER-IMPOSSIBILITY (Q) does. The result is that IMPOSSIBLES(f/) contains all minimal 

refinements of I  from which Q is impossible.

REGRESSION-NEXT-STATES(S) denotes the set of effect states of S, as recorded during 

regression. As noted earlier, we have never observed these sets to contain more than one state, 

although we allow for the general case here. In any case, we expect that the size of these sets 

will typically be very close to one.

The heart of GATHER-IMPOSSIBILITY is performed by UPDATE-IMPOSSIBLES. It operates 

successively on each proposition P in BaseFacts in S, gathering all states which could achieve P 

on their own. It cross-products the IMPOSSIBLES sets of all such states, effectively ensuring 

that all operators which can achieve P  are impossible in states produced by those cross-products. 

For example, if a container has two possible input flows, both flows must be unable to lead to 

overflowing that container in order for the overflow to be impossible.

PO SSIB LE-I? ( S I , S2) performs checks whether there is actually a path  using the transitions 

recorded during regression for which SI leads to S2. Since we expect REGRESSION-NEXT- 

STATES sets to be size one, linear time forward search from SI to S2 is generally sufficient for 

this check. The reasons that this check is required in our approach is explained in the next 

section.
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Procedure UPDATE-IMPOSSIBLES(S)

1. L e t IMPOSSIBLES = IM POSSIBLES(S).
2 . F o r  e a c h  P i n  BaseFacts(S) d o :
3 . L e t NEWS = 0 .
4 .  F o r  e a c h  T i n  REGRESSION-PREV-TRANS(S) w i th  P e BASE-CHANGES(T) d o :
5 . NEW = IMPOSSIBLES(PREV-STATE(T)) .
6 . U n le s s  NEW = 0 do :
7 . I f  NEWS = 0
8 . e l s e  L e t  NEWS = NEW.
9 . t h e n  L e t NEWS = C ross-p roduct(N E W S ,N E W ).

10. Remove fro m  NEWS any  Si f o r  w h ich  P 0 S S IB L E -I? (S ;, S) = t r u e .
11 . L e t IMPOSSIBLES = IMPOSSIBLES U NEWS.
12 . Remove a l l  p r o p e r  s u p e r s e t s  fro m  IMPOSSIBLES.
13 . When IMPOSSIBLES ^  IMPOSSIBLES(S)
14 . L e t IMPOSSIBLES(S) = IMPOSSIBLES.
15. F o r  e a c h  N €  REGRESSION-NEXT-STATES(S) d o : E nqueue N o n to  TODO.

F ig u re  5.8: Procedure UPDATE-IMPOSSIBLES 

Figure 5.9 explains previously undefined sets which are referenced here.

Line 12 ensures th a t IMPOSSIBLES sets remain minimal. We effectively treat IMPOSSI­

BLES sets like the ATMS labels.

We should point out that the cross-product computations of lines 4-9 could alternatively 

have been effectively been done during regression. Doing so would require refining I in 

HANDLE-UNKNOWNS by multiple propositions at a time, typically representing all alternative 

ways in which one condition from each operator achieving proposition P could be negated. 

However, we prefer the approach we have taken for the following reasons. First, we have been 

arguing th a t it is best to minimize, during the computation of SUDEbase(T, G), any overhead 

for supporting impossibility computations. Second, cross-products during regression which did 

not eventually lead to the identification of actual impossibilities could easily result in massively 

redundant search through regression space (once for each cross-producted refinement of I). In 

our approach, cross-products are performed only once impossibilities are identified.
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REGRESSION-PREV-TRANS(S) denotes the set of transitions recorded during regression 
which end at state S.

BASE-CHANGES(T) denotes the proposition (and its logical equivalents) for which the regres­
sion generated transition T.

PREV-STATE(T) denotes the state at the start of transition T.

F ig u re  5.9: Some definitions used by Procedure UPDATE-IMPOSSIBLES

5 .2 .2  E n su r in g  S o u n d n ess  o f  Im p o ss ib ility  S e ts

We believe that the base IMPOSSIBLES sets provided by procedure HANDLE-UNKNOWNS are 

sound. That is, every state they claim cannot reach a  state in set HAS-SEED-IMPOSSIBLES 

really cannot. This seems to be a reasonable conclusion, since we explore all applicable operators 

at all points and thus find some path between states if there is one. Soundness in impossibility 

sets seems particularly valuable. For example, we would not want to say a dangerous goal state 

cannot happen when it could.

Therefore, it is desirable to retain this soundness property when we propagate impossibility 

to Q using UPDATE-IMPOSSIBLES. We can ensure soundness for each state S by adding a state 

Si to IMPOSSIBLES(S) only if Si is in the IMPOSSIBLES sets of every (previous) state for 

which REGRESSION-NEXT-STATES contains S.

Unfortunately, IMPOSSIBLES sets can be incomplete, particularly if resource limitations 

are imposed on regression for large problems. 1 We designed our approach with such in­

completeness in mind, to allow partial IMPOSSIBILITY sets to be computed even if a large 

regression space has not been exhausted yet.

But the main problem is that the same state can occur at different path lengths from two 

states in HAS-SEED-IMPOSSIBLES. In such cases, propagation can have timing problems, 

where some previous states of a  state might not yet known their fullest impossibility set.

UPDATE-IMPOSSIBLES hand les such cases conservatively. I t  f irs t assum es th a t ,  if  any prev ious 

s ta te  o f S  says som e s ta te  Si can n o t possib ly  reach  it, th e n  all p rev ious s ta te s  of S  will eventually  

say th a t  Si can n o t possib ly  reach th e m  either. T h e  check v ia  POSSIBLY-1? invalida tes th a t

'As stated, our algorithm is also incomplete for the IMPOSSIBLES of eden states (i.e. states with no previous 
states). However, that case is trivially handled by explicitly defining their IMPOSSIBLES sets as {X}.
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assumption if there is actually some path of recorded transitions to S, from some refinement of 

X compatible with S;.

Nevertheless, it is not clear if such conservative measures are actually necessary. Care­

ful propagation, from the states farest from Q first, might be able avoid the timing problems 

mentioned above. However, it is unclear whether some impossibility sets could be more incom­

plete than others, particularly when regression space is not exhausted. If so, our conservative 

approach could help propagate impossibilities that would otherwise be dropped. Given that 

impossibility sets tend to be rather small anyway, avoiding such loses could be quite significant.

Furthermore, the observed and expected efficiency of POSSIBLE-I? checks makes the prac­

tical benefits of a more sophisticated propagation scheme unclear. The overriding cost in our 

approach is the generation of the regression space itself.

5.2.3 The Significance of Impossibility Sets

Reasoning about impossibility seems to more relevant to QR than general planning. In many 

planning problems, the available operators are reversible and plentiful. For example, there are 

relatively few planning problems for which there is no solution. Thus, the emphasis in most 

planning work is finding optimal/good plans, not determining the conditions under which no 

successful plans are possible.

For example, consider the Schopper’s blocks world, which contains a mischievous child who 

likes to knock down our partial towers [48]. In such a world, it is typically just a m atter of time 

before we will succeed in building any tower we want. We do not have to anticipate the child’s 

actions, we just have to be patient and persistent. Only if the child always acted by special 

rules, such as one compelling her to immediately knock down a tower of size N, would we have 

some limits on our goals.

In  contrast, QR domains are full of constraints and many of N ature’s operators are not 

reversible. Therefore, it would appear that our work on identifying impossibility conditions 

might have more utility than planning work might suggest. Even in planning work focusing 

on resource limitations, the emphasis is not on identifying what limitations would be fatal, but 

rather how :o optimize in spite of them.
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C hapter 6

C on clu sion s

We conclude by first summarizing the contributions and limitations of our work and then 

discussing some related and future work.

6.1  S u m m ary  o f  C on trib u tion s

We can summarize our m ajor contributions according to our impact on three key issues:

1 . what partial representations of across-time behavior are adequate for QR?

2. how should goal states be exploited for efficient QR?

3. how should causality-based QR deal with discontinuous change?

To address the first two issues, we have introduced the SUDE (Sufficient Discriminatory En- 

visionment) representation, along with goal-directed techniques for com puting SUDE’s. To 

address the third issue, we have developed a method for integrating theories of minimality- 

based change and continuity-based change that appears to overcome the individual limitations 

of each. In the following sections, we summarize some of the more interesting results of our 

work.

6.1.1 Towards Sufficiency Conditions for QR

Whereas numeric simulation is a gold standard for the soundness and completeness of QR, total- 

state qualitative simulation serves a similar role in defining sufficient complexities for QR. We
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offer our SUDE representation and algorithms as a potential new standard for the complexity 

sufficient to satisfy the actual requirements of QR tasks. SUDE’s represent all alternative 

conditions across time which are sufficient for explaining when initial state X  leading to goal 

state Q is possible, impossible, or inevitable. We have argued that this level of discrimination 

appears to be particularly relevant for many QR tasks.

6.1.2 Turning the Weakness Of QP Constraints Into A Strength

It has become clear that there are strong limitations on the predictive power of QP constraints

[50], Our work provides a way to tu rn  that weakness into a strength, since weaker QP constraints 

lead to smaller, easier to compute, SUDE’s.

6.1.3 Integrating Theories of Minimal and Continuous Change

Our combination of continuity-based and minimality-based change addresses the limitations of 

each. Specifically, we enforce continuity on the conditions of the dynamic operator underlying a 

state  transition, while enforcing minimal change in the other state propositions. We identified 

one key exception: that minimal change cannot be enforced on derivatives of quantities whose 

underlying influence sets change in ways that make all changes plausible. We have argued in 

detail th a t well-known counter-intuitive results of minimality-based change arise from ignorance 

of the causal constraints provided by QR models. Yet, our restricted use of minimal change 

accounts for discontinuities due to sudden actions or modelling simplifications. To facilitate 

this integration, we have argued that our single base change assumption is reasonable, based 

on the notion that true achievability of goal states does not depend on the occurrence of truly 

coincidental changes.

6.1.4 Integrating QR With Planning

STRIPS-like planning operators precompile all of their knowledge about physics into their 

discrete effects. Such approaches are inadequate when the condition sets under which effects 

are unambiguous are either intractably large or even undefinable. Typical QR tasks suffer from 

both of those problems, since qualitative modelling strives both for broad coverage via first 

principles and for graceful degradation of inference under uncertainty.
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By rising SUDE’s, we are able to integrate QR with planning without importing the tra­

ditional complexity of QR, as has been the case in other approaches [26]. To support this, 

we have presented means for automating the formulation of dynamic operators th a t model the 

potentially ambiguous behavior of Nature between actions.

By avoiding precompilation of physics into action operators for the most part, actions them­

selves become mostly simple flips in the status of process preconditions. Thus, in our approach 

goal conflicts in planning are best viewed as discontinuities in the conditions of dynamics op­

erators.

Furthermore, our approach supports the automatic generation of STRIPS action operators 

in those rarer cases where dynamics are unambiguous. Specifically, our impossibility sets for 

a goal consisting of proposition P  correspond to the conditions of operators which necessarily 

immediately achieve P. Similarly, our inevitability sets for goal P  correspond to the conditions 

of operators which necessarily eventually achieve P. In both cases, intermediate dynamics could 

be ignored during planning, as long as no conflicting intermediate actions are introduced.

6 .2  C h allen ges to  th e  Q R  C om m u n ity

Our work presents several challenges to the QR community. We have challenged some assump­

tions underlying existing QR work and have claimed that some relative simple techniques seem 

to adequately satisfy the needs of actual tasks employing QR. Unfortunately, most of these 

claims have elluded both empirical and theoretical proof. However, we would not be terribly 

surprised or disappointed if some exceptions to our claims do exist. It is our hope that our 

claims will facilitate the search for special counter-examples which would illuminate when the 

complexities of other approaches are truly required. Toward this goal, we briefly restate some 

of our claims below.

6.2.1 The Suitability of Envisionments

One of the original motivations of generating envisionments was to determine the functions of 

systems by classifying their gross behavior, such as oscillatory systems, closed therm al systems, 

etc. However, for goal-directed QR tasks, it seems be more appropriate to concentrate on
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possibility paths and impossibility/inevitability sets. For what goal-directed tasks might the 

articulation of all possible internal transitions of a system be useful or even critical?

6 .2 .2  T h e  A d eq u a cy  of Bottom-Up Q R

Our techniques are founded on the belief that QP constraints are generally so weak that it is 

far better to work up from individual constraints than to work down from complete states.

We define the base assumptions in the descriptions of states as follows:

1. the base assumptions of X and Q are as defined by the user,

2. the base assumptions of other states are defined by the result of regressing specific state

by a specific operator.

We further consider a state assumption P to be relevant to a state description S, warranting 

the replacement of S by their union, in following cases:

1 . P is in the assumption closure of S,

2. P necessarily persists from X,

3. P necessarily persists from all previous states of S in SUDE(Z, Q),

4. P necessarily persists from some earlier state of S in SUDEfI, Q) and is inconsistent with

S (i.e. pruning an unsound transition). 1

Thus, we avoid tracking propositions forward through existing SUDE(Z, Q) structure except 

under some cases of necessary persistence. Recall that these simplifications are designed to 

avoid case-splitting of S unless necessary to achieve global soundness. Under what conditions 

might these simplifications still lead to global unsoundness? W hat other criteria might make 

forward tracking useful?

One of the underlying justifications for these simplifications is that knowing assumption 

closures seems sufficient for propagating im portant local constraints between adjacent states. 

Under what conditions might parallel forward tracking of explicit case-splits still be necessary 

for global soundness?

'I n  genera l, th is  in co n sis ten cy  m ay involve m u ltip le  P ’s all sa tis fy in g  th is  co n d itio n  for S.

136

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



6.3  S u m m ary  o f  L im ita tio n s

Our approach suffers from some notable limitations, mainly clue to its reliance on causal qual­

itative models.

6.3.1 Reliance on Causal Models

Our work fundamentally depends on the availability of the influence structures provided by 

causal qualitative models, such as those provided by QPT models. Our m ethods for computing 

state transitions employ influence change analysis and our methods for regression ultimately 

rely on dynamic operators formulated from sufficient chunks of influence structure.

Being so closely aligned with influence structure has its advantages. In particular, influ­

ence structure often provides an especially appropriate substrate for meaningful explanations. 

Nevertheless, it is im portant to realize that some physical phenomena appear less conducive 

to causal modelling. For example, the constraints imposed on the movements of mechanical 

linkages seem much easier to model as global constraints than as causal influences [37].

The lack of influence structure poses no particular problem for QS, since QS can easily be 

viewed as a constraint-satisfaction problem. Indeed, the work of [37] was readily implemented 

using the qualitative simulator QPE. Moreover, the theory underlying QSIM makes no reference 

to influence structure. The importance of influence structure becomes prevalent only when one 

needs to focus on sufficient conditions under which particular changes may or may not occur, 

as we do.

6.3.2 Qualitative Constraints Are Very Weak

The general im port of our work is limited by the ability of QP constraints to model significant 

real-world phenomena.

For example, goals which are qualitatively impossible or inevitable are relatively rare in most 

domains. Most examples of impossibility or inevitability that we can imagine involve the status 

of preconditions, not quantity conditions. Since preconditions are generally due to actions and 

quantity conditions are due to dynamics, most examples tend to identify static conditions for 

impossibility/inevitability, as opposed to dynamic ones. Dynamic impossibility, for example,
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seems to fundamentally involve either the disappearance of any influence in the right direction 

or the occurrence of dead-locks between the conditions of conjunctively necessarily influences.

These limitations are not specific to our approach — the same inferential weakness exists 

for QS. It is simply that our approach makes these limitations more apparent, since our goal 

is making interesting inferences using minimal conditions. The excessive complexity of QS has, 

in some sense, clouded the true elegance — and limitations — of qualitative constraints.

6 .4  R e la te d  W ork

We have mentioned much of the related work in earlier chapters. We discuss other related work 

below.

6.4.1 Temporal Reasoning

Hanks addressed the problem of predicting possible outcomes of linear plans in uncertain worlds 

by projecting only relevant conditional effects of actions [33]. He initially bundles the alternative 

conditional effects of an action into one outcome set. He then unbundles outcome sets into 

smaller outcome sets which each differ in their answer to task queries. Such unbundlings 

produce internal queries (to decide when action conditions might occur), invoking new rounds 

of unbundlings. Eventually, a tree of relevant outcomes (rooted at the original uncertain world) 

is articulated.

Hanks suggests in [32] that his approach might address the problem of irrelevant branching 

in QR. However, upon closer examination it appears that his approach is likely to make the 

complexity of QR increase, not decrease. Assume that we adopt his action operator formulation 

for Nature’s (dynamic) actions. Figure 6.1 illustrates a formulation of a flow process into his 

operator representation. Due to qualitative ambiguity, the conditions of many of N ature’s 

actions would contain Hanks’s chance predicate, except in highly restricted cases, such as this 

example, where no other possible changes exist. Note that formulations for which multiple flows 

could be active at the same time would lead to combinatorial explosions in the conditions.

Our influence-based approach avoids the need to distinguish whether the level of can2 

reaches top i or top2 first. In Hanks’s approach, such distinctions must necessarily be made 

within the action schema, to account for all possible eventual outcomes. Given the weak na-
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ture of the qualitative constraints, this approach is clearly unreasonable. It would result in 

combinatorial explosions in the outcome sets with little added predictive power.

Williams argues in [54] that bottorn-up reasoning with temporal constraints can address 

the problem of excessive forward branching in QS. He presents tem poral constraint propaga­

tion techniques which consider relations between events only when their interaction can result 

in the change of other quantities. Although this approach has the intuitive appeal of only relat­

ing state propositions when their relation has causal significance, it does not really address the 

issue of branching per se. In fact, Williams says nothing about how to introduce case-splits as 

needed to explore relevant branching. The sole QR example he presents, a simple spring-block 

oscillator, involves no branching. Taken at face value, Williams’ work appears to simply main­

tain the intersection of all predictions that are possible from a partial initial state. Furthermore, 

Williams offers no insight into how his approach might be modified to take advantage of goals.

6.4.2 Planning

Hogge [35] [34] explored the idea of compiling QPT models into temporal constraints and 

operators and then applying a temporal planner [1] to plan in a dynamic world. Although 

there is some merit to that idea, Hogge’s implementation seemed to get bogged down in a 

sea of temporal constraints. Given that qualitative constraints are often rather weak, the 

need to process many temporal constraints to make relatively simple qualitative inferences 

has questionable utility. This seems particularly so given that Hogge’s approach had to make 

many simplifications (such as assuming Nature always cooperates as needed) for tractability. In 

contrast, our SUDE-based approach works directly with states which are sufficient for showing 

possibility paths. Hogge’s work did not demonstrate that its indirect route (using temporal 

constraints) provides any computational advantages over a more direct state-based approach, 

particularly when most changes are dynamic and ambiguous.

6.4.3 Nonmonotonic Reasoning

Crawford and Etherington have presented a nice summary of how QR’s clean separation of 

model selection and model simulation help QR avoid many of the counter-intuitive results in the 

nonmonotonic reasoning (NMR) community [6 ]. By committing to closed-world assumptions
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(action (flow mass ?substance ?canl ?can2 ?pipe)
(if (not (and (aligned ?pipe)

(> (level ?canl) (level ?can2))
(> (mass (C-S ?substance LIQUID ?canl)) 0)))

(outcomes INFEASIBLE)
(if (chance 0.5) ;; flow stops before any change occurs due to flow:

(outcomes (= (level ?canl) (level ?can2)))
(cond

((< (level ?can2) (height (top ?can2)))
(cond
((< (level ?can2) (height (top ?canl)))
(if (chance 0.5)

(outcomes (= (level ?can2) (height (top ?canl))))
(outcomes (= (level ?can2) (height (top ?can2))))))

((= (level ?can2) (height (top ?canl)))
(outcomes (> (level ?can2) (height (top ?canl)))))

((> (level ?can2) (height (top ?canl)))
(outcomes (= (level ?can2) (height (top ?can2)))))))

((= (level ?can2) (height (top ?can2)))
(cond
((< (level ?can2) (height (top ?canl)))
(outcomes (> (level ?can2) (height (top ?can2)))))
((= (level ?can2) (height (top ?canl)))
(outcomes (> (level ?can2) (height (top ?canl))))

(> (level ?can2) (height (top ?can2))))
((> (level ?can2) (height (top ?canl)))
(outcomes (> (level ?can2) (height (top ?can2)))))))

((> (level ?can2) (height (top ?can2)))
(cond
((< (level ?can2) (height (top ?canl)))
(outcomes (= (level ?can2) (height (top ?canl)))))

((= (level ?can2) (height (top ?canl)))
(outcomes (> (level ?can2) (height (top ?canl)))))

((> (level ?can2) (height (top ?canl)))
;; flow is active forever (not really consistent)
(outcomes NULL))))))))

Figure 6.1: Hanks-like operator for a flow process
This operator assumes that this flow is the only influence on quantity 
(mass (C-S ?substance LIQUID ?canl)).
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before reasoning about possible behaviors over time, QR avoids the trap of trying to change 

simulation to avoid state inconsistencies.

For this reason, we accept the restrictions that come from making strong closed-world 

assumptions on influence structure. As Rayner showed in [45], failing to make closed-world 

assumptions can lead to counter-intuitive results when discontinuities are allowed. He showed 

that Sandewall’s [46] nonmonotonic formulation for minimalizing discontinuities fails w ithout 

explicit axioms conditioning when discontinuities should not be allowed. Of course, by requiring 

explicit conditions of when discontinuities are allowed, much of the potential im port is lost.

6.4.4 Modal Logics

Modal logics are motivated by the desire to conveniently and concisely distinguish between 

necessary tru th  and possible truth. Since such distinctions are relevant to qualitative reasoning 

about goal state achievability, this section discusses the relevance of modal logic to  our work. 

We base this discussion on the conventions used in [49].

A Kripke structure is modal logic’s analog of cxtensional logic’s m odels/interpretations. R 

consists of possible worlds and an accessibility relation among them. In QR, possible worlds 

correspond to complete states and accessibility relations are based on state transitions. The 

various modal logic systems differ on their properties for the accessibility relation. For reasoning 

about goal achievability, the accessibility relation should be transitive and reflexive, bu t not 

symmetric (i.e. the so called 5 4 -system). Thus, Q being accessible from X  does not mean X  is 

accessible from Q.

Common modal operators include:

• agent knows logical formula 1p (denoted K<p),

• agent believes <p (denoted Bip),

• ip necessarily holds in the future (denoted □</?),

•  ip possibly holds in the future (denoted Ocp), and

• ip holds in the next state (i.e. for discrete time points) (denoted 0 <p).

Model operators □ and O correspond to our notions of goal inevitability and possibility, 

respectively (goal impossibility corresponds simply to □ for the negation of the goal). The
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semantics of a modal operator (for a particular possible world) typically depends on whether it 

is based on all accessible possible worlds or just some. In our case, □ is based on all and O is 

based on some.

Given the existence of very formal, concise modal logics for □ and O, one might question the 

significance and role of our work with respective to them. There are a few im portant responses 

to that question, which we examine in turn below.

First, one must be sure to distinguish between proof and model theory. Modal logic for­

malisms crisply define the semantics of the operators, but they do not commit to particular 

algorithms for computing them. Nor do modal systems commit to particular ontologies for 

defining sets of model tokens and functions for which such algorithms are efficient and ade­

quate for given tasks. Such concerns are exactly what much of qualitative physics primarily 

addresses and what our work impacts.

Second, even though they do not compute the Kripke structure, modal logicals must at 

least define it (to define the semantics). Defining the accessibility relation for QR inherently 

requires a formalism of qualitative temporal reasoning. Thus, the trade-off fundamentally boils 

down to whether one defines qualitative temporal reasoning declaratively or procedurally. The 

experience of QR work in general, and our experience in properly integrating minimal-based 

and causal-based change, argues that the procedural approach is preferable, both in terms of 

computational complexity and in terms of soundness/completeness.

Third, it is well-known that anything representable in any modal logic is also representable in 

some first-order logic. We argue that most potential advantages th a t a  modal logic formalism 

might have over our envisionment-based formalism would be due more to the advantages of 

first-order formalism over ours, for particular tasks. For example, propositional logic allows 

one to represent a disjunctive-normal formula as one (DNF) formula, whereas our state-based 

approach requires case-splitting into multiple states, each corresponding to one conjunctive- 

normal formula.

It is unclear exactly when this difference gives propositional logic a real advantage over 

our approach for actual tasks. Reasoning about the subtle ways in which physicai components 

may interact over time requires some ability to explicitly case-split the context of each. In any 

case, it is especially unclear whether the use of modal logics could ever reduce the case-splitting 

required for QR using a  first-order logic.
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In summary, our focus on goal-directed reasoning with partial states and on leveraging the 

inherent ambiguity of QR might better be viewed as potentially reducing the computational 

complexity of QR-like reasoning under modal logics than in viewing the employment of modal 

logics per se as potentially improving the process of QR itself. The specific commitments which 

define QR and characterize its efficient execution come from qualitative physics work, not from 

generic modal logics about possibility and time. To claim otherwise is to claim that work in 

modal logics subsumes work in qualitative physics.

6.5  F u tu re  W ork

Based on our experience from this work, we believe that the following issues are especially 

worthy of further exploration.

6.5.1 Formal Theories of SUDE’s

We have not been able to develop crisp declarative definitions of the representational properties 

of SUDE’s. We have largely defined SUDE’s procedurally — in terms of how regression and 

qualification compute them. However, it is possible th a t such formal definitions exist.

Furthermore, we do not have solid soundness or completeness results for SUDE’s. For 

example, SUDE’s would be more globally unsound than  AE’s if our assumption th a t tracking 

only necessarily persisting facts is adequate turns out to be false.

6.5.2 Comparative Analysis and Relative Probability

There is much intuition behind the idea that qualitative models are more useful for comparative 

analysis than prediction. The underlying reason seems to be that even when ambiguity makes 

precise prediction impossible, precise comparative analysis is possible. The very notion of a 

qualitative influence is that, all else being equal, adding an influence (or increasing an existing 

one) will increase the influenced quantity. For example, even though we often cannot say 

qualitatively whether a container might overflow, we can usually say that turning on a new 

pump into that container will increase the chance that the container will overflow.

For many tasks, it may well be that the relative probability of behaviors arising from pertur­

bations is more interesting than our distinctions of possibility, impossibility, and inevitability.
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One might also be able to achieve stronger results in terms of relative probability than in terms 

of goal discrimination per se. Whereas it is easy to imagine SUDE’s for which Q is never (or 

seldom) impossible or inevitable, it seems much harder to imagine examples where particular 

perturbations do not affect the probability of whether Q eventually occurs.

6.5.3 Better Control Strategies

We stayed within a phase-space trajectory view of behavior in this work because it was easier 

to compare our results with those of QR in general. However, it is well worth exploring the 

possibility of using partially-ordered behavior trajectories to avoid many occurrence branching 

problems.

Our work emphasized backward regression over forward projection because we believe that 

backward reasoning is more likely to quickly identify the dynamic discriminatory information 

available in qualitative behavior space. Nevertheless, surely there are cases where the reverse is 

true. However, we suspect th a t most of these cases will involve static spatial constraints, such 

as the path of a flying ball being most constrained early in flight. For non-spatial constraints, 

the conditions discriminating whether a goal is reachable generally seem to occur late, if at all.
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