
NORTHWESTERN UNIVERSITY

Topological Inference of Teleology:
Deriving Function from Structure

via Evidential Reasoning

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

John Otis Everett

EVANSTON, ILLINOIS

December 1997

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9814209

Copyright 1997 by
Everett, John Otis

All rights reserved.

UMI Microform 9814209
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© Copyright by John Otis Everett June 1997

All Rights Reserved

ii

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Topological Inference of Teleology:
Deriving Function from Structure via Evidential Reasoning

John Otis Everett

Reasoning about the physical world is a central human cognitive activity. One aspect of

such reasoning is the inference of function from the structure of the artifacts one

encounters. In this dissertation we present the Topological iNference of Teleology (TnT)

theory, an efficient means of inferring function from structure. TnT comprises a

representation language for structure and function that enables the construction,

extension, and maintenance of the domain-specific knowledge base required for such

inferences, and an evidential reasoning algorithm. This reasoning algorithm trades

deductive soundness for efficiency and flexibility. We discuss the representations and

algorithm in depth and present an implementation of TNT, in a system called C a r n o t .

C a r n o t demonstrates quadratic performance and broad coverage of the domain of

single-substance thermodynamic cycles, including all such cycles presented in a standard

text on the subject. We conclude with a discussion of CARNOT-based coaching tools that

we have implemented as part of our publicly-available CyclePad system, which is a

design-based learning environment for thermodynamics.

iii

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGMENTS
I would like to thank the following people for their contributions to the creation of a rich

environment for learning and thinking over the past five years:

First and foremost, my advisor and friend Ken Forbus, for providing the guidance,

encouragement, and unending stream of computing equipment that sustained this line of

research. Larry Bimbaum and Ian Horswill, my committee members, for their support

and feedback. Roger Schank, for founding a first-rate interdisciplinary institute in my

backyard. Chris Riesbeck, for introducing me to the one true language. Chip Cleary, for

introducing me to the Institute for the Learning Sciences and not laughing at my initial

misconceptions concerning LISP and AI. Greg and Heather Collins, for those dinners

out. Keith Law, for bringing his titanium-body camera to the hospital on a moment’s

notice. Ron Ferguson and Yusuf Pisan, my fellow travelers, for their help and kibitzing

along the way. Andy Bachmann, the embodiment of an incredibly sensitive difference

detector, for his hacking enthusiasm. John Demastri, for putting up with a certain amount

of LISP imperialism and C++ bashing. Leo Ureel, Mike Brokowski, and Julie Baher for

their commitment to making CyclePad work. Eric Goldstein, Chris Wisdo, and Jon

Handler, for the Dissertation Avoidance Support Group. Sandor Szego, for his

unflagging optimism and energy. David Foster, for being able to converse on topics other

than ILS after hours. Brian Smith, for providing ongoing live entertainment during our

tenure at the Institute.

iv

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Beyond ILS, I would also like to thank Francis and Eleanor Everett, my parents,

for being supportive in the face of my departure from their known universe. Jack and

Marilyn Bergers, my in-laws, for their patience, especially since they thought I was done

when I passed the qualifying exam three years ago. And finally, Jeannine, my wife, for

encouraging me to do what makes me happy, for putting up with five years of graduate

school, and for giving me the most amazing self-organizing learning system, our son

Jonah.

v

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTENTS
Chapter Page

1. INTRODUCTION...1
Context...2
Motivation..4
Generality and Limitations...6
Contributions..7
Reader’s Guide...10

2. THE DOMAIN OF THERMODYNAMIC CYCLES..12
An Overview of Thermodynamic Cycles..13
Learning Thermodynamics... 15
An Example of a Typical Thermodynamic Cycle..16
An Example of the Output of a TNT-Based System..18

3. TELEOLOGICAL REPRESENTATIONS... 23
Structural Representations...25
Components and Their Potential Roles.. 27
Physical Effects... 35
Domain Requirements.. 38
Locality Representations.. 38
Plans... 50

4. REASONING..53
Step One: Topological Analysis.. 53
Step Two: Role Inference...61
Step Three: Identifying Plans.. 82

5. IMPLEMENTATION AND EMPIRICAL EVALUATION: CARNOT....................... 84
Computational Complexity..85
Empirical Performance... 96

6. CARNOT-BASED COACHING APPLICATIONS...105
The Role Annotator...107
The Analytical Coach..109
The Design Coach... 116

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter Page

7. DISCUSSION AND RELATED W ORK...121
Plausible Inference...121
Qualitative Reasoning about Function...130

8. CONCLUSION AND FUTURE WORK.. 150

Appendices

A. HIERARCHICAL BELIEF UPDATING... 156

B. CARNOT-GENERATED EXPLANATIONS FOR TEST SET A..............................160

C. CARNOT KNOWLEDGE BASE... 196

D. FORMAL DEFINITIONS OF LOCALITY PREDICATES..223

REFERENCES... 224

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ILLUSTRATIONS
Figure Page

2.1 Simple vapor-cycle heat engine.. 12

2.2 A jet-ejection refrigerator...17

3.1 TNT representations...23

3.2 Schematic device representations...26

3.3 Device type hierarchy...28

3.4 Role taxonomy... 30

3.5 Regenerative Rankine power cycle.. 39

3.6 Adjacency..41

3.7 Ranges of influence..43

3.8 Examples of teleological patterns.. 45

3.9 Subcycle roles.. 46

3.10 Aggregate devices..48

3.11 Syntax of defPlan form... 50

3.12 Example of a plan..51

4.1 Reasoning algorithm..53

4.2 Topological analysis algorithm.. 54

4.3 Examples of fluid loops.. 55

4.4 Algorithm for finding fluid-loops.. 56

4.5 Algorithm for finding subcycles.. 58

4.6 Algorithm for finding ranges of influence.. 59

4.7 Determining cycle type... 61

4.8 Syntax of defEvidence form ...69
viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.9 Example of an evidential test.. 70

4.10 Example of a suppressive test... 71

4.11 Syntax of an evidence proposition..72

4.12 Algorithm for role inference..73

4.13 Belief-revision algorithm...74

4.14 Example of a test for flash-preventer evidence..80

4.15 Cycle fragment illustrating qualitative transitive inequality reasoning.....................82

5.1 Algorithm for finding fluid-loops...87

5.2 Algorithm for finding ranges of influence...88

5.3 Belief-revision algorithm...90

5.4 Empirical performance for C a r n o t on Test Set A...99

5.5 Effect of device order on number of iterations to reach quiescence....................... 101

5.6 Effect of introducing noise into likelihood estimates... 102

6.1 Role annotations and hypertext explanations in CyclePad.......................................107

6.2 Syntax of norm knowledge representation... 110

6.3 Example of a qualitative relation norm...112

6.4 An example of an analytical coaching norm.. 113

6.5 Analytical coaching output in CyclePad.. 114

6.6 Diagrammatic example of a Design Coach case..117

8.1 Architecture of CyclePad pedagogical support environment................................... 152

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLES
Table Page

4.1 Criteria for ending ranges of influence.. 58

4.2 Joint probability distribution... 63

5.1 Summary of C a r n o t tests for and against particular roles... 85

5.2 Results of C a r n o t run on validation test set...98

x

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1
INTRODUCTION

The inference of function from structure is an essential cognitive skill for anyone who

works with designed systems. Designers must understand the interplay between structure

and function to create effective designs, engineers must be able to determine the function

of a system if they are to verify its behavior or diagnose problems, and students must

learn to make such inferences to bridge their learning from theory to practice.

Designed systems are typically represented via schematics or blueprints, which in

and of themselves are incomplete; those who use these documents must bring knowledge

about the function of the relevant components to bear in the process of understanding the

systems they represent. Because the structure of a component often enables it to have

more than one function, a central aspect of this understanding process is the inference of

the intended function in the context of the design.

Automating this process would enable us to construct software coaching systems

that offer appropriate advice based on inferences about the intent of the student’s design,

intelligent design assistants for verifying that a given structure would produce an intended

function, and automated indexing and retrieval systems for cataloging designs based on

their function rather than structural features. The difficulty in doing so lies in the

combinatorics of the problem; if we suppose, conservatively, that each component can

play three different roles, then for a system of twenty components there are 3“ or 3.5

1

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

billion functional construals. A thermodynamic system might have fifty components, an

electrical circuit hundreds to millions, for VLSI.

In this dissertation we describe Topological iNference of Teleology (TnT) theory,

an account of efficiently deriving function from structure via evidential reasoning.

C a r n o t , an implemented system based on this theory has correctly inferred the function

of forty-nine single-substance thermodynamic cycles, including all such cycles contained

in a standard text on the subject (Haywood 1991).

1.1 Context
This research builds on Forbus’ work on qualitative reasoning about the behavior of

physical systems (Forbus 1984). Although behavioral reasoning is useful for many tasks,

it is generally insufficient when we are concerned with the intentions of a designer, which

by definition lie in the social rather than the physical realm.

De Kleer (1979) was the first to investigate the derivation of function from

structure. He proposed, for the domain of electronic circuits, a methodology using

qualitative physics to map from structure (what the artifact is) to behavior (what the

artifact does) and a separate, teleological reasoning process to infer function (what the

artifact is for) from behavior. In contrast, we present here an account of deriving function

from structure directly, via an evidential reasoning process, although we adopt de Kleer’s

nomenclature. In particular, we define a. function to be an intended behavior o f a device.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3

This work is similar in spirit to the research efforts of the Functional Reasoning

community (e.g., Chandrasekaran 1994; Thadani 1994), yet it differs in that it excludes

explicit representations of behavior from its knowledge base. Our goal in this regard is to

construct a modular reasoning system that could be combined with a behavioral reasoner

without concern for interactions in the respective knowledge bases.

Early versions of this work relied on dependency-directed search (Stallman and

Sussman 1977) to filter out incorrect role assignments. Unfortunately the constraints that

topology imposes on role assignments are not sufficiently binding, so the net result of

such a search is a set of several equally likely construals with no principled means of

preferring one over another. In response to this, we developed our evidential approach,

which trades deductive soundness for efficiency and flexibility. Rather than rule out

impossible construals, our approach attempts to rule in the most probable construal.

To arrive at this construal, TNT reasons about the topology of the input system,

via a rich vocabulary for representing locality. This use of locality is similar in spirit to

Sussman’s slice concept (Sussman and Steele 1980), which used multiple overlapping

local viewpoints to analyze electrical circuits. Davis (1983) has also noted that multiple

representations of locality can provide inferential leverage in diagnostic applications.

The evidential reasoning algorithm employs Pearl’s (1988) method for Bayesian

hierarchical updating of belief. Our use of Bayesian probability theory arose from a

conversation with Eugene Chamiak (see also Chamiak 1991), who strongly encouraged

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

us to at least adopt what he terms “idiot Bayes,” that is, the simplest instantiation possible

of Bayesian theory that affords the appropriate inferential power without doing violence

to the integrity of the formalism. This has remained our goal through the evolution of our

plausible inference mechanism, and therefore we view our contribution in this regard as a

lightweight evidential reasoning algorithm amenable to use with forward chaining rule

engines for the purpose of qualitative inference. We do not claim to advance the state of

the art in probabilistic or non-monotonic reasoning; with respect to these communities,

our research is the beneficiary rather than a contributor.

1.2 Motivation
Over the past several years, we have been interested in the application of qualitative

reasoning to engineering education. To this end, this work builds on the concept of the

articulate virtual laboratory (AVL), a design-based exploratory learning environment

that can provide students with explanations of its calculations and inferences, and on our

experience in fielding a thermodynamics AVL called CyclePad (Forbus and Whalley

1994).

We have found that by itself, an exploratory environment such as CyclePad is

insufficient. In particular, the space of possible designs is vast, and students can and do

get lost in unproductive areas of this space. We have observed some of the problems

with motivation and frustration that other investigators of exploratory environments have

reported (cf. Reiser et al. 1994).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

To address this issue in CyclePad, we decided to develop a software coaching

system. If students were to use such a system it had to be fast enough to operate

interactively. Our hypothesis was that an automated teleological reasoner would enable

the construction of a coach that required as input only the current state of the problem,

that is, the completed structure and the assumptions made to that point. Inferences about

the function of the student’s work would guide the advice presented to the student. In

contrast to other work in intelligent tutoring systems (e.g., Baffes and Mooney 1996;

Brown and Burton 1978; Brown and Van Lehn 1980), we do not require nor construct a

model of the student, which simplifies the coach considerably.

The domain of thermodynamic cycles is of interest for several reasons. First, it

concerns designed artifacts of considerable complexity, which provides a forcing function

to move us beyond toy problems. In point of fact, the current version of C a r n o t has

achieved broad coverage of the domain (see Section 5.2.1).

Second, thermodynamics is fundamental to all engineering disciplines. For

example, mechanical engineers must take heat from friction into consideration, electrical

engineers must ensure the dissipation of the heat their circuits generate, and industrial

engineers must take into account the thermal characteristics of the feedstocks to the

processes they design. Engineering students are required to take at least an introductory

thermodynamics class, and most engineering programs require a second course as well.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

Finally, the centrality of design to this domain meshes with the design focus of

articulate virtual laboratories. Students decide to become engineers because they want to

design artifacts, and we believe we can tap into this intrinsic motivation to help students

develop a deeper understanding of the domain than they would via conventional

engineering curricula, with its emphasis on abstractions and analytical solutions.

1.3 Generality and Limitations
TnT theory has been developed and realized in great detail with reference to the domain

of thermodynamics, but we have reason to believe that it would generalize to other

physical domains, such as electronics, in which designs consist of topologies of

interconnected components. TnT defines representations of structure and locality over

which an evidential reasoning algorithm runs to produce plausible inferences of function.

A primary purpose of the representations is to capture subtle nuances in the relative

locality of components, which limits the applicability of this theory to domains which can

be represented as graphs of components where the graph edges are the only means of

causal communication.

TnT requires that one explicitly define the functions to be inferred for each

recognized component. Thus in C a rn o t a heater can be one of a preheater, a reheater, a

heat-absorber, or a fluid-heater; these roles form an exhaustive partitioning of the space

of function. Therefore the recognition of novel uses for an artifact is a task beyond the

scope of this work; for example, a steel crowbar could function as an electrical conductor

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7

in a pinch, but this is not something a TNT-based system could infer, unless the situation

was represented as an electrical circuit, a crowbar was a recognized device, and

conductor was a recognized function of a crowbar device.

Finally, the evidential reasoning algorithm is completely domain-general, as it

simply updates belief in certain propositions (in the case of CARNOT, these concern roles)

based on available evidence. This algorithm requires that one be able to express domain

knowledge in terms of evidential tests for or against given propositions (again, in the case

of C a r n o t , these are role propositions). It is also quite specific to our task at hand; we

have traded the generality of a Bayesian belief network for a more computationally

efficient method.

1.4 Contributions
The work presented here constitutes a performance theory of the teleology of physical

domains. We characterize TnT as a performance theory because the concerns that have

shaped it include runtime efficiency and the practicality of knowledge base development

and maintenance.

Evidential reasoning enables efficient inference of function from structure in

physical domains. A central contribution of this work is a demonstrably quadratic-time

algorithm for such inference. TnT is the first account of evidential reasoning applied to

the derivation of function from structure. The efficiency of our theory is due in large part

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

to our representations o f structural locality, which enable the inference of function

directly from structure, without an intermediate behavioral simulation o f the system.

Representing the domain knowledge required for the inference of function as

evidential tests for or against particular roles enables our approach to scale. The scaling

up of artificial intelligence systems is generally considered to be a function of algorithmic

complexity, but another, equally important dimension is the scaling up of knowledge

acquisition and maintenance. Casting knowledge in the form of evidence provides the

domain expert with a straightforward means of expressing domain knowledge while at

the same time enabling the dynamic composition of evidence into teleological inferences.

C a r n o t , our implementation of TNT, is the first teleological reasoning system we are

aware of to achieve broad coverage of its domain; it currently identifies the functions of

forty-nine thermodynamic cycles. A set of thirty-six cycles and C a r n o t ’s construals

thereof, may be found in Appendix B.

An automated teleological reasoner provides an efficient basis for the construction

of software coaching systems. We have implemented an Analytical Coach that operates

within the CyclePad system, and we have built a prototype of a case-based Design Coach,

both of which are based on C a r n o t . The Design Coach retrieves design cases that are

functionally similar to the current design, and provides the user with access to the context

of the cases. The Analytical Coach helps students find useful parts o f design space by

noting which assumptions diverge from the norm for that parameter. Norms require a

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

context; for example, the typical value for pressure at the outlet of a water boiler in a

vapor-cycle heat engine is quite different from the pressure at the outlet of a gas-turbine

combustion chamber, yet both devices are represented as heaters, because in both cases

we have an active heat-flow process.

The TnT architecture provides the student with explanations of its functional

inferences. Although evidential reasoning is not deductively sound, we assert that this

lack of soundness, when made explicit to students, is actually a pedagogical virtue,

because it requires the student to consider the validity of the system’s output. The

system’s explanations make clear the evidence for and against a given inference,

providing the student with a basis forjudging its accuracy. Taking advice at face value,

whether from a human or machine expert, is rarely a good cognitive strategy.

Finally, as noted above, TnT has application beyond thermodynamics coaching.

For example, a practicing engineer could use such a system to verify that a particular

design will achieve its intended function. The teleological engine could also provide the

foundation for automated indexing and retrieval of designs based on their function rather

than their surface features.

Although introspection guided the development of the evidential reasoning

algorithm, we make no claims of cognitive fidelity for TnT. We believe that the theory

presents interesting hypotheses that could serve as the basis for further cognitive research.

For example, aspects of the topological recognition algorithm are reminiscent of de

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

10

Groot’s work (de Groot 1978), in which he showed that chess masters remember

configurations of pieces as units, much as a literate person remembers words as units

rather than as strings of characters. C a r n o t , the system in which we have realized TnT ,

certainly runs in times comparable to a domain expert performing the same task, which at

least does not provide an immediate reason to rule out cognitive plausibility.

We also make no pedagogical claims for this research, although pedagogical

concerns have had a major influence on our thinking. The issues of how both the design

and analytical coach should be implemented in order to effect measurable change in the

depth of a student’s domain understanding have yet to be addressed, and constitute an

appropriate topic for another dissertation. Nonetheless, it would have been impossible to

pursue such a research topic until the coaching engines that we have built based on this

theory were in existence in a robust form suitable for distribution to students, and these

tools are a primary contribution of this work.

1.5 Reader’s Guide
The core of this work is contained in Chapters 3 and 4, which present the representations

and the mechanism of the evidential reasoning engine respectively. Combined, these

chapters constitute the Topological iNference of Teleology theory. Chapter 2 presents an

overview of the domain of thermodynamic cycles sufficient for the purposes at hand and

provides an illustrative example of the output of a TNT-based system based on a typical

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

input cycle. While not necessary for understanding the material that follows it, this

chapter does establish some useful context.

Chapter 5 discusses the Ca r n o t system, which is a completely implemented

realization of the TnT theory that has correctly inferred the function of forty-six

thermodynamic cycles to date (Appendix B presents thirty-six of these cycles and

C a r n o t ’s explanations thereof). This discussion includes a complexity analysis of the

algorithm and an empirical analysis of C a r n o t’s performance on the first test set,

comprised of 36 cycles. Chapter 6 describes the prototype coaching systems we have

implemented based on C a r n o t , while Chapter 7 discusses how this work relates to other

research in the areas of plausible and qualitative reasoning. Finally, Chapter 8 concludes

with a summary of this work and a discussion of directions for future research.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2
THE DOMAIN OF THERMODYNAMIC CYCLES

Artifacts incorporating thermodynamic cycles are pervasive. Virtually all electrical

power generated today relies on a thermodynamic cycle in which massive boilers generate

steam to turn turbines that drive generators. Refrigerators rely on essentially the same

cycle, albeit running in reverse and supplied with a different working fluid that enables

their operation at safer pressures. Automobile and jet engines operate in a so-called

“open” cycle that takes in air from, and expels exhaust gases to, the environment, yet they

Expanding

Turbine

HEAT Boiler
Condenser

Compressing

Figure 2.1 Simple vapor-cycle heat engine

12

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

may be analyzed as cycles by treating the atmosphere as a single reservoir of air. Industry

relies on thermodynamic cycles for power, for liquefying gases (e.g., natural gas,

nitrogen, oxygen), and for process steam.

2.1 An Overview of Thermodynamic Cycles
The defining characteristic of a thermodynamic cycle is that it operates between two

reservoirs of different temperatures, typically by passing a working fluid1 through a

system of pipes and components. Figure 2.1 shows a simple cycle. This basic cycle (with

some modifications to increase efficiency) is commonly used to generate electricity. Heat

energy obtained from combustion or nuclear reaction converts the working fluid into

vapor in the boiler. This vapor then expands in the turbine, causing its blades to rotate,

producing work. The condenser returns the working fluid to its original state by ejecting

heat to the environment. The pump ensures a steady supply of working fluid to the boiler

and maintains the system’s direction of flow.

Note that some heat must leave the cooler. This is a consequence of the Second

Law of Thermodynamics; in practice it means that even an ideal cycle cannot achieve

100% efficiency. In other words, we cannot completely convert a given amount of

thermal energy into mechanical energy.

1 The term fluid in this work denotes a substance that flows, regardless o f its phase. Gases and liquids are
therefore both fluids.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

We can view the cycle abstractly as a sequence of four physical phenomena;

compressing, heating, expanding, and cooling. The design of thermodynamic cycles may

be thought of as the manipulation of these four phenomena. The order in which these

phenomena occur is dictated by physical law, and thus is a useful piece of evidence for

reasoning about function. For example, a refrigerator cycle uses the same four

phenomena in a different order—expanding, heating, compressing, and cooling—to

achieve a refrigeration effect, and so phenomena order may be used to determine the type

of the cycle.

Despite the fact that the constituent devices of this and other thermodynamic

systems are complex artifacts designed to accomplish specific functions, there are

significant ambiguities in the inference of function from structure in this domain. For

example, a turbine may function as either a work-producer or a cooler, and in cryogenic

cycles the latter is the desired function.

The control volume is an important theoretical concept in thermodynamics. It

forms the boundary between the cycle and the rest of the environment. All

thermodynamic systems are intended to achieve a change in their surrounding

environment, which they do by exchanging energy and/or mass across the system’s

boundary. The control volume enables one to pinpoint these areas of interchange with the

environment. For example, in Figure 2.1, energy in the form of heat crosses the control

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

volume to enter the system at the boiler. Energy in the form of work leaves the system at

the turbine, and finally the cooler ejects the inevitable “waste” heat to the environment.

2.2 Learning Thermodynamics
Thermodynamics is central to the study of engineering, because thermal processes are

ubiquitous in engineered devices. For example, the design of the original Macintosh

computer included carefully placed vents that cause the case to act as a chimney,

funneling cooling air over the chips and avoiding the need for, and attendant noise of, an

internal fan. Unfortunately, most courses in thermodynamics rely heavily on drill and

practice in solving the basic equations.

This approach tends to decontextualize thermodynamics, abstracting it away from

the realm of application. We believe that design-based problems can be used to

strengthen the connection between thermodynamic theory and real-world problems. To

test this hypothesis we have built CyclePad, an articulate virtual laboratory (Forbus and

Whalley 1994). An articulate virtual laboratory is virtual in that it provides the user with

the ability to build models of physical systems, such as thermodynamic cycles, without

the inconvenience and expense of working with large and potentially dangerous physical

components. It is articulate because the user can determine, via a hypertext system, the

derivation of any conclusion the system generates. CyclePad has been in use at

Northwestern University and the U.S. Naval Academy for the past two years, and we are

continuing to collaborate with thermodynamics professors at these institutions and at

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

Oxford on the design and refinement of this system. A version of CyclePad that includes

coaching systems based on our research is publicly available via the World Wide Web.1

2.3 An Example of a Typical Thermodynamic Cycle
Thermodynamic cycles are typically a topic of the second course in thermodynamics an

engineering student may expect to take. In this section we will describe a cycle derived

from the chapter on thermodynamic cycles of a standard introductory text for the field

(Van Wylen, Sonntag, and Borgnakke 1994). This cycle, shown in Figure 2.2, is a jet-

ejection air-conditioning system.

In this system chilled liquid flowing through Heater-2 absorbs heat from the area

being air-conditioned (typically the passenger compartment of a transportation vehicle).

This working fluid flow is then split, and part of it is pumped by Pump-1 to Heater-1,

where an inflow of heat energy turns it into a high energy jet of steam. It flows at high

velocity through Mixer-1, and in the process entrains and compresses the hot vapor from

Splitter-3. Mixer-1 is therefore acting as a jet-ejection compressor, that is, a compressor

which has no moving parts. Splitter-3 is acting as a flash-chamber, in which a sharp

pressure drop causes the working fluid to flash into vapor; immediately upstream of it,

Throttle-2 causes the requisite pressure drop. Because boiling requires heat, the portion

of the working fluid that vaporizes extracts the heat required from the balance of the

liquid which, now chilled, flows to Heater-2 to create the air conditioning effect.

1 http://www.qrg.ils.nwu.edu/software.htm.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.qrg.ils.nwu.edu/software.htm

17

Mixer-1

Cooler-1Heater-1■

Splitter-1

Mixer-2 Throttle-2

Mixer-3Pump-1 Splitter-3

Splitter-2

Heater-2

Figure 2.2 A jet-ejection refrigerator

The advantage of this design is that, aside from the two pumps which provide a

mass-transfer function, there are no moving parts. It is essentially a heat-driven air-

conditioner, and it typically uses a non-toxic working fluid— water—so it is safe for use

in inhabited spaces. It would also be particularly useful wherever there is waste heat that

could be used to drive the system, such as on a factory floor, to provide air conditioning

for some spaces or cooling for processes that require particular environmental

characteristics.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Notice that in this system there are two structurally identical heaters performing

completely different functions, there are three mixers, two acting as flow joins and one as

a compressor, and there are three splitters, two acting as flow-splits and one acting as a

flash-chamber. This ambiguity in function is precisely what TnT is designed to resolve.

2.4 An Example of the Output of a TnT-Based System
There are three different types of output the user may obtain from a system based on TnT;

(1) identification of a particular device’s role along an explanation of why that role is

believed true, (2) an explanation of the function of the whole system, or (3) a behavioral

explanation that traces the path a packet of working fluid would follow, explaining the

thermodynamic effects it encounters along the way. These explanations are based on

simple natural language templates and phrases instantiated by rules. If the user were

interested in the role of Heater-2 in Figure 2.2, which absorbs heat energy from the

environment (i.e., it is the “business end” of this cycle), here is the explanation a TNT-

based system would produce:

Q: What is the role of Heater-27
A: Heater-2 is acting as a HEAT-ABSORBER
Q: Why?
A: Heater-2 is construed as a HEAT-ABSORBER because

refrigeration cycles are more likely to use heaters as
heat-absorbers than as energy-injectors.

Q: Could Heater-2 be acting as a preheater?
A: Heater-2 is unlikely to be acting as a PREHEATER

because a heater on a non-work-generating subcycle of a
refrigerator is unlikely to be preheating the working
fluid and a refrigerator rarely has need to preheat its
working fluid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

These are predefined natural language templates into which the italicized symbols have

been inserted. This explanation assumes that the user is familiar with the roles that a

heater may play. If the user is not, definitions are available. Behaviorally, a heater may

be thought of as a tube through which working fluid flows. A heat-conducting path to the

environment causes a flow of heat to the working fluid in the tube, so we may conclude

that the physical effect on the working fluid is an increase in its thermal energy, which

will manifest as an increase in temperature and/or a change in phase. From an intentional

point of view, there are two physical effects of particular interest to us in the context of

reasoning about thermodynamic cycles; the flow of heat and the increase in the

temperature of the working fluid. In the case of a heater playing the role of a heat-

absorber, the intended effect is the flow of heat, and the increase in temperature is an

unfortunate side-effect; if there were no increase in temperature, then we would have a

thermal perpetual motion machine, and we wouldn’t need the rest of the cycle.

The user may therefore conclude from the answer to the first question that the

intended function of Heater-2 is to absorb heat from the environment. If the user had

asked about Heater-1, the heater that powers the jet-ejection mixer, the system would

have responded that it was acting as a heat-injector. In this capacity, the desired outcome

is an increase in the thermal energy of the working fluid, and the requirement for a heat-

flow from the environment is a sad fact of life; once again, if this were not necessary we

would have a thermal perpetual motion machine.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

The second question seeks an explanation for the construal of Heater-2. Notice

that the answer is couched in terms of likelihood, because TnT is a plausible reasoning

system. In this case, the explanation is simply that refrigerators are more likely to require

heat-absorbers. The user might well not be satisfied with such an answer, perhaps

believing that Heater-2 is preheating the working fluid (a preheater role is a specialization

of the heat-injector role), and so can ask if it would be possible that Heater-2 is actually a

preheater. The response in this case is again couched in terms of likelihood, and reveals

that the system has also found evidence against such a role; the heater in question is not

part of a work-generating substructure.

As an example of the second of the three types of explanations that TNT supports,

the user might want to understand the intention of the system as a whole:

Q: What is this system for?
A: This is a refrigerator cycle, so it is intended to move

heat from one location to another. To preserve this
cycle's integrity, a jet-ejector is used to compress
the working fluid. This takes place at MXR1. Jet
ejectors have no moving parts and hence vapor
refrigeration systems that use them for compression are
inexpensive and safe to operate, although they produce
effective cooling to levels well above the freezing
point of the working fluid.

This answer is composed from the explanatory phrases associated with the plans

instantiated for this cycle. Plans describe the functioning of cycles and major

substructures in terms of the goals that they achieve. The system assumes a rational

designer and imputes three goals; (1) achieving a change in the environment, (2)

achieving that change efficiently, and (3) preserving the system (i.e., preventing the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

system from entering self-destructive states). In this case, this plan addresses the goal of

achieving a change in the environment (i.e., the air-conditioning effect) and of preserving

the system, via a design that has few moving parts.

Finally, the user might want to understand the behavior of the system at a detailed

level. In this case the answer is composed by a set of rules that combine simple natural

language templates, one for each device, into an overall description:

Q: Explain the behavior of this cycle
A: The liquid working fluid flowing through Heater-2

absorbs heat from the environment. The heated working
fluid then flows to Splitter-2. Splitter-2 splits the
working fluid into two streams, one going to Mixer-2
and the other going to Mixer-3. Mixer-2 delivers
working fluid from Splitter-2 and Splitter-1 to Pump-1.
Pump-1 delivers liquid working fluid to Heaterl.
Heater-1 vaporizes the working fluid and delivers it to
Mixer-1. Mixer-1 acts as a jet-ejection pump, powered
by the stream of high-energy working fluid from Heater-
1. It compresses the vapor from Splitter-3 and
delivers the resulting mixture to Cooler-1. Cooler-1
cools the working fluid and delivers it to Splitter-1.
Splitter-1 splits the working fluid into two streams,
one going to Mixer-3 and the other going to Mixer-2.
Mixer-3 delivers working fluid from Splitter-1 and
Splitter-2 to Throttle-1. Throttle-1 causes a drop in
the pressure of the working fluid which results in the
fluid becoming saturated. This saturated mixture then
enters Splitter-3. Splitter-3 causes the working fluid
to partially evaporate; gas, absorbing the heat of
vaporization from the remaining liquid, exits Splitter-
3 and flows to Mixer-1. The chilled liquid flows to
Pump-2.

In all of these answers, the difficult part is determining the role that a particular device

plays. Plans are easy to recognize once role assignments have been made, and a

behavioral description is easy to generate from a set of roles because roles entail

expectations about behavior. The central position of a role in this theory results because

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

the fundamental ambiguity is not in the causal model of the device, but in how the

designer wants to exploit that causal model. A behavioral model of this cycle wouldn’t

enable us to explain this cycle because we need to make assumptions outside the realm of

the underlying physical theory. The cycle simply doesn’t contain the information we

desire; it might well be that the cycle is intended to be a dynamic artwork. Thus the best

we can do is provide the most likely explanation, not a correct one.

Our inability to deductively reason about the intention of a cycle is not so grim as

it might seem. People routinely make such inferences in the social domain without a

complete model, a fact that Schank has stressed (Schank 1986). Providing a plausible

answer rapidly is often quite valuable. We contend that the evidential reasoner’s lack of

deductive soundness, when made explicit to students, is useful pedagogically, in that it

requires the student to pass judgment on the validity of the advice. The system’s

explanations of the advice make clear the evidence for and against the inference,

providing the student with a basis forjudging its accuracy.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3
TELEOLOGICAL REPRESENTATIONS

TnT consists of two tightly interrelated components, a representation language and a

reasoning mechanism. The representation language, which is the subject of this chapter,

provides us with the ability to define localities within the topology from multiple points

of view, and the reasoning mechanism, discussed in Chapter 4, enables the dynamic

refinement of these representations as it propagates to quiescence.

The representations that TNT defines are shown in Figure 3.1. The flow of

inference is from left to right, and the overlapping of the locality and role representations

illustrates the tightly interleaved nature of the inference mechanism. Note that, aside

Locality:
Adjacency, Ranges of Influence

Plans

Aggregate
Devices

Design
Goals

Cycle

Physical
Effects

Structural
Description

Inequality
Information

Roles

Figure 3.1 TNT representations

23

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

from cycle-type, nothing in these representations is specific to the domain of

thermodynamics. They would apply equally well to any domain in which structure is

represented as a graph whose edges constitute the sole mechanism for causal

communication. The following discussion, however, is grounded in the domain of

thermodynamics.

The design goals at the right of the figure are those that we touched on briefly in

Chapter 2. Design goals provide the context for the explanation generated. To recap,

there are three design goals:

1. Achieve a change in the environment
2. Achieve the change efficiently
3. Preserve the system

The three representations immediately to the left of design goals—aggregate devices,

roles, and plans— are defined a priori to entail the achievement of one or more of these

goals. Natural language templates associated with each of these representations provide

explanatory text in terms of the design goals. For example, a pump has two potential

roles, flow-producer or flash-preventer. In its capacity as flash-preventer, the pump

increases the pressure of the working fluid so that subsequent injection of heat does not

cause the fluid to prematurely vaporize. This role directly achieves the third design goal,

that of preserving the system, because premature flashing would have adverse

consequences for downstream devices, such as the system’s main boiler, which might

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

melt. Plans both directly achieve goals and may also associate a particular goal with the

role of a particular device.

In the rest of this chapter, we will describe each of the representations shown in

Figure 3.1, with the exception of the identification of cycle type, which is discussed in

Chapter 4. In general our discussion will follow the left-to-right organization of Figure

3.1.

3.1 Structural Representations
The representation of the input structure is in terms of devices and their immediate

connectivity, that is, their upstream and downstream neighbors. This representation

balances the need for expressiveness against computational tractability. The primary

abstraction in this representation is the fixing of the number of inlet and outlet ports for

each device type. In reality, some thermodynamic components may have an arbitrary

number of ports. We model such components as composites o f our device

representations, treating the latter as primitive stages; for example, a steam turbine in a

regenerative power plant cycle would be modeled by connecting several turbine devices

in series with splitters, which provide the necessary bleed ports for regeneration. Our set

of devices, shown in Figure 3.2, is also the minimal set capable of modeling the single

substance cycles commonly found in textbooks; with this set we have constructed models

of all such cycles to be found in Analysis o f Engineering Cycles (Haywood 1991).

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

Turbine Compressor

■Q«
Pump

<3>

Splitter Mixer Throttle

Heater

o
Source

Cooler

€>
Sink

Heat exchanger

Reactor

Figure 3.2 Schematic device representations

Some engineering notations include symbols for more specific types of

components, such as jet-ejectors and flash-chambers, which we model as mixers and

splitters, respectively. One might argue that the inclusion of such symbols would, at the

extreme, render our theory superfluous, since each component symbol would have a one-

to-one mapping to its function, eliminating any functional ambiguity in the structural

representation.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

There are two countervailing considerations, one practical, and one pedagogical.

From the practical point of view, we would merely convert ambiguity in function into

ambiguity in structure by adopting function-specific symbols. For example, the same

pump may be acting as either a flash-preventer or a flow-producer, so we would end up

with two symbols for the same component. A contractor constructing a system based on

such a schematic would face the dual of the disambiguation task that we are addressing.

Pedagogically, a primary goal of CyclePad is to bring student to reflect on the

thermodynamic processes taking place in the cycle at hand. Requiring the use of a

limited palette of components, we believe, helps students to connect their understanding

of abstract thermodynamic processes with the concrete realities of cycle design. Whereas

a jet-ejector icon would provide the student with a black box ready for plugging into a

design without further thought, forcing the student use a mixer to model a jet-ejector

requires some thought about why such a model is appropriate.

3.2 Components and Their Potential Roles
An abstraction hierarchy of component types enables evidential tests to be written for the

appropriate class of devices. This hierarchy is shown in Figure 3.3. The first level of

abstraction is represented via a genus predicate, whereas the second is represented via a

phylum predicate.

Each component is also defined to have from two to five distinct roles. The space

of function is partitioned a priori into a taxonomy of these roles, as shown in Figure 3.4.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

Device

1 i

Pressure changer Heat changer Flow changer

Free Work Work Heat Heat Junction
•
Terminalexpander consumer producer producer consumer

Throttle Compressor Pump Turbine Cooler Hx cooler Heater Hx heater Mixer Spitter Source Sink

Figure 3.3 Device type hierarchy

Note that roles may be hierarchical. For example, the heat-injector role

specializes into preheater, fluid-heater, and reheater, and the heat-ejector role of a cooler

specializes into inter-cooler and fluid-cooler roles. This hierarchy enables TNT to better

cope with ambiguity. For example, in some situations there may be evidence that a

particular heater is a heat-injector, and we would like to be able to take this into account

even when we are unable to disambiguate between preheater and a fluid-heater roles. The

balance of this section describes the device representations; readers familiar with

thermodynamics may wish to skim or skip this material.

Cooler. A cooler ejects heat energy from the working fluid to the environment. When

acting as a heat-ejector, its purpose is to reduce the energy of the working fluid flowing

through it. When acting as a heat-provider, its purpose is to provide heat to the

environment. A hot-water radiator is actually a cooler operating as a heat-provider. A

heat-ejector role is further partitioned into a fluid-cooler, which acts to cool its working

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

fluid, and an intercooler, which is interleaved with compressor stages and is intended to

reduce the work required of later stages by cooling the gas that is being compressed. The

intercooler role subsumes the fluid-cooler role, yet we make this distinction because

intercoolers are constituents of common thermodynamic structural “idioms” that provide

valuable functional information. For example, an intercooler is an indication that the

attendant rise in the temperature of the working fluid is an undesirable side-effect.

Heater. A heater injects heat energy from the environment into the working fluid. When

acting as a heat-injector, its purpose is to increase the energy of the working fluid flowing

through it. When acting as a heat-absorber its purpose is to cool the environment by

absorbing heat from it. The coils in a domestic refrigerator comprise a heater that absorbs

heat energy from the food in the refrigerating compartment. A heat-injector role is

partitioned into fluid-heater, preheater, and reheater roles. A preheater adds heat to the

working fluid upstream of the main heater (which acts as a fluid-heater) and a reheater

adds heat between the stages of a turbine. Both are strategies for increasing the efficiency

of the system (the second rational-designer goal), and hence are important roles to

distinguish.

Reactor. A reactor, like a heater, injects heat-energy into the working fluid. Unlike a

heater, however, it does not have a heat-path that crosses the system boundary to connect

it to a heat-source in the environment. Reactors, therefore, are never heat-absorbers.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

Mixer Heater Cooler

Heat
absorber

Heat
ejector

Heat
injector

Heat
provider

Open
Heater

Open
Cooler

Flow
join

Jet
ejector

Reheater Fluid
heater Preheater Inter

cooler
Fluid
cooler

Splitter Compressor jpg Pump Turbine Throttle

Fluid
heater

Flash
preventer

Pressure
decreaser

Pressure
increaser Saturator

Flow Flash Bleed
fork chamber valve

Work Fluid
source cooler

Figure 3.4 Role taxonomy

Heat-exchanger. The representation of heat-exchangers is slightly more involved. From

a structural perspective, a heat-exchanger consists of a device with two inlets and two

outlets, but from a functional perspective it is more useful to consider it to be a heater and

a cooler connected via a heat-conducting path.

Hx-cooler. An hx-cooler is a cooler that ejects thermal energy to a heater, to which it is

coupled. Hx-coolers take on the same roles as coolers, but additional testing is necessary

to ensure that their corresponding heater halves take on appropriate roles. For example, if

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

a hx-cooler is acting as a heat-provider, then its heater half must be acting as a heat-

injector. Otherwise the design would fail to achieve any of the design goals, but would

instead be arranging to provide heat to a device that in effect throws it away.

Hx-heater. An hx-heater is a heater that receives thermal energy from a coupled hx-

cooler, but in other respects behaves like a heater. As in the case of the hx-cooler,

additional testing is necessary to ensure that its corresponding half is playing an

appropriate role.

Turbine. A turbine consists of a series of fan blades arranged along a shaft; high-energy

working fluid expanding through the turbine causes the shaft to rotate, converting thermal

energy into mechanical energy, or work. The most common role of the turbine is to

produce work. However, the resisted expansion that takes place within the turbine also

causes the temperature of the working fluid to fall appreciably, and so turbines can also

act as fluid coolers. They are used in this capacity most often in gas-liquefaction systems,

where the greater decrease in temperature offsets the greater complexity of a turbine over

a throttle, which affords an unresisted expansion of the working fluid.

Compressor. A compressor is very similar to a turbine, but instead of allowing the

working fluid flowing through it to expand, mechanical energy applied to its shaft causes

the working fluid to be compressed. Compressors can only operate on gaseous working

fluids, because condensation causes significant erosion of their fan blades. Compressors

are among the least functionally ambiguous components, most often acting as pressure-

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

increasers. There are circumstances, however, in which the attendant increase in thermal

energy is the desired effect, and hence they can also act as fluid-heaters.

Pum p. A pump, like a compressor, generally acts as a pressure-increaser, although it can

only operate on liquids. If the working fluid is a mixture of liquid and gas (i.e., in the

saturated phase) then the pump will cavitate, a process in which pockets of liquid boil and

implode, creating shock waves likely to cause mechanical failure. For this reason, pumps

can also act as flash-preventers; by increasing the pressure of the working fluid, they

prevent it from flashing into a saturated vapor mixture. This is often necessary when

preheaters are used to improve the efficiency of the cycle, and is an example of the third

rational-designer goal, preserving the integrity of the system.

Throttle. A throttle, like a turbine, causes the working fluid to expand, but unlike a

turbine a throttle generates no work. Throttles have two roles, saturator and pressure-

decreaser. A saturator (which subsumes pressure-decreaser) is intended to cause the

working fluid to change from either a gas or a liquid to a saturated mixture. A domestic

refrigerator uses a throttle to cause the refrigerant that has been cooled in the coils on the

back or bottom of the refrigerator to partially vaporize. This vaporization takes place in

the cooling coils of the refrigerator, and, because vaporization requires heat, the

refrigerant literally sucks the heat out of the contents of the refrigerator. Throttles are

also used to step down the pressure of a working fluid to allow it to mix with another,

lower-pressure stream. This is a common application in heat-engines, where steam bled

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

from the turbine and used to preheat the working fluid flowing to the boiler must be fed

back into the system at a lower pressure. In some cycles this reduction in pressure is

assumed to occur within the heat-exchangers, so the throttles may be implicit in the

design. TnT handles both explicit and implicit throttles; for an example, see Cycles 34

and 35 in Appendix B.

Mixer. Mixers are among the most flexible of components. They may act as simple

flow-joins, as open heaters, open coolers, or as jet-ejectors. In addition, they may form

the inlet half of a type of aggregate device called a steam drum, in which case they are

considered to be playing the role of an open-heater. We describe aggregate devices in

greater detail below, in Section 3.5. A flow-join simply joins two flows, and is subsumed

by the other three roles. An open-heater is a direct-contact heat-exchanger that acts to

increase the heat of one stream by mixing it with a hotter stream. Such mixing is more

thermodynamically efficient, although it requires the streams to be at the same pressure,

which may require more pumps in the system. Direct-contact heat-exchange is also used

to deaerate the working fluid in power-plants, as oxygen dissolved in the working fluid

can cause corrosion. An open-cooler acts to cool a given flow of working fluid by mixing

it with a cooler fluid. Open-coolers are much less common than open-heaters. A jet-

ejector uses a high-velocity stream of working fluid to entrain and compress another

stream of working fluid, in effect acting as a pump. Whereas pumps receive an input of

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

mechanical energy, jet-ejectors utilize thermal energy. This can be more efficient when

there is a source of heat that would otherwise go to waste.

Splitter. Splitters, like mixers, can play several different roles. They may act as simple

flow-forks, as flash-chambers, or as bleed-valves. A flow-fork splits a flow into two

flows, and is subsumed by the other three roles. A flash-chamber is a container in which

the working fluid, having just undergone a decrease in pressure, either by flowing through

a turbine or through a throttle (which would be acting as a saturator), suddenly changes

phase to a saturated mixture. The liquid part of the flow is then separated from the gas

part. Flash-chambers are most commonly used in gas liquefaction plants, in which a

cooled and compressed working fluid is allowed to precipitate in the flash-chamber.

Occasionally industrial refrigerators or air-conditioners will make use of a flash-chamber,

and in some nuclear plants the steam flowing into the final turbine stage first passes

through a flash chamber to remove the liquid that would otherwise damage the turbine

blades. Bleed valves are flow-forks between the stages of a turbine that are intended to

bleed off a portion of the working fluid, typically for use in preheating the working fluid

flowing to the boiler. Although bleed-valves are tantamount to flow-forks, they tend to

be used in recurring design patterns and so we have found distinguishing this role to be

quite useful in inferring the role of other components connected to them.

Source. A source simply supplies a working fluid, and hence plays only this one role.

Sink. A sink simply receives a working fluid, and hence plays only this one role.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

3.3 Physical Effects
As we saw in the example in Chapter 2, several physical phenomena occur within a

heater; there is a heat-flow from the environment to the working fluid, and as a result the

temperature of the working fluid may increase, or the working fluid will undergo a phase

change, such as boiling. Qualitative Process Theory (Forbus 1984) makes precise

distinctions between a process, such as heat-flow, and its effects, such as a change in

temperature. From a teleological perspective we are primarily concerned with effects,

such as a change in temperature or phase, so our representations of process are minimal.

The central concern in TnT is the attribution of intention to effect. An effect can

be intentional or a side-effect. In some cases, side-effects are beneficial, in others they

have no impact, and at times they are necessary evils. For example, in a heater acting as a

heat-absorber with a subcooled working fluid flowing through it, the temperature of the

working fluid will rise; this is an unfortunate side-effect, because if it didn’t we’d have an

infinite heat-sink, which would be tantamount to a thermal perpetual motion machine.

The heat-flow process from the environment to the working fluid will produce a decrease

in the temperature of the environment, which in this case is the intended effect. In

contrast, a heater acting as a heat-injector is intended to increase the thermal energy of the

working fluid (i.e., inject heat), and the fact that the temperature of the environment

decreases (or would decrease if we didn’t maintain a steady rate of combustion) is an

unfortunate side-effect.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

As we have noted, TNT is a theory of reasoning directly from structure to

function, without requiring a behavioral reasoning step. Therefore there are no causal

models of the devices in this system. Propositions about effects and cycle requirements

(described below) verge on behavioral knowledge, but are not sufficient to reason about

behavior, and in fact are used mostly to detect errors in inference. Device-type statements

and roles, which the domain expert defines, package most of the system’s behavioral

knowledge.

For each device, TNT instantiates inequality statements about temperature and

pressure, the two parameters we can most directly manipulate within a cycle. For

example, one consequence of finding a heater is the fact that the temperature of the outlet

is greater than or equal to the temperature of the inlet. This soft inequality is necessary

because the heater might be accepting a saturated liquid, that is, one just on the verge of

boiling, and vaporizing it, returning saturated vapor. This process requires large amounts

of energy, but doesn’t produce a change in the temperature of the fluid. Only when the

fluid is completely vaporized can further heat flow cause the temperature to rise, in which

case the fluid is said to be superheated. For other devices, we can assert hard inequalities;

a turbine, for example, must produce a decrease in pressure (and also a decrease in

temperature, generally a neutral side-effect, although sometimes exploited in cryogenic

cycles).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

Performing a transitivity analysis on these statements enables us to detect some

types of malformed cycles, which is particularly important in pedagogical contexts, as

students may not always act as rational designers. Suppose that a student has constructed

a cycle in which there are compressors but no throttles or turbines. If we start at an

arbitrary point on the cycle, assume the pressure at that point is a reference pressure, and

then employ transitivity to infer the relationship of pressures at downstream points, we

will eventually find that the pressure never decreases, which of course is impossible.

This computation turns out not to be as useful as we first thought, due mostly to

the presence of the soft inequalities (i.e., <=, >=), which introduce ambiguity into the

transitive inferences. In some cases (e.g., the cycle is a heat engine that contains only

compressors, indicating the working fluid never condenses) these soft inequalities may be

“hardened” (i.e., converted into < or >), reducing the ambiguity and providing more

inferential leverage.

Inequality information may also be used to determine the role of a device,

particularly for mixers; a temperature difference across the inlets to a mixer is strong

evidence that the mixer is acting as an open heat-exchanger (in which a hot stream mixes

with a cooler stream in order to increase the temperature of the outlet), while a pressure

difference is strong evidence that the mixer is acting as a jet-ejector (a type of pump, as

we saw in the example of Chapter 2).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

38

3.4 Domain Requirements
In addition to reasoning about physical effects, TNT also makes inferences at a global

level, reasoning by exclusion based on domain characteristics. For example, heat-engines

and refrigerators must operate between a high-temperature reservoir and a low-

temperature reservoir, and hence both must contain at least one heater and at least one

cooler. Heat-engines require a means of converting thermal into mechanical energy, so

they require at least one turbine. TnT uses the requires and singleton relations to

represent the global information used in this reasoning.

Requires: (requires <entity> <required-role>). The requires predicate states the

requirements for the cycle, in terms of a role. For example, all heat-engines require a

work-producer, a heat-injector, and a heat-ejector. A refrigerator requires both a heat-

absorber and a heat-ejector.

Singleton: (singleton <entity> <context>). The singleton relation may apply in the

global context, as in the case where a cycle has a single cooler, or in a context defined by

other roles. For example, if a refrigerator cycle contains two heaters, one of which is

construed as a heat-injector, then in this context the other must be a singleton heat-

absorber if the cycle is to operate as a refrigerator.

3.5 Locality Representations
A critical aspect of mapping from structure to function is reasoning flexibly about

locality. Although the representation of components via the (<type> <name> <inlet>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

39

<outlet>) form captures information about directly-connected components, we also need

to be able to describe and reason about a broader neighborhood, the structural context in

which a particular component is embedded. For this purpose TNT defines the concepts of

adjacency, ranges o f influence, and aggregate devices. To illustrate these relations and

how they support teleological inferences, we will use the cycle shown in Figure 3.5,

which is a relatively simple regenerative Rankine heat-engine.

In this system the main fluid loop is indicated by the shading, and the power is

generated by the three turbines in series across the top of this loop. Between these

turbines are two splitters acting as bleed-valves that tap some of the high-energy steam

Expanding

SB
Splitter-2

Turbine-3
Sputter-1

Turbine-1 Turbine-2

Cooler-1Heater-1

Throttle-1Heat-exchanger-1
Cooling half

Pump-1Mixer-2 Mixer-1Pump-3 Heat-exchanger-1 Pump-2
Heating half

Compressing

Figure 3.5 Regenerative Rankine power cycle

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

off for use in preheating the working fluid. This preheating occurs in Heat-exchanger-1

and in Mixer-1, which is acting as an open heat-exchanger. Preheating increases the

average temperature of heat-injection, which increases the thermal efficiency of the cycle,

an example of the second design goal. Heater-1 is acting as the boiler of the system, and

Cooler-1 as the condenser. Pumps I, 2, and 3 provide the compression. Note that,

despite the greater complexity of this cycle, we still find the four fundamental

processes—compressing, heating, expanding, and cooling—occurring in the same order

as they did in the simple cycle presented in Chapter 2.

Adjacent: (adjacent <upstream-component> <downstream-component> <path>). Two

components are adjacent if they are either directly connected to one another or connected

solely via splitters and or mixers that are acting as flow-forks or bleed-valves and flow-

joins respectively. Flow-joins and flow-forks have no effect on the thermodynamic

properties of the working fluid, acting only to divide or join physical streams that are

considered to be qualitatively identical in their intensive properties.1 The adjacent

relation therefore can be used to express the fact that two turbines joined in series by a

splitter acting as a bleed-valve are in fact neighbors. Note that the adjacency relation

depends on the current functional construal of the cycle, and will be retracted if a splitter

or mixer connecting the two components is construed to have a role other than flow-join,

1 An intensive property, such as temperature, remains constant when one changes the amount o f a substance.
Fill a coffee mug with hot coffee and the temperature o f the coffee in the mug and in the pot will be the
same. In contrast, extensive properties, such the thermal energy in the coffee pot, depend on the amount
o f the substance.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

Turbine-1

Fluid
Heater

Heater-1

Pump-3 /
Hxl -Heater

Hx1-Cooler

Splitter-1

Pump-2 Mixer-2

Throttle-1

Turbine-2

(̂ | ®
--I Splitter-2

Mixer-2

Open
Flow-join heat-exchanger

Mixer-1

Turbine -3

Cooler-1

Pump-1

►

Figure 3.6 Adjacency

flow-fork, or bleed-valve. This is one example of the tight interleaving between the

locality and role representations that occurs during the inference process.

of the diagram illustrates the simplest definition of adjacency, that of neighboring

devices. If Mixer-1 were not acting as an open heat-exchanger, but only joining the flows

from Splitter-2 and Pump-1, then nothing of thermodynamic interest would be occurring

at this junction, and the adjacency relation would extend through it (and through Mixer-2

for the same reason) to Pump-2. Note that this relation might well change as more

information becomes believed during the course of inference.

In Figure 3.6 the shading connecting Pump-1 to Mixer-1 in the lower right portion

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

The locality enclosed by the dotted line on the left side of the diagram illustrates

one way in which adjacency relations provide evidence for particular roles. In this cycle

we have three heaters in this system, Mixer-1 in its capacity as an open heat-exchanger,

the heater half of Heat-exchanger-1, and Heater-1. Which of these is the primary fluid-

heater (i.e., the boiler) of the system? By definition, the primary heater of a system

supplies high-energy working fluid to the work-producing devices, so therefore it must

occur, topologically, immediately upstream of the turbines and downstream of the last

compressing device. The adjacency relations between Pump-1 and Heater-1 and Heater-1

and Turbine-1 provide strong evidence that Heater-1 is the primary heater of this cycle,

and is therefore acting as a fluid-heater (which is a specialization of the heat-injector

role), because the heater is the last one upstream of the cycle’s turbines.

Downrange: (downrange <upstream-component> <list o f downstream-components>).

Locality in thermodynamic cycles may be also thought of as the extent of a component’s

effect on the working fluid. For example, a pump’s effect on the working fluid—

increasing its pressure— persists until the working fluid passes through a device, such as a

throttle or a turbine, that causes a reversal— in this case, a decrease in pressure— of the

original effect. Regions of affect are defined to extend downstream from the component,

and are termed ranges of influence; the downrange relation represents these ranges.

Ranges may include splitters, as in the case of Turbine-2 in Figure 3.7.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pump-3 Hx1-Heater Pump.2
Mixer-2 Mixer-1 Pump-1

Flash-preventer

Figure 3.7 Ranges of influence

To understand how this relation may be useful, consider the range of influence of

Pump-2, shown within the locality encompassed by the dotted line of Figure 3.7. Pumps

may play one of two roles, flow-producer or flash-preventer. A flash-preventer increases

the pressure on the working fluid in order to prevent it from vaporizing prematurely. In

the above cycle, premature vaporization caused by the heat-injection occurring in H xl-

heater, would cause Pump-3 to stall, because handling partially-vaporized working fluids

is a difficult engineering task. If the flow of working fluid to Heater-1, the boiler of the

system, is interrupted even momentarily, the vast amount of thermal energy flowing

through Heater-1 will cause serious damage, to the point of melting portions of the heater.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

In a large powerplant, the boiler may be ten stories tall, and is generally suspended within

a framework of girders rather than resting on a foundation because it will stretch as much

as a yard in the vertical dimension before reaching operating temperatures.

Finding a pump with a heater and another pump downstream, and then another

heater feeding a turbine downstream of that would be strong evidence for the first pump

playing a flash-preventer role. One could define a specific template, yet this would prove

unworkably brittle, because an arbitrary number of devices may occur within between the

initial pump and the turbine without changing the strength of the evidence. For example,

Mixer-2 might be positioned between Hxl-Heater and Pump-3 (in an arrangement known

as feed-forward), rather than in its position upstream of Pump-2. The downrange relation

provides us with a precise locality in which to look for a heater, then a pump, then

another heater, and finally a turbine, in that order but without precisely specifying the

relative locations of each device (just their relative ordering), and thus allowing for an

arbitrary number of intervening devices. However, should one of these intervening

devices be a turbine or throttle, that would terminate Pump-2’s range of influence and

prevent the inference, since one of the essential components (e.g., the downstream pump,

Pump-3) would not be part of the range of influence.

Teleological Patterns. Certain configurations of devices that are playing particular roles

occur with sufficient frequently that we gain leverage by representing them explicitly. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

Cooler-1

Splitter-1 Splitter-2
Turbine-1 Turbine-2 Turbine-3

Bleed valves

Bleed pathsHeater-1

Open
heat-

exchanger
Flow-join

S3 Hx1 -Cooler i _ Bj
g jy S j Throttle-1

Pump-3 Hx1 -Heater Pump-2
Mixer-2

Pump-1
Mixer-1

Figure 3.8 Examples of teleological patterns

our work with thermodynamic cycles, we have identified two such patterns, bleed-paths,

and subcycles.

Bleed-paths enable the designer to achieve the second design goal, efficiency. In

Figure 3.8 there are two bleed-paths in this cycle, one starting at Splitter-1 and

terminating at Mixer-2, and the other starting at Splitter-2 and terminating at Mixer-1.

Bleed-paths are common because it is a fact of thermodynamics that bleeding a small

portion of the steam flowing through a turbine and using it to preheat the working fluid

will increase efficiency; recall that, by the Second Law of thermodynamics, we cannot

convert all the heat energy in this portion of steam into work. Although there will be

some inefficiency in the heat-transfer process, we can utilize most of this heat energy for

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

the purpose of preheating the working fluid, and therefore gain more advantage by

bleeding this portion of steam than by extracting work from it.

Subcycles are the most general patterns, and may in fact subsume the entire cycle.

In a system containing more than one subcycle, subcycles are connected solely via the

heat-path of a closed heat-exchanger; by definition, no fluid-path can exist between two

subcycles. Due to their generality, subcycles, unlike steam-drums and bleed-paths, may

play several different roles and may also be the primary participants in plans. Figure 3.9

illustrates the roles a subcycle may play.

A subcycle acting as a work-generator will contain a heater, a turbine, a cooler,

and a compression device, and constitutes a heat-engine. This and the energy-remover

role, which removes heat from an environment (and hence acts as a refrigerator or heat-

pump), are the most common roles. Work-generators are further specialized into simple-

engines, topping, bottoming, and cascading subcycles. A topping subcycle is one whose

sim ple eng ine topping

h ea t mover energy rem over

bottoming

Subcycle

cascad ing

radiation isolatorwork g e n e ra to r

Figure 3.9 Subcycle roles

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

working fluid leaves the last turbine at a high temperature; gas-turbine engines are good

candidates for topping subcycles. Rather than eject this heat to the atmosphere, a

bottoming subcycle will utilize it to generate additional power, most likely via a vapor

cycle. Finally, a cascading cycle would accept heat from a topping cycle and eject it to a

bottoming cycle (in practice, there are few cycles comprised of more than two power

coupled subcycles). Mercury or liquid sodium might be used in the topping cycle in this

case.

A subcycle acting as a heat-mover is transporting heat from one location to

another. A home heating system employing steam radiators might have such a subcycle

for transporting heat from the central boiler throughout the building, or a heat-mover

subcycle might be coupled to a power plant to provide district heating; some cities in

Scandinavia utilize such systems to keep streets free of snow. Because a subcycle acting

in this capacity isolates the working fluid from that of the power- or heat-producing

subcycle, such a design enables the two subcycles to operate with different working

fluids, or at substantially different pressures. Any contaminants that might infiltrate a

dispersed heat-moving cycle cannot affect the cycle to which it is coupled, thereby

preserving any turbomachinery present on that cycle.

Finally, a radiation isolator acts to contain the radioactivity of a reactor-driven

powerplant to as small an area as possible, typically comprised of the reactor vessel itself,

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

some pumps, and a closed heat-exchanger. Such isolation prevents the rest of the plant

from becoming radioactive.

Aggregate Devices The final representation of locality is the aggregate device. In the

cycle in Figure 3.10 we have three turbines in series producing the work output. If we

consider these as a single device, then we can generate a simpler, functional topology for

the cycle that facilitates comparison of cycles. Aggregate devices of non-opposing types

can be interleaved, as indicated by the aggregate compression and heating processes.

However, an expansion device will terminate a aggregate compressor, and a cooling

device will terminate an aggregate heater. Thus it is possible for cycles to contain more

Turbine-1 Splitter-1 Turbine-2 Splitter-2 Turbine -3

Expansion
Cooler-1

Cooling

Heater-1

Heating
Throttle-1

Hx1-Cooler

„ Mixer-2 . . . ,Pump-2 Mixer-1XHx1-HeaterPump-3 Pump-1

Compression'

Figure 3.10 Aggregate devices

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

than one aggregate device of any type.

Aggregates are also useful in simplifying cycles that contain devices in parallel.

Designers place turbines in parallel in order to keep the maximum turbine diameter to a

minimum. Parallel turbines are aggregated into a single pturbine aggregate. Finally, TNT

recognizes another type of aggregate called a multi-port-chamber, which is formed by

connecting a mixer to a splitter. Multi-port chambers may act as steam-drums in heat-

engines or as flash-tanks in gas-liquefying systems.

Steam-drums consist of a mixer connected to a splitter, and are used to separate

steam from boiling water. The mixer of a steam drum plays the role of an open-heater,

while the splitter plays the role of a flash-chamber, with saturated liquid exiting one

outlet and saturated vapor the other. Steam-drums address the third design goal,

preserving the system, by providing a reservoir of high-energy fluid for reacting to sudden

changes in load and by enabling the precipitation of contaminant solids in the working

fluid. Should such solids become entrained in the working fluid flowing through the

high-energy portions of the cycle, such as the turbines, significant fouling and damage to

the turbine blades may occur. Cycles 14 and 18 in Appendix B contain steam drums.

Flash-tanks provide the reciprocal function in refrigeration systems, cooling a hot

gas by bubbling it through a cool liquid. Cycle 27 in Appendix B contains two flash

tanks, one formed by MXR-2 and SPL-1 and the other by MXR-3 and SPL-2.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

(defPlan <plan-n.ame> {<plan-abstraction>} *
<comment>
(:goal <list-of-goals-achieved>
:NL-phrase <passive natural language descriptor>
:key-roles <list of roles central to plan>
:conditions {<list of conditions for plan>}*

Figure 3.11 Syntax of defPlan form

3.6 Plans
Whereas roles represent inferences about function at the component level, plans represent

functional inferences at the system level. Plans are patterns o f function that have been

abstracted and reified. They achieve one or more of the rational-designer teleological

goals. As with roles, we organize ancillary domain knowledge around plans; plans also

form the basis for the functional descriptions of cycles presented in Chapter 3. For

example, descriptive knowledge of use to a coach may be associated with a particular

plan. Unlike roles, plans are not mutually exclusive, so several may be active for a given

cycle.

Plans are represented via the defPlan form, as shown in Figure 3.11. The plan-

name provides instrumentation and debugging information. The optional plan-

abstraction enables us to mark plans as specializations of more general plans, a fact that

is incorporated into the generation of the cycle’s explanation. The comment and NL-

phrase provide the raw material for the generation of explanations. The goal of the plan

is a list of all rational-designer goals that the plan achieves. The key-roles are those roles

that are central to the plan, and finally the conditions are those facts that must be true

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

(defPlan direct-regenerate-with-minimal-delta-T (direct-contact-regenerate)
•Direct contact is the most efficient form of heat exchange, but a large
temperature difference in the streams will lead to irreversibilities.
Increasing the pressure and intercooling a steam bleed can convert it to a
dry saturated gas at the same temperature as the wet saturated liquid to be
preheated"
:goal (:increase-efficiency)
:NL-phrase “superheated fluid bled from the turbine is saturated then is

directly mixed with the boiler feed liquid"
:key-roles ((role ?mxr open-heater ?bp))
:conditions
((role ?intrclr intercooler ?prob)
(hx-cooler ?intrclr ?clr-in ?clr-out)
((bleed-path ?bleed-valve ?devs)
:test (and (member ?mxr ?devs)

(member ?intrclr ?devs)))))
Figure 3.12 Example of a plan

prior to instantiation of the plan. Key-roles are distinguished from conditions to provide

greater focus in explanations. The explanations shown in Appendix B are generated from

instantiated plans.

Figure 3.12 shows an example of a plan form that describes a plan to achieve

regeneration (preheating the boiler feed-fluid in order to increase the average temperature

of heat-injection, and hence the cycle’s thermal efficiency) in a manner that minimizes

thermal inefficiencies. Note that this plan is a specialization of the direct-contact-

regenerate plan, which only requires that hot working fluid be mixed in a mixer acting as

an open heat-exchanger with working fluid on its way to the boiler. The key role in this

case is an open-heater, where the actual regeneration takes place. The conditions specify

that this plan is only active when the bleed-path that feeds the mixer contains a closed

heat-exchanger acting as an intercooler. Because the intercooler role is defined with

respect to compressors (an intercooler cools a gas being compressed, increasing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

efficiency by reducing the compression work necessary), we need not explicitly mention

in the conditions the compressors that are an integral part of this plan. Appendix C lists

all the plans in the C a r n o t knowledge base.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4
REASONING

TnT infers function from structure in three steps, as shown in Figure 4.1. The first step

consists of a topological parsing of the cycle in which TnT identifies teleological patterns

(fluid-loops, steam-drums, bleed-paths) and subcycle structural elements, infers the

cycle’s type, and determines the downstream ranges of influence for each device. In the

second step relevant evidence is instantiated and roles are inferred. In the third and final

step, TnT identifies plans that achieve particular goals. This chapter provides a detailed

description of these three steps.

Infer-function
1. Analyze cycle topology
2. Loop until no changes in evidence sets

For each device D
For each role R of D

Update evidence set for R
Propagate evidence for R

Accept most likely role for D
3. Instantiate applicable plans

Figure 4.1 Reasoning algorithm

4.1 Step One: Topological Analysis
Topological analysis consists of summarizing certain aspects of the input structural

description, identifying fluid-loops, subcycles, and influence-ranges, and determining the

cycle type, as shown in Figure 4.2. Of these steps, fluid-loop identification is by far the

most involved.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

Analyze-topology
1. Summarize structural components
2. identify fluid loops
3. Identify subcycles
4. Identify ranges of influence
5. Identify cycle type

Figure 4.2 Topological analysis algorithm

4.1.1 Summarizing Structural Information
Explicitly enumerating the constituents of device-type sets (e.g., the set of all turbines)

sanctions several efficient local inferences about function. In particular, sets consisting of

a single device (e.g., a single heater) provide inferential leverage. Recall that, by the

Second Law of thermodynamics, all thermodynamic cycles must operate between two

reservoirs of differing temperature. As we noted in Chapter 3, this requirement means

that all cycles must have at least one heater and one cooler, because these devices are the

only ones in our structural representation that have heat-paths connecting the cycle to the

environment. A singleton heater in a cycle identified as a heat-engine is perforce a heat-

injector, whereas if the cycle is identified as a refrigerator, it must function as a heat-

absorber.

4.1.2 Parsing Cycle Topology into Fluid Loops
Fluid-loops are closed circuits that constitute paths over which a bit of working fluid

could flow during steady-state operation of the cycle. As such, they respect the

directionality of flow that is part of the structural representation of the cycle. TNT also

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

i i
1 T

Fluid-loop 1

_ o

Figure 4.3 Examples of fluid loops

considers each potential path originating at a source and terminating at a sink to be a

fluid-loop.

Fluid-loops may or may not overlap; Figure 4.3 illustrates both cases. TnT uses

fluid-loops for three purposes; (a) to identify teleological patterns (e.g., bleed-paths),

subcycles, and influence-ranges, (b) to infer the type of system (either heat-engine or

refrigerator), and (c) to test for locality among components in the course of identifying

roles.

The algorithm for fluid-loop identification, shown in Figure 4.4, starts at all

mixers, splitters, and heat-exchanger halves and follows the structural linkages

downstream until the starting device is encountered, or, if none of these devices are

present, chooses an arbitrary starting point. These starting points

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

Identify-fluid-loops
For each start-point SP in Fetch-start-points

Until Fluid-loop-identification-complete
For each fluid-loop FL in Trace-fluid-loops(SP)

Assert-fluid-loopl(FL)

Fetch-start-points
For each device D

When Splitter?(D) or Heat-exchanger?(D)
Collect D

T race-fluid-loops(start)
Find-fluid-loops(start,{},{},{})

Find-fluid-loops(start,route, stuffs, route-start)
For each device in Fetch-outlet-devices(start)

Let common-stuff = Find-common-stuff(start, device)
If Source-to-sink-route?(route-start,device) then

Let stuffs = stuffs & common-stuff
Make-fluid-loop-proposition(stuffs,device,route)

Elseif Outlet-connected-to-inlet?(device,route-start) then
Let stuffs = stuffs & common-stuff & Find-common-stuff(device,route-start)
Make-fluid-loop-proposition(stuffs,device,route)

Elseif Member(device,route) then
do nothing

Else
If Contains-devices?(route) then

Let route = device & route
Else

Let route = device & start
Let stuffs = common-stuff & stuffs
If route-start = { } then

Let route-start = start
Find-fluid-loops(device,route,stuffs,route-start)

Figure 4.4 Algorithm for finding fluid-loops

comprise the set of devices that complicate topologies; without them our representation

constrains the topology to a single simple loop consisting of all devices in the cycle.

Searching from each of these devices ensures that we find all possible fluid-loops, at the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

cost of potentially redundant calculations. To minimize such redundancy, the predicate

fluid-loop-identification-complete? returns true when all devices and all connecting stuffs are

members of at least one fluid-loop, and this causes identify-fluid-loops to terminate.

When trace-fluid-loops encounters a splitter, it caches the path up to that sphtter and

one of the splitter’s outlets for further processing and continues the search down the other

outlet of the splitter. Each such partial fluid-loop is later completed by recursive calls to

trace-fluid-loops.

For the purpose of analyzing fluid-loops, it proves useful to break the loop at a

particular point, and consider that point the start of the loop. We break fluid-loops

immediately upstream of the first compressing device to be found after the last expansion

device, because the working fluid is closest to the conditions of the surrounding

environment here, and this provides a convenient criterion grounded in the domain.

Automobile engines, which operate in a so-called “open” cycle, break the cycle at this

point, taking in working fluid (i.e., air) immediately prior to compressing it, and

exhausting it immediately after the power stroke.

4.1.3 Identifying Subcycles
Subcycles are the largest substructures that we represent. In many cases the entire cycle

will consist of a single subcycle. The system on the right side of Figure 4.3 contains two

subcycles. The salient feature of this and any cycle that contains multiple subcycles is

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

Identify-subcycles
Let all-fluid-loops = all fluid-loops identified in cycle
Let disjoint-fluid-loops = Pop(all-fluid-loops)
For each fluid-loop FL in all-fluid-loops

For each disjoint-loop DL in disjoint-fluid-loops
If FL shares devices with DL then

Replace DLwith Union(FL,DL)
Else Adjoin(FL,disjoint-fluid-loops)

Return disjoint-fluid-loops

that the only allowed connection between any subcycles is the heat-path of a heat-

exchanger; the working fluids in any two subcycles will never mix.

The algorithm for the identification of subcycles is shown in Figure 4.5. We

iterate over all identified fluid-loops, merging all that share components.

4.1.4 Finding Downstream Ranges of Influence
A range of influence is defined for each component, and consists of all those downstream

components that receive working fluid whose parametric values have been set at least in

part by the action of the device in question. For example, the range of influence for a

pump consists of all downstream components up to but not including the first throttle or

Figure 4.5 Algorithm for finding subcycles

Table 4.1
Criteria for ending ranges of influence

Device Type Influence Range Terminator
Pump, Compressor
Turbine, Throttle
Heater, Hx-heater, reactor
Cooler, Hx-cooler
Splitter
Mixer
Source
Sink

Turbine, Throttle
Pump, Compressor
Cooler, Hx-cooler
Heater, Hx-heater, reactor
Mixer
Splitter
Sink
Source _______

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

Find-influence- ranges
For each device D in all devices of the cycle

Find-infIuence-range(D,D,{})

Find-influence-range(device,start,result)
For each outlet-device OD immediately downstream of device

If Member(OD,result) then
Return result

Elseif Range-terminator?(OD,start)
Return Adjoin(OD,result)

Else
Find-influence-range(D,start,Adjoin(OD,result))

Figure 4.6 Algorithm for finding ranges of influence

turbine, as these are the only two types of devices that can reverse the pressure-increasing

effect a pump has on the working fluid. Likewise, the range of influence of a turbine

extends up to the first downstream pump. Ranges of influence include all possible paths

of flow from the original device. Table 4.1 shows the criterion used for ending the range

of each type of device.

We derive ranges of influence for each device by traversing the cycle’s fluid loops

until we encounter devices of the opposite type, accumulating those devices on the paths

to the terminators. This tends to break the cycle into groups that correspond to the four

canonical cyclic processes (compression, heating, expansion, and cooling). Figure 4.6

shows the algorithm.

4.1.5 Determining Cycle Type
Once all fluid-loops have been found, deriving the cycle-type is a global operation,

illustrated by the flow chart in Figure 4.7. This decision process is applied to each fluid-

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

60

loop in the cycle, because it is possible to have a refrigeration cycle that contains a power-

generating fluid-loop within it. Refrigeration loops are preferred over heat-engine loops

in the determination of cycle-type, because refrigerators may contain heat-engines to

provide the power necessary to move heat from one location to another, but heat-engines

have no need nor use for refrigeration loops.

In the first step the cycle-type-finding algorithm checks for the presence of

turbines in the cycle as a whole. Since these are the only devices capable of producing

power, their absence is definitive proof that the cycle is not a heat-engine, and hence by

exclusion must be a refrigerator. Should we find a turbine in the cycle, the next step tests

each fluid-loop for the canonical heat-engine ordering of devices (compress, heat, expand,

cool). If all fluid-loops exhibit such an ordering than we infer the cycle is a heat-engine.

If not, we attempt to reach the same conclusion by ruling out the possibility that any loop

is a refrigeration loop, this time by using the canonical ordering for refrigerators

(compress, cool, expand, heat). If this fails we infer the cycle is a refrigerator.

If the cycle is identified as a heat-engine, we then identify the fluid-loop (or

possibly fluid-loops, in the case of parallel turbines) within each subcycle that contains

the greatest number of turbines as the primary fluid-loop for that subcycle, as this is the

fluid-loop that would produce the greatest power.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

No-

Yes

-Yes- Heat-engine Refrigerator

No

-Yes-

Are there
turbines in
the cycle?

/ \re any \
fluid-loops in
refrigerator

\ order? /

/ Are all X
fluid-loops in
heat-engine

\ order? /

Figure 4.7 Determining cycle type

The primary fluid-loop is then used to identify bleed paths, which originate at

splitters interleaved among the turbines of the primary-fluid-loop (and hence playing the

role of bleed-valves) and terminate in mixers that lie on the primary-fluid-loop.

4.2 Step Two: Role Inference
The TNT evidential reasoning process for inferring roles directly from topological

information is probabilistic. This eliminates the need for a simulation of the system’s

behavior, thereby greatly improving efficiency and enabling the construction of a modular

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

reasoning system that may be combined with other styles of reasoning to solve complex

problems. We defer further discussion of the relative merits of probabilistic reasoning to

Chapter 7, and focus in this chapter on how the reasoning algorithm works.

The role inference algorithm alternates between local propagation of facts via

logical dependencies and a global operation that closes sets of evidence, one set for each

potential role of each device. Once the evidence sets are closed, we apply a standard

technique for Bayesian updating within a hierarchy described in (Pearl 1988), which in

this case is the hierarchy of roles described in Chapter 3. Evidence for and against

particular roles is propagated through the hierarchy. At the conclusion o f this

propagation, the most likely role is assumed to be true, and the algorithm iterates until no

new facts are introduced and there are no changes in the membership of the evidence sets.

In the following section we provide an overview of Bayesian probability theory

and how it applies to teleologicai reasoning. We will then describe the inference

algorithm in detail. Readers familiar with Bayesian theory may wish to skip this section.

4.2.1 Bayesian Probability Theory
The heart of Bayesian inference is the formula

P(H\e) = Equation 4.1

which enables us to invert conditional probabilities. A conditional probability, such as

P(Hle) is read as “the probability of hypothesis H given evidence e”. The mathematical

definition of a conditional probability is

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P{H\e) =
P(H Ag)

P(e)

63

Equation 4.2

To wrap some context around this, let’s assume that our hypothesis H is Heater-1 is

playing the role o f a heat-absorber, and our evidence e is cycle containing Heater-1 is a

refrigerator. If we further assume that all cycles are either refrigerators or heat-engines,

and all heaters are either heat-absorbers or heat-injectors, then we can construe the

probability of the conjunction of H and e as a particular assignment of values to the

random variables Cycle-Type and Heater-Role. In this simple case, we can completely

specify all such assignments in a joint probability distribution table, as shown in Table

4.2.

Each cell of this table represents a unique state of the world. For example, we can

determine from this table that P(H a e) is 0.35, that is, that there is a 35% chance that a

random cycle will be a refrigerator and will have a heater acting as a heat-absorber. We

can also determine from this table that the P(e), the chance that a randomly chosen cycle

is a refrigerator is 0.45, the sum of the first row. The conditional probability that Heater-

l is acting as a heat-absorber given that the cycle is a refrigerator is therefore 0.35/0.45 or

Table 4.2
Joint probability distribution

Cycle Heater Role
Type Heat-absorber Heat-injector Sum

Refrigerator 0.35 0.1 0.45
Heat-engine 0.05 0.5 0.55

Sum 0.4 0.6 1.0

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

0.78.

Note that this table completely specifies all possible states of the world. For a

trivial example such as this, in which there are only two random variables (cycle-type and

heater-role), we could simply use this table. Unfortunately, this approach doesn’t scale,

since in the general case there would be 2" entries in the table for n Boolean variables.

This is the motivation for reasoning in terms of conditional probabilities, because they

enable the calculation of just that part of the joint distribution we need.

For the purpose of recording knowledge about a domain, it is preferable to do so

in terms of the probability of a symptom given the underlying cause, because this

relationship is generally invariant with respect to changes in the world. However, when

confronted with a symptom (i.e., something we can sense directly), we want to be able to

calculate the probability of the underlying cause given the system. The Bayesian

formalism allows us to make the conversion from one conditional probability to the other.

To further elucidate this point, let’s consider the domain of medical diagnosis.1

Suppose that there are three diseases that typically cause a circular rash, blotfilism, wring

fever, and scadamilitis. If we have a domain expert encode her knowledge about these

diseases in terms of the circular rash, we might end up with three rules:

• If circular-rash then blotfilism with probability 0.73
• If circular-rash then wring fever with probability 0.99

1 This discussion is a synthesis o f the material presented in several texts on Bayesian probability theory; the
most germane are (Pearl 1988) and (Russell and Norvig 1995).

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

• If circular-rash then scadamilitis w ith probability 0.64

Given these probabilities, if we are confronted with a new patient displaying a circular

rash, our diagnosis would always be wring fever, since that is the most likely. The

drawback of this approach is that these probabilities were formed from a particular set of

experiences. Suppose that our domain expert was a doctor from Zaire, where wring fever

is especially common; another domain expert, say from Chicago, might assess the

probabilities entirely differently, leading to different diagnoses. Even more troubling,

suppose that there is a local outbreak of scadamilitis; the medical staff in the local

emergency room would quickly incorporate this piece of knowledge about the world into

their diagnoses. Common sense would dictate that scadamilitis should be the first disease

to suspect, even though a reasoning system based on the above rules would continue to

proffer diagnoses of wring fever.

Now let’s suppose that we seek out domain experts in each of these diseases and

ask them to formulate rules about how often the circular rash may be expected to appear,

given that the patient is suffering from the disease. We might derive the following rules:

• If blotfilism then circular-rash w ith probability 0.77
• If wring fever then circular-rash w ith probability 0.85
• If scadamilitis then circular-rash w ith probability 0.69

This knowledge is independent of the current state of the world, since it represents

a causal property of the disease; blotfilism will continue to produce a circular rash 77% of

the time whether or not there is an epidemic of scadamilitis. There is evidence that

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

human knowledge is organized more along these lines; for example, Tversky and

Kahneman (1982) have shown that medical practitioners prefer to assess probabilities in

this manner.

Now, however, we have to apply the Bayesian formula to determine the

probability of a given patient suffering from any of these diseases. Let’s suppose that

we’re interested in the probability that our patient has contracted blotfilism. We know

that P(circular rashlblotfilism) = 0.77, and we’d like to determine P(blotfilismlcircuIar

rash). To use Equation 4.1 we need to know P(blotfilism) and P(circular rash). Let’s

suppose that blotfilism is a rare disease, striking only 1 in 10,000 people. Circular rashes,

however, are relatively common, so we can expect 1 in 100 people to have a circular rash.

Therefore we have:

0.77 x 0.0001
P(Blotfilism\Rash) = ---------- = 0.0077

So the probability that our patient is suffering from blotfilism is still very small, but at the

same time, it has increased from 1 in 10,000 to about 1 in 130. Unlike our prior situation,

in which our reasoner is insensitive to changes in the environment, this calculation

directly incorporates such information. For example, let’s suppose there is an epidemic

of blotfilism, raising the probability from 1/10,000 (our prior probability) to 1/200. In

this case, the probability of our patient suffering from blotfilism would be:

0.77x0.005
P{ Blotfilism\ Rash) = ---------- = 0.385

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

Our patient’s chances of having blotfilism have now risen from 0.0077 to 0.385, an

increase of 50 times. Notice that our original assessment of the linkage between circular

rashes and blotfilism remains invariant, but the rest of the formula enables us to

incorporate knowledge about the current state of the world, in terms of the prevalence of

blotfilism and circular rashes.

Knowledge about teleology in TNT is expressed in terms how likely a particular

conjunct of facts about the system (typically topological propositions) is, given that we

know a particular device is playing a certain role. When we propagate this evidence, we

use the Bayesian formalism to convert this type of knowledge into a probability that the

role is true, given the conjunct of facts. Probabilistic knowledge expressed in this manner

depends primarily on the expert’s model of the domain, and tends not to be biased by the

expert’s experience with particular cycles.

As is the case in the medical domain, knowledge expressed in terms of topological

evidence (i.e., the symptom) implying a particular role (i.e., the disease), is fragile. It also

turns out that providing such estimates is much harder, because it is dependent on the

composition of the cycle population being processed. For example, suppose that a

particular configuration that enables the use of a mixer as a jet-ejector only occurs in

cogeneration systems used in medium-sized industrial applications. An expert on

cogeneration systems would be likely to overestimate the probability, whereas an expert

on cryogenic systems would be likely to underestimate the probability. Moreover, a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

knowledge base built on such estimates, even if carefully calibrated for the relative

occurrence of different cycle-types in the universal population of cycles, would be unable

to compensate for an epidemic of cogeneration cycles in the input.

Probabilistic knowledge in TnT is expressed in terms of likelihoods, which are

ratios of conditional probabilities. A likelihood is defined as

_ P(elH) Equation 4.3
^ P(e\^H)

where a X greater than 1 indicates confirmation and a A. less than 1 indicates suppression

of the hypothesis. The range of confirmation is thus [1,°°], whereas the range of

suppression is [0,1].

Our use of likelihoods rather than absolute probabilities provides a better fit of the

theory to the intuitive notions one brings to bear when assessing probabilities. Artificial

Intelligence researchers in the mid-1970s, notably Buchanan and Shortliffe (1984),

rejected Bayesian inference in favor of other formalisms, such as certainty factors and the

Dempster-Shafer theory. In particular, as Pearl notes,

[they] observed that experts who provide rules such as e —> h(0J) (to read
“Evidence e suggests hypothesis h to a degree 0.7”) may well agree that
P(hle) = 0.7, but became uneasy when confronted with the logical
conclusion that P(-ihle) = 0.3. The experts would claim that the
observations were evidence (to degree 0.7) in favor of h and should not be
construed as evidence (to degree 0.3) against h. Such apprehensions were
part of the reason the developers of early expert systems abandoned
probabilistic reasoning and adopted less orthodox calculi. (Pearl 1988,
p343).

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

Pearl argues that the underlying reason for this apprehension was the mistaken attempt to

obtain absolute probabilities, rather than relative likelihoods from the researchers.

The reason for the experts’ unease with P(-ihle) = 0.3 is that the phrase
“evidence in favor of a hypothesis” leads us to expect an increase in the
probability of the hypothesis from P(h) to P(hle)...accompanied by the
appropriate decrease in P(-ihle). On the other hand, if P(-ihle) = 0.3 is
viewed as the final product of the rule e —> h(0.7), it may often mean an
increase in P(-ih), say from 0.01 to 0.3, and that would violate the spirit of
the rule.
The likelihood ratio formulation has a built-in protection against such
confusion because it conveys only change information; evidence in favor
of h is encoded by X > 1 and will always produce P(h\e) > P(h), while
evidence opposing h is encoded by A, < 1 and will always result in P{h\e) <
P(h) (Pearl 1988, p343).

4.2.2 Representing Teleological Knowledge
TnT specifies that knowledge is encoded in the form of evidential tests. Each test is

specific to a particular role. A test succeeds if the conjunction of condition facts it

specifies are found to be true. Success causes the instantiation of an evidence

proposition, which is used to update the prior probability of the role. The syntax of

evidential test forms is presented in Figure 4.8.

The test-name enables instrumentation, such as introducing noise into the

likelihoods or disabling particular tests, and facilitates debugging. The role-tested-for is

the name of the role for which evidence will be asserted. The likelihood is a number in

the range [!,«»]. The device-proposition is the form that the test must find in the database

(defEvidence <test-name> <role-tested-for> <likelihood> <device-proposieion>
<coitiment>
{<condition>*|(<condition> :test <test-function>)})

Figure 4.8 Syntax of defEvidence form

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

(defEvidence Pmp-Tsc6 flash-preventer 6.0 (pump ?pmpl ?in ?out)
"A pump feeding an open heat-exchanger with another pump downstream of both
is probably intended to prevent the heat-exchange from vaporizing the
working fluid*

(cycle-type :heat-engine ?reason)
(downrange ?pmpl ?pmp-range)
((role ?mxr open-hx ?prob)
.-TEST (member ?mxr ?pmp-range))
(downrange ?mxr ?mxr-range)
((pump ?pmp2 ?p2-in ?p2-out)
:TEST (and (member ?pmp2 ?pmp-range) (member ?pmp2 ?mxr-range))))

Figure 4.9 Example of an evidential test

prior to firing, and thus acts as a relevance criterion. The comment provides a natural-

language summary of the intent of the test, and is incorporated into the dependency

record, enabling a limited natural language explanation of inferences.

The rest of the test form consists of an arbitrary number of conditions, which may

be in one of two forms, a simple-pattem or a pattem-plus-test-function. The test-function

is an arbitrary expression that may take as arguments any of the pattern variables in the

scope of the test form. In the absence of a test-function, the pattern must unify with a

particular proposition in the database. When a test-function is present, the pattern must

first unify, and then the test-function must return true.

An evidential test form is shown in Figure 4.9. Our implementation utilizes a

pattern-directed inference system, so symbols with an initial question mark (e.g.,

?reason) should be construed as pattern variables subject to partial unification. The

pattern (pump ?pmp ?in ?out) therefore would match the proposition (Pump Pump-i

s io S20), with ?pmp bound to pump-i, ?in bound to s io , and ?out bound to S20.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

Because we have defined a type abstraction hierarchy for all devices, tests are not

limited in application to particular types of devices. For example, if the test in Figure 4.9

applied to both pumps and compressors, we would replace the (pump ?pmpi ?in ?out)

form with a (genus ?dev work-consumer) form.

Although likelihoods are defined over the range [0,°°], with likelihoods less than

one acting to decrease the prior probability, we have found that it is easier to write and

compare evidence test forms uniformly in terms of the range [1,°°], so we have added

some syntactic sugar that enables this for suppressive evidence. Figure 4.10 shows a test

that lowers the probability that a pump is playing the role of a flash-preventer. The

(:not...) syntax causes TnT’s parsing mechanism to take the reciprocal of the likelihood.

An evidential test instantiates an evidence proposition of the form shown in

Figure 4.11 when the conjunct of the device-proposition and all conditions plus any

applicable tests are simultaneously true. Each evidence proposition is the consequent of

the conjunct of the device-proposition and all conditions, and as such is dependent on

these propositions to remain true. Because role propositions are permitted as conditions

in tests (as in Figure 4.9), it is quite possible that an evidence proposition asserted with a

(defTest Pmp-Tst4 (:not flash-preventer) 4.0 (pump ?pmpl ?in ?out)
"Pumps without other pumps or turbines downstream of them are probably not
intended to prevent the working fluid from flashing*

(cycle-type :heat-engine ?reason)s
((downrange ?pmpl ?pmp-range)
:TEST (and (notany #'pump? ?pmp-range) (some #'turbine? ?pmp-range))))

Figure 4.10 Example of a suppressive test

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

(evidence <device-name> <device-role> <likelihood> <test-name>)
Figure 4.11 Syntax of an evidence proposition

true label may at a later step in the processing become unknown, if a role that it depends

on is no longer believed. This is the primary source of the tight interleaving between

locality propositions and roles that we illustrated in Figure 3.1.

Evidential tests typically test for structural configurations that are indicative of

particular roles. Nonetheless, there is nothing in their definition to preclude one from

writing tests predicated on other information. To explore this possibility, we have built

into C a r n o t a transitive inequality reasoner that attempts to deduce pressure or

temperature differentials across the inlets of mixers. Should it find one, there are

evidential tests that instantiate evidence for jet-ejectors or open heat-exchangers. (We

present an example of such reasoning in Section 4.2.3.1 below). The inference

mechanism, therefore, is not specific to reasoning from structure to function. Appendix C

lists all evidential tests in Ca rn o t ’s knowledge base.

4.2.3 How Plausible Reasoning Works
Plausible inference, as we have noted, alternates between local propagation of logical

dependencies, and a global operation that generates sets of evidence. The algorithm is

summarized in Figure 4.12. Local propagation will cause any evidential test whose

conditions are met by facts known to be true to fire, instantiating an evidence proposition.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

Update-role-beliefs
Do-local-propagation
Loop until no changes in evidence sets

For each device D
For each role R of D

Update evidence set for R
Propagate evidence for R

Accept most likely role for D
Do-local-propagation

Figure 4.12 Algorithm for role inference

The global set-closing operation then enables us to determine the most likely role based

on known evidence.

The initial propagation instantiates role propositions for each role of each device.

The knowledge base contains prior probabilities for each role, which indicate the chance

of that role being true given no information about the input cycle. For example, a turbine

is most often used as a work-source, but in some cryogenic applications, the designer may

take advantage of the large temperature drop that occurs across a turbine, so its role in

this case would be to cool the fluid. Without knowing anything in advance about the

input cycle, the best one can do is rely on general domain knowledge, which in this case

indicates that turbines act as work-sources 95% of the time; this is the prior probability

for a work-source role. Since roles partition the space of functions, the prior for a turbine

acting as a fluid-cooler role is necessarily 0.05.

The firing of an evidential test establishes a logical clause in which the truth of

evidence proposition depends on the conjunct of the test’s conditions; should one or more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

of those conditions lose support at a later stage in the processing, the evidence

proposition will no longer be believed.

Update-role-beliefs
Do-local-propagation
Update-evidence-and-roles

Update-evidence-and-roles
For each entity E in cycle entities

Update-range-of-influence for E
Update-evidence-set of E
For each piece of evidence Ev in updated evidence set for E

Update-belief(Ev)
Update-role-truth-labels for all entities

Update-role-truth-labels
For each entity E in entities

Unless Most-likely-roles(E) = True-roles(E)
For each role R in True-roles(E)

Set-truth-label(R) = unknown
For each role R in Most-likely-roles(E)

Set-truth-label(R) = true
Do-local-propagation
When New-facts-instantiated? or Change-in-evidence-sets?

Update-evidence-and-roles

Change-in-evidence-sets?
For each device D

For each role R of device D
Unless Fetch-evidence-propositions(R) = Propositions-of(Evidence-set-of(R))

Return true

Figure 4.13 Belief-revision algorithm

Once local propagation has reached quiescence, we enter a loop which iterates

over each role proposition of each device, collecting all evidence facts known to be true

and comparing this set to a proposition about the set of evidence bearing on this role.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

Should there be a difference, we update this set proposition and revise our belief in the

role, based on the new evidence.

When this iteration is complete, we accept the most likely role for each device as

the true role. Because role propositions may appear in evidential test conditions, we must

therefore do another local propagation, and if there are either new propositions

instantiated or changes in the extant evidence sets, we must repeat the above iteration. In

general this algorithm reaches quiescence in from one to twelve iterations.

In theory it is possible to fail to reach quiescence for a given knowledge base. It is

possible to perform a static analysis of the knowledge base to detect the potential for such

looping. Fortunately, domain knowledge tends to be represented in such a way that loops

do not arise. We will discuss this further below, after we examine some of the finer

points of the algorithm, which is shown in detailed form in Figure 4.13.

The first subtle point in this algorithm occurs in the call to update-range-of-

influence in update-evidence-and-roles. Ranges of influence may change as new roles

become believed. For example, a mixer is initially construed as a flow-join, which would

allow the range of influence of any upstream device except a splitter to pass through it.

However, should the inference mechanism construe the mixer as a jet-ejector, this will

terminate the influence range for any upstream throttles and turbines. Likewise, should

the mixer be construed as an open-heater or open-cooler, this would terminate the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

influence ranges of any upstream coolers or heaters (respectively) that originally

incorporated the mixer.

The updating of evidence sets requires that we gather up all evidence propositions

instantiated in the local propagation step and make a new proposition that this set

constitutes all evidence bearing on the role in question. There are four possible

outcomes; (a) there is no change, (b) one or more new pieces of evidence have been

introduced, (c) one or more pieces of evidence are no longer believed, or (d) both (b) and

(c) have occurred.

The actual updating of probabilities, as implemented in update-belief, is a direct

application of Pearl’s algorithm for evidential reasoning in taxonomic hierarchies (Pearl

1988). As such, we do not consider it part of the contribution of this work, and so only

summarize it here (see Appendix A for more detail). It is a message-passing scheme, in

which the directly affected node of the hierarchy passes excitatory messages to its parent

and inhibitory messages to its siblings. This is necessary because the hierarchy partitions

the space of function, so at each level of abstraction the probabilities o f the roles must

sum to 1.0. For example, suppose that we find evidence in favor of a heater playing the

role of a fluid-heater. The probability that it is a heat-injector (the parent of fluid-heater)

should therefore also increase, while the probability that it is a preheater or reheater

(siblings of fluid-heater) should decrease. Finally, the probability that heater is a heat-

absorber, the sibling of heat-injector, should decline.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

When we find new evidence, we simply propagate the associated likelihoods,

using the current probability of the role as the prior. The belief updating algorithm has

the desirable property of enabling incremental composition of evidence.

In the case of one or more pieces of evidence losing support, a situation we term

an evidence set dropout, we reset the belief of the role to the original value and

repropagate all evidence. Although this is a bit profligate, the propagation of evidence is

so fast that the algorithmic complexity required to back out the effect of the evidence no

longer believed is not worth the gain in processing speed. We apply the same mechanism

to the fourth case, in which there is both an evidence set dropout and new evidence.

Once we have completed this global operation over all devices, we have to do the

local propagation and also check the state of the evidence sets. This is necessary because

we may have just retracted belief in one role and asserted belief in a different role for a

given device. Changes in the truth values of role propositions have the potential for three

effects on working memory. First, a new role belief may enable an as-yet untriggered

evidential test to fire, instantiating new evidence. Second, retraction of role belief may

result in some evidence propositions losing support and dropping out of their evidence

sets. And third, change in role belief may invalidate a particular range of influence,

because ranges of influence are dependent on the conjunct of the roles of all devices in

the range.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

To determine whether or not working memory has reached quiescence, we call the

procedures new-facts-instantiated? and change-in-evidence-sets?, which will return true if

either new evidence facts are present in the database or if at least one evidence set

proposition has dropouts or new members. Only when both of these predicates return

false do we terminate the update of belief.

As we have noted, it is possible that, for a particular knowledge base, this

algorithm will never reach quiescence. In practice, this has not proven to be a problem,

due to the structure of the domain knowledge we have encoded. Although

thermodynamic cycles are topologically cyclic, and hence in theory two devices could

mutually influence one another, we have found that the knowledge we encoded (without

consideration for this issue, as the final form of the updating algorithm evolved in parallel

with the development of the knowledge base) does not exhibit such pathological mutual

recursion, because it is in terms of downstream ranges of influence. For example, a flash-

preventing pump requires the presence of a heater, a pump, another heater and a turbine

downstream, in that order. Turbine and heater roles, however, generally do not depend on

upstream devices, such as pumps.

The potential for not reaching quiescence led to the development of a static

knowledge-base analyzer that can scan the knowledge base at compile time and indicate

evidential tests that could cause the updating algorithm to cycle among several alternative

construals. This analyzer checks each evidential test for a role proposition in its

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

conditions. For each role proposition found, it examines all tests for or against that role.

The analyzer recurs on each role found in each of these tests, and terminates when it

either encounters rivals to the original role or when no new tests contain roles in their

conditions. A rival role is either a sibling, or an abstraction or specialization thereof.

Finding a rival role indicates that we have a situation in which the algorithm may not

attain quiescence, because the original role is acting, indirectly, as evidence for a rival

role. If this evidence is strong enough, then the original role may be retracted in favor of

the rival. This will cause the rival to lose support, and the original to be reinstated,

perpetuating the loop.

We have run the analyzer on our knowledge base and found no such loops. In

fact, it turned out to be quite hard to deliberately construct such a loop with evidential

tests that had at least the surface appearance of reasonableness.

4.2.3.1 Examples of Evidential Inference
Identifying a Flash Preventer. A pump acting as a flash-preventer is raising the pressure

of the working fluid so that subsequent heating will not cause it to vaporize prior to

reaching the primary boiler of the system. Flashing would cause downstream pumps to

stall, interrupting the flow of working fluid to the boiler, which, in the case o f a modem

electrical power plant, could well melt.

Let us examine how a test would identify evidence for this role. The example test

we presented in Figure 4.9 is shown in Figure 4.14, with its conditions numbered for

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

reference. The first condition limits this test to heat-engines, since preventing flashing is

not typically a problem in refrigerators. The second condition acquires the influence

range of the pump in question. The downrange proposition contains a list of all devices

in the downstream range of influence which will be bound to the pattern variable ?pmp-

range. Note that each condition establishes an environment in which its bindings and all

those of prior conditions are present.

The third condition looks for a mixer that is currently believed to be acting as an

open heat-exchanger and tests to determine whether or not this mixer is a member of the

pump’s downstream range of influence by searching the list bound to ?pmp-range. The

fourth condition acquires the mixer’s influence range; this is needed because the final

condition of this test is seeking a pump downstream of both the original pump and the

open heat-exchanger. Flash-prevention is only necessary when the fluid passing through

a pump is both heated and then pumped, in that order, downstream of the pump in

question. By predicating the conditions of this test on the influence ranges of the devices

in question, we ensure that no throttling, expansion, or cooling processes will occur

(defEvidence Pmp-Tst6 flash-preventer 6.0 (pump ?pmpl ?in ?out)
"A pump feeding an open heat-exchanger with another pump downstream of both
is probably intended to prevent the heat-exchange from vaporizing the
working fluid"

1 (cycle-type :heat-engine Treason)
2 (downrange ?pmpl ?pmp-range)
3 ((role ?mxr open-hx ?prob)

:TEST (member ?mxr ?pmp-range))
4 (downrange ?mxr ?mxr-range)
5 ((pump ?pmp2 ?p2-in ?p2-out)

.•TEST (and (member ?pmp2 ?pmp-range) (member ?pmp2 ?mxr-range))))
Figure 4.14 Example of a test for flash-preventer evidence

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

81

between any set of devices this test matches.

At the same time, however, this test does not prescribe a particular configuration

of the components involved. In fact, we might have an arbitrary number of different

components interleaved among these three, so long as none could possibly generate a

cooling or expansion process.

Identifying a Open-Heater. Although most of the knowledge base is cast in terms of

topological information, TNT is by no means limited to this form of reasoning. To

illustrate an alternative form of reasoning, we have implemented a transitive inequality

reasoner.

For the jet-ejector and open heat-exchanger roles of a mixer, a temperature

difference across the inputs indicates an open heat-exchanger, while a pressure difference

implies a jet-ejector. Thus when we find a mixer in the structural input, we express

interest in finding inequalities in either pressure or temperature across the mixer’s inputs.

We use the fluid-loops identified in the initial structural parsing of the cycle and

the physical effect inequality information (see Section 3.3) to deduce an inequality

statement via transitive reasoning for the parameters in which we have expressed interest.

For example, in the cycle fragment shown in Figure 4.15, the fact that the mixer is an

open heat-exchanger can be qualitatively deduced. The transitivity reasoning proceeds as

follows:

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

§) © T (B)> T (C) (g)

© T (A) = T(B) © T (C) = T(D)

T(D) > T(E)

T(A) > T(E)

Figure 4.15 Cycle fragment illustrating qualitative transitive inequality reasoning

1. No temperature drop across a splitter gives T(A) = T(B)
2. Temperature drop across a turbine gives T(B) > T(C).
3. No temperature drop across a splitter gives T(C) = T(D).
4. T(D) > T(E) because perfect heat transfer in the heat-exchanger

would make T(D) = T(E).
5. By transitivity we have, T(A) = T(B) > T(C) = T(D) > T(E),

or T(A) > T(E).

4.3 Step Three: Identifying Plans
Plans, as discussed in Section 3.6, are patterns of function that have been abstracted and

reified. Unlike roles, plans are instantiated deterministically, with no probabilistic

updating of belief, because the ambiguity attending the presence of a plan tends to be

much less than that surrounding a potential role. Essentially, the hard work is done in the

recognition of individual roles, and by contrast the recognition o f plans is simple and

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

direct. The defPlan form simply expands into a forward-chaining rule that executes when

the conjunction of its conditions is satisfied.

A plan instance proposition is instantiated for each conjunction of conditions

found. Thus there may be several plan instances active in a given cycle. For example,

the plan to regenerate via direct-contact mixing is instantiated four times in Cycle 7 of

Appendix B. However, two of these instances are subsumed by a specialization of this

plan, direct-regenerate-with-minimal-delta-T, which has more specific conditions.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5
IMPLEMENTATION AND

EMPIRICAL EVALUATION: CARNOT
TNT has been fully implemented in Common Lisp in a system called C a r n o t . The

current version of this system currently correctly identifies the function of forty-nine

thermodynamic cycles, using a knowledge base contains 107 evidential tests, as shown in

Table 5.1. We estimate that this version of C a r n o t has achieved 90% coverage of the

domain of single-working fluid thermodynamic cycles. Of the forty-seven cycles

C a r n o t has analyzed, thirty-two are from Analysis o f Engineering Cycles (Haywood

Table 5.1
Summary of CARNOT tests for and against particular roles

Device Role Pro Con Device Role Pro Con
Fluid-cooler 1 1 Flash-preventer 2 3
Heat-ejector 2 1 Pump Flow-producer 2 0

Cooler Heat-provider 4 0 Total 4 3
Intercooler I 0 Bleed-valve 5 1

Total 8 2
Splitter

Rash-chamber 9 3
Fluid-heater 5 0 Row-fork 2 0
Heat-absorber 4 0 Total 16 4

Heater
Heat-injector 5 0 Bottoming 1 0
Preheater 4 5 Energy-remover 2 0
Reheater 2 2 Heat-mover 2 0

Total 20 7
Subcycle

Radiation-isolator 1 0
Fluid-cooler 1 0 Simple-engine 1 0

Heat-exchanger Heat-absorber I 0 Topping 1 0
Total 2 0 Work-generator 1 0

Flow-join 3 1 Total 9 0
Jet-ejector 4 2 Pressure-decreaser 3 0

Mixer Mxr-heater 6 0 Throttle Saturator 5 0
Mxr-cooler 3 0 Total 8 0

Total 16 3 Ruid-cooler 3 0
Turbine Work-source 2 0

Grand Total (107 tests) 88 19 Total 5 0

84

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

85

1991), and comprise all single-substance cycles presented in this text, which is considered

to be a standard for this field. The other fifteen cycles are drawn from other introductory

thermodynamics texts.

In this chapter we first present a complexity analysis of the algorithms as they

have been realized in C a r n o t . We then present empirical evidence congruent with this

analysis, and examine certain other performance characteristics of C a r n o t , including the

sensitivity of the algorithm to the specific values of the likelihoods in the knowledge

base.

5.1 Computational Complexity
Empirically, the complexity of the inference process, as implemented in C a r n o t , is 0(n2)

in the size of the input cycle, as we will see in the latter half of this chapter. We will now

show that this is a reasonable finding. As you may recall, the inference algorithm

consists of four parts; (1) structural analysis, (2) initial instantiation of evidence, (3) role

inference, and (4) plan instantiation. We analyze each part in turn below, taking the

number of devices in the input cycle to be the basic measure of input size. This is a good

but not perfect metric, because if we have two cycles of the same size, the one containing

more splitters will require more computation due to the additional fluid loops introduced

into the topology. We address this issue in our worst-case estimates.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

5.1.1 Structural Analysis
The first step of structural analysis, summarizing the structural components and grouping

them into sets by type, requires a single linear pass through the devices of the system.

The second step, identifying fluid-loops is more computationally intensive due to the

potential for flow-forks in the topology. The algorithm (originally presented in Figure

4.6) is repeated here in Figure 5.1.

The identification of fluid-loops employs a nested loop. The outer loop iterates

over all possible starting points for a fluid-loop. A starting-point is either a heat-

exchanger, to ensure we identify all loops connected only by such devices (since starting

at a particular arbitrary’ point and traversing the topology would never lead to those

devices on the other side of the heat-exchanger), a splitter, or a mixer. In practice, the set

of starting points typically contains three to five devices, and rarely contains more than

ten; in the worst case, this outer loop would iterate over all devices. The inner loop

traverses the connectivity graph of the cycle from the starting-point until it returns to the

starting point. In a cycle with no splitters, this would require exactly N comparisons,

where N is the size of the input cycle. In the no-splitter case, then, the outer loop would

execute once for each heat-exchanger, or if there are no heat-exchangers, execute once

from an arbitrary starting point. The simplest case, in which there are no heat-

exchangers, is linear in N, since the outer loop executes once. In the worst no-splitter

case (ignoring thermodynamic constraints, such as the necessity for other device types),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

all cycle devices would be heat-exchangers, and the outer loop would execute N times,

resulting in performance quadratic in N.

In the worst splitter case, the cycle would be composed o f the most possible

number of splitters. Leaving aside thermodynamic constraints (e.g., the requirement for

Identify-fluid-loops
For each start-point SP in Fetch-start-points

Until Fluid-loop-identification-complete
For each fluid-loop FL in Trace-fluid-loops(SP)

Assert-fluid-loop! (FL)

Fetch-start-points
For each device D

When Splitter?(D) or Heat-exchanger?(D)
Collect D

T race-fluid-loops(start)
Find-fluid-loops(start,{},{},{})

Find-fluid-loops(start,route,stuffs,route-start)
For each device in Fetch-outlet-devices(start)

Let common-stuff = Find-common-stuff(start,device)
If Source-to-sink-route?(route-start,device) then

Let stuffs = stuffs & common-stuff
Make-fluid-loop-proposition(stuffs, device, route)

Elseif Outlet-connected-to-inlet?(device,route-start) then
Let stuffs = stuffs & common-stuff & Find-common-stuff(device, route-start)
Make-fluid-loop-proposition(stuffs,device,route)

Elseif Member(device,route) then
do nothing

Else
If Contains-devices?(route) then

Let route = device & route
Else

Let route = device & start
Let stuffs = common-stuff & stuffs
If route-start = { } then

Let route-start = start
Find-fluid-loops(device,route,stuffs,route-start)

Figure 5.1 Algorithm for finding fluid-loops

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

Find-influence-ranges
For each device D in all devices of the cycle

Find-influence-range(D,D,{})

Find-influence-range(device, start, result)
For each outlet-device OD immediately downstream of device

If Member(OD,result) then
Return result

Elseif Range-terminator?(OD,start)
Return Adjoin(OD,result)

Else
Find-influence-range(D,start,Adjoin(OD,result))

Figure 5.2 Algorithm for finding ranges of influence

at least one heater and one cooler), the most splitters a cycle could possibly contain is

N/2, since we must rejoin these paths into a single return flow to the inlet of the original

splitter. In this situation, the outer loop would execute once for each splitter, or N/2

times. The inner loop, since it recurs in order to trace all possible fluid paths, would

execute twice for each splitter (i.e., once for each branch) and once for each mixer

encountered, or N + N/2 times. During each of these executions the algorithm would

make a maximum of N-l comparisons to determine if it had completed a fluid-loop. In

this circumstance, we have 0(N 3) performance bounded by 0.5N x 1.5N x (N-l).

The identification of ranges of influence, shown again in Figure 5.2, is worst-case

linear in N for each device, resulting in 0(N 2) complexity. The worst case would require

a comparison of the starting device to each other device in cycle; in practice ranges of

influence contain between one-quarter and one-third of the devices in the cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

5.1.2 Role Inference
The role inference algorithm (shown in Figure 5.3) relies on both local and global

properties. In CARNOT, a forw ard-chaining rule engine coup led to a log ic-based tru th

maintenance system (LTMS) performs the local propagation. Although this is merely one

possible means of implementing TNT, we believe it is a reasonably efficient one. The

complexity characteristics of the LTMS are well-known— its core Boolean constraint

propagation algorithm is linear in the number of facts in the database—so we take this as

a given lower bound on performance and focus our analysis on the characteristics of the

TnT algorithm. Forward-chaining rule engines, of course, are perfectly capable of

exponential performance, given a pathological set of rules, so we will pay particular

attention to the characteristics of the rule engine. In this particular rule-engine, all rules

that match are executed, and those that match are guaranteed to execute exactly once.

The first operation, do-local-propagation, instantiates propositions arising from the

structural analysis of the cycle. There are three types of propositions; a set of constant

size that encodes information about the role hierarchy, a set linearly proportional to the

number of tests in the database, and a set linearly proportional to the number of devices in

the input cycle. As an example of the first type of proposition,

(ROLE-SPEC HEATER (REHEATER HEAT-INJECTOR))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Update-role-beliefs
Do-local-propagation
Update-evidence-and-roles

Update-role-beliefs
Do-local-propagation
Update-evidence-and-roles

Update-evidence-and-roles
For each entity E in cycle entities

Update-range-of-influence for E
Update-evidence-set of E
For each piece of evidence Ev in updated evidence set for E

Update-belief(Ev)
Update-role-truth-labels for all entities

Update-role-truth-labels
For each entity E in entities

Unless Most-likely-roles(E) = True-roles(E)
For each role R in True-roles(E)

Set-truth-label(R) = unknown
For each role R in Most-likely-roles(E)

Set-truth-label(R) = true
Do-local-propagation
When New-facts-instantiated? or Change-in-evidence-sets?

Update-evidence-and-roles

Change-in-evidence-sets?
For each device D

For each role R of device D
Unless Fetch-evidence-propositions(R) = Propositions-of(Evidence-set-of(R))

Return true

Figure 5.3 Belief-revision algorithm

represents the fact that, for a device of type heater, reheater is a specialization of the

heat-injector role. The number of these facts depends on the size of the role

hierarchy, which rarely changes, and would only do so in the event of a major extension

to the system’s capabilities, such as the addition of a new device type. As an example of

the second type of proposition, there are control facts of the form

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

91
(ACTIVE-TEST SBC-TST1 WORK-GENERATOR 2.5)

that encode information used for instrumenting the performance of the system. By

changing the truth labels of these facts, we can selectively disable tests. Since the size of

the knowledge base will change only rarely and incrementally once it has achieved

suffic ien t coverage o f the dom ain (as we have in ou r C a r n o t im plem entation), th is set

may be considered constant in size. As an example of the third type of proposition, there

are several structural facts asserted about each device:

(THRl HAS-OUTDEV SPL3)
(THROTTLE THRl S8 S9)
(S8 HAS-SINK THRl)

In the curren t version o f C a rn o t , there are betw een nine and tw elve facts asserted fo r

each device, w ith the actual num ber depending on the type o f device.

During this instantiation operation, the potential for nonlinear behavior would

arise in any proposition that related devices. For example, a relation that holds between

all pairs of devices would require an 6>(N2) operation to instantiate [N x (N - l)]/2 facts.

The only proposition with this potential is the adjacent relation, which occurs, at a

minimum, N times, once for each device in the system. This minimum will be exceeded

insofar as there are splitters or mixers in the input system, because, as we saw in Section

3.5, the adjacency relation spans splitters and mixers that are acting as flow-splits and

flow-joins respectively. The pathological case of a cycle comprised solely of mixers and

splitters will result in [N x (N - l)]/2 adjacency relations; in practice the actual number

will lie between these two bounds. As adjacency propositions typically comprise 5% of

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

the total propositions, this behavior has a minimal impact on the overall linear behavior

of the initial fact instantiation.

The next step is update-evidence-and-roles, which consists of an iteration over all

cycle entities (i.e., devices and subcycles). The first operation within this iteration is an

updating of influence ranges. Influence ranges depend on the roles of all devices within

the range, because a change in one or more of these roles may affect the influence range.

For example, suppose a cooler has a mixer in its range of influence; if the role of this

mixer changes from a flow-join to an open-heater, the influence range must be terminated

•y
at this point. The complete updating operation is worst-case 0(N ‘), because it iterates

over all cycle devices, and the actual update is itself a linear operation.

The next operation within the iterative loop, update-evidence-set, executes once for

each device in the cycle. In each execution, it compares the contents of a set proposition

containing a list of all evidence propositions that were labeled hue at the last update to

the current state of the database, in which there may be new evidential propositions or old

propositions that have lost support. This comparison is linear in the size of the evidence

set, which is typically contains one to five members; the maximum is determined by the

number of tests for a particular role, and is currently seven, for the open-heat-exchanger

role. Taking the number of evidential propositions per device to be roughly constant

(since each test will at most execute once), the complete set updating operation is

therefore 0(N).

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

The next operation is the actual Bayesian updating step, which is applied to each

piece of evidence. This update is performed via a message-passing algorithm that

operates over the role hierarchy. The actual update is a simple mathematical calculation

that executes in constant time (see Appendix A for the specific formula). The number of

updates that occurs is equal to the size of the role hierarchy for the role in question. The

fewest updates in our system is two, for a throttle, whereas, at a maximum, a heater

requires five and a subcycle requires eight. In the worst case, then the Bayesian update

step requires eight mathematical calculations; and in the average case (computed from

our initial test set of thirty-six cycles) it will execute 3.4 times. Considering this

operation to execute in constant time, the overall probability updating operation therefore

executes in <3(N), since we iterate over all devices.

Update-role-truth-labels complicates matters, because it may cause the entire

updating algorithm to re-execute. The first part of this operation, updating truth labels, is

a linear operation over the roles of each cycle entity. The next operation, do-local-

propagation, is linear as described above; in practice we can expect it to execute in less

time now because the structural implications have already been instantiated; in fact, it is

possible that no new facts will be instantiated. Notice, however, that we have to test for a

disjunction of two conditions; either the instantiation of new facts, or changes in evidence

sets. Even if there are no new facts, the change in role truth labels may cause a change in

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

the truth labels of one or more pieces of evidence, requiring that we re-execute the entire

updating algorithm.

The new-fact test is implemented as a simple check of a counter within the rule-

engine, so it executes in constant time. The change-in-evidence-sets? test, however, must

iterate over all roles of each device, so it executes in linear time. Since it terminates as

soon as it finds a change its average case is 0(N/2).

Determining whether or not these tests will provoke another execution of the

algorithm is difficult, because it depends largely on the characteristics of the particular

input cycle. We can show, via static analysis of a particular knowledge base (as described

in Section 4.2.3 above), that the algorithm will in fact terminate for that knowledge base.

In general, the number of iterations will be proportional to N, since large cycles have

more possible construals than smaller ones. Among cycles of a given size, however, we

may see significant variation in the number of iterations required to reach quiescence, due

to what we term the degree o f novelty of the cycle. A cycle in which most devices play

the roles predicted by the initial prior probabilities in the knowledge base will have a low

degree of novelty, and therefore the algorithm will often reach quiescence within a single

iteration. On the other hand, a cycle in which several components are used in novel ways

will require more iterations to reach quiescence.

Given that our knowledge base consists of a finite number of tests, and that each

device has an average number of tests associated with it, and that our rule engine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

guarantees to run rules exactly once for each set of antecedents, then for any knowledge

base for which the static analysis has demonstrated an absence of loops, we can be sure

that the role inference algorithm will achieve quiescence. To estimate the worst case, let

us suppose that each device in N has associated with it four pieces of evidence, and that

the cycle’s topology is such that all four pieces will eventually be instantiated, but that at

each iteration, only one piece is in fact instantiated. In this situation, we would require

4N iterations to reach quiescence, so the outer loop would be linear in N. Given the worst

case quadratic performance of update-evidence-and-roles, our overall worst case would be

<9(N3). In practice, a large fraction of the total evidence is instantiated within the first two

iterations, and even in the worst of the cycles we have examined, the actual iterations

were more on the order of N/2, or almost an order of magnitude faster than the worst

case.

5.1.3 Plan Instantiation
Plan instantiation is a local operation that is linearly proportional to the size of the input

cycle. Because plans generally describe intention at the level of the entire cycle, they tend

to have several antecedent conditions (typically between six and twelve). On the one

hand, each antecedent requires a matching operation, which increases the computational

cost of plan instantiation. On the other hand, the large conjunction of conditions is

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

96

unlikely to match more than once for a given cycle, so we can expect relatively few

redundant plan instantiations1.

5.2 Empirical Performance
C a r n o t has been fully implemented in Allegro Common Lisp for Windows on a

Pentium-class computer with 32MB of RAM. We have constructed two test sets, one for

development and one for validation. The development test set consists thirty-six cycles,

and includes all thirty-two single-substance cycles described in (Haywood 1991). We

considered the initial development phase complete when C a r n o t ran correctly on this

first test set.

To determine the generality of the theory, once the initial development phase was

completed, we created a second test set of ten cycles, each deliberately chosen to be as

different as possible from the first test set. This test set was never used in the knowledge

base development, and so C a r n o t ’s performance is indicative of how general our

knowledge base is.

In addition to the complexity analysis presented above, we have measured

C a r n o t ’s actual C P U time required for each cycle in both test suites and analyzed the

resulting data. To address the analytical issues in determining the complexity of the role

belief updating algorithm, we have also instrumented this part of the code in order to

1 The LTMS dependency structure is a graph, rather than a tree, so multiple instantiations o f the same
consequent will not result in duplicate consequent propositions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

measure its actual behavior. Finally, we have conducted experiments to determine the

sensitivity of role inference to the actual likelihood numbers in the knowledge base.

In this section, we will first discuss C a r n o t ’s performance on the validation test

set and what this implies for the domain coverage of our current knowledge base. We

will then discuss empirical data on algorithmic complexity, and in particular on the

behavior of the role-inference algorithm. Finally, we will discuss the effect of noise on

the likelihood estimates in the knowledge base.

5.2.1 Performance on Validation Test Set
C a r n o t correctly infers the roles and plans for all thirty-six cycles in the primary test set,

which we used during the development of the algorithm and knowledge-base. The

primary goal in our design of TNT was to create a general account of teleological

knowledge that would extend gracefully to unanticipated inputs. To test C a r n o t ’s

Table 5.2
Results of CARNOT run on validation test set

Percent
Cycle Devices Roles Correct Correct

1 5 7 7 100
2 9 10 8 80
3 8 9 9 100
4 9 10 10 100
5 7 9 8 89
6 9 9 8 89
7 9 11 11 100
8 10 13 12 92
9 16 18 18 100

10 13 15 14 93

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

perform ance on this dim ension, we constructed a validation set o f ten cycles that were

delibera te ly chosen to be as d issim ilar to cycles w ithin the prim ary te s t se t as possible.

T ab le 5 .2 show s the results o f running C a r n o t on this test set.

C a r n o t correctly identified on average 94.3% of the roles in the ten cycles that

comprise the validation test set. This set was not constructed until after the bulk of the

knowledge base was complete, and we never ran C a rn o t on this set until the validation

run, so the knowledge base was not specifically tailored to these cycles. Based on these

results, we believe that representation of functional knowledge in terms of tests for

evidence is sufficiently general as to allow one to construct a teleologicai knowledge base

from a test set of reasonable size and coverage and expect it to generalize to much of the

domain in question.

5.2.2 Scaling Up
We have instrumented Ca r n o t to report the time required to solve each cycle. The

results of running C a rn o t on the first test set of thirty-six cycles are depicted in Figure

5.4. The time in seconds on the vertical axis is the result of running on a 133MHz

Pentium processor with 32MB of RAM. Although the largest cycle required about four

minutes for a solution, notice that cycles with twenty devices (which are still large from a

pedagogical perspective) require around thirty seconds. We believe that this performance

is well within acceptable limits for coaching applications. A student who has just spent

twenty minutes constructing a cycle is likely to wait twenty seconds for the system to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

250

y = 0.1219X2 -1.5158x + 7.6784
R2 = 0.9662200

150<n-ocoo<D
CO

100

0 10 20 30 40 50 60
Number of Devices in Cycle

Figure 5.4 Empirical performance for Carnot on Test Set A

provide coach ing advice. M oreover, this w ait is o n ly required once after each design

change; C a r n o t caches all in form ation necessary fo r the coach, so subsequent queries

execute w ith in the tim e requ ired for looking up the answ er.

5.2.3 Characteristics of the Role Inference Algorithm
As we saw in Section 5.1.2 , the role inference algorithm iterates to quiescence. In the

extreme case, we can guarantee, via a static analysis of the knowledge base, that it will in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

fact terminate. However, the tightly interleaved nature of the algorithm makes it quite

difficult to develop an average case analysis of its complexity.

The number of iterations required to reach quiescence depends on the order in

which the update-evidence-and-roles procedure (shown in Figure 4.13) processes the

devices of the input cycle, since the evidence for or against a particular role may depend

on belief in other role propositions. Although it is impossible to formulate a general

algorithm that will produce the optimal order in which to process the devices of an

arbitrary cycle, we have found that a heuristic of sorting the input list of devices to update-

evidence-and-roles in increasing order of ambiguity significantly reduces the number of

iterations required. We define ambiguity as the number of potential roles a device may

play, so a turbine, which has two potential roles (work-source and fluid-cooler) has less

inherent ambiguity in its actual role than a heater, which has five potential roles.

Figure 5.5 shows the number of iterations required to infer the roles of each of the

thirty-six cycles in Test Set A. The gray bars indicate the number of iterations required if

we sort the input to update-evidence-and-roles in increasing order of ambiguity, whereas

the black bars show the additional iterations required if we sort the input in decreasing

order of ambiguity. The absence of a black bar indicates no difference in the number of

iterations.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

12

B Increasing Ambiguity ■ Decreasing Ambiguity

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Test Set A Cycles

Figure 5.5 Effect of device order on number of iterations to reach quiescence

Although the majority of the cycles in Test Set A are unaffected by the order of

input, in some cases the input order results in significant differences. For example,

Cycles 14 and 15 are particularly sensitive to the input order. Extensive empirical

analysis has yielded few generalizations. The number of pieces of evidence, not

surprisingly, is highly correlated with N, the number of devices in the input cycle.

However, the evidence count is not well correlated with the number of iterations. For

example, Cycle 16 contains 99 pieces of evidence, but only requires three iterations,

whereas Cycle 15 contains only 71 pieces of evidence but requires five iterations. The

number of iterations required is not well correlated with cycle size. For example, Cycle

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

21, the largest cycle, requires four iterations, but Cycle 15, comprised of only slightly

more than half the devices of Cycle 21, require at least five iterations.

Cycle type is not a strong predictor of iterations either. For example, Cycles 14

and 15 are both nuclear cycles, but so are Cycles 16 and 17, which each require only three

iterations. Based on Test Set A, in the average case, we can expect a cycle of moderate

complexity to require between two and four iterations.

5.2.4 Sensitivity to Likelihood Estimates
C a r n o t uses both estim ates o f the p rio r probability for each role (that, is the p robability

o f that role occurring in a random ly chosen cycle) and subjective like lihood assessm ents.

100.0

90.0
Random likelihood values

60.0
50.0
40.0
30.0
20.0 Using only prior probabilities

Using likelihoods with noise10.0

0.0
1 2 3 4 S 6 7 8 9 10 11 12 13 14 IS 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Test Cycles

Figure 5.6 Effect of introducing noise into likelihood estimates

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

We considered using a qualitative scale here, but decided that the computational

properties of numbers would afford the simplest and most efficient belief-updating

algorithm. Nonetheless, the origin of the numbers is completely subjective and based on

the knowledge of the domain that we acquired in the course of this research. The key

question here is to what degree the particular numbers in C a r n o t ’s knowledge base

matter to its performance.

Our hypothesis was that the particular numbers do not matter, because the

knowledge they encode resides in their relative magnitudes. To test this hypothesis, we

introduced random noise into the likelihoods. We conducted thirty runs over the thirty-

six cycles of Test Set A for random noise levels of 10%, 25%, 50%, 75%, and 100% and

averaged the resulting scores for each noise level. A noise level of 10% means that each

likelihood is perturbed either 10% above or below its actual value, the direction of

perturbation being random. In addition, we also conducted a set of thirty runs in which

the likelihoods were assigned completely random numbers ranging from 0.001 to 1000

and a run in which all tests were disabled, to establish the baseline for the a priori

probability estimates.

The belief updating algorithm proved to be surprisingly robust to noise, exhibiting

only minor degradation at 100% noise, as shown in the lowest line of Figure 5.6.

Disabling all tests results in substantial performance degradation, as the system is simply

guessing based on background knowledge of the domain. In this case, the system

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

correctly infers about half the roles in the cycles, as shown in the middle line of Figure

5.6. The random run demonstrates that the probabilistic updating scheme does in fact

carry its weight, as the results for this run are generally worse than if the tests were

disabled, as shown by the topmost line in Figure 5.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6
CARNOT-BASED COACHING APPLICATIONS

We have characterized TnT as a performance theory of reasoning from structure to

function. As such it is a means to an end, which in this case is the development of

effective pedagogical software to help students develop deep conceptual models of

physical domains, such as thermodynamics. Although much work toward this end

remains to be done, we have implemented and fielded an experimental system called

CyclePad that is now in active use at the U.S. Naval Academy, Northwestern University,

and Oxford University. CyclePad is an articulate virtual laboratory for learning

thermodynamics through the design of thermodynamic cycles. It is publicly available on

the World Wide Web1.

An articulate virtual laboratory (AVL), as described in Section 2.2, is virtual

because it enables the user to design and construction of physical systems, such as power

plants without resorting to the use of potentially hazardous, expensive, and inconvenient

physical components. Eliminating the time required to configure such systems, even if it

were practical to have students work with devices such as turbines, compressors, and

boilers, results in more time available for thinking about conceptual issues. An AVL is

articulate because the user can determine, via a hypertext system, the derivation of any

conclusion the system generates.

1 http://www.qrg.ils.nwu.edu/software.htm.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.qrg.ils.nwu.edu/software.htm

106

In CyclePad, the user first designs a cycle (or chooses a design from an included

library) and then makes modeling and parametric value assumptions. A modeling

assumption might be, for example, to assume that a heater operates at constant pressure,

whereas the most common parametric values assumed are those for pressure and

temperature at various points in the system. Because CyclePad propagates values based

on these assumptions, the user need only make a few assumptions to completely solve a

cycle in steady-state. The user is typically interested in the efficiency of the cycle, which

is a function both of the cycle’s design and of the assumed parametric values.

As of this writing, the public version of CyclePad incorporates TNT in two

subsystems, a Role Annotator and an Analytical Coach. We have also constructed a

research prototype of a Design Coach, which we intend to incorporate into CyclePad in

the near future. We view each of these subsystems, which we describe below, as

prototypes for further research into how students can most effectively use such software.

The current interfaces to these systems should be viewed as first drafts intended to

provide users access to the relevant features. We are just now launching an extensive

research effort to investigate issues such as how and when to provide coaching

information, what information to provide, and how to structure the interface to best

support thermodynamics instructors interested in incorporating CyclePad into their

curricula.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

6.1 The Role Annotator
The most direct application o f TnT is the CARNOT-based Role Annotator, which infers

function from structure. The Role Annotator enables students to see the roles that

Carnot has inferred for each device, and to explore the reasoning underlying those

inferences. It displays the role inferred for each device as a mouse-sensitive annotation

£ C y c le P a d

J e t -E jo c to r Atr Condit ioning S y s te m

MXR1

S2

FLUID-HEAT"

JET-EJECTOR
S10

CLR1 » FLUID-COOLER

Whyis HTR1 is acting as aFUJID-HEATERtrue? I

FLOWJOIN SATURATOR

mu

ML

a s s

* HTR1
FLOW-PROOUCER FLOW-JOIN

S8 THR1 S9 SPL3
Exp lana t ion

i s HIRl 13 accina as a FLDXD-HEATER true?

HEAT-A0SORBER

FLASH-CHAMBER

HTR1 i s ac tin g os a FTfflD-HEATER because
r A hea ter upstrean of a nixes functioning as a je c

e je c to r and dosnstEean of a pimp i s probably
providing chat nixes with theEnal energy

FLOW-PROOUCER

Figure 6.1 Role annotations and hypertext explanations in CyclePad

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

next to the device; clicking on the annotation opens the hypertext system, initially

presenting the user with a choice of three questions, as shown in Figure 6.1.

The user can ask why the system has inferred a particular role, and also if there is

mitigating evidence or evidence in favor of other roles. These latter two questions help

the user assess the likelihood that the inference is accurate, since Carnot is a plausible

reasoner and therefore is capable of making incorrect inferences.

Although this potential for inaccuracy may at first appear to pose a problem for

this application, we believe that encouraging students to question computed results is in

general essential for the developing of critical thinking. The hypertext system provides

the student with the information necessary to form an opinion of the role inference’s

accuracy. In Figure 6.1 the user has asked for an explanation of H T R l’s role as a fluid-

heater, and the system is displaying, in the hypertext Explanations window, its rationale,

which is that jet-ejectors (i.e., mixers that pump the working fluid by entraining a

relatively low-energy flow in a high-energy jet) require energy sources, and the heater is

correctly positioned in the cycle’s topology to act as such an energy source.

In this case (as in most) the inference is correct. It rests on the one piece of

evidence shown in the Explanations window; a user asking the other questions would find

that there is evidence that HTR1 is not a preheater nor a reheater, due to topological

constraints, but there is evidence that it might be a heat-absorber, because refrigerators

are more likely to employ heaters as heat-absorbers than as heat-injectors. In other

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

situations there may be as many as five pieces of evidence in favor, and/or one or two

pieces of mitigating evidence or evidence for other roles.

The Role Annotator, as it currently stands, primarily extends the exploratory

dimension of CyclePad, rather than affording a different mode of interaction with the

user. Alternative implementations could, however, engage the student in different tasks;

for example, a user might be presented with a cycle and asked to describe its function, the

system then engaging in a Socratic dialog with the user concerning any misidentifications

of function.

6.2 The Analytical Coach
The Analytical Coach helps students fine-tune their parametric assumptions. It does so

by first running Carnot on the cycle and then referring to a knowledge base of norms,

which are defined in terms of the roles of each component, inferred plans for the cycle,

and other preconditions relevant preconditions, such as the substance of the working

fluid.

The results of the Analytical Coach are not deductively sound, as they are based

on norms for particular parameters, and any given design may deliberately violate a

particular norm—for example, a particular application may require a small but powerful

engine, and the designer might choose to achieve these objectives by specifying more

expensive materials for the turbine, such as molybdenum, which can withstand higher

inlet temperatures.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

(defNorm {phasel<parameter>} <device-proposition>
<comment>
:units <units-specifier>
preconditions {<trigger-pattem>\<trigger-pattem-with-test-form>}*
:norms {<phase-norm>\<parameter-norm>\<qualitative-relation>}+

Figure 6.2 Syntax of norm knowledge representation

The syntax for the representation of norms is shown in Figure 6.2. The device

proposition is a pattern specifying the device that the norm applies to, such as (turbine

?tur ?in ?out). The comment is a natural language explanation of the norm that is

incorporated into the explanation presented to the user of the system when the norm is

violated. The units-specifier denotes the units of any numerical values mentioned in the

norm. The :preconditions of the norm comprise a conjunct of facts that must be true if

the norm is to apply to the cycle at hand. Preconditions may be either patterns, such as

(cycle-type :heat-engine ?reason), or they may include a test form, as in:

((substance-of ?in ?subst)
:test (member ?subst '(refrigerant-12 refrigerant-22))

which in this case is satisfied if the working fluid is either refrigerant-12 or refrigerant-22.

This test clause may also be used to verify facts about the cycle as a whole, which greatly

increases the expressiveness of the defNorm form. For example, one can specify that a

precondition for a norm be the absence of pumps in the cycle:

(((devs :CYCLE) members ?cycle-devs
:test (notany t'pump? ?cycle-devs))

Norms may either be phase norms, parametric norms, or qualitative relations. A

phase norm may be a simple specification of a phase (e.g., liquid, saturated, or vapor), or,

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ill

for saturated substances, it may include a specification of the quality of the substance,

which enables one to specify saturated liquid or saturated vapor. A saturated liquid is a

liquid right at the point of changing phase into a gas, whereas a saturated vapor is a gas

right at the point of condensing into liquid.

A parametric norm enables one to specify a minimum and/or a maximum

numerical value for a given parameter. For example, a norm for the inlet temperature of a

turbine is that it not exceed 1100 degrees Kelvin, at which point most metals (with the

notable exception of molybdenum) will fail. A minimum temperature has little meaning

in this case, so one need not specify one. However, in the case of a Freon-based

refrigerator, the heat-absorbing element of the device has both minimum and maximum

norms, since the most common application for such devices is the preservation of food; a

temperature below the freezing point of water at ambient conditions would be

problematic, causing liquids such as milk to solidify, whereas a temperature more than

about 7°C would fail to preserve the food.

Finally, norms may be expressed as qualitative relations constraining the values

that specified state points may take. For example, a mixer identified as an open heat-

exchanger must have a higher temperature at its hot-in inlet than at its cold-in inlet if it is

to function as a heat-exchanger; a norm of this type is shown in Figure 6.3. At the same

time the difference in these two inlet temperatures is also subject to norms; too small a

difference will produce inadequate heat-transfer, whereas too large a difference will result

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

(defNorm T (mixer ?mxr ?in1 ?in2 ?out)
T h e structure of this cycle indicates that this mixer is intended to be used
as an open heat-exchanger. Effective heat exchange requires that the hot
inlet have a higher temperature than the cold inlet, which is not the case
in this instance"

preconditions
((role ?mxr mxr-heater ?prob)
(cycle-type :heat-engine ?reason)
(effect cooling ?mxr ?inh ?out)
(effect heating ?mxr ?inc ?out))
:norms
((< (T ?inh) (T ?inc))))

Figure 6.3 Example of a qualitative relation norm

in excessive thermodynamic irreversibilities that impair the efficiency of the device. In

practice a difference of less than 15 degrees Celsius is inadequate, but more than about 50

degrees Celsius is inefficient; these constraints would be expressed as two norms, of the

form:

(> 15 (- (T ?inh) (T ?inc))
(< 50 (- (T ?inh) (T ?inc))

where (T ?inh) is the temperature of the hot inlet and (T ?inc) is the temperature of the

cold inlet.

To illustrate the use of norms, let’s consider an example of a simple vapor-power

cycle, which completely condenses its working fluid in order to utilize a pump, because

pumps, which handle liquids are more efficient than compressors, which handle gases.

Completely condensing the working fluid entails some loss in thermodynamic efficiency,

because the heat ejected in order to condense the fluid must be re-injected in the boiler.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

(defNorm phase (cooler ?clr ?in ?out)
"Vapor cycles that condense their working fluid do so because pumps cannot
handle a saturated mixture. This condensing process entails a loss in cycle
efficiency, which should be minimized by avoiding subcooling of the working
fluid at the outlet to the cooler"
preconditions
((role ?clr fluid-cooler ?bp)
(substance-of ?in water)
(cycle-type :heat-engine Treason)
(plan Tinstance vapor-power-cycle))

:norms
((:outlet. (Tout (saturated 0)))))

Figure 6.4 An example of an analytical coaching norm

Therefore, in order to minimize this loss, one wants to avoid subcooling the working

fluid, that is, ejecting more heat than necessary to condense it.

Figure 6.4 illustrates the norm that one should avoid subcooling the working fluid

of a vapor-power cycle. Norms are defined with reference to roles and, as shown in this

case, potentially to plans, such as the vapor-power cycle plan.

When a user asks for analytical coaching, Carnot is first run on the cycle to

determine the roles of each device and which plans are in evidence. A set of forward-

chaining rules then instantiates those norms whose preconditions are found in the

database. A procedure show-norm-violations then gathers up all instantiated norms and

checks each against the cycle’s parametric data for potential violations. In Figure 6.4 the

norm is for the outlet to be saturated with quality equal to zero, that is, a saturated liquid.

Should the parametric data indicate that the working fluid at this point is not a saturated

liquid (e.g., its quality is greater than zero), then the Analytical Coach reports this

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

violation to the user. The Analytical Coach currently contains seventeen norms; we

anticipate that thorough coverage of the domain will require approximately fifty norms.

Advice is displayed within the hypertext system, as shown in Figure 6.5.

In the case of the cycle in Figure 6.5, the Analytical Coach has found three

potential inefficiencies. The first is that the inlet temperature to the turbine is high

compared to the norm for vapor-power cycles. Although this may be a deliberate choice

i C y n l o P u d EEIE3!

H n n k t r m (. y n l e S o l v e d

E E J E 3F x p l o n u t i u n

j Analytical Coach

HTR1

SI PMP1 S4

*Rxe ceapera tuxe a t 32 may be h ig h .
H ost tu rb in e s ca n n o t w ith s ta n d ex trem ely h igh
I n l e t tem pera tu res# u n le s s th e y e re made of
expensive m a te r ia ls # such a s molybdenum

flhe p re s su re a t S3 may be h ig h .
The c y c le d e r iv e s much o f i t s e f f ic ie n c y
v ia a low o u t l e t ex h a u st p re s s u re . You con se e
th i s on che T3 diagram# where a low o u t l e t
p re s s u re w i l l co rrespond to a h o r iz o n ta l l i n e
between c o o le r and pump c h a t i s c lo s e to the
x -a x ls .

Ihe phase oe 54 sh ou ld p ro b ab ly be s a tu ra te d l iq u id .
Vapor cy c le s t h a t condense t h e i r working f l u i d do
so because pumps canno t hand le a s a tu ra te d
m ix tu re , t h i s condensing p ro c e ss e n t a i l s a lo s s in
cy c le e f f ic ie n c y # w hich shou ld be m inimized by
avo id ing su b co o lin g o f th e w orking f l u i d a t th e
o u t l e t to th e c o o le r .

Figure 6.5 Analytical coaching output in CyclePad

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

on the part of the student, as discussed above, we believe that bringing this to the

student’s attention helps to ground the parametric values of the cycle manipulates in

reality; in this case, the turbine may deform or melt during operation. This norm

violation therefore relates directly to the third rational designer goal, that of preserving

the system.

The second norm violation notes that the pressure at S3 (which is the outlet of the

turbine, and is hidden in the figure behind the pull-down menu) may be too high,

potentially resulting in inefficiencies. In this case the coaching output makes reference to

the TS diagram, a widely used conceptual tool in thermodynamics which plots

temperature versus entropy (s is the symbol for entropy). Developing sound intuitions

about this diagram and how it relates to system performance is an essential part of

understanding thermodynamics. (CyclePad can display the TS diagram for a particular

cycle).

The third norm violation shown occurs at S4, the inlet to the pump, and, like the

second one, points out a potential inefficiency. In this case the liquid is being cooled

more than necessary. This particular coaching advice is based on a practical limitation,

that pumps cannot handle mixtures of gas and liquids. A saturated liquid is a liquid on

the verge of boiling, which is more desirable because it is the hottest liquid that we can

run through the pump at a given inlet pressure.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

6.3 The Design Coach
Students working with CyclePad first determine the structure of the cycle they are

designing, deciding the number, type, and topological configuration of its components.

Once this structure is established, the student then makes numerical and modeling

assumptions to analyze the performance of the cycle. The Analytical Coach described

above is designed to provide help to students in this latter task, but we would also like to

provide coaching support for the design task.

The Design Coach currently exists as a research prototype and has not yet been

integrated into the publicly-available version of CyclePad. This prototype contains

twelve design cases and has successfully retrieved the most appropriate case in a

preliminary set of experiments. In this section we describe the architecture of the

prototype, while in Chapter 8 we will discuss directions for future research in this area.

The Design Coach is a case-based reasoning system that will ultimately guide

students in exploring the vast space of possible cycle designs. Cases consist of a cycle

design and a transformation to that design, as shown in Figure 6.6. The representations of

the cycle include an automatically-generated TnT functional specification; without

knowledge of device function, we have found that case retrieval becomes less accurate.

We use the MAC/FAC model of analogical case retrieval (Forbus, Gentner, and

Law 1995), augmented with recent work on evaluating candidate inferences (Forbus et al.

1997). This model posits a two-stage retrieval process consisting of an efficient but

overly inclusive initial stage (the MAC, or “many are called” stage) and a second

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

Case
Transformation

Turbinel Turbine2

Student Design

^Boiler

Turbinel

Boiler
Condenser

Condense Turbinel Turbine2

k
Reheater

Boi er
Condensei

Pump

Figure 6.6 Diagrammatic example of a Design Coach case

structural evaluation stage (the FAC, or “few are chosen” stage). The FAC stage employs

the Structure Mapping Engine (SME) (Falkenhainer, Forbus, and Gentner 1989), which is

a matcher based on Gentner’s Structure Mapping theory of analogy (Gentner 1983).

SME proposes analogical inferences, but this in itself is not sufficient; we also

need a means for evaluating the plausibility of the inference, if we are to choose the best

case to suit the situation at hand. We use a method for structural evaluation of analogical

inferences, which estimates how promising an inferences is, based on its form and the

mapping that generated it. For candidate inferences we postulate two distinct

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

dimensions: (1) support: how much structural support does an analogical inference derive

from the mapping that generated it? (2) extrapolation: how far does an analogical

inference go beyond the support lent by the mapping? We believe these two measures

have significantly different functional roles. Support is like the structural evaluation of

mappings, in that more is always better. Extrapolation is more complex; high

extrapolation seems desirable in tasks like brainstorming or theory generation, but low

extrapolation may be preferable for within-domain comparisons involving highly familiar

situations. In the Design Coach, we therefore bias the score produced by this method to

favor less extrapolation.

To illustrate a potential use of the Design Coach, let us take as a starting point a

simple vapor power cycle, as illustrated in the upper right comer of Figure 6.6. Let’s

suppose further that a student has analyzed this cycle but cannot achieve the requisite

efficiency to satisfy the requirements for a design problem. At this point the student

should consider (or be prompted to consider) changes to the structure of the cycle. One

possible transformation to the cycle, as shown in Figure 6.6, is the addition of a reheater

to the turbine. The net effect of this change is to increase the average temperature of heat

injection, which results in an increase in the thermal efficiency of the cycle. The

transformation presented to the student is explained via the Carnot explanation facility,

possibly augmented with information stored in the case.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

The current prototype of the Design Coach contains a selection of twelve cases,

which are created in the following manner. A domain expert uses CyclePad to construct

a cycle that illustrates a particular problem. In the course of building this cycle, the

expert develops a rich context, which includes the type of working substance, the

modeling assumptions for each component, and the assumed parametric values. In

“watch me” mode, the expert then modifies the design in a way that fixes the problem.

Carnot is ran over each cycle and its output is included in the case, to facilitate

analogical retrieval and to enable automated explanations of function for the student.

Thus the structural description of the cycle, Carnot’s teleological analysis of what the

cycle does and how each part of the cycle contributes to this function, and a formal

representation of the expert’s transformation are all automatically generated for the case.

The only hand-input part of the representation is the expert’s specification of the exact

nature of the problem, (e.g., low thermal efficiency or high operating cost), which is

stated in a tightly constrained formal representation language (a “wizard” style user

interface facilitates this step). We based the selection of the twelve initial cases on the

likely needs of intermediate thermodynamics students. The average case contains 77

expressions and 19 entities.

In our experiments so far, we have found that when multiple cases were retrieved,

choosing the analogical inference with the highest support score always provides the

optimal advice. This result should be viewed with caution, since the number of problems

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

tried has been small, the case base is only about one-fourth of what we believe is needed

for broad coverage, and, most importantly, it has not been field-tested with students.

Although the computational infrastructure for retrieving appropriate cases has

been implemented in prototype, there is much work to be done in order to understand

how best to integrate the Design Coach into CyclePad. We discuss directions for this

work in Chapter 8.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7
DISCUSSION AND RELATED WORK

In this chapter we first discuss the plausible inference mechanism that supports the

reasoning algorithms, and then we consider how the teleological research relates to other

work in qualitative reasoning.

7.1 Plausible Inference
The plausible inference mechanism in Carnot replaces a more conventional qualitative

reasoning approach: dependency-directed search (Stallman and Sussman 1977) for a set

of intermediate behavioral representations we called views (Everett 1995). We found

dependency-directed search to be extremely inefficient, because it operates by ruling out

interpretations. The final result of such a search was a set of equally likely construals that

were indistinguishable on the basis of purely qualitative criteria. A typical set of

construals for a heat-engine with five mixers would contain all the permutations of those

mixers being assigned open heat-exchangers or flow-join roles, and there would be no

principled means for preferring one construal over another. A person with some

knowledge of the domain, however, would have no trouble determining which mixers

were flow-joins and which were open heat-exchangers.

Reflecting on the differences in Carnot’s original algorithm and a person

performing the same task, it became evident that domain experts bring to bear knowledge

of designer intentionality. Recasting our domain knowledge base in these terms caused

us to think in terms of ruling in the most likely construal rather than ruling out unlikely

121

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

interpretations, and this resulted in a far more efficient reasoning algorithm. In addition,

the result of the reasoning process is a single, most probable construal.

Plausible reasoning, however, is also subject to exponential behavior. The most

obvious example is the joint probability distribution, which might be thought of as the

naive approach to plausible reasoning; simply enumerate the probability of every possible

state of the world in a table, which as we saw in Section 4.2.1, is an exponential

undertaking. Bayesian belief networks (BBNs) (Pearl 1988) have evolved as a means for

managing this intractability. They are based on the insight that domains tend to have an

underlying causal structure. Carefully crafted representations of this structure via

directed acyclic graphs can dramatically reduce the number of probability numbers one

must estimate.

Although BBNs afford a powerful means for reasoning with uncertainty, we

decided against using them in our implementation of TNT, for several reasons. First,

BBNs require careful hand-crafting, which works against our goal of making the

knowledge base readily modifiable. Any domain may be represented by many networks

of differing topologies, but computational efficiency depends critically on crafting the

right topology; in the limit, a poorly built topology will require as many probability

assessments as the joint distribution.

A guiding heuristic for network construction has one identify independent random

variable nodes and draw causal links from them to dependent random variable nodes.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

Russell and Norvig (1995) elucidate this heuristic, and provide a telling example (drawn

in turn from Pearl 1988) of the cost of violating it; suppose that Fred, who lives near the

San Andreas fault, has a security alarm installed in his house, and two neighbors, John

and Mary, who tend to be home during the day, and will call him at work if they think

they hear the alarm sounding. Sometimes earthquakes cause the alarm to go off.

If we are to construct a BBN to figure out the probability that a burglary has

occurred given that John has called, then we should start with independent variables, in

this case burglary and earthquake. As an aside, even in this trivial example, we find that

a well-constructed network requires ten probabilities, whereas the joint distribution

requires 31 distinct probabilities.

Should we not construct the network properly, we will have to specify additional

probabilities, some of which will be quite hard to estimate. For example, if we started the

network with the MaryCalls node, we would have to specify three extra probabilities, and

we would have to assess the probability of Earthquake given Burglary and Alarm.

Secondly, the nodes of BBNs typically represent particular random variables that

describes possible partial states of the world. For example, in medical diagnosis, each

symptom would be associated with a node representing a discrete random variable,

perhaps taking on the values present/absent or absent/mild/severe. The analog of

symptoms in our teleological theory are not so succinctly described, as they are

topological patterns. As such they are best described as a conjunct of conditions. While

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

it would certainly be possible to bind the value of a random variable to the truth label of a

conjunct, we felt this approach would require undue complexity in the implementation.

Finally, our theory allows for roles to act as evidence for or against other roles.

This would result in a multiply-connected network topology, which requires substantially

more complex methods for inference, such as clustering (Spiegelhalter 1986), cutset

conditioning (Horvitz, Suermondt, and Cooper 1989; Jensen, Lauritzen, and Olesen 1990;

Pearl 1986), or stochastic simulation (Henrion 1988).

TNT’s inference mechanism therefore adds an evidential reasoning algorithm to a

forward-chaining rule engine that itself is coupled to a logic-based truth maintenance

system, or LTMS (Forbus and de Kleer 1993; McAllester 1978; McAllester 1990).

Several other researchers have combined truth maintenance and probabilistic reasoning

systems. Falkenhainer has added the Dempster-Shafer belief functions to a justification-

based TMS (JTMS) to develop a belief maintenance system (Falkenhainer 1986). For our

purposes, the JTMS, which is limited to manipulating Horn clauses, lacks the expressive

power of the LTMS. De Kleer and Williams have combined an assumption-based TMS

(ATMS) with Bayesian probability theory (de Kleer and Williams 1987) to sequentially

diagnose multiple faults in digital circuits via the General Diagnostic Engine (GDE).

GDE employs model-based reasoning, in which inferences are based on observed

deviations in behavior from a model of the correct behavior of the input circuit. The

application of probability theory remains tractable in this case because the models of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

behavior are fairly simple (e.g., KirchofF s laws for voltage and current) and accurate.

Taking as input only the probabilities of individual component failure, GDE can directly

compute the conditional probabilities of interest based on the circuit’s model.

The ATMS, which enables rapid switching among many contexts, is ill-suited for

our purposes. One can think of the progression of the TNT inference algorithm as the

evolution of a particular context, as more information becomes known or believed, but

there is no reason to compare one context to another during the inference of function.

Ramoni and Riva (1993) have augmented the LTMS to propagate probabilistic

intervals, and they use this logic-based belief maintenance system (LBMS) as a substrate

for a class of Bayesian belief networks they call ignorant belief networks, or EBNs

(Ramoni and Riva 1994a; Ramoni and Riva 1994b). Their LBMS uses a variant of

Nilsson’s probabilistic logic (Nilsson 1986), which generalizes propositional truth values

to range continuously over the interval [0 1]. The LBMS assigns probabilistic intervals to

both clauses and propositions and extends the Boolean constraint propagation algorithm

to incrementally and monotonically reduce these intervals as more information is added to

the database.

An interval of [0 1] assigned to a proposition P represents complete ignorance

about the probability of that proposition, whereas an interval o f [0.4 0.6] represents

partial ignorance, which might occur if some but not all of the conditional probabilities in

the relevant joint distribution are unknown. IBNs, therefore, enable the construction of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

incremental Bayesian belief nets, which both maintain the ability to explain conclusions,

via the traditional TMS mechanism, and will at any point in the processing produce

probability intervals derived from all information input up to that point. These intervals

encode both the probability of the propositions in the database and the degree of

ignorance associated with each proposition. This approach is in contrast to the

conventional approach to BBNs, which requires that each node have a complete

conditional probability table specified prior to propagation.

Ramoni, Riva, Stefanelli, and Patel have applied IBNs to the problem of

forecasting glucose concentrations in diabetic patients (Ramoni et al. 1994). In contrast

to the domain of digital circuits, where explicit models of behavior exist, the biological

systems that regulate glucose levels are sufficiently complex that they relied on a database

containing the records of 70 insulin-dependent diabetic patients for their input data.

These records contained information on insulin dose, meals, and blood glucose

concentrations. Although they do not present extensive results, their system does show

promise, and it does so with a small fraction of the conditionals needed to specify a

conventional BBN (2262 vs. 19200).

We considered using EBNs in Carnot, and in fact Ramoni provided us with the

source code. However, we found that the distinction between uncertainty and ignorance

(of the actual probability distribution) is unnecessary for our purposes, and so we opted

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

for the relative simplicity of a conventional LTMS, in combination with the evidential

reasoning algorithm described above.

Goldman and Chamiak (1993) have developed what they call a “network

construction language” for incrementally constructing belief networks to facilitate natural

language understanding. This language, Frail3, enables the user to specify canonical

models for the probability distributions associated with various types of random

variables. These models are similar to the noisy-OR and noisy-AND logical operators

described in (Russell and Norvig 1995, p444); these operators reduce the description of a

random variable of k parents to 0(k) parameters instead of 0(2*), which the full

conditional probability table would require, and they enable the dynamic construction of

networks, since they, and the rules for their application, may be pre-specified.

Although there are striking parallels between TnT’s incremental inference of

function for a given cycle and the Bayesian method for story understanding that Goldman

and Chamiak describe in (Goldman and Chamiak 1993), to the extent that one might

construe TNT’s process as “reading” a cycle, in the natural language understanding sense

of the word, we again opted for the relative simplicity of our approach over F rail3. For

one thing, as Goldman and Chamiak note, in Frail3 “the networks built are not used for

truth/reason maintenance” (Goldman and Chamiak 1993, pl98). Since we rely

extensively on the LTMS to provide explanations of TnT’s inferences, an approach based

on modifying F ra il3 to provide the relevant explanations would be needlessly complex.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

Finally, our approach obviates the need for pre-specified probability distributions, since

we apply Bayes’ rule directly and incrementally to the information available in the

database.

Making evidence a fundamental unit of knowledge provides three benefits. First,

representing teleological knowledge in terms of evidence turns out to be quite intuitive.

Second, units of knowledge can be small, as no one unit carries the full burden of

anticipating and reacting to every possible context. This modularity of knowledge

facilitates changes to the knowledge base. Finally, there are well-known algorithms

(Pearl 1988) for incrementally propagating evidence (see Appendix A).

Representing knowledge in this manner imposes a constraint of conditional

independence on each piece of evidence. In other words, when an evidential test fires and

instantiates a piece of evidence, that evidence should be independent of all other

instantiated evidence, or else its associated likelihood will inflate the probability of the

role the evidence indicates.

This is not quite so onerous a constraint as it may at first appear. The key is to

arrange that no two tests install separate evidence propositions based on the same

evidence. Since tests are specialized on a particular type of device performing a

particular role, the knowledge engineer need only ensure that all tests for a particular

device type are mutually independent. The Carnot test database, which suffices for the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

accurate identification of ail thirty-six cycles in the initial set of cycles, consists of 107

tests, of which no single device and role combination accounts for more than five tests.

To illustrate this constraint, suppose that we have a test for a splitter playing the

role of a bleed-valve that looks for a turbine at the splitter’s inlet and another turbine at

the splitter’s outlet. A second test for a splitter-as-bleed-valve that also requires a turbine

at the splitter’s inlet must also specify that the outlet device of the splitter is not a turbine.

Without this additional specification, both tests would fire and install separate evidence

propositions, in effect double-counting the evidence for this particular role.

Finally, we would like to note the expressiveness that our theory affords, due to

the ability to encode suppressive evidence. In a conventional forward-chaining inference

system, reasoning about negation is often difficult. As an example, we will consider the

intricacies inherent in the inference of the flash-preventer role for a pump. In general,

this role applies when a pump is raising the pressure on the working fluid so that it a

downstream heat-injection will not cause it to prematurely vaporize, or “flash.” This

heat-injection may occur via a mixer playing the role of an open heat-exchanger, and we

have an evidential test in Carnot’s knowledge base for this case. Premature flashing is

only a problem if there is a pump downstream of the heat-injection, so our tests checks

for this condition as well.

There is a case in which such a topology is not indicative of flash-prevention,

however. Many heat-engines use steam-drums, which one represents as a mixer coupled

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

130

to a splitter. One splitter outlet delivers dry saturated vapor either to a turbine or a

superheater, and the other delivers saturated liquid to a loop that flows through a heater.

This loop often contains a recirculating pump acting as a flow-producer. Should there be

a pump and a mixer acting as an open heat-exchanger upstream, the recirculating pump

will be construed as the downstream pump that must be protected from premature

flashing, and an incorrect piece of evidence will be instantiated.

Suppressive evidential tests provide a means to rectify this error; we simply write

another test for the same topological pattern, and also for the presence of a steam-drum,

which is identified as a multi-port-chamber. Should this test fire, it instantiates a piece of

evidence against the flash-preventing role. Without this ability to write evidence to

address special cases, it would be difficult if not impossible to write tests that

discriminated sufficiently.

7.2 Qualitative Reasoning about Function
De Kleer was the first to investigate the inference of function from structure, which he

did in the domain of electronic circuits (de Kleer 1979). In his theory, a causal analysis

describes in qualitative terms the behavior of a given circuit topology, and a separate

teleological analysis determines the purpose of the system by parsing via a grammar of

circuit functions. This work established what has become the conventional approach to

reasoning about function, in which a two-stage reasoning process first does a qualitative

behavioral simulation of the input then uses the resulting information to infer function.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

In contrast to this approach, TnT posits a process of topological parsing that

enables the reasoner to proceed directly from structure to a functional construal of the

input. We consider this to be one of the main contributions of this work. TnT’s multiple

representations of locality are similar in spirit to the view of locality in Sussman’s slice

concept (Sussman and Steele 1980). With respect to slices, Sussman and Steele write

that “what we have done here is to introduce an alternative point o f view o f the circuit.

While in principle it contains no extra information, the new viewpoint is better organized

for certain purposes...The constraint language permits us to introduce many such

redundant viewpoints so that they can cooperate in solving a problem.” (Sussman and

Steele 1980 p21, emphasis in original).

Whereas the TnT reasoning process is purely topological, disregarding the

geometry of the input system, Davis (1983) argues that a useful definition of locality

arises from an explicit representation of physical organization. For diagnostic tasks, he

notes that aspects of a system that are physically adjacent (perhaps in order to achieve a

compact packaging of the device) may be behaviorally disparate. A reasoner operating

solely on a behavioral description may not be capable of diagnosing problems, such as

bridge faults in electronic circuits, that arise from interactions among physically adjacent

components; “changes small and local in one representation are not necessarily small and

local in another” (Davis 1983, p88). Although TnT does not reason about geometry, its

multiple representations of locality are consistent with this insight.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

De Kleer specifically rejects topological analysis, for two reasons. First, he argues

that a component with multiple functions will result in a tangled and complicated

hierarchical description that will impede reasoning. Second, he concedes that a

performance system would be well-served in the short-run by resorting to topological and

geometric reasoning, but at the expense of confounding what might otherwise be learned

about the limits of causal reasoning (de Kleer 1984, p207). In particular, he argues that

“[ejxpert systems are aimed at producing what performance is possible in the short term

without consideration of the longer term. Typically this is achieved by recording as many

of the heuristics and rules of thumb that experts actually use in practice, as possible. This

is misguided (de Kleer 1984, p208).

With respect to the first objection, TnT ’s topological reasoning differs

significantly from de Kleer’s conception thereof; “topological analysis attempts to

produce a hierarchy of structures, each of which is a known behavior” (de Kleer 1979,

p20). Because TnT reasons directly from structure to function, there is no inference of

behavior, and therefore no construction of such a hierarchy. Avoiding this hierarchy

precludes the concomitant problems with identifying multiple functions for a given

component.

The second objection is in essence a knowledge engineering argument,

specifically about what knowledge to represent and how it should be organized. This

concern motivates what de Kleer terms the “no function in structure” (NFIS) principle,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

which in its original form holds that “the laws of the parts o f a component may not

presume the functioning of the whole.” (de Kleer 1984, p239). Although other

researchers have taken issue with this principle (e.g., Iwasaki and Simon 1986; Keuneke

and Allemang 1989), and de Kleer has acknowledged that some of these criticisms are

well-founded, he contends that “some principle like no-fimction-in-structure is critically

needed. How else can we be assured that the predictions of our models do not simply

regurgitate assumptions we have built into them?” (de Kleer and Brown 1986, pp56-7).

This point deserves careful consideration if we are to construct robust

performance systems that address real-world tasks. Such systems could be constructed

from scratch, via the short-term expert system approach that de Kleer rejects as

misguided, but only at exorbitant and recurring expense in terms of programmer time. A

theory of causal or teleological reasoning, on the other hand, gives us leverage via its

generality. Obtaining this leverage was the underlying motivation for both de Kleer’s

work and TNT. N o w that we better understand qualitative models of behavior, from de

Kleer’s and other work, such as Forbus’ Qualitative Process Theory, (Forbus 1984), we

can focus on building robust performance-oriented architectures that enable the modular

application of different types of reasoning.

De Kleer’s work spanned both behavioral and teleological reasoning because at

the time little was known, from the perspective of artificial intelligence theory and

practice, about either. TNT on the other hand, focuses exclusively on making functional

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

inferences from topological knowledge, in order to determine how much we can infer

from the least possible input information. So long as the knowledge-base required for

this task remains tractable in terms of maintenance and extension, and so long as the

underlying reasoning process remains transparent to the user, such an approach, although

quite different from de Kleer’s remains consistent with the underlying motivations for his

work.

Subsequent research in this area has been conducted in three disparate

communities, the Qualitative Reasoning community, the Functional Reasoning

community, and the Functional Modeling community. The first two consist of artificial

intelligence researchers interested in engineering domains, whereas the latter consists of

systems engineers interested in developing computational tools for their work.

Work in Qualitative Reasoning attempts to derive function from causal models of

devices. Research in the Functional Reasoning community is based on the work of

Chandrasekaran, and has taken a different approach, of directly incorporating functional

knowledge about physical systems into causal accounts. The Functional Modeling

community is primarily concerned with diagnostic reasoning applied to large industrial

processes. Research in this community is based on the multilevel flow modeling

formalism developed by Morten Lind (1990). This formalism, which models systems in

terms of energy, matter, and information flows, is of interest because it directly

incorporates the goals of the system into the representation.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

The Functional Reasoning community is concerned with what it means to

understand how a device works. This line of inquiry, driven by Chandrasekaran, grew out

of a dissatisfaction with the opacity of knowledge in the expert systems developed in the

late 1970s. In particular, Chandrasekaran makes a distinction between the “compiled”

knowledge of systems such as MYCIN, “whose knowledge base contains the evidentiary

relationships between disease hypotheses and symptoms directly, without specifying the

causal pathways between them” (Sembugamoorthy and Chandrasekaran 1986, p48) and

“deep” models, which make explicit causal interactions. The goal of this research is to

specify a language (FR) for the representation of the function of devices, primarily for the

purpose of diagnostic reasoning.

This language distinguishes five aspects of functional knowledge: (1) structure,

(2) function, (3) behavior, (4) generic knowledge, and (5) assumptions. The conception

of structure is quite similar to that used in TNT, although FR is more hierarchic, and

supports descriptions at multiple levels of abstraction. Generic knowledge consists of

“chunks of deeper causal knowledge that have been compiled from various domains to

enable the specification of behavior,” and assumptions enable the reasoning agent to

choose among behavioral alternatives. We will have more to say about these two aspects

later, when we discuss the inferential mechanisms of FR.

The terms function and behavior, however, are defined somewhat differently; in

particular function in FR “specifies WHAT is the response of a device or a component to

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

136

an external or internal stimulus” and behavior “specifies HOW, given a stimulus, the

response is accomplished” (Sembugamoorthy and Chandrasekaran 1986, p50). These

definitions arise from and support the hierarchic nature of FR; in this view, a function is

something on the order of “make an audible alarm noise,” whereas a behavior might be

“repeated hit of clapper on bell.” The conception of function in FR is therefore neutral

with respect to implementation, whereas behavior is not.

In contrast, TnT defines function to be the intended behavior of a device, and in

fact construes the task of teleological reasoning to be the disambiguation of function from

behaviors, of which there is generally more than one. For example, regardless of context,

the physics of a turbine operating in steady state dictate that there will be a pressure drop

across the device, a concomitant drop in the temperature of the working fluid, and a flow

of shaft-work from the device to some other device outside the thermodynamic system

(e.g., a generator). The context in which the turbine exists determines which of these

behaviors is intentional, and which are simply side-effects, which may be beneficial,

neutral, or detrimental with respect to the designer’s goals.

These differences in definition arise from differences in opinion about how to

obtain the greatest inferential leverage from the reasoning system. In TNT we assume

that one must explicitly build the knowledge base to support reasoning within a particular

domain, and therefore require that specific device instantiations be first-class objects

which have as attributes all relevant behaviors (i.e., roles). These objects, however, may

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

exist at the most convenient level of abstraction to support the reasoning task; for

example, C a r n o t defines pumps to be devices that increase the pressure o f a liquid

working fluid, but makes no commitment to their internal structure; they might be Roots

blowers, piston compressors, or axial centrifuges. However, TnT is quite capable of

representing these subtypes and their relevant behaviors if this is the level at which

reasoning must take place.

The leverage we obtain from TnT arises from its modularity; because TnT

enables teleological inferences from exclusively topological information, it can be used in

interactive combination with other reasoning engines. For example, qualitative

behavioral envisioning is often exponential due to ambiguities in alternative behaviors at

state transition points; however, one might be able to significantly reduce or eliminate

such ambiguities by using the functional inferences of a TNT-based system to choose

particular branches at these transition points. In our coaching applications, we have

found that C a r n o t interacts readily with the existing CyclePad system, yet it remains a

separate part, so maintenance and extension of the teleological knowledge base is

independent of CyclePad’s knowledge base.

The leverage Sembugamoorthy and Chandrasekaran hope to obtain from their

approach is the organization of knowledge:

What the functional representation really does is organize the agent’s
understanding of how the device’s functions result from behaviors made
possible by the structure of the device, and contains explicit pointers to
generic domain knowledge and assumptions about behavioral alternatives
used by the agent in this process. Thus this representation is a piece in the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138
total understanding structure, and is responsible for elucidating the role of
the structure in the functioning of the device. (Sembugamoorthy and
Chandrasekaran 1986, p59, emphasis in original).

Organizing frameworks have proven to be particularly valuable tools in artificial

intelligence, especially as the emphasis in the field has shifted from smart algorithms

operating on small data sets to the representation of large amounts of knowledge about

the world. The ultimate value of such frameworks rests on the inferences that they

sanction, and it is in this area that we have some reservations about this work.

The literature on FR in general tends not to formally specify the semantics of the

representation. In (Sembugamoorthy and Chandrasekaran 1986), the authors present an

FR representation of a doorbell buzzer, in which the FUNCTION of the DEVICE buzzer

is “TOMAKE buzzing(buzzer).” The authors state that the representation “does not

understand buzzing or electrically connected or any of the terminals that are treated as

strings of symbols” (Sembugamoorthy and Chandrasekaran 1986, p59, emphasis in

original). The ontological commitments of this theory are therefore hard to discern. For

example, the predicates elect-connected and buzzing appear to denote states, yet what are

we to make of a predicate such as repeated-hitl It would seem that this represents an

iteration of states, so at the least it bundles up implicitly a notion of time.

The clapper of the doorbell in this representation has FUNCTIONS “mechanical,

acoustic, magnetic.” The semantics of these functions are not made clear;

(Sembugamoorthy and Chandrasekaran 1986) lacks the DEVICE representation for the

clapper, so we must speculate, but it would seem that magnetic and acoustic are attributes

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

of the material of the clapper, whereas mechanical would refer to some aspect of the

clapper’s structural attachment, such as a hinge-point, unless it denotes an attribute of

structural rigidity. The relation serially-connected, which applies to “manual-switch,

battery, coil, clapper” as part of the FR structural description of the doorbell, is troubling

in what it apparently subsumes; for example, the electrical behavior of a circuit depends

on which components are connected in parallel and which in series, yet there is no

explicit representation of this.

Representations of behavior are in terms of states and transitions, in which the

transitions are represented as annotated arcs. For example, the state elect-connected (tl,

t2) results in a state voltage-applied via an arc annotated with “AS-PER knowledge 1 IN-

THE-CONTEXT-OF FUNCTION voltage OF battery, serially-connected(batttry, coil,

clapper, manual-switch).” Knowledge 1 is a state transition from voltage-applied(t 1, t2)

to voltage-appliedifi, t4) via an arc annotated by AS-PER Kirchoff s Law. This is where

the representation grounds out, yet there is no account of how Kirchoff s Law could be

applied in making inferences about a particular situation.

In a more recent collaborative effort, Vescovi, Iwasaki, Fikes, and

Chandrasekaran (1993) have produced a specification for a language that combines

aspects of FR and qualitative behavioral reasoning, which they call Causal Functional

Representation Language (CFRL). The semantics of CFRL are clearly specified in

(Vescovi et al. 1993); in particular, a function F is defined as a triplet {Df, C f, Gf), where

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

Df denotes the device of which F is a function, Cf denotes the context in which the

device is to function, and Gf denotes the goal to be achieved by the function.

Behaviors in CFRL are represented as causal process descriptions (CPDs), which

are directed graphs in which each node is a partial state description and each arc

represents either a causal or temporal relationship. The semantics of CFRL is defined in

terms of matching functional representations to behavioral ones; in particular the

matching is between sets of CPDs and a trajectory through a behavioral envisionment of

the system being modeled. A trajectory is defined as a possible path through the graph of

states produced by a qualitative simulation system, such as the Qualitative Process Engine

(QPE) (Forbus 1990) or the Device Modeling Environment (DME) (Iwasaki and Low

1993).

Although the authors indicate that extensive testing, including complexity analysis

of the algorithm have yet to be done, CFRL appears to define an expressive means for

combining FR with qualitative reasoning and for clarifying the semantics of functional

representations. How well a CFRL-bases system would scale remains to be seen, as the

qualitative envisionment mechanism at the heart of QPE and DME often exhibits

exponential behavior in situations of practical interest.

There is reason to believe that FR-based systems will in fact scale to tackle

problems of practical interest. In particular, Pegah, Sticklen and Bond (1993) describe a

model of the fuel system for an F/A-18 aircraft that contains 89 component devices, 92

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

functions, 118 behaviors, and 181 state variables. The authors use a variant of FR that

they call Functional Modeling1 (FM), which differs from FR in that it relies on simulation

as a core reasoning strategy. The goal of FM is to determine the consequences of a

particular set of boundary conditions. The FM reasoning algorithm generates a

particularized state diagram (PSD), which is a directed acyclic graph in which each node

is a partial state description with respect to a particular variable of the device being

modeled, along with a statement of how the variable is changed. The PSD is constructed

by traversing this graph and adding new nodes whenever the functional representation of

the device can be expanded (recall that FR represents devices hierarchically, so the

expansion follows the chain device function -> behavior subdevice -> function ->

behavior... until the representation grounds out). The reasoner determines the effect of

the initial boundary conditions on the device by traversing the PSD and accumulating the

changes in the state description variables associated with each node.

Although the scale of this effort is encouraging, the authors do not discuss the

complexity characteristics of their algorithm. Given its apparent similarity to the process

of envisioning (de Kleer 1975), which is often exponential in situations of practical

interest, the issue of scalability remains open. The actual representation of the fuel

system required two years of a graduate student’s time to construct, and is quite

1 Note the overloading o f this term, which has also been used by Modarres and others to describe work
based on the multilevel-flow modeling theory of Morten Lind, which we discuss later in this chapter.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

specialized to this particular system; for example, there are TransferFueltoFuelTanks and

TransferViaTransferLines representations of function in the model, which would seem to

limit the generality of this work. However, as part of this work the researchers

constructed an extensive library of functional representations of parts, including more

than 90 different types of valves. They note that properly integrating such model

fragments into a design is not straightforward, and in their implementation is done

manually, although work in the area of compositional modeling might well be brought to

bear on this issue (Falkenhainer and Forbus 1991; Nayak and Joskowicz 1996).

Other work in the Functional Reasoning community also bears on this research.

The closest in spirit is Thadani’s work on device understanding (Thadani 1994). He

presents an account of how to produce causal explanations of devices given a structural

description and a library of structure-function-FR (SFF) templates which associate the

functions and FR description of a device with an abstract structural description. A

matching algorithm attempts to fit SFF templates to the input structural description.

Where there is no exact match, the system attempts to formulate a new structural

description (e.g., by consolidating two parallel electrical loads into a single load) and find

a match for that. Thadani claims that careful organization of the system’s knowledge

produces polynomial performance.

This work presents a clear algorithmic account of how a reasoner could utilize FR

representations to make inferences from structure to function and in the process clarifies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

some aspects of FR that are left implicit elsewhere in the literature. In particular, he

makes explicit the semantics of such relations as electrically-connected (which sanctions

the inferences that all voltages at the connected ports are equal and the sum of the

currents at all ports is zero). Like TNT, it relies on a large knowledge base to make its

inferences. However, TNT differs from this approach in its organization of the

knowledge base around evidential tests, which we believe afford greater maintainability

than the template-based approach to knowledge organization.

Although the complexity analysis is encouraging, Thadani presents only two

examples, each consisting of four components. How maintainable the knowledge-base

will remain as it is scaled up to address larger examples is unclear. The representation of

behavior relies on causal process descriptions, but there is no account of how CPDs are

constructed; in particular there is no discussion of a mechanism which would ensure that

independent knowledge engineers to arrive at the same CPD for a given behavior (e.g.,

the same choices for parameters to specify partial states). Lack of uniformity at this level

would be a serious impediment to the development of large-scale SFF based knowledge

bases. These issues notwithstanding, this work provides a lucid account of practical FR-

based reasoning.

Bylander’s method of reasoning by consolidation (Bylander and Chandrasekaran

1985) bears some resemblance to the aggregation step in TNT, although this work is an

attempt to infer behavior from structural input, and is presented as a more

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

computationally-efficient alternative to qualitative simulation. Bylander’s consolidations

are far more general than the aggregation of devices that TNT posits. The goals of these

two processes, however are similar; to gain inferential leverage via abstraction.

Keuneke (1989) extends FR work to the problem of device understanding and

explanation by adding the teleological predicates ToMaintain, ToPrevent, and ToControl

to the representation. This work focuses on developing a causal explanation of

malfunction diagnoses. Keuneke’s representation of a chemical processing plant is also

one of the first large-scale applications of the functional reasoning theory. Note that the

semantics of each of these predicates embodies a lack of change, that is, the preservation

of a given state over time. The ability to explicitly represent and reason about such

maintenance functions considerably enriches the expressive power of the representation.

In TnT we achieve this expressiveness in the definition of particular roles, such as the

flash-preventer role for a pump, and in the achievement of the system-preservation goal

by a particular device or subcycle of a system.

Allemang (1990) has demonstrated that the concepts of FR extend to non-physical

domains, in his case the domain of computer programs. His system, DUDU, takes as

input Pascal-like pseudo-code and either verifies its correctness or produces an

explanation of the problems it finds. The explicit representation of function in DUDU

enables the program to focus its efforts on buggy parts of the input code rather than

constructing a proof of the entire program to verify it. In some respects this domain is

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

145

more difficult for an automated reasoner than a physical domain, because there is no

notion of locality for a computer program, aside from the semantics that programmers

impose on a particular language (e.g., object-oriented programming). In a poorly

constructed or otherwise buggy program, one part may alter the state of any other part of

the program at an arbitrary point in the processing.

Goel’s KRITIK2 and IDEAL systems (Bhatta and Goel 1993; Goel 1991; Stroulia

and Goel 1992) combine FR with case-based reasoning techniques to support design

tasks. They perform the structure to function reasoning task that TNT addresses in

reverse, taking as input a functional specification and returning a particular structure, in

the form of a design case, along with a model that accounts for how the structure realizes

the input function. We have used TnT ’s representations to construct pedagogical cases

for thermodynamics which we have then retrieved using MAC/FAC, a model of

analogical retrieval.

In the Qualitative Reasoning community, Franke (1993) has proposed a formal

representation language, TeD, for teleological descriptions. TeD specifies desired and

undesired behaviors in terms of a specific design modification, using two primitive

operators, Guarantees and unGuarantees. This language is domain independent and

enables descriptions to be acquired during the design process. Unlike TNT, it requires an

envisionment of all possible behaviors of the system, which it achieves via QSIM

(Kuipers 1986), and also a specific design change.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

146

Narayanan has investigated the inference of behavior from the geometric

information contained in diagrams (Narayanan, Suwa, and Motoda 1995). This work is

complementary to TNT, in that it formalizes another mode of reasoning. It is likely that

C a r n o t could directly act on behavioral evidence generated such a reasoner from the

visual depiction of the input, which C a r n o t currently ignores. People tend to adhere to

visual conventions in the graphical layout of thermodynamic system designs that could

provide valuable evidence for or against particular roles. For example, the primary boiler

of a steam engine is most often placed on the left side of the diagram, with the flow of the

cycle moving clockwise.

Tomiyama, Umeda and Kiriyama have proposed an architecture for supporting

what they term “knowledge intensive engineering” (Tomiyama, Umeda, and Kiriyama

1994). They posit a “function behavior state” (FBS) modeler (Umeda et al. 1990) that

takes as inputs the behaviors and state transitions from a qualitative simulation and also a

functional knowledge base and produces as output a critique of the system. Function is

represented in general as “to do something,” for example, “to move book.” The

representation of function is hierarchical, organized either as a taxonomy or a partonomy.

The goal of this research is to make more knowledge about the engineering domain

available to engineers during design tasks. Functional knowledge can be used to improve

designs; for example, the system might suggest a particular design strategy to achieve

functional redundancy. The knowledge intensive engineering architecture is similar in

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

spirit to TNT in that they propose that it be comprised of “plug and play” reasoning

agents.

There has also been some related work in the Functional Modeling Community,

which consists of systems engineers interested in developing modeling methods,

primarily to support diagnostic reasoning tasks. Lind (1982; 1990) presents this approach

to the representation of device and system function in his Multilevel Flow Modeling

(MFM) theory, which posits that systems have an intended purpose or purposes, and

models them in terms of such purposes. The flows of the theory refer to processes of

material, energy, and information flow. MFM defines a function as a “useful behavior”

(Lind 1990, p i9), which is consistent with our definition. MFM also makes explicit the

goals of the system, more specifically than does TNT; whereas in TNT we posit three

design goals (produce a change in the environment, do so efficiently, and preserve the

system), the goals of an MFM model are specific to the system being modeled. For

example, the goals of an MFM model of the water circulation system of a central heating

system are maintain water level within safe limits, maintain condition fo r energy

transport, and keep room temperature within limits (Lind 1990, p i6). In contrast, the

functions that MFM defines are more general than the roles defined in TnT. For

example, MFM specifies mass and energy flow functions that include storage, balance,

transport, barrier, sink, and source (Lind 1990, p44). Despite these differences in

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

representation, the overall structure of MFM is largely consistent with TNT. Lind,

however, offers no algorithmic account of reasoning via MFM.

Larsson (1996) describes a quantitative algorithm for reasoning with MFM

models, where the various state parameter values are derived from measurements. Where

measurements are not available, other measurement values are propagated. A set of rules

governs this propagation with the goal of producing the most probable set of values. The

MFM model is first divided into consistent subgroups. For example, if the absolute

difference in the measured flows Fi and Ft of two connected flow-carriers (a class of

entities that includes sources, transports, non-forking balances, and sinks) is less than a

specified error threshold, then those two flows are deemed to be within the same

subgroup. The propagation rules give precedence to a flow value from a subgroup of

more than one member (such a flow value is said to be validated). Values propagated

downstream are given priority over values propagated upstream, in order to make flow

propagation behave consistently.

Where conflicts in measured values arise, inconsistent subgroups are marked in

color; in particular, subgroups of a single member are highlighted in red. Conflict

resolution, therefore, is delegated to human operators.

Larsson also presents an algorithm for fault diagnosis that traverses the MFM

graph; when it comes to single flow functions it uses pre-specified questions, such as “Is

the power switch on?” or sensor readings to determine the state of the function. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

149

algorithm can also generate a limited natural language explanation of its diagnosis as it

proceeds depth-first through the MFM graph. Larsson claims that the complexity of these

algorithms is worst-case linear because they only traverse static links.

Such MFM models appear to scale; Larsson reports that a large-scale MFM model

for monitoring and diagnosis of post-operative intensive care patients called Guardian

(Hayes-Roth et al. 1992), which contains 544 rules exhibits a worst-case execution time

for a fault diagnosis of 1100 (iseconds, and executes 500,000 rules per second. However,

the MFM approach differs significantly from ours in that the modeler must make explicit

the goals and functions of the system, whereas in TNT the inference of goals and

functions based on structure is the output of the process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONCLUSION AND FUTURE WORK
We have presented Topological iNference of Teleology (TnT), a theory of reasoning from

structure to function in the domain of thermodynamic cycles. This theory describes a

knowledge representation that enables efficient evidential reasoning from structure to

function. The inference step relies on a Bayesian updating mechanism which rules in the

most likely role for each device; from roles we infer plans that describe the intention of

the cycle as a whole. The contributions of this work include:

• A representation language for structural locality, which enables the inference of
function directly from structure, without an intermediate behavioral simulation of the
system.

• An account o f evidential reasoning from structure to function that operates in
quadratic time.

• A knowledge representation based on evidential test for or against particular roles that
enables our approach to scale, both algorithmically and from the point of view of
knowledge base management.

• Proofs of concept for self-explanatory coaching systems for use in design-based
exploratory learning environments.

Plausible reasoning is efficient and flexible. Representing knowledge in terms of

evidential tests for or against particular roles enables a domain expert to rapidly construct,

edit, and extend a knowledge base. Prior probabilities provide a base level of

competence, to which the domain expert can quickly add. The ability to provide

suppressive evidence facilitates the description of special cases. The knowledge base

remains modular, so changes to one part of the knowledge base do not affect other parts.

150

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

In coaching applications, the evidential reasoner’s lack of deductive soundness may be

turned to our advantage, by forcing the student to reflect on the validity of the system’s

inferences, based on the evidence for and against that the system presents for each

inference.

TNT provides us with the ability to realize a class of coaching software tools, but

it tells us nothing about how to apply these tools, and this is the direction in which we

intend to direct future research. Preliminary results with collaborators at Northwestern,

the U.S. Naval Academy, and Oxford have made clear that integrating CyclePad, with its

design-centric approach to thermodynamics, into existing thermodynamic curricula will

require more work.

Simply making CyclePad available to a conventional thermodynamics class is

tantamount to providing an arithmetic class with calculators. Most problems in

thermodynamic textbooks ask the student to analyze a cycle in order to calculate a

particular number, generally the cycle’s efficiency. In contrast, a CyclePad problem

might ask a student to compare the efficiencies of several different cycles, or the same

cycle with several different working fluids and to explain observed differences. Without

CyclePad, such an assignment would be impractical, given the amount of computation

required, but with CyclePad we can focus the student’s energies on the important

conceptual issues.

At this time, open research questions include:

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

• What form should CyclePad problems take?

• How can we best integrate CyclePad into a conventional thermodynamics class?

• How and when should advice be presented to students to maximize the
pedagogical impact of CyclePad?

To understand these issues, we are actively seeking engineering professors

interested in developing design-centric curricula for thermodynamics. We anticipate that

CyclePad and the TNT-based coaching systems will have to change significantly if they

are to be integrated into such a curriculum; what we don’t yet know is how they will

change.

We are in the process of developing a pedagogical environment to support the use

Robo
Grader

Analysis
CoachTA/Grader CARNOT

Case/Problem
BuilderInstructor CyclePad Student

Design
CoachMAC/FACCaseBase

Figure 8.1 Architecture of CyclePad pedagogical support environment

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

of CyclePad in the field. This environment, depicted in Figure 8.1, will enable the

creation of problems for use with CyclePad and provide assistance in their grading.

CyclePad, shown in the center of the diagram, provides a common interface to the

environment. The instructor interacts with an enhanced version of CyclePad that includes

the Case/Problem Builder, a wizard-style set of dialog boxes for the step-by-step creation

of a problem or case. Problems generated in this manner may be distributed

electronically to students.

A student interacts with a version of CyclePad that includes the Design and

Analysis Coaching subsystems. Loading a homework problem from the Case/Problem

Builder causes CyclePad to set up the environment to suit the problem, for example

setting the units in effect appropriately. The problem file contains both a machine-

readable and a natural-language description of the situation that the student may view at

any time and may, at the instructor’s discretion contain either a fragment or a complete

design for the student to work with. We intend to add a facility for the student to view

how well her current state of analysis addresses the requirements set forth in the problem.

CyclePad contains an email facility that allows the student to send questions to a

human or automated TA (e.g., RoboTA, a project that we are currently prototyping, based

on the Design Coach) and to submit completed homework. Such a submission is first

annotated with C a r n o t ’s inferences and also with the RoboGrader’s analysis, which

compares the student’s work to the problem requirements. The TA interacts with the

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

system via a RoboGrader browser that summarizes and displays student results and

automates basic grading calculations (e.g., score mean and distribution), given instructor-

or TA-assigned point values for each part of the problem.

As we have found that a rich context is essential in the Design Coach, the

Case/Problem Builder enables the creation of cases via a wizard-style interface that

guides the instructor in specifying extra information, such as a design change and

rationale for the change. The Design Coach will utilize MAC/FAC, a model of

analogical retrieval, as described in Section 6.3, to retrieve case for presentation to the

student. We are currently working on an email-based system, RoboTA, that will offer

design and analytical advice in response to emailed queries. Utilizing email for RoboTA

will enable us to maintain and improve the Design Coach on a centralized server, rather

than requiring frequent updates to the CyclePad distribution. It will also enable us to

gather data on how students are using CyclePad, which we anticipate will aid us in future

development work.

To conclude, we believe that the pedagogical tools TnT makes possible will

enable us, in collaboration with thermodynamics teachers, to construct new curricula that

have design as a central focus and demonstrably improve understanding of domain

concepts. Finally, we believe there are other applications for TnT that we have yet to

explore. For example, a TNT-based subsystem might be embedded CAD system for

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

automating the function-based indexing and retrieval of designs. We also expect that our

current applications of TnT will extend to other physical domains, such as electronics.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix A
Hierarchical Belief Updating

C a r n o t implements Pearl’s propagation-based hierarchical belief-updating algorithm

(Pearl 1988). This appendix summarizes the key points of this algorithm; for further

information, see (Pearl 1988). The essence of the algorithm is captured in Figure A.I.

In part (a) of this diagram, a new piece of evidence with likelihood A* impacts

belief in S. BEL(x) is a function that returns the current level of belief in a proposition „t,

that is, the probability that x is true given all evidence currently available. In part (b),

messages transmitted to the parent and children of S update their probabilities, while in

part (c) these messages complete their propagation to the root and leaves of the tree.

Alpha, defined in Equation A .l, is a normalizing factor that ensures that the

►L BEL (X)=BEL‘ lS)+
X J aJBEUX)-BEUS)1

BEUX, BELtX)

\ BEL'(S)

BEL IS)
(s) = a^ ,B E U S)

BELtS)

BEL' (Z)=
a ^B E U Z)e with likelihood A,

BEUY) BELtZ) BELIZ)BEUY)

BEL- (X)

a^B E U Y)

(a) New evidence impacts
node S

(b) Messages transmitted to (c) Messages transmitted to
parent and children of S siblings, cousins and

descendents of S

Source: (Pearl 1988, p339)

Figure A.1 Hierarchical updating of belief

156

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

probabilities at any given level of the hierarchy sum to the probability of the immediate

parent node (and hence the probabilities across the entire hierarchy sum to 1).

a ^ [l , B E U R) ^ - B E L (R) Y ' Equation A.1

The updating process takes place in three steps. In the first step, the prior

probability of the role for which the evidence applies is updated by multiplying it by the

current likelihood and the normalizing factor:

BEL'(R) = a,A.BEL(R) K A „
v ' 5 1 Equation A.2

or, in other words,

/L BEL(R)RFT'(f>\ = ______ 2____ - ______
V AsBELiR) + 1 - BEL(R) Equation A.3

Messages are then transmitted up and down the hierarchy. The parent of R (i.e., its role

abstraction) receives a message of three parts, the prior probability of R, the new

probability of R as calculated in Equation A.3, and the normalizing factor alpha. All

children of R (i.e. specializations of the role) receive a message of alpha times the

likelihood.

In the second step, all children of R update their beliefs by multiplying them by

the message received. They then pass this message down to all of their successors and

this process repeats until it terminates at the leaves of the tree.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

In the third step, a parent node P that receives the three part message from its child

updates its belief via

BEL'(P) = BEL'(R) + a s [B E L (P)-B E L (R)] „ . M ,
* Equation A.4

The parent node then transmits to its parent a three-part message consisting of its prior

belief, its newly-revised belief and alpha. It also transmits to its children a message

alpha. Each child C that receives this message updates its belief by multiplying its

current belief times alpha, or, in effect via

BEL(C)BELXC) =
XSBEL(C) +1 - BEL(C) Equation A.5

Note that the difference between this equation and Equation A.3 is the lack of a Xs term

in the numerator. All nodes that are updated in this manner are siblings (or cousins) o f

the original node R, because a parent (or more distant ancestor) passed this message down

to all of its other offspring. The Xs is a weighting factor that encodes how much we

should revise our belief in the original node R, so all nodes that are not a part of R’s

direct lineage should not be affected by this weighting. However, in order to ensure that

the sum total of all probabilities remains 1, we must adjust all sibling probabilities either

up or down depending on the adjustment to R. For example, if we find new evidence that

a cooler CLR-1 is acting as an intercooler, then not only should our belief that CLR-1 has

the role intercooler increase, but belief in its abstraction, heat-ejector should rise. At the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

same time, belief in its sibling fluid-cooler should decline, as should belief in the sibling

to heat-ejector, heat-provider. As a consequence of this updating mechanism, each piece

of evidence affects the probabilities of all roles. This results in swift convergence on

particular role assignments for each device.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix B
CARNOT-Generated Explanations for Test Set A

The following 36 cycles comprise the primary test set used in the development of
C a r n o t . The current version of C a r n o t correctly identifies the function of each cycle
and its component parts. The accompanying explanations are automatically generated
based on plans instantiated during the processing of the cycle and have not been edited in
any way. Note that this appendix only demonstrates one aspect of C a r n o t ’s output; for
examples of its other capabilities, see Chapters 2 and 6.

Source: Analysis o f Engineering Cycles, Figure 1.1

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

Cycle 1
Simple Steam Cycle

CLR-1

160

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

Cycle 2
Closed-Circuit Gas-Turbine

HTR-1

CLR-1

Source: Analysis o f Engineering Cycles. Figure 1.4

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine utilizes gas working fluids throughout, which typically
results in lower weight and a more compact design.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cycle 3
Practical Vapor-Compression Plant

162

A

CLR-1

CMP-1THR-1

Source: Analysis o f Engineering Cycles, Figure 5.3(a)

This is a refrigerator cycle, so it is intended to move heat from one location to another.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

Cycle 4
CBTX Cycle with Exhaust-Gas Heat-Exchanger

CMP-1 HX-1-H HTR-1 TUR-1

▼

Source: Analysis o f Engineering Cycles, Figure 6.2

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine utilizes gas working fluids throughout, which typically
results in lower weight and a more compact design.

To increase this cycle’s efficiency, the relatively hot exhaust gas is piped through a closed
heat-exchanger in order to preheat the working fluid entering the combustion chamber.
This takes place at HX-1H. This plan takes advantage of the high temperature exhaust of
a gas-turbine to preheat the working fluid.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

Cycle 5
CICBTRTX Cycle with Intercooler, Reheater,

and Exhaust-Gas Heat-Exchanger

CMP-1 CLR-1 CMP-1 HX*1*H HTR-1 TUR-1 HTR-2 TUR*2

t H ® h© HX-1-C I

■ M i l I I I - I . — g) ■ ■ ■

Source: Analysis o f Engineering Cycles. Figure 6.6

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine utilizes gas working fluids throughout, which typically
results in lower weight and a more compact design.

To increase this cycle’s efficiency, energy is ejected from the compressor. This takes
place at CLR-1. Intercooling reduces the amount of work necessary to compress a gas,
thus increasing cycle efficiency. To increase this cycle’s efficiency, the relatively hot
exhaust gas is piped through a closed heat-exchanger in order to preheat the working
fluid entering the combustion chamber. This takes place at HX-1H. This plan takes
advantage of the high temperature exhaust of a gas-turbine to preheat the working fluid.
To increase this cycle’s efficiency, energy is injected into the working fluid as it flows
through the turbine. This takes place at HTR-2. Reheating in a gas power cycle takes
advantage of the fact that oxygen remains in the working fluid even after the initial
combustion, so injection of more fuel enables further extraction of energy from the
exhaust of the first turbine stages. In an airplane engine this would be called an
afterburner.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

165

Cycle 6
Reversible Regenerative Cycle for Saturated Steam,

without Steam Extraction

TUR-2 TUB “3TUR-1

HX-1-H HX-2-H

HTR-1 CLR-1

T3 U
PWP-1 PMP-2

Source: Analysis o f Engineering Cycles„ Figure 7.3

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

To increase this cycle’s efficiency, there are 2 points (HX-2H and HX-1H) where the
working fluid flowing through the turbine is used to preheat the feed fluid. Ideally we
could extract heat from the turbine as the gas expands through it. In practice this causes
unacceptable saturation of the fluid.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

Cycle 7
Idealized Extraction Regenerative Superheated Cycle

O— «)—
~ SPU TUR4 TTURt SPL1 S PU TUR3 SPU TURS

CMPl CMP3

HXtC HX1H HX3C HX3H

HTRi

CMP2 CMP4

HX2C HX2H HX4C HX4H

SPL5
UXRS UXR3

PMP2 MXfllPMPS UXRS CLfll PMPlUXR4 UXR2

Source: Analysis o f Engineering Cycles. Figure 7A

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine combines the greater maximum temperatures of a gas
cycle with the thermal advantage of the vapor cycle in ejecting all its heat at the lowest
possible temperature.

To increase this cycle’s efficiency, there are 2 points (MXR3 and MXR5) where
superheated fluid bled from the turbine is saturated then is directly mixed with the boiler
feed liquid. Direct contact is the most efficient form of heat exchange, but a large
temperature difference in the streams will lead to irreversibilities. Increasing the pressure
and intercooling a working-fluid bleed can convert it to a dry saturated gas at the same
temperature as the wet saturated liquid to be preheated. There are also 2 points (MXR2
and MXR1) where fluid bled from the turbine is directly mixed with the boiler feed
liquid. Heat-exchange via mixing is more efficient than indirect transfer in closed heat-
exchangers, and it also enables deaeration of working fluid, but it requires more pumps
because inlets must be maintained at the same pressure. There are also 2 points (HX3C
and HX1C) where energy ejected from the compressor is used as a source of heat. Using
the ejected heat from an intercooler increases the efficiency of intercooling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

Cycle 8
Plant with Train of DC Heaters

SPL-2 SPL-3

TUR-4

SPL-1

TUR-2 TUfl-3

CLR-1HTR-1

T4
PMP-1PMP-3 MXR-1MXR-2 PMP-2

Source: Analysis o f Engineering Cycles, Figure 7.8

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

To increase this cycle’s efficiency, there are 3 points (MXR-1, MXR-2, and MXR-3)
where fluid bled from the turbine is directly mixed with the boiler feed liquid. Heat-
exchange via mixing is more efficient than indirect transfer in closed heat-exchangers,
and it also enables deaeration of working fluid, but it requires more pumps because inlets
must be maintained at the same pressure.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

168

Cycle 9
Steam-Turbine Plant for Combined Supply of Power

and Process Steam
SPL-2SPL-1

TUR-1 TUR-3TUR-2

CLR-2
SPL-3

■

CLR-3

HTR-1
THR-1 CLR-

MXR-1

MXR-3 MXR-2
PMP-1PMP-2

Source: Analysis o f Engineering Cycles. Figure 7.11

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

To increase this cycle’s efficiency, there are 2 points (CLR3 and CLR2) where vapor is
bled for use in an industrial process. Conversion of energy from one form to another
inevitably entails irreversibility, so using vapor generated for a power cycle is more
efficient than using the power generated to produce the vapor. To increase this cycle’s
efficiency, fluid bled from the turbine is directly mixed with the boiler feed liquid. This
takes place at MXR3. Heat-exchange via mixing is more efficient than indirect transfer in
closed heat-exchangers, and it also enables deaeration of working fluid, but it requires
more pumps because inlets must be maintained at the same pressure.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

Cycle 10
Gas-Cooled Reactor with Dual-Pressure Steam Cycle

HX-7-H l - ■ Q .

o _SPLg _ ^ -I

MXR-2 j .
HX-6-H A '

HX-7-C

TUR-1 MXR-3 TUR-2

Subcycle-1
HX-5-H

CLR-1

MXR-'
HX-3-H

PMP-3

Subcycle-2
HX-2-C

CLR-2

PMP-2HX-1-C HX-1-H SPL-1
CMP-

Source: Analysis o f Engineering Cycles, Figure 8.1

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work.

To increase this cycle’s efficiency, heat is injected into the work-generating subcycle at
multiple pressures. This takes place at SUBCYCLE- l/SUBCYCLE-2. Heat-exchange at
multiple-pressures minimizes the temperature difference between the two working fluids,
thereby creating less irreversibility. A relatively cool, high-pressure saturated liquid can
absorb heat from a high-temperature working fluid, cooling that fluid to the point where
it can supply heat to the same saturated liquid at a lower temperature.

To preserve this cycle’s integrity, a separate subcycle is used to contain the radiation of
the reactor core. This takes place at SUBCYCLE-1. Nuclear plants often use a separate
subcycle to contain radiation. There are also 2 points (MXR2/SPL3 and MXR1/SPL2)
where a vapor-drum is used to maintain a ready supply of gaseous working fluid. A
vapor-drum buffers the system against sudden changes in load.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

170

Cycle 11
Hypercritical C02 Cycle

CMP-1 TUR-2 n o]

SPL-1 MXR-2

RCT-1

HX-1-H
MXR-1

▼
CLR-1 SPL-2 HX-1-C HX-2-C

Source: Analysis o f Engineering Cycles. Figure 8.6

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine utilizes gas working fluids throughout, which typically
results in lower weight and a more compact design.

To increase this cycle’s efficiency, the relatively hot exhaust gas is piped through a closed
heat-exchanger in order to preheat the working fluid entering the combustion chamber.
This takes place at HX-2H. This plan takes advantage of the high temperature exhaust of
a gas-turbine to preheat the working fluid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

171

Cycle 12
Ideal Dual-Pressure Work-Producing Device

MXR-1
7) TUR-1 TUR-2

CMP-1HTR-1
HX-1h HX-lc CLR-1

HX-2h
Subcycle-1

HX-2CSubcycle-2
PMP-1

PMP-2
SPL-1

Source: Analysis o f Engineering Cycles. Figure 8.3

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work.

To increase this cycle’s efficiency, heat is injected into the work-generating subcycle at
multiple pressures. This takes place at SUBCYCLE-l/SUBCYCLE-2. Heat-exchange at
multiple-pressures minimizes the temperature difference between the two working fluids,
thereby creating less irreversibility. A relatively cool, high-pressure saturated liquid can
absorb heat from a high-temperature working fluid, cooling that fluid to the point where
it can supply heat to the same saturated liquid at a lower temperature.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cycle 13
Supercritical Condensing N204 Cycle

172

TUR-2

RCT-1

HX-1-C

PMP-1
HX-t-H

Source: Analysis o f Engineering Cycles. Figure 8.7

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

To increase this cycle’s efficiency, the working fluid flowing through the turbine is used
to preheat the feed fluid. This takes place at HX-1H. Ideally we could extract heat from
the turbine as the gas expands through it. In practice this causes unacceptable saturation
of the fluid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

173

Cycle 14
Direct-Cycle Dual-Pressure Boiling-Water Reactor

without Superheat
MXR-2 SPL-2 SPL-3

TUR-2 TUR-3 TUR-5TUR-t

MXR-1 SPL-1

MX-1-H

MXR-4THR-2

HX-1-C
THR-1

RCT-1 CLR-1HX-3-C

HX-3-H PMP-3
SPL-5

PMP-2HX-2-H

Source: Analysis o f Engineering Cycles, Figure 8.8

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work.

To increase this cycle’s efficiency, there are 2 points (HX-3H and HX-2H) where
working fluid bled from the turbine is used to supply heat in a heat-exchanger. Heat-
exchange via closed heat-exchangers is less efficient than direct mixing, but the two
working fluids can be at different pressures, reducing the need for pumps. To increase
this cycle’s efficiency, working fluid is used to cool the fluid flowing through the reactor
core. This takes place at HX-1C. Liquid-moderated reactors may be controlled by cooling
their inlet working-fluid, which will result in the raising of more vapor.

To preserve this cycle’s integrity, the working fluid flowing through the turbine is flashed
to improve its quality. This takes place at SPL-4. Reactors often generate vapor of lower
quality, and hence may need flash-chambers in the turbine series to dry the vapor
entering the latter stages. To preserve this cycle’s integrity, a vapor-drum is used to
maintain a ready supply of gaseous working fluid. This takes place at MXR-l/SPL-1. A
vapor-drum buffers the system against sudden changes in load.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

Cycle 15
Direct-Cycle Boiling-Water Reactor with Live and

Bled-Steam Reheating

SPL-5 SPL-6

HX-2-H TUR-6SPL-1 SPL-2

UXR-2

MXR-1

RCT-t

-o-o-Q*-
uxn-6 PMP-lPMP-2PMP-3

Source: Analysis o f Engineering Cycles, Figure 8,9

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

To increase this cycle’s efficiency, working fluid bled from the turbine is used to supply
heat in a heat-exchanger. This takes place at HX-3H. Heat-exchange via closed heat-
exchangers is less efficient than direct mixing, but the two working fluids can be at
different pressures, reducing the need for pumps. There are also 2 points (MXR-5 and
MXR-6) where fluid bled from the turbine is directly mixed with the boiler feed liquid.
Heat-exchange via mixing is more efficient than indirect transfer in closed heat-
exchangers, and it also enables deaeration of working fluid, but it requires more pumps
because inlets must be maintained at the same pressure. There are also 2 points (HX-2H
and HX-1H) where energy is injected into the working fluid as it flows through the
turbine. Reheating in a vapor power cycle enables the use of higher turbine inlet
pressures, which increases efficiency. Reheat ensures that the exit vapor is of high
quality. If turbine blades could withstand higher inlet temperatures then reheat would be
unnecessary.

To preserve this cycle’s integrity, the working fluid flowing through the turbine is flashed
to improve its quality. This takes place at SPL-3. Reactors often generate vapor of lower
quality, and hence may need flash-chambers in the turbine series to dry the vapor
entering the latter stages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

175

Cycle 16
Indirect-Cycle Pressurized-Water Reactor with Live-Steam Reheating

HX-2-C
TUR-l SPL-2

[SPL-4SPL-1 TUR-2 Subcycle-2HX-2-H
MXR-3

HX-1-H SPL-7
SPL-6

TUR-6TUR-3 TUR-7TUfl-5

MXR-6MXR-6PMP-4 MXR-5.

CLR-1,
HX- MXR-4

HX-3-CHX-4-CHX-6-C

HX-8-H
MXR-2PMP-3 HX-7-H HX-5-H HX-4-H

Source: Analysis o f Engineering Cycles, Figure 8,10

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

To increase this cycle’s efficiency, there are 6 points (HX4H, HX3H, HX5H, HX6H,
HX7H, and HX8H) where working fluid bled from the turbine is used to supply heat in a
heat-exchanger. Heat-exchange via closed heat-exchangers is less efficient than direct
mixing, but the two working fluids can be at different pressures, reducing the need for
pumps. To increase this cycle’s efficiency, energy is injected into the working fluid as it
flows through the turbine. This takes place at HX2H. Reheating in a vapor power cycle
enables the use of higher turbine inlet pressures, which increases efficiency. Reheat
ensures that the exit vapor is of high quality. If turbine blades could withstand higher
inlet temperatures then reheat would be unnecessary.

To preserve this cycle’s integrity, the working fluid flowing through the turbine is flashed
to improve its quality. This takes place at SPL4. Reactors often generate vapor of lower
quality, and hence may need flash-chambers in the turbine series to dry the vapor
entering the latter stages. To preserve this cycle’s integrity, a separate subcycle is used to
contain the radiation of the reactor core. This takes place at SUBCYCLE-1. Nuclear
plants often use a separate subcycle to contain radiation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

176

Cycle 17
Indirect-Cycie Boiling-Water Reactor with

Secondary Nuclear Superheater
HTR-1 SPL-1 SPL-2 SPL-3

Subcycle-2
MXR-3

MXR-4

Subcycle-1

HX-3-C

HX-3-H HX-4-H HX-5-H PMPl

Source: Analysis o f Engineering Cycles, Figure 8.11

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

To increase this cycle’s efficiency, there are 3 points (HX5H, HX4H, and HX3H) where
working fluid bled from the turbine is used to supply heat in a heat-exchanger. Heat-
exchange via closed heat-exchangers is less efficient than direct mixing, but the two
working fluids can be at different pressures, reducing the need for pumps.

To preserve this cycle’s integrity, a separate subcycle is used to contain the radiation of
the reactor core. This takes place at SUBCYCLE-1. Nuclear plants often use a separate
subcycle to contain radiation.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

177

Cycle 18
Indirect-Cycle Sodium-Cooled Prototype Fast

Reactor with Superheating and Reheating
TUR-3

SPt-8 O—1'SPL-8 TUB-
SPl-1 SPL-3SPL-2

HX-3-C
MXR-5

PMP-3
TUR-6

SPL-9
MXR-6

HX-5-C

1 PMP-4

Subcycle-1 © 1 r MXR-7
TUB-7

THR-2

CLR-1
PUP-5

Subcycle-2

PUP-1PMP-2HX-2-H

Source: Analysis o f Engineering Cycles, Figure 8.12

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.
To increase this cycle’s efficiency, heat is injected into the work-generating subcycle at
multiple pressures. This takes place at SUBCYCLE-2/SUBCYCLE-3. Heat-exchange at
multiple-pressures minimizes the temperature difference between the two working fluids,
thereby creating less irreversibility. A relatively cool, high-pressure saturated liquid can
absorb heat from a high-temperature working fluid, cooling that fluid to the point where
it can supply heat to the same saturated liquid at a lower temperature. There are also 2
points (HX-2H and HX-1H) where working fluid bled from the turbine is used to supply
heat in a heat-exchanger. Heat-exchange via closed heat-exchangers is less efficient than
direct mixing, but the two working fluids can be at different pressures, reducing the need
for pumps. To increase this cycle’s efficiency, energy is injected into the working fluid as
it flows through the turbine. This takes place at HX-4H. Reheating in a vapor power
cycle enables the use of higher turbine inlet pressures, which increases efficiency. Reheat
ensures that the exit vapor is of high quality. If turbine blades could withstand higher
inlet temperatures then reheat would be unnecessary.
To preserve this cycle’s integrity, a separate subcycle is used to contain the radiation of
the reactor core. This takes place at SUBCYCLE-1. Nuclear plants often use a separate
subcycle to contain radiation. To preserve this cycle’s integrity, a vapor-drum is used to
maintain a ready supply of gaseous working fluid. This takes place at MXR-2/SPL-1. A
vapor-drum buffers the system against sudden changes in load.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

178

Cycle 19
Closed-Circuit Gas-Turbine for Use with Nuclear Power Plant

1-1-H

CLR-1CMP-1 CMP-2 TUR-1

HX-1-C

PMP-1
Subcycle-2

HX-2-H Subcycle-1

HX-2-C

Source: Analysis o f Engineering Cycles, Figure 8.13

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work.

To increase this cycle’s efficiency, the relatively hot exhaust gas is piped through a closed
heat-exchanger in order to preheat the working fluid entering the combustion chamber.
This takes place at HXIH. This plan takes advantage of the high temperature exhaust of a
gas-turbine to preheat the working fluid. To increase this cycle’s efficiency, energy is
ejected from the compressor. This takes place at CLR1. Intercooling reduces the amount
of work necessary to compress a gas, thus increasing cycle efficiency.

To preserve this cycle’s integrity, a separate subcycle is used to contain the radiation of
the reactor core. This takes place at SUBCYCLE-1. Nuclear plants often use a separate
subcycle to contain radiation.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

179

Cycle 20
HTGR Gas-Turbine, Direct-Cycle Plant with Reject

Heat Utilized for District Heating

HX-1-C

RCT-1 (|[||M

PMP-1 I— o — l

Subcycle-1

Subcycle-2

CLR-1.
HX-4-C HX-2-H

ClR-2
HX-2-C

Subcycle-4
Subcycle-3

PMP-2 PMP-3

Source: Analysis o f Engineering Cycles. Figure 8.14

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work.

To increase this cycle’s efficiency, the relatively hot exhaust gas is piped through a closed
heat-exchanger in order to preheat the working fluid entering the combustion chamber.
This takes place at HX2H. This plan takes advantage of the high temperature exhaust of a
gas-turbine to preheat the working fluid. To increase this cycle’s efficiency, subcycles
are employed to transport heat to another location. This takes place at SUBCYCLE-4,
SUBCYCLE-3, and SUBCYCLE-2. Heat-engines generally convert energy into electrical
form for efficient distribution. However, in some situations it may be more efficient to
transport heat energy from the system directly to its point of use, thereby avoiding
conversion inefficiencies.

To preserve this cycle’s integrity, a separate subcycle is used to contain the radiation of
the reactor core. This takes place at SUBCYCLE-1. Nuclear plants often use a separate
subcycle to contain radiation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

180

Cycle 21
Ideal Super-Regenerative Cycle

HTfl-3 HTR-4

tur-6TUfi-7TUR-6TUR-5

MXB-7

HX-4-H HX-3-H

PMP-5 MXR-6 PUP-4 UXR-4 PMP-3 UXR-2 PMP-2 MXR-1 PMP-1

Source: Analysis o f Engineering Cycles. Figure 9.1

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine combines the greater maximum temperatures of a gas
cycle with the thermal advantage of the vapor cycle in ejecting all its heat at the lowest
possible temperature.

To increase this cycle’s efficiency, there are 5 points (HX2C, HX3C, HX4C, HX6C, and
HX8C) where energy ejected from the compressor is used as a source of heat. Using the
ejected heat from an intercooler increases the efficiency of intercooling. There are also 2
points (MXR1 and MXR2) where fluid bled from the turbine is directly mixed with the
boiler feed liquid. Heat-exchange via mixing is more efficient than indirect transfer in
closed heat-exchangers, and it also enables deaeration of working fluid, but it requires
more pumps because inlets must be maintained at the same pressure. There are also 3
points (MXR5, MXR3, and MXR7) where superheated fluid bled from the turbine is
saturated then is directly mixed with the boiler feed liquid. Direct contact is the most
efficient form of heat exchange, but a large temperature difference in the streams will
lead to irreversibilities. Increasing the pressure and intercooling a working-fluid bleed
can convert it to a dry saturated gas at the same temperature as the wet saturated liquid to
be preheated.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

181

Cycle 22
Field Super-Regenerative Cycle

TUR-2HTR-2

TUR-3 TUR-4 TUfl-5TUR-4

HX-1-H

CLR-1

HX-1-C

CMP-1

SPL-1

PMP-2

Source: Analysts o f Engineering Cycles. Figure 9.3

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine combines the greater maximum temperatures of a gas
cycle with the thermal advantage of the vapor cycle in ejecting all its heat at the lowest
possible temperature.

To increase this cycle’s efficiency, there are 3 points (MXR-2, MXR-1, and MXR-3)
where fluid bled from the turbine is directly mixed with the boiler feed liquid. Heat-
exchange via mixing is more efficient than indirect transfer in closed heat-exchangers,
and it also enables deaeration of working fluid, but it requires more pumps because inlets
must be maintained at the same pressure.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cycle 23
Combined Gas and Steam Turbine Plant

182

SPL-1

HTR-t TUfi-2 TUR-S
HX-2-HHX-2-C

THR-3.

TUR-1
CLR-

THR-t4

HX-6-C <Subcycle-1 HX-
HX-4-C

HX-3-H
MXR-3 MXR-2

Subcycle-2

HX-S-H .-5 PMP-2

Source: Analysis o f Engineering Cycles, Figure 9.5

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work.

To increase this cycle’s efficiency, fluid bled from the turbine is directly mixed with the
boiler feed liquid. This takes place at MXR-2. Heat-exchange via mixing is more
efficient than indirect transfer in closed heat-exchangers, and it also enables deaeration of
working fluid, but it requires more pumps because inlets must be maintained at the same
pressure. There are also 3 points (HX-5H, HX-6H, and HX-4H) where working fluid
bled from the turbine is used to supply heat in a heat-exchanger. Heat-exchange via
closed heat-exchangers is less efficient than direct mixing, but the two working fluids can
be at different pressures, reducing the need for pumps. To increase this cycle’s
efficiency, it is partitioned into two subcycles, one powering the other via its ejected heat.
This takes place at SUBCYCLE-l/SUBCYCLE-2. Cascading cycles enables the use of
working fluids with different thermal characteristics in the same system. In this case a
high-temperature gas cycle’s waste heat is used to power a vapor cycle.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

183

Cycle 24
Gas-Turbine/Steam-Turbine Binary Cycle

■Subcycle-1

HX-3-H

TUR-4TUR-3

Subcycle-2

Subcycle-3

HX-4-H pMp-a

Source: Analysis o f Engineering Cycles, Figure 9.9

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work.

To increase this cycle’s efficiency, the working fluid flowing through the turbine is used
to preheat the feed fluid. This takes place at HX-4H. Ideally we could extract heat from
the turbine as the gas expands through it. In practice this causes unacceptable saturation
of the fluid. To increase this cycle’s efficiency, it is partitioned into two subcycles, one
powering the other via its ejected heat. This takes place at SUBCYCLE-3/SUBCYCLE-
2. Cascading cycles enables the use of working fluids with different thermal
characteristics in the same system. In this case a high-temperature gas cycle’s waste heat
is used to power a vapor cycle.

To preserve this cycle’s integrity, a separate subcycle is used to contain the radiation of
the reactor core. This takes place at SUBCYCLE-1. Nuclear plants often use a separate
subcycle to contain radiation.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

184

Cycle 25
Binary Cascade Refrigeration Cycle

CMP-1THR-1

HX-1-H

HX-1-C

Subcycle-2
CMP-2

THfl-2

HTR-1

Source: Analysis o f Engineering Cycles, Figure 10.2

This is a refrigerator cycle, so it is intended to move heat from one location to another.

To increase this cycle’s efficiency, it is partitioned into multiple subcycles, one removing
heat from the other. This takes place at SUBCYCLE-l/SUBCYCLE-2. Cascading cycles
enables the use of working fluids with different thermal characteristics in the same
system. In this case the energy-removing subcycle can use a refrigerant that operates at
substantially different pressures in order to achieve greater heat-transfer.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

185

Cycle 26
Ternary Cascade Refrigeration Plant for the

Liquefaction of Natural Gas

CMP-3

HX-4-H

Subcycle-1

Subcycle-3
Subcycle-4

Subcycle-2

Source: Analysis o f Engineering Cycles, Figure 10.3

This is a refrigerator cycle, so it is intended to move heat from one location to another. In
this case the heat is being ejected in order to liquefy the fluid flowing from source to sink.

To increase this cycle’s efficiency, there are 2 points (SUBCYCLE-l/SUBCYCLE-3 and
SUBCYCLE-3/SUBCYCLE-4) where it is partitioned into multiple subcycles, one
removing heat from the other. Cascading cycles enables the use of working fluids with
different thermal characteristics in the same system. In this case the energy-removing
subcycle can use a refrigerant that operates at substantially different pressures in order to
achieve greater heat-transfer.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

186

Cycle 27
Three-Stage Cascade Plant for the Production of

Solid Carbon Dioxide (Dry Ice)

SPL-3

HX-1-C MXR-1

SPL-2SPL-1 CMP-2
SRC-1

HX-1-H

THfl-1
THR-3

CMP-3
CLR-1

Source: Analysis o f Engineering Cycles, Figure 10.5

This is a refrigerator cycle, so it is intended to move heat from one location to another. In
this case the heat is being ejected in order to liquefy the fluid flowing from source to sink.

To increase this cycle’s efficiency, there are 2 points (MXR3/SPL2 and MXR2/SPL1)
where a flash-tank is used to cool the working fluid. A flash-tank is an efficient means
for cooling the working fluid by direct contact.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

187

Cycle 28
Simple Unde Liquefaction Process

SRC-1 CMP-1 CMP-2 CLR-2CLR-1

HX-1-CMX-1-H

THR-1

SPL-1 SNK-1

Source: Analysis o f Engineering Cycles, Figure 10.8

This is a refrigerator cycle, so it is intended to move heat from one location to another. In
this case the heat is being ejected in order to liquefy the fluid flowing from source to sink.

To increase this cycle’s efficiency, energy is ejected from the compressor. This takes
place at CLR-l. Intercooling reduces the amount of work necessary to compress a gas,
thus increasing cycle efficiency.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

188

Cycle 29
Linde Dual-Pressure (Cascade) Liquefaction Process

SflC-l

MXR-2 CLR-2CMP-1 CLfl-1 CMP-2

HX-1-H

SPL-t THR-1

THR-2SPL-2

HX-2-H

SNK-1

Source: Analysis o f Engineering Cycles. Figure 10.8

This is a refrigerator cycle, so it is intended to move heat from one location to another. In
this case the heat is being ejected in order to liquefy the fluid flowing from source to sink.

To increase this cycle’s efficiency, energy is ejected from the compressor. This takes
place at CLR-1. Intercooling reduces the amount of work necessary to compress a gas,
thus increasing cycle efficiency.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

189

Cycle 30
Claude Liquefaction Process

TUR-1

HX-2-H

MXR-1

SPL-1 HX*2*CHX-1-CCMP-1 CMP-2CtR-1

HX-3-C

SRC-1

THR-1

SPt-2

Source: Analysis o f Engineering Cycles, Figure 10.11(a)

This is a refrigerator cycle, so it is intended to move heat from one location to another. In
this case the heat is being ejected in order to liquefy the fluid flowing from source to sink.

To increase this cycle’s efficiency, energy is ejected from the compressor. This takes
place at CLR-1. Intercooling reduces the amount of work necessary to compress a gas,
thus increasing cycle efficiency. To increase this cycle’s efficiency, a turbine is used to
cool the working fluid. This takes place at TUR-1. Using a turbine in place of a throttle to
create the pressure drop in a refrigerator results in a greater decline in temperature, which
is often useful in a cryogenic cycle.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

190

Cycle 31
Heylandt Liquefaction Process

TUR-1
HX-2-H

MXR-ll

HX-2-CHX-1-CCMP-1 CMP-2 SPL-1CLR-1
THR-1

SRC-1

SPL-2

Source: Analysis o f Engineering Cycles, Figure 10,11(b)

This is a refrigerator cycle, so it is intended to move heat from one location to another. In
this case the heat is being ejected in order to liquefy the fluid flowing from source to sink.

To increase this cycle’s efficiency, energy is ejected from the compressor. This takes
place at CLR-1. Intercooling reduces the amount of work necessary to compress a gas,
thus increasing cycle efficiency. To increase this cycle’s efficiency, a turbine is used to
cool the working fluid. This takes place at TUR-1. Using a turbine in place of a throttle to
create the pressure drop in a refrigerator results in a greater decline in temperature, which
is often useful in a cryogenic cycle.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

191

Cycle 32
Helium Liquefaction and Refrigerating Plant with

Series Operation of Expansion Turbines

CLR-4CLR-3CMP-3 CMP-4
,Subcycle-1

HX-6-HHX-4-HHX-1-H HX-3-H

HX-S-H
HX-2-C IX-5-C

Subcycle-2 THR-1

CMP-1

CLR-2
SPL-1SRC-1

SNK-1

Source: Analysis o f Engineering Cycles, Figure 10.13

This is a refrigerator cycle, so it is intended to move heat from one location to another. In
this case the heat is being ejected in order to liquefy the fluid flowing from source to sink.

To increase this cycle’s efficiency, there are 2 points (TUR-2 and TUR-1) where a turbine
is used to cool the working fluid. Using a turbine in place of a throttle to create the
pressure drop in a refrigerator results in a greater decline in temperature, which is often
useful in a cryogenic cycle. There are also 2 points (CLR-l and CLR-3) where energy is
ejected from the compressor. Intercooling reduces the amount of work necessary to
compress a gas, thus increasing cycle efficiency. To increase this cycle’s efficiency, it is
partitioned into multiple subcycles, one removing heat from the other. This takes place at
SUBCYCLE-1/SUBCYCLE-1. Cascading cycles enables the use of working fluids with
different thermal characteristics in the same system. In this case the energy-removing
subcycle can use a refrigerant that operates at substantially different pressures in order to
achieve greater heat-transfer.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

192

Cycle 33
Jet Ejector Air Conditioning System

Mxr-2 Mxr-3 Thr-2

S13

— — S12 — j Q ^ J

Htr-2 Pmp-2

Fundamentals o f Classical Thermodynamics. Figure P9.92

This is a refrigerator cycle, so it is intended to move heat from one location to another.

To preserve this cycle’s integrity, a jet-ejector is used to compress the working fluid. This
takes place at MXR1. Jet ejectors have no moving parts and hence vapor refrigeration
systems that use them for compression are inexpensive and safe to operate, although they
produce effective cooling to levels well above the freezing point of the working fluid.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

193

Cycle 34
Regenerative Rankine Cycle with Explicit Throttles

Tur-5Tur-2 Tur-4ur-1 Tur-3

Htr-1

HX1-Heater

Pump-2Mixer-3
Fundamentals o f Classical Thermodynamics, Figure 9.12

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

To increase this cycle’s efficiency, fluid bled from the turbine is directly mixed with the
boiler feed liquid. This takes place at MXR2. Heat-exchange via mixing is more efficient
than indirect transfer in closed heat-exchangers, and it also enables deaeration of working
fluid, but it requires more pumps because inlets must be maintained at the same pressure.
There are also 3 points (HX1H, HX3H, and HX2H) where working fluid bled from the
turbine is used to supply heat in a heat-exchanger. Heat-exchange via closed heat-
exchangers is less efficient than direct mixing, but the two working fluids can be at
different pressures, reducing the need for pumps.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

194

Cycle 35
Regenerative Rankine Cycle with Implicit Throttles

Spf-1 Tur*5Tur-4ur-1 Tuf-3

Clr-1

HX1 -Heater

Pump-2Mbter-2Pump-3

Fundamentals o f Classical Thermodynamics, Figure 9.12

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work. This heat engine fully condenses its working fluid in order to realize gains
in pumping efficiency over compressing gas or saturated mixtures.

To increase this cycle’s efficiency, fluid bled from the turbine is directly mixed with the
boiler feed liquid. This takes place at MXR2. Heat-exchange via mixing is more efficient
than indirect transfer in closed heat-exchangers, and it also enables deaeration of working
fluid, but it requires more pumps because inlets must be maintained at the same pressure.
There are also 3 points (HX1H, HX3H, and HX2H) where working fluid bled from the
turbine is used to supply heat in a heat-exchanger. Heat-exchange via closed heat-
exchangers is less efficient than direct mixing, but the two working fluids can be at
different pressures, reducing the need for pumps.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

195

Cycle 36
Combined Gas-Turbine and Rankine Cycle

HTR-1HTR-1 TUR-1

CLR-1

CLR-1

Subcycie-2
TUR-1

CLR-1

Subcycle-1

O PMP-1

Basic Engineering Thermodynamics. Figure 15.11

This cycle is a heat-engine, so it is intended to produce a change in the environment,
namely work.

To increase this cycle’s efficiency, it is partitioned into two subcycles, one powering the
other via its ejected heat. This takes place at SUBCYCLE-2/SUBCYCLE-l. Cascading
cycles enables the use of working fluids with different thermal characteristics in the same
system. In this case a high-temperature gas cycle’s waste heat is used to power a vapor
cycle.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix C
Carnot Knowledge Base

Evidential Tests
COOLER DEFINITIONS
(defTypeAbst (cooler Pcooler Pin Pout)

heat-producer
heat-changer
device)

(defRoleAbst (cooler Pcooler Pin Pout)
((heat-ejector 0.6)
(heat-provider 0.4))

(-> heat-ejector
(intercooler 0.25)
(fluid-cooler 0.75)))

COOLER AS HEAT-EJECTOR
(defTest Clr-Tstl heat-ejector 1000.0 (cooler Pclr ?c-in ?c-out)

“A singleton cooler must be, by the second law, a heat-ejector"
(singleton Pclr :cycle))

(defTest Clr-Tst2 heat-ejector 5.0 (cooler Pclr ?c-in ?c-out)
“A cooler downstream of the last turbine and upstream of a pump
likely to be the heat-ejector of the system"
(turbine Ptur ?t-in ?t-out)
((downrange Ptur Ptur-range)
:TEST (and (member Pclr Ptur-range)

(notany #'rf::turbine? Ptur-range)))
(downrange Pclr Pclr-range)
((genus Ppmp work-consumer)
:TEST (and (member Ppmp Ptur-range)

(member Ppmp Pclr-range))))

is very

(defTest Clr-Tst3 (:not heat-ejector) 2.0 (genus Pclr heat-producer)
“A cooler immediately upstream of a turbine is unlikely to be a heat-ejector"
(cycle-type :heat-engine Preason)
(Pclr has-outstf ?c-out)
(turbine Ptur ?c-out Ptur-out))

COOLER AS INTERCOOLER
(defTest Clr-Tst4 intercooler 100.0 (genus ?clr heat-producer)

"A cooler between two compressors is very likely to be an intercooler
intended to make the work of the second compressor easier"
(adjacent ?cmpl ?clr Pstfsl)
(compressor ?cmpl ?cl-in ?cl-out)
(adjacent ?clr Pcmp2 ?stfs2)
((compressor ?cmp2 Pc2-in ?c2-out)
:TEST (not (eql Pcmpl ?cmp2))))

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

197
COOLER AS HEAT-PROVIDER___
(defTest Clr-Tst5 heat-provider 10.0 (cooler ?clr ?c-in ?c-out)

"A cooler downstream of a bleed-valve is likely providing heat to another
process outside the cycle"
(cycle-type :heat-engine Treason)
(adjacent ?spl ?clr ?stfs)
(role ?spl bleed-valve ?prob))

(defTest Clr-Tst6 heat-provider 7.0 (cooler ?clr ?c-in ?c-out)
“A singleton cooler on a heat-mover cycle with a singleton heat-consumer
acting as a heat-injector is very likely to be acting as a heat-provider,
since the heat-consumer is injecting the heat for a purpose*
(singleton ?clr Tsubc)
(subcycle ?subc)
(role Tsubc heat-mover ?bp)
(role ?htr heat-injector ?prob)
(singleton ?htr ?subc))

(defTest Clr-Tst7 heat-provider 20.0 (hx-cooler ?clr ?c-in ?c-out)
“A singleton hx-cooler on a radiation-isolation subcycle is almost certainly
providing heat to the heater half"
(role Tsubc radiation-isolator ?probl)
(singleton ?clr ?subc)
(heat-path ?clr ?htr)
(((devs ?subc) members ?subc-devs)

:test (not (member ?htr ?subc-devs))))
(defTest Clr-Tst8 heat-provider 20.0 (hx-cooler Thxc ?c-in ?c-out)
“An hx-cooler with a simple cooler downstream on an energy-removing subcycle
is very likely to be acting as a heat-provider, because the heat-ejection
function could be entirely provided by the simple cooler*
(role Tsubc energy-remover ?bp)
((devs ?subc) has-member ?hxc)
(cooler ?clr ?in ?out)
(adjacent ?hxc ?clr ?link))

COOLER AS FLUID-COOLER__
(defTest Clr-Tst9 fluid-cooler 35.0 (genus ?clr2 heat-producer)

“A cooler immediately downstream of an intercooled set of compressors is
probably acting as a fluid cooler*
(compressor Tempi Tcl-in Tcl-out)
(adjacent Tempi Tclrl Tstfsl)
(genus Tclrl heat-producer)
(adjacent Tclrl Tcmp2 Tstfs2)
(adjacent Tcmp2 Tclr2 Tstfs3)
(compressor Tcmp2 Tc2-in Tc2-out)
(Tclr2 has-outstf Tclr2-out)
((Tclr2-out has-sink Tdev)
:test (not (rf::compressorT Tdev))))

(defTest Clr-TstlO (:not fluid-cooler) 2.0 (genus Tclr heat-producer)
“A cooler immediately upstream of a turbine is unlikely to be a
fluid-cooler*
(cycle-type :heat-engine Treason)
(Tclr has-outstf Tc-out)
(turbine Ttur Tc-out Ttur-out))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

198
HEATER DEFINITIONS__
(defTypeAbst (heater ?heater ?in ?out)

heat-consumer
heat-changer
device)

(defRoleAbst (heater ?heater ?in ?out)
((heat-absorber 0.5) (heat-injector 0.5))
(-> heat-injector

(fluid-heater 0.2)
(preheater 0.7)
(reheater 0.1)))

HEATER AS HEAT-ABSORBER__
(defTest Htr-Tstl heat-absorber 5.0 (genus ?heater heat-consumer)

"A singleton heater on an energy-removing subcycle is often absorbing
thermal energy, by the second law"
(singleton Theater Tsubcycle)
((role Tsubcycle ?role ?prob)
:TEST (member ?role ' (heat-mover energy-remover) :test #'eq)))

(defTest Htr-Tst2 heat-absorber 12.0 (heater ?htr ?thr-out ?htr-out)
"A heater in a refrigerating cycle with a throttle immediately upstream is
virtually always a heat-absorber"
(cycle-type :refrigerator Treason)
(throttle Tthr Tthr-in Tthr-out))

(defTest Htr-Tst3 heat-absorber 2.0 (genus Thtr heat-consumer)
"A heater in a refrigerating cycle with an upstream throttle is
probably a heat-absorber"
(cycle-type :refrigerator Treason)
(throttle Tthr Tthr-in Tthr-out)
(adjacent Tthr Thtr Tstfs))

(defTest Htr-Tst4 heat-absorber 1.5 (genus Tpre heat-consumer)
"Refrigeration cycles are more likely to use heaters as heat-absorbers than
as energy-injectors"
(cycle-type :refrigerator Treason))

HEATER AS HEAT-INJECTOR___
(defTest Htr-Tst5 heat-injector 200.0 (genus Theater heat-consumer)

"A heater upstream of a mixer functioning as a jet ejector and downstream of
a pump is probably providing that mixer with thermal energy"
(role Tmixer jet-ejector Tprob)
(Theater has-outstf Tout)
((mixer Tmixer Tinl Tin2 Tout2)
:TEST (or (eql Tout Tinl) (eql Tout Tin2)))

(dev Tpump pump)
((downrange Tpump Tpump-range)
:TEST (member Theater Tpump-range)))

(defTest Htr-Tst6 heat-injector 20.0 (genus Theater heat-consumer)
"A singleton heater on a work-producing subcycle must be injecting
thermal energy, by the second law"
(singleton Theater Tsubcycle)
(role Tsubcycle work-generator Tprob))

(defTest Htr-Tst7 heat-injector 100.0 (genus Theater heat-consumer)
"A singleton heater must be injecting thermal energy, by the second law"
(cycle-type :heat-engine Treason)
(singleton Theater :CYCLE))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

199
(defTest Htr-Tst8 heat-injector 5.0 (genus ?htr heat-consumer)
"A heater in a heat-engine cycle with a pump upstream and a turbine
downstream is probably a heat-injector"
(cycle-type :heat-engine ’reason)
(turbine ?tur ?t-in ?t-out)
(adjacent ?htr ?tur ?stfs)
((dev ?pmp ’type)
:TEST (member ?type '(compressor pump)))

((downrange ?pmp ?pmp-range)
:TEST (and (notany 'pump? ?pmp-range)

(member ?htr ?pmp-range)
(member ?tur ?pmp-range))))

(defTest Htr-Tst9 heat-injector 1.5 (genus ?pre heat-consumer)
"Heat-engines are more likely to use heaters as heat-injectors than as
heat-absorbers"
(cycle-type :heat-engine ’reason))

HEATER AS FLUID-HEATER__
(defTest Htr-TstlO fluid-heater 10.0 (genus Theater heat-consumer)
"A singleton heater on a work-producing subcycle must be a fluid-heater"
(singleton ?heater ’subcycle)
(role ?subcycle work-generator Tprob))

(defTest Htr-Tstll fluid-heater 10.0 (genus Theater heat-consumer)
“A singleton heater on a work-producing subcycle must be a fluid-heater"
(cycle-type :heat-engine Treason)
(singleton Theater :CYCLE))

(defTest Htr-Tstl2 fluid-heater 8.0 (genus Theater heat-consumer)
“A heater immediately upstream of a turbine is likely to be a fluid-heater"
(Theater has-instf Tin)
((Tin has-source Tdev)
:test (not (rf::turbine? Tdev)))

(Theater has-outstf Tout)
(turbine Ttur Tout Ttur-out))

(defTest Htr-Tstl3 fluid-heater 9.0 (genus Theater heat-consumer)
"A pump adjacent to a heater adjacent to a turbine typically means that the
heater is a fluid-heater"
(adjacent Tpmp Theater Tlinkl)
(genus Tpmp work-consumer)
(adjacent Theater Ttur Tlink2)
(genus Ttur work-producer))

(defTest Htr-Tstl4 fluid-heater 12.0 (hx-heater Thtr ?h-in ?h-out)
"An hx-heater with a heat-path to an hx-cooler on a radiation-isolating
subcycle is very likely to be the primary fluid-heater for the cycle"
(adjacent Thtr Ttur Tconnection)
(dev Ttur turbine)
(role Tsubc work-generator Tprobl)
(((devs Twork-subc) members Twork-subc-devs)
:test (member Thtr Twork-subc-devs))

(heat-path Tclr Thtr)
(role Trad-subc radiation-isolator Tprob2)
(((devs Trad-subc) members Trad-subc-devs)
:test (member Tclr Trad-subc-devs)))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

200
HEATER AS PREHEATER___
(defTest Htr-Tstl5 (:not preheater) 5 (genus ?heater heat-consumer)

“A refrigerator rarely has need to preheat its working fluid'
(cycle-type :refrigerator ?reason))

(defTest Htr-Tstl6 (:not preheater) 25 (genus Theater heat-consumer)
'A heater with no heaters downrange of it is unlikely to be a preheater"
((downrange Theater ?range)
:test (notany #'(lambda (d)

(or (rf::heat-consumerT d)
(rf::mxr-heaterT d)))

Trange)))
(defTest Htr-Tstl7 preheater 25 (genus Theater heat-consumer)

"A heater on a primary fluid loop with a mxr-heater downrange of it
is likely to be a preheater"
(primary-fluid-loop-for Tsubcycle Tfloop)
((floop Tfloop Tstfs Tdevs)
:test (member Theater Tdevs))

(downrange Theater Trange)
((role Tmxr mxr-heater Tbp)
:test (member Tmxr Trange)))

(defTest Htr-Tstl8 (:not preheater) 5 (genus Theater heat-consumer)
"A heater on a non-work-generating subcycle of a refrigerator is unlikely
to be preheating the working fluid'
(cycle-type :refrigerator Treason)
(((devs Tsubcycle) members Tsubc-devs)
.-TEST (member Theater Tsubc-devs))

((role Tsubcycle Tsubc-role Tprob)
:TEST (not (eql Tsubc-role 'work-generator))))

(defTest Htr-Tstl9 (:not preheater) 25.0 (genus Theater heat-consumer)
"A heater adjacent to a turbine is not a preheater"
(adjacent Theater Ttur Tconnection)
(dev Ttur turbine))

(defTest Htr-Tst20 preheater 5.0 (genus Tpre heat-consumer)
'A heater upstream of the heater feeding the turbines is very likely a
preheater"
(cycle-type :heat-engine Treason)
(downrange Tpre Tpre-range)
((role Tmain fluid-heater Tprobl)
:test (member Tmain Tpre-range))

(adjacent Tmain Ttur Tconnection)
((role Ttur work-source Tprob2)
:test (member Ttur Tpre-range)))

(defTest Htr-Tst21 preheater 10.0 (genus Tpre heat-consumer)
"A heater upstream of a steam-drum feeding turbines is very likely a
preheater'
(cycle-type :heat-engine Treason)
(downrange Tpre Tpre-range)
((role Tmxr steam-drum-half Tprobl)
:TEST (member Tmxr Tpre-range))

(mixer Tmxr Tinl Tin2 Tlink)
(splitter Tspl Tlink Toutl Tout2)
(role Tspl steam-drum-half Tprob2)
(downrange Tspl Tspl-range)
((dev Ttur turbine)
:TEST (and (member Ttur Tpre-range) (member Ttur Tspl-range))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

201
(defTest Htr-Tst22 preheater 7.5 (genus ?pre heat-consumer)

“A heater immediately followed by a heat-exchanging cooler on a topping
subcycle is probably a single combustion chamber in which the flue gasses
are used to power the topping turbine. An upstream heater is most likely
an air preheater for the combustion chamber*
(((devs ?subc) members ?devs)
:TEST (member ?pre ?devs))

(role ?subc topping ?prob)
(?pre has-outstf ?pre-out)
(heater ?htr ?pre-out ?htr-out)
(hx-cooler ?hxc ?htr-out ?hxc-out)
(turbine ?tur ?hxc-out ?tur-out))

(defTest Htr-Tst23 (:not preheater) 10.0 (genus ?htr heat-consumer)
A heater in the downrange of a turbine cannot be a preheater
(cycle-type :heat-engine Treason)
(role Ttur work-source Tbpl)
((downrange Ttur Tdownrange)
:test (member Thtr Tdownrange)))

HEATER AS REHEATER__
(defTest Htr-Tst24 reheater 40.0 (genus Thtr heat-consumer)

"A heater with a turbine upstream and another turbine downstream is very
likely to be reheating the working-fluid*
(cycle-type :heat-engine Treason)
(turbine Tturl Ttl-in Ttl-out)
((downrange Tturl Tturl-range)
:TEST (member Thtr Tturl-range))

(downrange Thtr Thtr-range)
((turbine Ttur2 Tt2-in Tt2-out)
:TEST (and (member Ttur2 Tturl-range)

(eq Ttur2 (find-if #'rf::turbineT Thtr-range)))))
(defTest Htr-Tst25 (mot reheater) 5.0 (genus Theater heat-consumer)

"A heater on a non-work-generating subcycle of a refrigerator is unlikely
to be reheating the working fluid"
(cycle-type :refrigerator Treason)
(((devs Tsubcycle) members Tsubc-devs)
:TEST (member Theater Tsubc-devs))

((role Tsubcycle Tsubc-role Tprob)
:TEST (not (eql Tsubc-role 'work-generator))))

(defTest Htr-Tst26 (mot reheater) 25.0 (genus Theater heat-consumer)
“A heater with no turbines downrange of it is unlikely to be a reheater"
((downrange Theater Trange)
:test (notany #'rf::turbo-deviceT Trange)))

(defTest Htr-Tst27 reheater 80.0 (genus Theater heat-consumer)
"A heater supplying a mxr-heater that is between two turbines is acting as a
reheater*
(role Tmxr mxr-heater Tbp-mxrl)
(adjacent Theater Tmxr Tconnection)
(cycle-type :heat-engine Treason)
(role Tturl work-source Tbp-turl)
(turbine Tturl Ttl-in Ttl-out)
(effect heating Tmxr Ttl-out Thot-out)
(turbine Ttur2 Thot-out Tt2-out)
(role Ttur2 work-source Tbp-tur2))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

202
HEAT-EXCHANGER DEFINITIONS___
(defTypeAbst (hx-heater ?hx-h ?h-in ?h-out)

heat-consumer
heat-changer
device)

(defTypeAbst (hx-cooler ?hx-c ?c-in ?c-out)
heat-producer
hea t-changer
device)

(defRoleAbst (hx-heater ?hx-h ?h-in ?h-out)
((heat-absorber 0.5) (heat-injector 0.5))
(-> heat-injector

(fluid-heater 0.2)
(preheater 0.7)
(reheater 0.1)))

(defRoleAbst (hx-cooler ?hx-c ?c-in ?c-out)
((heat-ejector 0.6)
(heat-provider 0.4))

(-> heat-ejector
(intercooler 0.25)
(fluid-cooler 0.75)))

HEAT-EXCHANGER EVIDENCE___
(defTest Htx-Tstl fluid-cooler 12.5 (hx-cooler ?hxc ?c-in ?c-out)

“On a subcycle with no coolers ejecting heat to the environment, the cooling
side of a heat-exchanger whose heating side is on another subcycle is almost
certainly cooling the working fluid"
(role ?subc work-generator ?prob)
(((devs ?subc) members ?devs)
:TEST (and (member ?hxc ?devs) (notany #'rf::cooler? ?devs)))

((heat-path ?hxc ?hxh)
:TEST (not (member ?hxh ?devs))))

(defTest Htx-Tst2 heat-absorber 12.5 (hx-heater ?hxh ?h-in ?h-out)
"The heating side of a heat-exchanger whose cooling side is on
work-generating subcycle that lacks a cooling path to the environment is
probably absorbing heat from that cycle"
(role ?subc work-generator ?prob)
(((devs ?subc) members ?devs)
:TEST (and (not (member ?hxh ?devs)) (notany #'sadi::cooler? ?devs)))

((heat-path ?hxc ?hxh)
:TEST (member ?hxc ?devs)))

MIXER DEFINITIONS___
(defTypeAbst (MIXER ?mixer ?inl ?in2 ?out)

junction
flow-changer
device)

(defRoleAbst (MIXER ?mixer ?inl ?in2 ?out)
((flow-join 0.60)
(mxr-heater 0.25)
(mxr-cooler 0.10)
(jet-ejector 0.05)))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

203
MIXER AS FLOW-JOIN
(defTest Mxr-Tstl (:not flow-join) 5.0 (mixer ?mxr ?inl ?in2 Tout)

■Mixers terminating bleed-paths are not often flow-joins"
((bleed-path ?spl ?devs)
:TEST (eql (car (last ?devs)) ?mxr)))

(defTest Mxr-Tst2 flow-join 8.0 (mixer ?mxr ?m-inl ?m-in2 ?m-out)
"A mixer at the end of a bleed path containing a heat-provider is probably
rejoining the flow to the cycle"
(role Tclr heat-provider ?prob)
((bleed-path ?spl ?devs)
:TEST (and (eql (car (last ?devs)) ?mxr)

(member ?clr Tdevs))))
(defTest Mxr-Tst3 flow-join 8.0 (mixer ?mxr ?m-inl ?m-in2 ?m-out)

"A mixer at the end of a bleed path containing a work-producing
turbine is probably rejoining the flow to the cycle"
((bleed-path ?spl ?devs)
:TEST (eql (car (last ?devs)) ?mxr))

((role ?tur work-source ?prob)
:TEST (member ?tur ?devs)))

(defTest Mxr-Tst4 flow-join 8.0 (mixer ?mxr ?m-inl ?m-in2 ?m-out)
"A mixer at the end of a bleed path starting at a flash-chamber is likely to
be just a flow-join"
(role ?spl flash-chamber ?prob)
((bleed-path ?spl ?devs)
:TEST (eql (car (last ?devs)) ?mxr))I

MIXER AS JET-EJECTOR__
(defTest Mxr-Tst5 (:not jet-ejector) 10.0 (mixer ?mixer ?inl ?in2 ?out)

“Heat engines rarely use jet-ejectors"
(cycle-type :heat-engine ?reason))

(defTest Mxr-Tst6 jet-ejector 2.0 (mixer ?mixer ?inl ?in2 ’out)
"Refrigerators occasionally make use of jet-ejectors"
(cycle-type :refrigerator Treason))

(defTest Mxr-Tst7 jet-ejector 3.0 (mixer Tmixer Tinl Tin2 Tout)
"Jet ejectors require an upstream heater to power them"
((heater Thtr Thtr-in Thtr-out)
:TEST (or (eql Thtr-out Tinl) (eql Thtr-out Tin2))))

(defTest Mxr-Tst8 jet-ejector 35.0 (mixer Tmixer Tinl Tin2 Tout)
"Heating then cooling without an intermediate process would violate the
rational designer heuristic"
((heater Thtr Thtr-in Thtr-out)
:TEST (or (eql Thtr-out Tinl) (eql Thtr-out Tin2)))

(cooler Tclr Tout Tclr-out))
(defTest Mxr-Tst9 (:not jet-ejector) 10.0 (mixer Tmixer Tinl Tin2 Tout)

"A mixer lacking an upstream energy source is unlikely to be a jet-ejector"
(Tmixer has-indev Tindevl)
((Tmixer has-indev Tindev2)
:TEST (string< Tindevl Tindev2))

((dev Tindevl Ttypel)
:TEST (not (eq Ttypel 'heater)))

((dev Tindev2 Ttype2)
:TEST (not (eq Ttype2 'heater))))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

204
(defTest Mxr-TstlO jet-ejector 40.0 (mixer ?mixer ?inl ?in2 ’out)

'A mixer participating in two fluid loops, one requiring a pressure decreaser
and the other requiring a pressure increaser, is very likely a jet-ejector"
(requires ?floopl pressure-decreaser)
((floop ?floopl ?stfsl ?devsl)
:TEST (member ?mixer ?devsl))

(requires ?floop2 pressure-increaser)
((floop ?floop2 ?stfs2 ?devs2)
.•TEST (member ?mixer ?devs2)))

MIXER AS MXR-HEATER___
(defTest Mxr-Tstll mxr-heater 50.0 (mixer ?mxr ?m-inl ?m-in2 ?m-out)

“A mixer that is part of a multi-port chamber in a heat-engine is very likely
acting as a heater"
(cycle-type :heat-engine ?reason)
(aggr ?mpc mp-chamber)
((?mpc has-devs ?devs)
:test (member ?mxr ?devs)))

(defTest Mxr-Tstl2 mxr-heater 20.0 (mixer ?mxr ?m-inl Tm-in2 ?m-out)
"A mixer with a temperature differential across its inlets in a heat-engine
is very likely to be an open heat-exchanger"
(cycle-type :heat-engine ?reason)
((structural (?ineq (t ?inl) (t ?in2)))
:TEST (or (and (eq ?inl ?m-inl)

(eq ?in2 ?m-in2))
(and (eq ?in2 ?m-inl)

(eq ?inl ?m-in2)))))
(defTest Mxr-Tstl3 mxr-heater 3.5 (mixer ?mxr ?m-inl ?m-in2 ?m-out)

"A phase-change in the working fluid across a mixer is a strong indication
that the mixer is acting as an open heat-exchanger"
(cycle-type :heat-engine ?reason)
(phase Tm-out gas)
(phase ?m-inl ?phasel)
((phase ?m-in2 ?phase2)
:TEST (or (and (eql ?phasel 'gas)

(eql ?phase2 'liquid))
(and (eql ?phase2 'gas)

(eql ?phasel 'liquid)))))
(defTest Mxr-Tstl4 mxr-heater 8.0 (mixer ?mxr Tm-inl ?m-in2 ?m-out)

"A mixer receiving fluid directly from a splitter where both mixer and
splitter are on the same fluid loop and the splitter is part of a
turbine series is very likely to be acting as a heater"
(cycle-type :heat-engine ?reason)
(role ?spl bleed-valve ?prob)
(bleed-path ?spl (?mxr)))

(defTest Mxr-Tstl5 mxr-heater 35.0 (mixer ?mxr ?m-inl ?m-in2 ?m-out)
"A mixer at the end of a bleed path that has no heat-producers, throttles,
turbines, or pumps on it is probably acting as a heater"
(cycle-type :heat-engine Treason)
((bleed-path Tspl Tdevs)
:TEST (and (eql (car (last Tdevs)) Tmxr)

(notany #'(lambda (dev)
(or (rf::heat-producerT dev)

(rf::throttleT dev)
(rf::pumpT dev)
(rf::turbineT dev)))

(butlast Tdevs)))))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

205
(defTesc Mxr-Tstl6 mxr-heater 6.0 (mixer ?mxr ?m-inl Tm-in2 Tm-out)

■A mixer directly connected to a splitter downstream of a turbine and
upstream of a cooler and a pump is likely to be an open heat-exchanger,
for deareating"
(cycle-type :heat-engine ?reason)
(cooler ?clr ?c-in ?c-out)
((pump ?pmp ?c-out ?p-out)
:test (or (eql ?p-out Tm-inl) (eql ?p-out ?m-inl)))
((splitter ?spl ?s-in ?s-outl ?s-out2)
:test (or (eql ?s-outl ?m-inl) (eql ?s-out2 ?m-inl)

(eql ?s-outl Tm-in2) (eql ?s-out2 ?m-in2)))
(turbine ?tur ?tur-in ?tur-out)
((downrange ?tur ?tur-range)
:test (and (member ?spl ?tur-range)

(member ?clr ?tur-range)
(member ?pmp ?tur-range))))

MIXER AS MXR-COOLER___
(defTest Mxr-Tstl7 mxr-cooler 35.0 (mixer ?mixer ?inl ?in2 ?out)

"A mixer immediately following a fluid-cooling turbine is likely acting as
a cooler"
(cycle-type :refrigerator ?reason)
(role ?tur fluid-cooler ?prob)
((turbine ?tur ?t-in ?t-out)
:TEST (or (eql ?t-out ?inl) (eql ?t-out ?in2))))

(defTest Mxr-Tstl8 mxr-cooler 50.0 (mixer ?mxr ?m-inl ?m-in2 ?m-out)
"A mixer that is part of a multi-port chamber in a refrigerator is very
likely acting as a heater"
(cycle-type :refrigerator Treason)
(aggr ?mpc mp-chamber)
((?mpc has-devs Tdevs)
:test (member Tmxr Tdevs)))

(defTest Mxr-Tstl9 mxr-cooler 70.0 (mixer Tmxr Tm-inl Tm-in2 Tm-out)
"A mixer in between two compressors is likely acting as an intercooler"
((compressor Tempi Tc-inl Tc-outl)
:TEST (or (eql Tc-outl Tm-inl) (eql Tc-outl Tm-in2)))

(compressor Ternp2 Tm-out Tc-out2))

PUMP__
(defTypeAbst (PUMP Tpump Tin Tout)

work-consumer
pressure-changer
device)

(defRoleAbst (PUMP Tpump Tin Tout)
((flow-producer 0.6)
(flash-preventer 0.4)))

PUMP AS FLOW-PROPUCER__
(defTest Pmp-Tstl flow-producer 2.6 (pump Tpmpl Tin Tout)

"The pump immediately upstream of the last heater prior to a turbine is
almost certainly intended to maintain a flow of working fluid"
(genus Theater heat-consumer)
(Theater has-instf Tout)
(Theater has-outstf Th-out)
(turbine Ttur Th-out Tt-out))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

206
(defTest Pmp-Tst2 flow-producer 4.0 (pump ?pmpl ?in ?out)
"A pump in a radiation-isolating subcycle is generally intended to induce
fluid flow"
(role ?subc radiation-isolator ?prob)
(((devs ?subc) members ?subc-devs)
:TEST (member ?pmpl ?subc-devs)))

PUMP AS FLASH-PREVENTER___
(defTest Pmp-Tst3 (:not flash-preventer) 2.0 (pump ?pmpl ?in ?out)

"Premature flashing is generally not a concern in refrigerators"
(cycle-type :refrigerator ’reason))

(defTest Pmp-Tst4 (:not flash-preventer) 4.0 (pump ?pmpl ?in ?out)
"Pumps without other pumps or turbines downstream of them are probably not
intended to prevent the working fluid from flashing"
(cycle-type :heat-engine ?reason)
((downrange ?pmpl ?pmp-range)
:TEST (and (notany #'pump? ?pmp-range)

(some #'rf::turbine? ?pmp-range))))
(defTest Pmp-Tst5 flash-preventer 6.0 (pump ?pmpl ?in ?out)

“A pump feeding a heater with another pump downstream of both is very likely
intended to prevent the working fluid from flashing in the heater"
(cycle-type :heat-engine ?reason)
(primary-floop-for ?subc ?floop)
((floop ?floop ?stfs ?devs)
:test (let ((pmp-posn (position ?pmpl ?devs)))

(and pmp-posn
(rf::safe-less-than
(position-if #'rf::heat-consumer? ?devs :start (1+ pmp-posn))
(position-if #'rf::pump? ?devs :start (1+ pmp-posn))
(position-if #'rf::turbine? ?devs :start (1+ pmp-posn)))))))

(defTest Pmp-Tst6 flash-preventer 6.0 (pump ?pmpl ?in ?out)
"A pump feeding an open heat-exchanger with another pump downstream of both
is probably intended to prevent the heat-exchange from vaporizing the
working fluid"
(cycle-type :heat-engine ?reason)
(downrange ?pmpl ?pmp-range)
((role ?mxr mxr-heater ?prob)
:TEST (rf::safe-less-than

(position-if #'rf::mixer? ?pmp-range)
(position-if #'rf::pump? ?pmp-range)))

(downrange ?mxr ?mxr-range)
((pump ?pmp2 ?p2-in ?p2-out)
:TEST (and (member ?pmp2 ?pmp-range)

(member ?pmp2 ?mxr-range))))
(defTest Pmp-Tst7 (:not flash-preventer) 10.0 (pump ?pmpl ?in ?out)

"A pump feeding an open heat-exchanger that is part of a steam-drum is not
likely to be preventing flashing, because the steam drum will separate the
saturated mixture into liquid and gas"
(cycle-type :heat-engine ?reason)
(downrange ?pmpl ?pmp-range)
((role ?mxr mxr-heater ?prob)
.-TEST (rf: :safe-less-than

(position-if #'rf::mixer? ?pmp-range)
(position-if #'rf::pump? ?pmp-range)))

(recirculating-path ?spl ?mxr ?path)
((pump ?pmp2 ?p2-in ?p2-out)
:TEST (and (member ?pmp2 ?pmp-range)

(member ?pmp2 ?path))))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

207
SPLITTER DEFINITIONS________________________________
(defTypeAbst (SPLITTER ?splitter ?in ?outl ?out2)

junction
flow-changer
device)

(defRoleAbst (SPLITTER ?splitter ?in ?outl ?out2)
((flow-fork 0.45)
(bleed-valve 0.35)
(flash-chamber 0.20)))

SPLITTER AS FLOW-FORK__
(defTest Spl-Tstl flow-fork 8.0 (splitter ?spl ?in ?outl ?out2)

"A splitter connected to two devices of the same type is probably a
flow-fork"
(?outl has-sink ?devl)
(?out2 has-sink ?dev2)
(dev ?devl ?dtype)
(dev ?dev2 ?dtype))

SPLITTER AS BLEED-VALVE___
(defTest Spl-Tst2 (:not bleed-valve) 1.7 (splitter ?spl ?linkl ?link2 ?bleed)

“Refrigerators rarely, if ever, make use of bleed-valves“
(cycle-type :refrigerator ’reason))

(defTest Spl-Tst3 bleed-valve 30.0 (splitter ?spl ?linkl ?link2 ?bleed)
'A splitter with a turbine upstream, another downstream, and an hx-cooler
immediately downstream of its other outlet is probably a bleed-valve"
(turbine ?turl ?in ?linkl)
(turbine ?tur2 ?link2 ?out)
(?bleed has-sink ?dev)
(hx-cooler ?dev ?hxc-in ?hxc-out))

(defTest Spl-Tst4 bleed-valve 30.0 (splitter ?spl ?linkl ?link2 ’bleed)
"A splitter with a turbine upstream, another downstream, and a mixer
immediately downstream of its other outlet is probably a bleed-valve"
(turbine ’turl ?in ’linkl)
(turbine ?tur2 ?link2 ?out)
(?bleed has-sink ?dev)
(mixer ?dev ’mxr-inl ?mxr-in2 ?mxr-out))

(defTest Spl-Tst5 bleed-valve 8.0 (splitter ’spl ?in ?outl ?out2)
"A splitter between two turbines is generally acting as a bleed-valve"
(cycle-type :heat-engine ’reason)
(turbine ?turl ’turl-in ?in)
((turbine ?tur2 ?tur2-in ?out)
:TEST (or (eql ?tur2-in ?outl) (eql ?tur2-in ?out2))))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

208
(defTesc Spl-Tst6 bleed-valve 6.0 (splitter ?spl ?in ?outl ?out2)

"A splitter just prior to a turbine is often a bleed-valve"
(cycle-type :heat-engine Treason)
((turbine Tturl Tturl-in Tout)
:TEST (or (eql Tturl-in Toutl) (eql Tturl-in Tout2)))

((Tin has-source Tindev)
:T E S T (and (not (rf::mixerT Tindev))

(not (r f : turbineT Tindev)))))
(defTest Spl-Tst7 bleed-valve 6.0 (splitter Tspl Ts-in Ts-outl Ts-out2)

"A splitter just after a turbine is often a bleed-valve"
(cycle-type :heat-engine Treason)
(turbine Ttur Tt-in Ts-in)
((Ts-outl has-sink Tdevl)
:test (not (rf::turbineT Tdevl)))

((Ts-out2 has-sink Tdev2)
:test (not (rf::turbineT Tdev2))))

SPLITTER AS FLASH-CHAMBER__
(defTest Spl-Tst8 flash-chamber 50.0 (splitter Tspl Ts-in Toutl Tout2)
"A splitter that is part of a multi-port chamber is very likely acting as a
flash-chamber"
(aggr Tmpc mp-chamber)
((Tmpc has-devs Tdevs)
:test (member Tspl Tdevs)))

(defTest Spl-Tst9 flash-chamber 17.5 (splitter Tspl Ts-in Toutl Tout2)
"A splitter immediately downstream of a throttle in a refrigerating cycle is
very likely to be a flash chamber for the working fluid just saturated"
(cycle-type :refrigerator Treason)
(throttle Tthr Tt-in Ts-in))

(defTest Spl-TstlO (:not flash-chamber) 20.0 (splitter Tspl Tin Toutl Tout2)
"A splitter coupled to a heat-absorber is unlikely to be a flash-chamber"
(role Thtr heat-absorber Tbp)
((heater Thtr Thtr-in Thtr-out)
:TEST (or (eql Thtr-in Toutl) (eql Thtr-in Tout2))))

(defTest Spl-Tstll flash-chamber 80.0 (splitter Tspl Ts-in Ts-outl Ts-out2)
"A splitter in a series of turbines going directly to a throttle is likely
to be acting as a flash-chamber to improve the quality of the steam"
(cycle-type :heat-engine Treason)
(turbine Tturl Ttl-in Ts-in)
((throttle Tthr Tthr-in Tthr-out)
:TEST (or (eql Tthr-in Ts-outl) (eql Tthr-in Ts-out2)))

(downrange Tturl Tturl-range)
((turbine Ttur2 Tt2-in Tt2-out)
:TEST (member Ttur2 Tturl-range)))

(defTest Spl-Tstl2 flash-chamber 12.0 (splitter Tspl Ts-in Ts-outl Ts-out2)
"A splitter in a turbine series flowing into a reheater is likely to be
acting as a flash-chamber to dry out the vapor to be reheated and increase
the efficiency of the reheating"
(cycle-type :heat-engine Treason)
(role Tturl work-source Tbp-turl)
(adjacent Tturl Tspl Tlinkl)
(role Trht reheater Tbp-rht)
(adjacent Tspl Trht Tlink2)
(role Ttur2 work-source Tbp-tur2)
(adjacent Trht Ttur2 Tlink3))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

209
(defTest Spl-Tstl3 flash-chamber 12.0 (splitter ?spl ?s-in ?s-outl ?s-out2)

"A splitter on a bleed-path that contains a heater and flows back into the
turbine is likely to be flashing the working fluid in order to provide the
heater with vapor to superheat’
(cycle-type :heat-engine ?reason)
((bleed-path ?start ?members)
:test (and (not (eq ?start ?spl))

(member ?spl ?members)
(some #'rf::heat-consumer? ?members)))

((role ?mxr mxr-heater ?bp)
:test (eq ?mxr (car (last ?members))))

(adjacent ?mxr ?tur ?stfs)
(turbine ?tur ?tur-in ?tur-out))

(defTest Spl-Tstl4 (:not flash-chamber) 40.0
(splitter ?splitter ?link ?outl ?out2)

■A flash-chamber is unlikely to have a heater immediately upstream'
(heater ?heater ?htr-in ?link))

(defTest Spl-Tstl5 (:not flash-chamber) 40.0
(splitter ?splitter ?link ?outl ?out2)

"A flash-chamber is unlikely to have a cooler immediately upstream"
(cooler ?cooler ?clr-in ?link))

(defTest Spl-Tstl6 flash-chamber 40.0 (splitter ?splitter ?in ?outl ?out2)
"A splitter between the cooler halves of two hxs that are providing
heat to their heater halves may be acting as a flash-chamber to supply
steam to the downstream heat-provider"
(hx-cooler ?hpl ?hpl-in ?in)
(role ?hpl heat-provider ?probl)
(role ?hp2 heat-provider ?prob2)
((hx-cooler ?hp2 ?hp2-in ?hp2-out)
:test (or (eql ?hp2-in ?outl) (eql ?hp2-in ?out2))))

(defTest Spl-Tstl7 flash-chamber 30.0 (splitter ?splitter ?in ?outl ?out2)
"A splitter with a sink at one outlet is probably a flash-chamber"
((sink ?snk ?s-in)
:TEST (or (eql ?s-in ?outl) (eql ?s-in ?out2))))

(defTest Spl-Tstl8 flash-chamber 20.0 (splitter ?spl ?m-out ?s-outl ?s-out2)
"A splitter in between two compressors is likely acting as a flash-chamber
to remove heat"
(mixer ?mxr ?m-inl ?m-in2 ?m-out)
((compressor ?cmpl ?c-inl ?c-outl)
:TEST (or (eql ?c-outl ?m-inl) (eql ?c-outl ?m-in2)))
((compressor ?cmp2 ?c-in2 ?c-out2)
:TEST (or (eql ?c-in2 ?s-outl) (eql ?c-in2 ?s-out2))))

(defTest Spl-Tstl9 flash-chamber 7.0 (splitter ?spl ?s-in ?s-outl ?s-out2)
"A splitter between two turbines with a bleed-path containing a pump is
probably a flash-chamber, since the pump can only handle liquid"
(cycle-type :heat-engine Treason)
((bleed-path ?spl ?path-devs)
:test (and (some #'rf::pump? ?path-devs)

(notany #'rf::heat-producer? ?path-devs))))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

210
(defTest Spl-Tst20 flash-chamber 7.0 (splitter ?spl ?s-in ?s-outl ?s-out2)
"A splitter downstream of a reactor and upstream of a heat-providing cooler
is probably a flash-chamber acting as a simple steam reservoir to buffer the
reactor"
(cycle-type :heat-engine Treason)
(reactor ?rct ?r-in ?s-in)
(role Thxc heat-provider ?bp)
(hx-cooler ?hxc ?hx-in ?hx-out)
(adjacent ?spl ?hxc ’connection))

SPLITTER AS FLOW-FORK___
(defTest Spl-Tst21 flow-fork 10.0 (splitter ?spl ?in ?outl ?out2)

"A splitter with two turbines immediately downstream that both flow into a
mixer is very likely to be placing the turbines in parallel"
(turbine ?turl ?outl ?tl-out)
(turbine ?tur2 ?out2 ?t2-out)
((mixer ?mxr ?inl ?in2 Tm-out)
:TEST (or (and (eql ?tl-out ?inl)

(eql ?t2-out ?in2))
(and (eql ?tl-out ?in2) (eql ?t2-out ?inl)))))

SUBCYCLE DEFINITIONS__
(defRoleAbst (subcycle Tsubc)

((work-generator 0.4)
(heat-mover 0.4)
(energy-remover 0.1)
(radiation-isolator 0.1))

(-> work-generator
(simple-engine 0.75)
(topping 0.12)
(cascading 0.01)
(bottoming 0.12)))

SUBCYCLE AS WORK-GENERATOR___
(defTest Sbc-Tstl work-generator 2.5 (subcycle ?subc)

"A subcycle in a heat-engine containing turbines is very likely
to be a work generator"
(cycle-type :heat-engine ?reason)
(((devs ?subc) members ?devs)
.•TEST (some #'sadi :: turbine? ?devs)))

(defTest Sbc-Tst2 simple-engine 2.5 (subcycle ?subc)
"A single subcycle in a heat-engine is de facto a simple
work-generating engine"
(cycle-type :heat-engine Treason)
(((subcycles rcycle) members ?subcs)
:TEST (and (eql ?subc (car ?subcs))

(null (cdr ?subcs)))))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

211
(defTest Sbc-Tst3 topping 50.0 (subcycle ?subcl)
“In a heat-engine with two work-generating subcycles, che subcycle
supplying heat is virtually always a topping subcycle"
(cycle-type :heat-engine ?reason)
(role ?subcl work-generator Tprobl)
((subcycles .-cycle) members ?subcs)
((subcycle ?subc2)
:TEST (not (eq ?subcl ?subc2)))

(role ?subc2 work-generator ?prob2)
((devs ?subcl) members ?devsl)
((devs ?subc2) members ?devs2)
((hx-cooler ?hxc ?hxc-in ?hxc-out)
:TEST (member ?hxc ?devsl))

((hx-heater ?hxh ?hxh-in ?hxh-out)
:TEST (member ?hxh ?devs2))

(heat-path ?hxc ?hxh))
(defTest Sbc-Tst4 bottoming 50.0 (subcycle ?subcl)
“In a heat-engine with two work-generating subcycles, the subcycle
absorbing heat is virtually always a bottoming subcycle*
(cycle-type :heat-engine ?reason)
(role ?subc work-generator ?probl)
((subcycles :cycle) members ?subcs)
((subcycle ?subc2)
:TEST (not (eq ?subcl ?subc2)))

(role ?subc2 work-generator ?prob2)
((devs ?subcl) members ?devsl)
((devs ?subc2) members ?devs2)
((hx-heater ?hxh ?hxh-in ?hxh-out)
:TEST (member ?hxh ?devsl))

((hx-cooler ?hxc ?hxc-in Thxc-out)
:T E S T (member ?hxc ?devs2))

(heat-path ?hxc ?hxh))

SUBCYCLE AS ENERGY-REMOVER__
(defTest Sbc-Tst5 energy-remover 100.0 (subcycle ?subc)
“A refrigerator subcycle with sources and sinks is very likely cooling the
working fluid"
(cycle-type :refrigerator Treason)
(((devs Tsubc) members Tdevs)
:TEST (some #'sadi::terminalT Tdevs)))

(defTest Sbc-Tst6 energy-remover 100.0 (subcycle Tsubc)
"A heat-engine subcycle with a pump feeding an hx-heater acting as a
heat-absorber is probably intended to cool the primary working fluid"
(cycle-type :heat-engine Treason)
(((devs Tsubc) members Tdevs)
:TEST (notany 'rf::turbineT Tdevs))

((dev Tpmp pump)
:test (member Tpmp Tdevs))

(role Thxh heat-absorber Tprob)
(adjacent Tpmp Thxh Tconnection))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

212
(defTest Sbc-Tst6 energy-remover 100.0 (subcycle ?subc)

"A heat-engine subcycle with a pump feeding an hx-heater acting as a
heat-absorber is probably intended to cool the primary working fluid’
(cycle-type :heat-engine Treason)
(((devs Tsubc) members Tdevs)
:TEST (notany 'rf::turbineT Tdevs))

((hx-heater Thxh Tin Tout)
:test (member Thxh Tdevs))

(heat-path Thxc Thxh)
((primary-floop-for Tmain-subc Tfloop)
:test Tfloop)

(((devs Tmain-subc) members Tdevs-main)
:test (member Thxc Tdevs-main))

((dev Tpmp pump)
:test (member Tpmp Tdevs))

(role Thxh heat-absorber Tprob)
(adjacent Tpmp Thxh Tconnection))

SUBCYCLE AS HEAT-MOVER
(defTest Sbc-Tst7 heat-mover 8.0 (subcycle Tsubc)

“A heat-engine subcycle with only pumps, heaters, and coolers is likely
transporting thermal energy from one location to another"
(cycle-type :heat-engine Treason)
(((devs Tsubc) members Tdevs)
:TEST (and (some 'rf::heat-changerT Tdevs)

(some 'rf::work-consumerT Tdevs)
(notany 'rf::reactorT Tdevs)
(notany 'rf::work-producerT Tdevs))))

(defTest Sbc-Tst8 heat-mover 2.5 (subcycle Tsubc)
’A refrigerator subcycle with no sources or sinks is almost certainly moving
heat"
(cycle-type :refrigerator Treason)
(((devs Tsubc) members Tdevs)
:TEST (notany #'sadi::terminalT Tdevs)))

SUBCYCLE AS RADIATION ISOLATOR___
(defTest Sbc-Tst9 radiation-isolator 9.9 (subcycle Tsubc)

"A subcycle containing a reactor but no turbines is probably isolating the
reactor"
(cycle-type :heat-engine Treason)
(((devs Tsubc) members Tdevs)
:TEST (and (notany #'sadi::turbineT Tdevs)

(some #'sadi::reactorT Tdevs))))

THROTTLE DEFINITIONS_______________________
(defTypeAbst (THROTTLE Tthrottle Tin Tout)

free-expander
pressure-changer
device)

(defRoleAbst (THROTTLE Tthrottle Tin Tout)
((pressure-decreaser 0.5)
(saturator 0.5)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

213
THROTTLE AS SATURATOR___
(defTest Thr-Tstl saturator 2.5 (throttle ?throttle ?in ?out)

■A throttle immediately upstream of a splitter in a refrigerating cycle is
very likely to be saturating the working fluid to enable it to flash"
(cycle-type :refrigerator Treason)
(splitter Tsplitter Tout Tout2 Tout3))

(defTest Thr-Tst2 saturator 3.0 (throttle Tthrottle Tc-out Th-in)
"A throttle with a cooler upstream and a heater downstream is most commonly
acting as a saturator of the working fluid”
(cycle-type :refrigerator Treason)
(genus Tcooler heat-producer)
(Tcooler has-outstf Tc-out)
(genus Theater heat-consumer)
(Theater has-instf Th-in))

(defTest Thr-Tst3 saturator 2.5 (throttle Tthr Tthr-in Tthr-out)
“A throttle with a downstream heater in a refrigerating cycle is probably
intended to saturate the working fluid”
(cycle-type :refrigerator Treason)
(genus Thtr heat-consumer)
(adjacent Tthr Thtr Tstfs))

(defTest Thr-Tst4 saturator 5.0 (throttle Tthrottle Tin Tout)
“A throttle on a refrigerator cycle is more likely to be a saturator than a
pressure-decreaser“
(cycle-type :refrigerator Treason)
(subcycle Tsubcycle)
((role Tsubcycle Tsubc-role Tprob)
:TEST (member Tsubc-role '(heat-mover energy-remover)))

((devs Tsubcycle) has-member Tthrottle))
(defTest Thr-Tst5 saturator 6.0 (throttle Tthrottle Tin Tout)

"A throttle entering a mixer in a refrigerator cycle is likely to be a
saturator"
(cycle-type :refrigerator Treason)
((mixer Tmixer Tinl Tin2 Tout2)
:TEST (or (eql Tout Tinl) (eql Tout Tin2))))

THROTTLE AS PRESSURE DECREASER___
(defTest Thr-Tst6 pressure-decreaser 8.0 (throttle Tthrottle Tin Tout)

■A throttle on a work-producing loop in a refrigerator cycle is more likely
to be a pressure-decreaser than a saturator”
(cycle-type :refrigerator Treason)
(role Tsubcycle work-generator Tprob)
((devs Tsubcycle) has-member Tthrottle))

(defTest Thr-Tst7 pressure-decreaser 3.0 (throttle Tthrottle Tin Tout)
”A throttle entering a mixer in a heat-engine cycle is probably a
pressure-decreaser"
(cycle-type :heat-engine Treason)
((mixer Tmixer Tinl Tin2 Tout2)
:TEST (or (eql Tout Tinl) (eql Tout Tin2))))

(defTest Thr-Tst8 pressure-decreaser 50.0 (throttle Tthrottle Tlink Tout)
"A throttle immediately downstream of a heater is probably
a pressure-decreaser"

added in response to tsb analysis of cycle 2
(heater Thtr Thtr-in Tlink))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

214
TURBINE DEFINITIONS__
(defTypeAbst (TURBINE ?turbine ?in ?out)
work-producer
pressure-changer
device)

(defRoleAbst (TURBINE Tturbine ?in ?out)536
((work-source 0.95) (fluid-cooler 0.05)))

TURBINE AS WORK-SOURCE___
(defTest Tur-Tstl work-source 5.0 (turbine ?tur ?in ?out)

“A turbine in a heat-engine cycle is virtually always a work-source"
(cycle-type :heat-engine ?reason))

(defTest Tur-Tst2 work-source 5.0 (turbine ?turbine ?t-in ?t-out)
"A turbine in a refrigerator cycle with a heater immediately upstream is
most likely generating power to drive the compressors of the cycle"
(cycle-type :refrigerator Treason)
(genus Theater heat-consumer)
(Theater has-outstf Tt-in))

TURBINE AS FLUID-COOLER__
(defTest Tur-Tst3 fluid-cooler 50.0 (turbine Tturbine Tin Tout)

“A turbine on a refrigerator cycle without any heat-injectors
is more likely to be a fluid-cooler"
(cycle-type :refrigerator Treason)
(((heat-consumers :CYCLE) members Tdevs)
:test (null Tdevs)))

(defTest Tur-Tst4 fluid-cooler 160.0 (turbine Ttur Tin Tout)
"A turbine in a refrigerating cycle with a cooler immediately upstream
is probably being used to achieve a greater temperature drop than would
occur through a throttle*
(cycle-type :refrigerator Treason)
(genus Tcooler heat-producer)
(Tcooler has-outstf Tin))

(defTest Tur-Tst5 fluid-cooler 200.0 (turbine Ttur Tt-in Tt-out)
"A turbine in a refrigerating cycle with an upstream cooler and a downstream
heater is probably being used to achieve a greater temperature drop than
would occur through a throttle"
(cycle-type :refrigerator Treason)
(genus Tcooler heat-producer)
((downrange Tcooler Tc-range)
:TEST (member Ttur Tc-range))

(downrange Ttur Tt-range)
((genus Theater heat-consumer)
:TEST (member Theater Tt-range)))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

215

Plan Definitions
PLANS FOR ACHIEVING A CHANGE IN THE ENVIRONMENT___________________________________
(defplan generate-work 0

"This cycle is a heat-engine, so it is intended to produce a change in the
environment, namely work"
:goal (:achieve-change-in-env)
:conditions
((cycle-type :heat-engine Treason)))

(defplan move-heat ()
"This is a refrigerator cycle, so it is intended to move heat from one
location to another"
:goal (:achieve-change-in-env)
:conditions
((cycle-type :refrigerator Treason)))

(defplan liquefy-gas (move-heat)
"In this case the heat is being ejected in order to liquefy the fluid flowing
from source to sink"
:goal (:achieve-change-in-env)
:key-roles ((role Tsrc fluid-source Tbpl)

(role Tsnk fluid-sink Tbp2))
.•conditions
(((floop Tfname Tfstfs Tfdevs)

:test (and (eq Tsrc (car Tfdevs)) (eq Tsnk (car (last Tfdevs)))))))
(defplan vapor-power-cycle (generate-work)

"This heat engine fully condenses its working fluid in order to realize
gains in pumping efficiency over compressing gas or saturated mixtures"
:goal (:achieve-change-in-env)
:key-roles ((role Tsubc work-generator Tbp))
:conditions
((((devs :CYCLE) members Tdevs)

:test (notany #'rf::compressorT Tdevs))
(cooler Tclr Tin Tout)
((phase Tout Tphase)
:test (not (eq Tphase 'data::gas)))))

(defplan combined-vapor-gas-cycle (generate-work)
"This heat engine combines the greater maximum temperatures of a gas cycle
with the thermal advantage of the vapor cycle in ejecting all its heat at
the lowest possible temperature"
:goal (:achieve-change-in-env)
:key-roles ((role Tsubc work-generator Tbp))
:conditions
((((devs Tsubc) members Tdevs)

:test (and (some #'rf::compressorT Tdevs)
(some #'rf::pumpT Tdevs)))))

(defplan gas-power-cycle (generate-work)
"This heat engine utilizes gas working fluids throughout, which typically
results in lower weight and a more compact design"
:goal (:achieve-change-in-env)
:conditions
((cycle-type :heat-engine Treason)
(((devs :CYCLE) members Tdevs)
:test (and (some 'rf::compressorT Tdevs)

(notany 'pumpT Tdevs)))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

216
(defPlan simple-gas-power-cycle (gas-power-cycle)

“This heat engine utilizes gas working fluids throughout, which typically
results in lower weight and a more compact design"
:goal (:achieve-change-in-env)
:conditions
((cycle-type :heat-engine Treason)
(((devs :CYCLE) members Tdevs)
:test (and (rf::exactly-one 'rf::compressorT Tdevs)

(rf::exactly-one 'rf::turbineT Tdevs)
(notany 'hxT Tdevs) ;;no regeneration, intercooling
(notany 'pumpT Tdevs)))))

PLANS FOR INCREASING THE EFFICIENCY OF THE CYCLE__________________________________
(defPlan direct-regenerate-via-closed-hx ()

•Ideally we could extract heat from the turbine as the gas expands through
it. In practice this causes unacceptable saturation of the fluid"
:goal (:increase-efficiency)
:NL-phrase "the working fluid flowing through the turbine is used to preheat

the feed fluid"
:key-roles ((role Tpre preheater Tprob))
:conditions
((hx-heater Tpre Tpre-in Tpre-out)
(heat-path Tclr Tpre)
((floop Tfname Tstfs Tdevs)
:test (and (member Tpre Tdevs)

(member Tclr Tdevs)))
(hx-cooler Tclr Tclr-in Tclr-out)
(turbine Ttur Tclr-out Ttur-out)))

(defPlan reheat-vapor-cycle-working-fluid ()
"Reheating in a vapor power cycle enables the use of higher turbine inlet
pressures, which increases efficiency. Reheat ensures that the exit vapor
is of high quality. If turbine blades could withstand higher inlet
temperatures then reheat would be unnecessary"
:goal (:increase-efficiency)
:NL-phrase "energy is injected into the working fluid as it flows through

the turbine"
:key-roles ((role Trhtr reheater Tprob))
:conditions ((plan Tinstance vapor-power-cycle)))

(defPlan reheat-gas-cycle-working-fluid 0
■Reheating in a gas power cycle takes advantage of the fact that oxygen
remains in the working fluid even after the initial combustion, so injection
of more fuel enables further extraction of energy from the exhaust of the
first turbine stages. In an airplane engine this would be called an
afterburner"
rgoal (:increase-efficiency)
:NL-phrase "energy is injected into the working fluid as it flows through

the turbine"
:key-roles ((role Trhtr reheater Tprob))
:conditions ((plan Tinstance gas-power-cycle)))

(defPlan intercool-compressors ()
"Intercooling reduces the amount of work necessary to compress a gas, thus
increasing cycle efficiency"
:goal (:increase-efficiency)
:NL-phrase “energy is ejected from the compressor"
:key-roles ((role Tintrclr intercooler Tprob))
:conditions
((cooler Tintrclr Tclr-in Tclr-out)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

217
(defPlan intercool-and-use-ejected-heat (intercool-compressors)
■Using the ejected heat from an intercooler increases the efficiency of
intercooling"
:goal (:increase-efficiency)
:NL-phrase "energy ejected from the compressor is used as a source of heat”
:key-roles ((role ?intrclr intercooler ?prob))
:conditions ((hx-cooler ?intrclr ?clr-in ?clr-out)))

(defPlan indirect-contact-regenerate ()
"Heat-exchange via closed heat-exchangers is less efficient than direct
mixing, but the two working fluids can be at different pressures, reducing
the need for pumps’
:goal (:increase-efficiency)
:NL-phrase "working fluid bled from the turbine is used to supply heat in a

heat-exchanger■
:key-roles ((role ?pre preheater ?prob))
:conditions
((cycle-type :heat-engine Treason)
(bleed-path ?bleed-valve Tdevs)
((heat-path Tclr Tpre)
:test (member Tclr Tdevs))))

(defPlan preheat-with-exhaust-gas 0
■This plan takes advantage of the high temperature exhaust of a gas-turbine
to preheat the working fluid"
:goal (:increase-efficiency)
:key-roles ((role Tpre preheater Tprob))
:NL-phrase "the relatively hot exhaust gas is piped through a closed heat-

•exchanger in order to preheat the working fluid entering the
combustion chamber*

:conditions
((((devs :CYCLE) members Tdevs)

:test (notany #'rf::bleed-valveT Tdevs))
(hx-heater Tpre Tpre-in Tpre-out)
(heat-path Tclr Tpre)
(turbine Tlast-tur Tlt-in Tlt-out)
((downrange Tlast-tur Tlast-tur-dr)
:test (notany #'rf::turbineT Tlast-tur-dr))

(adjacent Tlast-tur Tclr Tconnection)
((downrange Tclr Tclr-downrange)
:test (notany #'rf::turbineT Tclr-downrange))

((floop Tfname Tstfs Tfdevs)
:test (and (member Tpre Tfdevs)

(member Tclr Tfdevs)))))
(defPlan direct-regenerate-with-minimal-delta-T (direct-contact-regenerate)

■Direct contact is the most efficient form of heat exchange, but a large
temperature difference in the streams will lead to irreversibilities.
Increasing the pressure and intercooling a working-fluid bleed can convert
it to a dry saturated gas at the same temperature as the wet saturated
liquid to be preheated"
:goal (:increase-efficiency)
:NL-phrase "superheated fluid bled from the turbine is saturated then is

directly mixed with the boiler feed liquid"
:key-roles ((role Tmxr mxr-heater Tbp))
:conditions
((role Tintrclr intercooler Tprob)
(hx-cooler Tintrclr Tclr-in Tclr-out)
((bleed-path Tbleed-valve Tdevs)
-•test (and (member Tmxr Tdevs)

(member Tintrclr Tdevs)))))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

218
(defPlan bleed-working-fluid-for-industrial-process ()
"Conversion of energy from one form to another inevitably entails
irreversibility, so using vapor generated for a power cycle is more
efficient than using the power generated to produce the vapor"
.•goal (: increase-ef ficiency)
:NL-phrase "vapor is bled for use in an industrial process"
:key-roles ((role ?clr heat-provider ?prob))
:conditions
((heat-path ?clr :ENV)
((bleed-path ?bleed-valve ?devs)
:test (member ?clr ?devs))))

(defPlan gas-liquid-cascaded-cycle (generate-work)
•Cascading cycles enables the use of working fluids with different thermal
characteristics in the same system. In this case a high-temperature gas
cycle's waste heat is used to power a vapor cycle"
:goal (:increase-efficiency)
:NL-phrase "it is partitioned into two subcycles, one powering the other via

its ejected heat"
:key-roles ((role ?subcl topping ?bpl)

(role ?subc2 bottoming ?bp2))
:conditions
((((devs ?subcl) members ?subcl-devs)

:test (notany #'rf::pump? ?subcl-devs))
(((devs ?subc2) members ?subc2-devs)
:test (notany #'rf::compressor? ?subc2-devs))))

(defPlan refrigerating-cascaded-cycle (move-heat)
"Cascading cycles enables the use of working fluids with different thermal
characteristics in the same system. In this case the energy-removing
subcycle can use a refrigerant that operates at substantially different
pressures in order to achieve greater heat-transfer"
:goal (:increase-efficiency)
:NL-phrase "it is partitioned into multiple subcycles, one removing heat from

the other"
:key-roles ((role ?subcl heat-mover ?bpl)

(role ?subc2 heat-mover ?bp2))
:conditions
(((devs ?subcl) members ?subcl-devs)
((devs ?subc2) members ?subc2-devs)
((heat-path ’cooler ?heater)
: test (and (member ?cooler ?subcl-devs)

(member ?heater ?subc2-devs)))))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

219
(defPlan transport-heat (move-heat)

■Heat-engines generally convert energy into electrical form for efficient
distribution. However, in some situations it may be more efficient to
transport heat energy from the system directly to its point of use, thereby
avoiding conversion inefficiencies"
:goal (:increase-efficiency)
:NL-phrase "a subcycle is employed to transport heat to another location"
:key-roles ((role ?subcl work-generator ?bpl)

(role ?subc2 heat-mover ?bp3))
:conditions
((cycle-type :heat-engine ’reason)
((devs ?subcl) members ?subcl-devs)
(((devs ?subc2) members ?subc2-devs)
:test (not (eq ?subcl ?subc2)))

((role ?hxcl heat-ejector Tbp4)
:test (member ?hxcl ?subcl-devs))

((role ?hxhl heat-absorber ?bp5)
:test (member ?hxhl ?subc2-devs))

(heat-path ?hxcl Thxhl)
((role ?clr heat-provider ?bp8)
:test (member ?clr ?subc2-devs))))

(defPlan multi-transport-heat (move-heat)
"Heat-engines generally convert energy into electrical form for efficient
distribution. However, in some situations it may be more efficient to
transport heat energy from the system directly to its point of use, thereby
avoiding conversion inefficiencies’
:goal (:increase-efficiency)
:NL-phrase "subcycles are employed to transport heat to another location"
:key-roles ((role ?subcl work-generator ?bpl)

(role ?subc2 energy-remover ?bp2)
(role ?subc3 heat-mover ?bp3))

:conditions
((cycle-type :heat-engine Treason)
((devs Tsubc1) members Tsubcl-devs)
(((devs Tsubc2) members Tsubc2-devs)
:test (not (eq Tsubcl Tsubc2)))

(((devs Tsubc3) members Tsubc3-devs)
:test (and (not (eq Tsubc2 Tsubc3))

(not (eq Tsubcl Tsubc3))))
((role Thxcl heat-ejector Tbp4)
:test (member Thxcl Tsubcl-devs))

((role Thxhl heat-absorber Tbp5)
:test (member Thxhl Tsubc2-devs))

(heat-path Thxcl Thxhl)
((role Thxc2 heat-provider Tbp6)
:test (member Thxc2 Tsubc2-devs))

((role Thxh2 heat-injector Tbp7)
:test (member Thxh2 Tsubc3-devs))

(heat-path Thxc2 Thxh2)
((role Tclr heat-provider Tbp8)
:test (member Tclr Tsubc3-devs))))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

220
(defplan exchange-heat-at-multiple-pressure ()

“Heat-exchange at multiple-pressures minimizes the temperature difference
between the two working fluids, thereby creating less irreversibility. A
relatively cool, high-pressure saturated liquid can absorb heat from a
high-temperature working fluid, cooling that fluid to the point where it can
supply heat to the same saturated liquid at a lower temperature"
:goal (:increase-efficiency)
:NL-phrase “heat is injected into the work-generating subcycle at multiple

pressures“
:key-roles ((role ?subcl heat-mover ?bpl)

(role ?subc2 work-generator ?bp2))
:conditions
((((devs ?subcl) members ?subc-devsl)

:test (> (count-if #'rf::hx-cooler? ?subc-devsl) 1))
(((devs ?subc2) members ?subc-devs2)
:test (or (> (count-if #'rf::pump? ?subc-devs2) 1)

(> (count-if #'rf::compressor? ?subc-devs2) 1)))))
(defPlan nuclear-exchange-heat-at-multiple-pressure ()

■Heat-exchange at multiple-pressures minimizes the temperature difference
between the two working fluids, thereby creating less irreversibility. A
relatively cool, high-pressure saturated liquid can absorb heat from a high-
temperature working fluid, cooling that fluid to the point where it can
supply heat to the same saturated liquid at a lower temperature"
:goal (:increase-efficiency)
:NL-phrase “heat is injected into the work-generating subcycle at multiple

pressures"
:key-roles ((role ?subcl radiation-isolator ?bpl)

(role ?subc2 work-generator ?bp2))
:conditions
((((devs ?subcl) members ?subc-devsl)

:test (> (count-if #'rf::hx-cooler? ?subc-devsl) 1))
(((devs ?subc2) members ?subc-devs2)
:test (or (> (count-if #'rf::pump? ?subc-devs2) 1)

(> (count-if #'rf::compressor? ?subc-devs2) 1)))))
(defPlan cool-reactor-feed-to-adjust-load ()

"Liquid-moderated reactors may be controlled by cooling their inlet
working-fluid, which will result in the raising of more vapor"
:goal (:increase-efficiency)
:NL-phrase “working fluid is used to cool the fluid flowing through the

reactor core"
:key-roles ((role ?hxc heat-provider ?bpl))
:conditions
((hx-cooler ?hxc ?hxc-in ?hxc-out)
(reactor ?rct ?hxc-out ?rct-out)))

(defPlan use-turbine-to-obtain-greater-T-drop (move-heat)
“Using a turbine in place of a throttle to create the pressure drop in a
refrigerator results in a greater decline in temperature, which is often
useful in a cryogenic cycle"
:goal (:increase-efficiency)
:NL-phrase "a turbine is used to cool the working fluid"
:key-roles ((role ?tur fluid-cooler ?bp))
:conditions
((turbine ?tur ?in ?out)
(cycle-type :refrigerator ?reason)))

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

221
(defPlan use-flash-tank ()

"A flash-tank is an efficient means for cooling the working fluid by direct
contact"
:goal (:increase-efficiency)
:NL-phrase "a flash-tank is used to cool the working fluid"
:key-roles ((role ?mxr mxr-cooler ?bpl)

(role ?spl flash-chamber ?bp2))
:conditions
((cycle-type rrefrigerator ?reason)
(aggr ?mpc mp-chamber)
(?mpc has-devs (?mxr ?spl))))

(defPlan direct-contact-regenerate ()
"Heat-exchange via mixing is more efficient than indirect transfer in closed
heat-exchangers, and it also enables deaeration of working fluid, but it
requires more pumps because inlets must be maintained at the same pressure"
:goal (:increase-efficiency :preserve-system)
:NL-phrase "fluid bled from the turbine is directly mixed with the boiler

feed liquid"
:key-roles ((role ?mxr mxr-heater ?prob))
:conditions
((cycle-type :heat-engine ’reason)
((bleed-path ?bleed-valve ?devs)
:test (member ?mxr ?devs))))

PLANS FOR PRESERVING THE SYSTEM__
(defPlan flash-to-dry-vapor 0

"Reactors often generate vapor of lower quality, and hence may need
flash-chambers in the turbine series to dry the vapor entering the latter
stages“
:goal (:preserve-system)
:NL-phrase "the working fluid flowing through the turbine is flashed to

improve its quality"
:key-roles ((role ?spl flash-chamber ?prob))
:conditions
((turbine ?turl ?turl-in ?turl-out)
((downrange ?tur ?tur-downrange)
:test (member ?spl ?tur-downrange))

((downrange ?spl ?spl-downrange)
:test (some #'rf::turbine? ?spl-downrange))

(bleed-path ?spl ?devs)))
(defPlan bleed-vapor-for-reheat 0

“Since a reactor generally does not achieve much in the way of superheat,
reheating the vapor flowing to later turbine stages is often necessary for
preserving the integrity of the turbine blades"
:goal (:preserve-system)
:NL-phrase "vapor bled from the turbine is used to reheat the fluid in later

turbine stages"
:key-roles ((role ?rhtr reheater ?prob))
: conditions
(((heat-path ?heat-provider ?rhtr)

:test (not (eq ?heat-provider :ENV)))
((bleed-path ?bleed-valve ?devs)
:test (member ?heat-provider ?devs))))

(defPlan isolate-reactor ()
•Nuclear plants often use a separate subcycle to contain radiation"
:goal (:preserve-system)
:NL-phrase "a separate subcycle is used to contain the radiation of the

reactor core"
:key-roles ((role ?subc radiation-isolator ?prob)))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

222
(defPlan use-jet-ejector-to-power-refrigerator (move-heat)
■Jet ejectors have no moving parts and hence vapor refrigeration
systems that use them for compression are inexpensive and safe to
operate, although they produce effective cooling to levels well above the
freezing point of the working fluid'
:goal (:preserve-system)
:NL-phrase "a jet-ejector is used to compress the working fluid"
:key-roles ((role ?mxr jet-ejector ?bp-mxr))
:conditions
((cycle-type :refrigerator Treason)))

(defPlan use-vapor-drum-to-preserve-system ()
"A vapor-drum buffers the system against sudden changes in load"
:goal (:preserve-system)
:NL-phrase "a vapor-drum is used to maintain a ready supply of gaseous

working fluid"
:key-roles ((role Tmxr mxr-heater Tbpl)

(role Tspl flash-chamber Tbp2))
:conditions
((cycle-type :heat-engine Treason)
(aggr Tmpc mp-chamber)
(Tmpc has-devs (Tmxr Tspl))))

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Appendix D
Formal Definitions of Locality Predicates

Adjacent Predicate
device(x) a device(y) a outlet(x) = inlet(y)
3z mixer(z) a flowjoin(z) a outlet(x) = inlet(z) a

outlet(z) = inlet(y)
3z splitter(z) a flowfork(z) a outlet(x) = inlet(z) a

outlet(z) = inlet(y)
3z mixer(z) a flowjoin(z) a Adjacent(x,z) a Adjacent(z, y)
3z splitter(z) a flowsplit(z) a Adjacent(x,z) a Adjacent(z, y)

Vx, y Adjacent(x, y) <=>

Downrange Predicate
f Device(x) a Device(y)]

Vx, y Upstream(x, y) <=> \ >
[a Outlet(x) = Inlet(y) j

Vx,y,P Path(x,y,P) <=> <
Device(x) a Device(y) a Set(P)
a Vz z e PDevice(z)
a Vz z 6 P A Z ? t y 3 w w s P a Upstream(z,w)

Vx,e OpposingEffect(x) = e <=> •

Vx, y Downrange(x, y) <=>

Device(x) a Effect(e) a

Type(x) = heater a e = cooling
v Type(x) = cooler a e = heating
v Type(x) = turbine a e = compressing
v Type(x)= compressor a e = expanding
v Type(x) = pump a e = expanding
v Type(x) = throtde a e = compressing
v Type(x) = mixer a e = splitting
v Type(x)= splitter a e = mixing

J Device(x) a Device(y) a Path(x, y, P) 1

[a Vz z e P OpposingEffect(x) * Effect(z)J

223

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

References

Allemang, Dean T. 1990. Understanding Programs as Devices. Ph.D. dissertation, The
University of Ohio.

Baffes, Paul and Raymond Mooney. 1996. Refinement-Based Student Modeling and
Automated Bug Library Construction. Journal o f Artificial Intelligence in Education
7, no. 1: 75-116.

Bhatta, Sambasiva R. and Ashok Goel. 1993. Model-Based Learning of Structural Indices
to Design Cases. In Proceedings o f the Workshop on Reuse o f Designs: An
Interdisciplinary Cognitive Approach at the 1993 International Joint Conference on
Artificial Intelligence. Chambery, Savoie, France.

Brown, J.S. and R.R. Burton. 1978. Diagnostic Models for Procedural Bugs in Basic
Mathematical Skills. Cognitive Science 2: 155-192.

Brown, J.S. and K. Van Lehn. 1980. Repair Theory: A Generative Theory of Bugs in
Procedural Skills. Cognitive Science 4: 379-426.

Buchanan, B.G. and E.H. Shortliffe. 1984. Rule-based expert systems. Reading, MA:
Addison-Wesley.

Bylander, Thomas and B. Chandrasekaran. 1985. Understanding Behavior Using
Consolidation. In Ninth International Joint Conference on Artificial Intelligence’ASQ-
454.

Chandrasekaran, B. 1994. Functional Representation and Causal Processes. In Advances
in Computers, ed. Marshall Yovits, 38: Academic Press.

Chamiak, Eugene. 1991. Bayesian Networks without Tears. A I Magazine, Winter 1991,
50-63.

Davis, Randall. 1983. Diagnosis via Causal Reasoning: Paths of Interaction and the
Locality Principle. In Proceedings o f the National Conference on Artificial
Intelligence, 1:88-94. Washington, D.C.: Morgan Kaufmann.

de Groot, Adriaan D. 1978. Thought and Choice in Chess. New York NY: Mouton.

de Kleer, Johan. 1975. Qualitative and Quantitative Knowledge in Classical Mechanics.
Technical Report 352. Massachusetts Institute of Technology.

224

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

225

de Kleer, Johan. 1979. Causal and Teleological Reasoning in Circuit Recognition. '
Technical Report AI-TR-529. Massachusetts Institute of Technology Artificial
Intelligence Laboratory.

de Kleer, Johan. 1984. How Circuits Work. Artificial Intelligence 24, no. 1-3: 205-280.

de Kleer, Johan and John S. Brown. 1986. Theories of Causal Ordering. Artificial
Intelligence 29, no. 1: 33-61.

de Kleer, Johan and Brian Williams. 1987. Diagnosing Multiple Faults. Artificial
Intelligence 32: 97-130.

Everett, John O. 1995. A Theory of Mapping from Structure to Function Applied to
Engineering Domains. In International Joint Conference on Artificial Intelligence,
2:1837-1843. Montreal: Morgan Kaufmann.

Falkenhainer, Brian. 1986. Toward a General Purpose Belief Maintenance System. In The
Second Workshop on Uncertainty in AI:71-76.

Falkenhainer, Brian and Kenneth D. Forbus. 1991. Compositional Modeling: Finding the
Right Model for the Job. Artificial Intelligence 51, no. 1: 95-143.

Falkenhainer, Brian, Kenneth D. Forbus, and Dedre Gentner. 1989. The Structure
Mapping Engine: Algorithm and Examples. Artificial Intelligence 41, no. 1: 1-63.

Forbus, Kenneth D. 1984. Qualitative Process Theory. Artificial Intelligence 24: 85-168.

Forbus, Kenneth D. 1990. The Qualitative Process Engine. In Readings in Qualitative
Reasoning about Physical Systems, ed. Daniel S. Weld and Johan de Kleer:220-235.
San Mateo, CA: Morgan Kaufmann.

Forbus, Kenneth D. and Johan de Kleer. 1993. Building Problem Solvers. Edited by
Michael Brady, Daniel Bobrow, and Randall Davis. Artificial Intelligence. Cambridge,
MA: The MTT Press.

Forbus, Kenneth D., Dedre Gentner, John O. Everett, and Melissa Wu. 1997. Towards a
Computational Model of Evaluating and Using Analogical Inferences. In Proceedings
o f the Nineteenth Annual Conference o f the Cognitive Science Society. Palo Alto, CA:
Lawrence Erlbaum Associates.

Forbus, Kenneth D., Dedre Gentner, and B.K. Law. 1995. MAC/FAC: A Model of
Similarity-Based Retrieval. Cognitive Science 19, no. 2: 141-205.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

226

Forbus, Kenneth D. and Peter B. Whalley. 1994. Using qualitative physics to build
articulate software for thermodynamics education. In Twelfth National Conference on
Artificial Intelligence. Seattle, WA: AAAI Press/MTT Press.

Franke, David. 1993. A Theory of Teleology. Ph.D. dissertation, The University of Texas.

Gentner, Dedre. 1983. Structure-Mapping: A Theoretical Framework for Analogy.
Cognitive Science 23: 155-170.

Goel, Ashok. 1991. A Model-Based Approach to Case Adaptation. In Proceedings o f the
Thirteenth Annual Conference o f the Cognitive Science Society: 143-148. Chicago, IL.

Goldman, Robert P. and Eugene Chamiak. 1993. A Language for Construction of Belief
Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence 15, no. 3.

Hayes-Roth, B., R. Washington, D. Ash, A. Hewett, A. Collinot, and A. Seiver. 1992.
Guardian: A Prototype Intelligent Agent for Intensive Care Monitoring. Artificial
Intelligence in Medicine 4: 165-185.

Haywood, R.W. 1991. Analysis o f Engineering Cycles: Power, Refrigerating, and Gas
Liquefaction Plant. Edited by W.A. Woods. Thermodynamics and Fluid Mechanics.
Oxford: Pergamon Press.

Henrion, Max, ed. 1988. Propagation o f Uncertainty in Bayesian Networks by
Probabilistic Logic Sampling. Edited by L. N. Kanal and J. F. Lemmer. Uncertainty in
Artificial Intelligence. Amsterdam, London, New York: Elsevier/North-Holland.

Horvitz, Eric J., H. J. Suermondt, and G. F. Cooper. 1989. Bounded Conditioning:
Flexible Inference for Decisions under Scarce Resources. In Proceedings o f the Fifth
Conference on Uncertainty in Artificial Intelligence (UAI-89): 182-193. Windsor,
Ontario: Morgan Kaufmann.

Iwasaki, Yumi and Chee Meng Low. 1993. Model Generation and Simulation of Device
Behavior with Continuous and Discrete Changes. Journal o f Intelligent Systems
Engineering 1, no. 2.

Iwasaki, Yumi and Herbert A. Simon. 1986. Causality in Device Behavior. Artificial
Intelligence 29, no. 1: 3-32.

Jensen, Finn V., S. L. Lauritzen, and K. G. Olesen. 1990. Bayesian Updating in Causal
Probabilistic Networks by Local Computations. Computational Statistics Quarterly 5,
no. 4: 269-282.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

227

Keuneke, Anne Marie. 1989. Machine Understanding of Devices: Causal Explanation of
Diagnostic Conclusions, The University of Ohio.

Keuneke, Anne M. and Dean Allemang. 1989. Exploring the ’No-Function-In-Structure’
Principle. Journal o f Experimental and Theoretical Artificial Intelligence 1: 79-89.

Kuipers, Benjamin. 1986. Qualitative Simulation. Artificial Intelligence 29: 289-388.

Larsson, Jan Eric. 1996. Diagnosis Based on Explicit Means-Ends Models. Artificial
Intelligence 80, no. 1: 29-93.

Lind, Morten. 1982. Multilevel Flow Modelling of Process Plant for Diagnosis and
Control. Technical Ris0-M-2357. Ris0 National Laboratory.

Lind, Morten. 1990. Representing Goals and Functions of Complex Systems: An
Introduction to Multilevel Flow Modeling. Technical 90-D-381

ISBN 87-87950-52-9. Technical University of Denmark.

McAllester, David. 1978. A Three-Valued Truth Maintenance System. S.B., MTT.

McAllester, David A. 1990. Truth Maintenance. In Eighth National Conference on
Artificial Intelligence: 1109-1116: Morgan Kaufmann.

Narayanan, N. Hari, Masaki Suwa, and Hiroshi Motoda. 1995. Hypothesizing Behaviors
from Device Diagrams. In Diagrammatic Reasoning: Computational and Cognitive
Perspectives, ed. Janice Glasgow, N. Hari Narayanan, and B. Chandrasekaran. Menlo
Park, CA: AAAI Press.

Nayak, P. Pandurang and Leo Joskowicz. 1996. Efficient Compositional Modeling for
Generating Causal Explanations. Artificial Intelligence 83, no. 2: 193-227.

Nilsson, Nils J. 1986. Probabilistic Logic. Artificial Intelligence 28, no. 1: 71-87.

Pearl, Judea. 1986. Fusion, Propagation, and Structuring in Belief Networks. Artificial
Intelligence 29: 241-288.

Pearl, Judea. 1988. Probabilistic Reasoning in Intelligent Systems: Networks o f Plausible
Inference. Los Altos, CA: Morgan Kaufmann.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

228

Pegah, M., J. Sticklen, and W.E. Bond. 1993. Representing and Reasoning about the Fuel
System of the McDonnell Douglas F/A-18 from a Functional Perspective. IEEE Expert
8, no. 2: 65-71.

Ramoni, Marco and Alberto Riva. 1993. Belief Maintenance with Probabilistic Logic. In
AAAI Fall Symposium on Automated Deduction in Nonstandard Logics. Raleigh, NC.

Ramoni, Marco and Alberto Riva. 1994a. Belief Maintenance in Bayesian Networks. In
Tenth Annual Conference on Uncertainty in Artificial Intelligence. Seattle, WA.

Ramoni, Marco and Alberto Riva. 1994b. Probabilistic Reasoning Under Ignorance. In
Proceedings o f the Sixteenth Annual Cognitive Science Society. Atlanta, GA.

Ramoni, Marco, Alberto Riva, Mario Stefanelli, and Vimla L. Patel. 1994. Forecasting
Glucose Concentrations in Diabetic Patients Using Ignorant Belief Networks. In AAAI
Spring Symposium on Artificial Intelligence in Medicine. Stanford, CA.

Reiser, Brian J., William A. Copen, Michael Ranney, Adnan Hamid, and Daniel Y.
Kimberg. 1994. Cognitive and Motivational Consequences of Tutoring and Discovery
Learning. Technical 54. Institute for the Learning Sciences, Northwestern University.

Russell, Stuart J. and Peter Norvig. 1995. Artificial Intelligence: A Modem Approach.
Edited by Stuart J. Russell and Peter Norvig. Prentice Hall Series in Artificial
Intelligence. Upper Saddle River, New Jersey: Prentice Hall.

Schank, Roger C. 1986. Explanation Patterns: Understanding Mechanically and
Creatively. Hillsdale, NJ: Lawrence Erlbaum Associates.

Sembugamoorthy, V. and B. Chandrasekaran. 1986. Functional Representation of
Devices and Compilation of Diagnostic Problem-Solving Systems. In Experience,
Memory, and Reasoning, ed. Janet Kolodner and Christopher Riesbeck:47-73:
Lawrence Erlbaum Associates.

Spiegelhalter, David, ed. 1986. Probabilistic Reasoning in Predictive Expert Systems.
Edited by L. N. Kanal and J. F. Lemmer. Uncertainty in Artificial Intelligence.
Amsterdam, London, New York: Elsevier/North-Holland.

Stallman, Richard M. and Gerald J. Sussman. 1977. Forward Reasoning and
Dependency-Directed Backtracking in a System for Computer-Aided Circuit Analysis.
Artificial Intelligence 9, no. 2: 135-196.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

229

Stroulia, Eleni and Ashok Goel. 1992. Generic Teleological Mechanisms and Their Use
in Case Adaptation. In Proceedings o f the Fourteenth Annual Conference o f the
Cognitive Science Society:319-324. Bloomington, IN.

Sussman, Gerald J. and Guy L. Steele. 1980. "CONSTRAJNTS—A Language for
Expressing Almost-Hierarchical Descriptions". Artificial Intelligence 14, no. 1: 1-39.

Thadani, Sunil. 1994. Constructing Functional Models of a Device from its Structural
Description. Ph.D. dissertation, The Ohio State University.

Tomiyama, Tetsuo, Y. Umeda, and T. Kiriyama. 1994. A Framework for Knowledge
Intensive Engineering. In Fourth International Workshop in Computer Aided Systems
Theory (CAST-94), ed. T.I. Oren and G.J. Klir. Ottawa, Canada.

Tversky, Amos and D. Kahneman. 1982. Causal schemata in judgements involving
uncertainty. In Judgement Under Uncertainty: Heuristics and Biases, ed. D.
Kahneman, P. Slovic, and A. Tversky. Cambridge: Cambridge University Press.

Umeda, Yasushi, H. Takeda, Tetsuo Tomiyama, and H. Yoshikawa. 1990. Function,
Behavior, and Structure. In Applications o f Artificial Intelligence in Engineering, ed. J.
Gero, 1:177-193. Berlin: Springer-Verlag.

Van Wylen, Gordon J. , Richard E. Sonntag, and Claus Borgnakke. 1994. Fundamentals
of Classical Thermodynamics. New York: John Wiley & Sons, Inc.

Vescovi, Marco, Yumi Iwasaki, Richard Fikes, and B. Chandrasekaran. 1993. CFRL: A
Language for Specifying the Causal Functionality of Engineered Devices. In Eleventh
National Conference on Artificial Intelligence. Washington, DC: AAAI Press.

R eproduced with permission of the copyright owner. Further reproduction prohibited without permission.

