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Using Qualitative Physics to Build Articulate
Software for Thermodynamics Education: A
Preliminary Report

KENNETH D. FORBUS
PETER B. WHALLEY

One of the original motivations for research in qualitative physics was the development of
intelligent learning environments for physical domains and complex systems. This puper
demonstrates how a synergistic combination of qualitative physics and other Al techniques
can be used to create an intelligent learning environment for students learning to analyze
and design thermodynamic cycles. Pedagogically this problem is important because iher-
modynamic cycles express the key properties of systems which interconvert work and heat,
such as power plants, propulsion systems, refrigerators, and heat pumps, and the study of
thermodynamic cycles occupies a major portion of an engineering student's training in
thermodynamics. This paper describes CyclePad, a fully implemented learning environment
which captures a substantial fraction of a thermodynamics textbook's knowledge and is
designed to scaffold students who are learning the principles of such cycles. We analyze; the
combination of ideas that made CyclePad possible, comment on some lessons learned about
the utility of various techniques, and describe our classroom experimentation in progress.

INTRODUCTION

One of the central motivations for research
into qualitative physics has been its potential
for the construction of intelligent learning en-
vironments. By providing computational ac-

counts of human reasoning about the physical
world, ranging from what the person on the
street knows to the extensive expertise of scien-
tists and engineers, qualitative physics should
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20 INTERACTIVE LEARNING ENVIRONMENTS Vol. 5

provide representation languages and reasoning
techniques that can be applied to helping people
make the transition from novice to expert rea-
soning about physical systems. Indeed, some of
the earliest work in the field was directly aimed
at instructional problems (e.g. Forbus &
Stevens, 1981; Brown et al., 1982). Over the last
decade there have been several important ef-
forts aimed at using qualitative physics to help
teach diagnosis, troubleshooting, and operation
of complex physical systems (e.g. White &
Frederiksen, 1990; Massey et al., 1988; Govin-
daraj, 1987), but little effort has been focused
on using qualitative physics in classroom set-
tings, to help undergraduates learn principles of
a domain (one rare exception is: Roschelle,
1993).

In this paper we describe a system, called
CyclePad, that has been built to help engineer-
ing undergraduates appreciate and therefore
learn important principles of thermodynamics.
CyclePad provides a conceptual CAD environ-
ment where students can design and analyze
power plants, refrigerators, and other thermo-
dynamic cycles. It relies on a synergistic combi-
nation of existing Al techniques: compositional
modeling to represent and reason with modeling
assumptions, qualitative representations to ex-
press the intuitive knowledge of physics needed
to detect impossible designs, truth-maintenance
to provide the basis for explanations, and con-
straint reasoning and propagation to provide
efficient mathematical reasoning. It incorpo-
rates a substantial fraction of the knowledge in
a typical engineering thermodynamics textbook
(Whalley, 1992), and has been tested on over
two dozen examples of problems involving
steady-state, steady flow systems where numeri-
cal answers or single-parameter sensitivity
analyses are required.

Section 2 describes the pedagogical problems
that motivated the design of CyclePad, includ-
ing a brief overview of what thermodynamic
cycles are and how they work. Section 3 dem-
onstrates CyclePad's operation from a user's
perspective. How CyclePad works is the subject
of Section 4. Section 5 describes some prelimi-
nary experiences we have had with students

using CyclePad, and Section 6 summarizes the
lessons we have learned so far in building it.
Section 7 outlines our plans for future work.

THE TASK: TEACHING THE
DESIGN OF THERMODYNAMIC

CYCLES

A thermodynamic cycle is a system within
which a working fluid (or fluids) undergoes a
series of transformations in order to process
energy. Every power plant and every engine is
a thermodynamic cycle. Refrigerators and heat
pumps are also examples of thermodynamic
cycles. Thermodynamic cycles play much the
same role for engineering thermodynamics as
electronic circuits do for electrical engineering:
A small library of parts (in this case, compres-
sors, turbines, pumps, heat exchangers, and so
forth) are combined into networks, thus poten-
tially generating an unlimited set of designs for
any given problem. (Practically, cycles range
from four components, in the simplest cases, to
networks consisting of dozens of components.)
One source of the complexity of cycle analysis
stems from the complex nature of liquids and
gases: Subtle interactions between their proper-
ties must be harnessed in order to improve
designs. Cycle analysis answers questions such
as the overall efficiency of a system, how much
heat or work is consumed or produced, and what
operating parameters (e.g., temperatures and
pressures) are required of its components. An
important activity in designing cycles (or indeed
in many engineering design problems) is per-
forming sensitivity analyses, to understand how
choices for properties of the components and
operating points of a cycle affect its global
properties.

To illustrate, consider the sequence of power
plant designs in Fig. 1. Figure l(a) shows a
simple Rankine cycle, which pumps a working
fluid (as liquid water) into a boiler to produce
steam. In the turbine the high-pressure steam
expands, thus performing work. Heat is ex-
tracted from the steam in the condenser so that
the working fluid is again water. Finally, this
water is pumped into the boiler (which requires
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Using Qualitative Physics 21

work to be done in the pump) thus beginning
the whole cycle again. These processes happen
continuously in steady flow, in every part of the
system. As it happens, this cycle is not very
efficient, that is, a rather low proportion of the
heat supplied in the boiler is converted into
work in the turbine. Raising the temperature
(and hence the pressure) of the boiler increases
efficiency, but due to material properties of the
components, there are upper bounds on operat-
ing pressures and temperatures. Figure l(b)
shows a more efficient design, which uses a
second turbine to extract more energy from the
steam. The purpose of the reheater is to ensure
that the steam does not become very "wet", i.e.,
to begin to condense, because water droplets
moving at high speed may damage the blades of
the turbine. The extra energy required to reheat
the steam is more than balanced by the addi-
tional work gained from the second turbine.
One can do even better, however. Figure l(c)
shows a regenerative feedwater cycle where
some of the steam from the outlet of the high-
pressure turbine is routed back to the water
feeding the boiler. The boiler then is adding heat
to water which is starting at a higher tempera-
ture, and this increases the efficiency.

The analysis and design of thermodynamic
cycles is the major task which drives engineer-
ing thermodynamics, aside from applications to
chemistry. In thermodynamics education for
engineers, cycle analysis and design generally
appears towards the end of their first semester,
or is even delayed to a second course, since
understanding cycles requires a broad and deep
understanding of the fundamentals of thermo-
dynamics. Even the most introductory engineer-
ing thermodynamics textbooks tend to devote
several chapters to cycle analysis, and in more
advanced books the fraction devoted to cycles
rises sharply. Indeed, some textbooks focus ex-
clusively on cycle analysis (e.g., Haywood,
1985). Aside from their intrinsic interest, the
conceptual design of thermodynamic cycles pro-
vides a highly motivating context for students
to learn fundamental principles more deeply
than they would otherwise.

A variety of problems arise when teaching
students how to design and analyze thsrmody-
namic cycles:1

1. Students tend to get bogged down in the
mechanics of solving equations and car-
rying out routine calculations. This leads

(a) Simple Rankine Cycle
(b) Rankine Cycle with reheat

(c) Rankine Cycle with regenerative feedwater heating

Figure 1. Sequence of Conceptual Designs for a Power Plant
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22 INTERACTIVE LEARNING ENVIRONMENTS Vol. 5

them to avoid exploring multiple design
alternatives and to avoid carrying out
trade-off studies (e.g., seeing how effi-
ciency varies as a function of turbine
efficiency versus how it varies as a func-
tion of boiler outlet temperature). Yet
without making such comparative stud-
ies, many opportunities for learning are
lost.

2. Students often have trouble thinking
about what modeling assumptions they
need to make, such as assuming that a
heater operates isobarically, leading
them to get stuck when analyzing a
design.

3. Students typically don't challenge their
choices of parameters to see if their
design is physically possible (e.g., that
their design does not require a pump
that produces rather than consumes
work).

CyclePad was designed specifically to help
students learn engineering thermodynamics by
providing an intelligent learning environment
that handles routine calculations, facilitates sen-
sitivity analyses, helps students keep track of
modeling assumptions, and detects physically
impossible designs.

OVERVIEW OF CYCLEPAD

CyclePad can be viewed as a CAD system for
the conceptual design of thermodynamic cycles,
although it provides substantially more explana-

tion capabilities than existing CAD software.
CyclePad performs steady state analyses of
steady-flow thermodynamic cycles. The restric-
tion to steady-state is standard for this kind of
analysis, since issues of how to start up and shut
down the plant, or how easy it will be to monitor,
maintain, or troubleshoot are issues of concern
only after the basic design has been shown to
be sound with respect to the goals for it (e.g.,
amount of work produced, efficiency, etc.). The
restriction to steady-flow systems means that
CyclePad cannot currently be used to analyze
internal combustion engines, such as Otto or
Diesel cycles. Although we plan to extend Cy-
clePad to analyze such systems, steady flow
cycles constitute the majority of the cycle-re-
lated material taught to engineering students.
(For example, in Whalley (1992) four out of five
chapters on cycles concern steady flow cycles,
in Haywood (1985) it is 9 out of 10 chapters,
and El-Wakil (1984) focuses only on steady-flow
systems.)

When a user starts up CyclePad, they find a
menu of component types (e.g., turbine, com-
pressor, pump, heater, cooler, heat exchanger,
throttle, splitter, mixer) that can be used in their
design. Table 1 illustrates the components avail-
able and the modeling assumptions that can be
made about them. Components are connected
together by stuffs, which represent the proper-
ties of the working fluid at that point in the
system. (Stuffs serve the same role as nodes in
electronic circuits.) The interface helps the user
put together a design by highlighting what parts
remain unconnected and providing simple cri-

Table 1. CyclePad components and their associated modeling
assumptions

Turbine adiabatic, isentropic
Compressor adiabatic, isentropic, isothermal, polytropic, non-polytropic
Pump isothermal
Heater isobaric
Cooler isobaric
Heat Exchanger concurrent, countercurrent
Throttle none
Splitter saturated, non-saturated
Mixer none
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Using Qualitative Physics 23

tiques of the structure. Once the structural
description of the cycle is finished (e.g., there
are no dangling connections or stuffs), CyclePad
allows the user to enter an analysis mode, where
the particular properties of the system, such as
the choice of working fluid, the values of spe-
cific numerical parameters, and modeling as-
sumptions can be entered. Figure 2 illustrates.

CyclePad accepts information incrementally,
deriving from each user assumption as many
consequences as it can. At any point questions
can be asked, by clicking on a displayed item to
obtain the set of questions (or commands) that
make sense for it. In addition to numerical
parameters and structural information, all mod-
eling assumptions made about a component are
displayed with it, and clicking on a component

shows the modeling assumptions that can legiti-
mately be made about that component, given
what is known about the system so far. The
questions and answers are displayed in English,
and include links back into the explanation
system, thus providing an incrementally gener-
ated hypertext:

Q: Why is Nu_thermal(CYCLE) =

46.00550%?

A: Nu_thermal(CYCLE) = 46.00550%

was found by using

Nu_thermal(CYCLE) = net

work(CYCLE)/Q_in(CYCLE)

on

Q_in(CYCLE),= 4069.555 kW

net work(CYCLE) = 1872.219 kW

net_Q(CYCLE) = 1,384 kW
net_work(CYCLE) = 1,384 kW
Nu thermal(CYCLE) = 42.82%
work_ratio(CYCLE) - 0.99

TUR-1 works isentropicaly
TUR-1 works adiabaticaly
work (TUR-1) = 1,395 kW
Q(TUR-1) = 0 kW
mass_fLow(TUR-1) = 1.00 kg/sec

TUR-1

Si i s a gas
T(S1) = S00.0C
P(S1) = 110.0 bar
S(S1) = 6.S4 kJ/K

m- i

S4 i s l iquid
T(S4) = 28.S0C
P(S4) = 110.0 bar
S(S4) - 0.42 kJ/K

S2 i s saturated
T(S2) = 28.S0C
P(S2) = 0.04 bar
S(S2) = 6.S4 kJ/K

CLR-1

S3 i s saturated
T(S3) = 28.S0C
P(S3) =0.04 bar
S(S3) = 0.42 kJ/K,

V*
PMP-1

Figure 2. CyclePad Uses an Annotated Schematic Interface Model
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24 INTERACTIVE LEARNING ENVIRONMENTS Vol. 5

Q: Why i s net work(CYCLE) =
1872.219 kW?

A: net_work(CYCLE) = 1872.219 kW
was found by using
net_work(CYCLE) = work_in

(CYCLE)+work out(CYCLE)
on
work in(CYCLE) = -15.68446 kW

work out(CYCLE) = 1887.903 kW
Q: Why i s work_out(CYCLE) =

1887.903 kW?
A: work out(CYCLE) = 1887.903 kW

was found by using

work out (CYCLE) =

work(TURBINE2) +work(TURBINE1)

on

work(TURBINE2) = 1372.131 kW

work(TURBINEl) = 515.7723 kW

Q: Why does work out(CYCLE) =

work(TURBINE2)+work(TURBINE1)

hold?

A: wprk_out(CYCLE) =

work(TURBINE2)+work(TURBINE1)

because we assumed:

CYCLE is a thermodynamic cycle

the work-flows-out of CYCLE

consist of

{work(TURBINE2),

work(TURBINEl) }

Q: How has TURBINE1 works isen-

tropicaly been used?

A: TURBINE1 works isentropically

was used to derive

TORBINE1 works adiabatically

T(S3) = Tout_i(TURBINE1)

s(S2) = s(S3)

In addition to numerical assumptions, select-
ing a component provides commands for mak-
ing or retracting modeling assumptions
concerning that component. For example, click-
ing on a new turbine yields a menu of commands
which offers the options of assuming the turbine
is adiabatic or isentropic. Such modeling as-
sumptions can introduce new constraints which
may help carry an analysis further and new
parameters (e.g., the efficiency of the turbine)
that must be set.

When CyclePad uncovers a contradiction, it
changes the interface to provide tools to resolve
the problem by presenting the source of the
contradiction (e.g., an impossible fact becoming
believed, or conflicting values for a numerical
parameter) and the set of assumptions underly-
ing that contradiction. The hypertext dialog
facilities can be used with this display to figure
out which assumption(s) are dubious and
change them accordingly.

Sensitivity analyses are an important tool for
building a student's intuitions about how physi-
cal principles contribute to the way an artifact
works. CyclePad performs sensitivity analyses
by asking a student to select a dependent pa-
rameter first. It then offers a choice of poten-
tially relevant independent parameters, based
on its analysis of the cycle. Given an inde-
pendent and dependent parameter, CyclePad
derives an equation (including table references,
if needed) that describes the dependent parame-
ter in terms of the independent parameter, and
plots the results. Figure 3 illustrates.

We have tested CyclePad on over two dozen
examples to date, ranging from simple ideal gas
problems to the analysis of a combined gas
turbine/steam Rankine cycle system. We believe
that the current version of CyclePad can solve
all of the problems in Whalley (1992) concern-
ing steady-state analyses of steady-flow cycles
that require numerical answers or sensitivity
analyses involving a single parameter. (We are
continuing to test it on new examples, drawn
from other textbooks as well.) CyclePad is very
efficient. The combined gas turbine/steam
Rankine cycle is the most complex system in
Whalley (1992), consisting of ten components.
Good students take between 20 minutes and
one hour to solve this problem. CyclePad does
somewhat more work in analyzing this problem
than a good student would, instantiating 219
equations involving 362 parameters, whereas a
solution can be found using only 52 equations.
However, CyclePad is still faster, taking just over
two minutes on a workstation, versus just over
ten minutes on a PowerBook 165c. We believe
that the combination of the speed at which
CyclePad carries out the routine calculations,
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Using Qualitative Physics 25

I f f

10.0 20.0 30.0 40.0 50.G 60.0 70.0 Q3.0
Pressure (Bar) of S3

Figure 4. A CyclePad Sensitivity Analysis. This
Graph Shows How Thermal Efficiency Varies for Dif-
ferent Choices of Outlet Pressure for the Turbine for

the Cycle of Figure 2

its explanation facilities, and its consistency-
checking facilities, will make it a valuable tool
for students learning thermodynamics.

HOW CYCLEPAD WORKS

The overall structure of CyclePad was in-
spired in part by EL (Stallman & Sussman,
1977), an experimental system for DC analysis
of analog electronic circuits. EL was one of the
first systems to use constraint propagation and
dependency networks to organize its reasoning,
and introduced the idea of dependency-directed
backtracking. In this section we see how Cy-

clePad exploits the advances made by the field
since EL, by examining each of the AI ideas that
contributes to CyclePad's operation, and the
reasons for these particular design choices.

The Role of Compositional Modeling

As noted previously, steady-state analyses are
required for the conceptual design of thurmody-
namic cycles. By restricting ourselves to steady-
flow systems, it is also the case that the process
structure (i.e., the collection of physical proc-
esses acting in each component) is fixed for all
time. These restrictions allow us to organize the
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26 INTERACTIVE LEARNING ENVIRONMENTS Vol. 5

domain theory around the components which
comprise a cycle and the properties of the
working fluid at particular locations (i.e., the
connections between components).

The modeling language used in CyclePad is
similar to other implementations of composi-
tional modeling. For example, the following is
part of CyclePad's model of a heater.

A sample of CyclePag's knowledge

base

(defEntity (Abstract-tax ?self ?in

?out)

(thermodynamic-stuff Pin)

(thermodynamic-stuff Pout)

(total-fluid-flow Pin Pout)

(== (mass-flow Pin)

(mass-flow Pout))

(parameter (mass-flow Pself))

(parameter (Q Pself))

(parameter (spec-Q Pself))

(heat-source (heat-source

Pself))

((parts :cycle) has-member

Pself)

(Pself part-names (in out))

(Pself IN Pin)(Pin IN-OF Pself)

(Pself OUT Pout)

(Pout OUT-OF Pself))

(defAssumptionClass

((abstract-Hx Phx Pin Pout))

(isobaric Phx)

(:not (isobaric Phx)))

(defEntity (Heater Pself Pin Pout)

(abstract-Hx Pself Pin Pout)

(Pself instance-of heater)

(heat-flow (heat-source Pself)

(heat-source Pself)

Pin Pout)

((heat-flows-in :cycle)

has-member (Q Pself))

( (Q Pself) 0.0))

(defEquation Hx-law

((Abstract-Hx Phx Pin Pout))

(:= (spec-h Pout)

(+ (spec-h Pin)

(spec-Q Phx))))

(defEquation spec-Q-definition

((Abstract-Hx Phx Pin Pout))

(:= (spec-Q Phx)

(/ (Q Phx) (mass-flow. Phx))))

CyclePad's knowledge base currently consists of
29 conceptual entities, 5 physical processes, 9
assumption classes, 98 equations, 40 pattern-di-
rected rules and 41 background facts about
thermodynamics.

Modeling assumptions are organized into as-
sumption classes (Addanki et al., 1989; Falken-
hainer & Forbus, 1991). Assumption classes are
always associated with particular classes of com-
ponents. The relevance of one assumption class
can depend on the particular choices made for
another assumption class. For example, it only
makes sense to consider whether a compressor
is isentropic if it is already known (or assumed)
to be adiabatic.

The Role of Constraint Reasoning and
Propagation

A design is not finished until numerical values
have been chosen for its parameters. This is one
reason why the overwhelming majority of ther-
modynamics textbook problems require numeri-
cal answers.2 This fact, plus the relative
simplicity of the equations involved, has meant
that constraint propagation has sufficed for
CyclePad.

In compiling CyclePad's knowledge base,
equations are automatically converted into an-
tecedent constraint rules that propose values
for the nth variable in an equation whenever the
other n-1 variables are known. Redundant equa-
tions are introduced when needed to overcome
simultaneities. This automatic translation sim-
plifies development. Equations in their original
form are still represented in the knowledge base,
however, and are used in two ways. First, they
are part of the dependency structure for any
results calculated via constraint propagation,
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Using Qualitative Physics 27

for explanatory accuracy. Second, they can be
inspected via the query system, so that students
can find out what equations mention a specific
parameter, and what equations might be used
to calculate a desired value.

Property tables comprise a critical source of
information for CyclePad. Property tables are
woven into the constraint propagator via pat-
tern-directed rules, operating under the same
protocol as the rules compiled for equations.
Due to the inherent loss of accuracy in interpo-
lation, it is important, unlike equations, to avoid
using tables in every logically possible fashion.
Given a superheated vapor, for instance, know-
ing the pressure and temperature suffice to
determine everything else (e.g., the specific en-
thalpy, specific entropy, etc.). If one redundantly
computes from, say the specific enthalpy and
specific entropy what the pressure and tempera-
ture will be, it is very likely that the newly
estimated values will trigger a contradiction,
given the accumulated inaccuracies in the inter-
polation process. Consequently, an important
design choice in implementing tables is select-
ing which directions of access are likely to prove
most productive for the kinds of analyses being
made.

The Role of Qualitative Physics

In CyclePad qualitative physics provides the
medium for representing constraints on what is
physically possible. Occurrences of physical proc-
esses inside components are explicitly repre-
sented. Each process occurrence includes ordinal
constraints that are tested against numerical val-
ues by CyclePad's constraint propagation mecha-
nism. Below is shown CyclePad's current
knowledge about physical processes.

Physical processes provide quali-
tative constraints

(defProcessEpisode

(fluid-flow Pin Pout)

(same-substance Pin Pout)

(defProcessEpisode

(total-fluid-flow ?in Pout)

(fluid-flow Pin Pout)

(== (mass-flow Pin)

(mass-flow Pout)))

(defProcessEpisode

(heat-flow Psrc-start Psrc-end

Pdst-Pstart Pdst-end)

( (T Psrc-start) (T Pdst-start))

(:not ( (T Psrc-start)

(T Pdst-end)))

(:not ( (T Pdst-end)

(T Psrc-end))))

(defProcessEpisode

(compression Pin Pout Pworker)

( (P Pout) (P Pin))

( (spec-shaft-work Pworker) O) )

(defProcessEpisode

(expansion Pin Pout Preceiver)

( (P Pout) (P Pin))

; ; Does work

( (spec-shaft-work Preceivsr)

0))

; ; For (Pproc ?in Tout)

;; a process occurring

; ; in component ?c and

;;process assumption ?I,

(PI ?c) ) => (PI (Pproc Pin

Pout) )

(isobaric (Pproc Pin Pout))

=> (P Pin) = (P Pout)

(isothermal (Pproc Pin Pout))

=> {T Pin) = (T Pout)

(isentropic (Pproc Pin Pout))

=> (S Pin) = (S Pout)

(isentropic ?c) => (adiabatic ?c)

{adiabatic ?c) => (Q ?c) =0.0

The Role of Truth Maintenance

We used an LTMS (McAllester, 1980) in Cy-
clePad because it offered the best tradeoff be-
tween inferential power and economy. (In fact,
CyclePad's inference engine is a customized
version of the LTRE system from (Fort us & de
Kleer, 1993)). We ruled out a JTMS because
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Horn clauses are too clumsy for many of Cy-
clePad's inferential needs, including bicondi-
tionals (used in definitional consequences of
modeling assumptions, e.g., a compressor is
operating isentropically exactly when its isen-
tropic efficiency is 1.0) and TAXONOMY con-
straints (Hayes, 1985) (used in implementing
assumption classes). The ability of an ATMS to
provide rapid switching between very different
contexts was not required: While frequent addi-
tions and retractions of assumptions are made
in carrying out an analysis, typically these
changes are a small fraction of the working set
of assumptions in force.

A critical role for the LTMS dependency net-
work is as an input for explanation generation.
Explanations in CyclePad are in terms of struc-
tured explanations, an abstract layer between
the reasoning system and the interface that
casts the consequences of the inference system
in terms relevant to the user. This includes
summarization (e.g. (Gruber & Gautier, 1993),
as in removing any reference to implementa-
tion-dependent information such as the con-
straint propagation mechanism from an
argument. It also includes making explicit im-
plicit dependencies, such as the variables whose
values must be known before the constraint rule
implementing a particular equation will fire,
when explaining what assumptions might lead
to more progress.

PRELIMINARY RESULTS WITH
STUDENT USERS

For formative evaluation purposes, we have
tried out CyclePad with engineering under-
graduates at Oxford and Northwestern Univer-
sity. The first students, at Oxford, attempted to
use the forms and table-based interface that we
used for system development purposes. It was
clear from their responses that a much better
interface was required. We developed a new
graphical interface (as illustrated above), based
roughly on the STEAMER icon model (Stevens
et al., 1981; Hollan et al., 1984). STEAMER'S
schematics included distinct icons to provide
"gauges" that could be tapped into the underly-

ing simulation. This metaphor was fine for
teaching principles of operation but is not quite
right for design. The metaphor we use instead
is that of an annotated schematic, where dy-
namic displays of property values and modeling
assumptions are associated with each compo-
nent and stuff, updated whenever the assump-
tions underlying the analysis change. The
properties displayed for each component (and
stuff) can be changed according to the student's
current information needs, either by component
class or on a component-by-component basis.

CyclePad with this new interface was then
made available to Northwestern students taking
the advanced thermodynamics course in the
Mechanical Engineering Department, taught by
Prof. Siavash Sohrab. Students were taught how
to use CyclePad in a special laboratory session,
using X-terminals to access it running on an
RS/6000 workstation in our laboratory.
Roughly one half of the students taking the
course attended the CyclePad session, and we
gathered information on their use of the system
on problems of their own choosing. We learned
several things from this experience. First, the
students were able to use the system to help
them with homework problems. Second, the
explanation system is currently too local—stu-
dents would get lost working from conclusions
back to assumptions, and also in working back-
wards from goal quantities to properties that
might be assumed to derive them.

Based on these experiences, we redesigned
the interface yet again, and ported the system
to Windows, so that we could easily distribute
the software on machines that are widely avail-
able in college laboratories and owned by stu-
dents. We are now also working with instructors
at the US Naval Academy who are introducing
CyclePad in their thermodynamics classes,
which provides additional perspectives in teach-
ing thermodynamics and to an even larger pool
of students for our educational experiments.
Advanced thermodynamics courses already tend
to take a design focus, so introducing CyclePad
in that context has been relatively straightfor-
ward compared to introductory courses, where
the use of design tasks is more novel. Currently,
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in collaboration with our instructor-colleagues,
we are designing new homework exercises for
introductory thermodynamics courses that ex-
ploit CyclePad's capabilities to give students
experience with design.

LESSONS LEARNED SO FAR
FROM DEVELOPING CYCLEPAD

CyclePad represents one of the first attempts
to use recent ideas developed by the qualitative
physics community in an intelligent learning
environment. While CyclePad is still in the proc-
ess of serious field-testing, we believe that we
have already learned several generally useful
lessons in building it.

Compositional Modeling Scales Up

Previous uses of compositional modeling
have either focused on large but purely qualita-
tive domain theories, or small quantitative theo-
ries. CyclePad demonstrates that the ideas of
compositional modeling can be used to organize
a substantial body of quantitative and qualita-
tive knowledge so that it can be used effectively.

Automatic model formulation, which typically
has been the focus of previous compositional
modeling work, is less relevant for this applica-
tion. Nevertheless, the mechanisms of assump-
tion classes and logical constraints between
modeling assumptions provide a valuable serv-
ice in helping the user organize an analysis. In
fact, one of the skills being taught in using
CyclePad is model formulation. A boiler, for
instance, is typically approximated as a heater
for the purposes of cycle analysis. A flash cham-
ber is modeled as a splitter whose working fluid
is saturated and with particular assumptions
about the dryness of the outlets. A multi-stage
turbine is modeled as a sequence of turbines and
splitters. CyclePad helps users analyze models,
so they can figure out if their choice of idealiza-
tion makes sense, but currently CyclePad does
not provide direct assistance with formulating
an idealized model from an informal specifica-
tion.

Regarding Constraint Reasoning

In this task numerical constraint propagation
suffices. There are however natural extensions
of CyclePad's analytic abilities for which alge-
braic manipulation would be useful. For in-
stance, some insights about how a cycle works
are best captured via equations.3 We plan to
extend CyclePad to derive such equations on
demand. Our experience with the constraint
rules compiler in CyclePad, and other work on
thermodynamics problem solving (Skorstad &
Forbus, 1989), suggests that relatively simple
algebraic capabilities will suffice for this exten-
sion.

We draw two additional conclusions regard-
ing constraint manipulation. First, the commer-
cial world has developed many powerful
symbolic algebra packages, such as Matlab,
Mathematica, Maple, and Macsyma, which in
some cases are excellent off-the-shelf solutions
to particular problems. However, we suspect
that many educational applications will be like
CyclePad: Simple algebraic facilities are all that
is required, and thus the complexity (and ex-
pense) of integrating commercial symbolic alge-
bra packages can be avoided. Second, we found
that special-purpose constraint languages (e.g.,
Steele & Sussman, 1980) were too restrictive
for our purposes. Given the need to reason
about modeling assumptions and the need to
integrate information from property tables, it
was much easier to implement a simple con-
straint propagator inside a pattern-directed in-
ference system than it was to intErface a
special-purpose constraint manipulator. Aside
from applications where scaling up to extremely
large system descriptions (e.g., VLSI CAD) is a
key requirement, it is hard to see any situation
where using such languages makes sense.

Regarding Qualitative Physics

The combination of steady-state analysis, the
restriction to steady-flow systems, and the use
of idealized components dramatically simplified
the representation of physical processes, since
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the occurrence of particular physical processes
could simply be stipulated inside a component.

CyclePad's focus on quantitative analysis also
means that the major inferential role for quali-
tative physics is ruling out physically impossible
designs. We believe similar simplifications will
hold in many other applications, since well-de-
signed artifacts explicitly represent the impor-
tant physical changes in terms of the kinds of
components and connections that comprise a
schematic, and many science and engineering
educational applications involve quantitative
knowledge heavily.

On the other hand, certain extensions to
CyclePad's capabilities will require substantially
more qualitative representations and reasoning.
For instance, CyclePad currently does not try to
explain how components work, nor does it pro-
vide assistance for understanding the physical
rationale underlying design changes. To formal-
ize such arguments will take richer qualitative
representations, as well as the ability to reason
with property diagrams (e.g., Pisan, 1994) and
teleology (e.g., Everett, 1995). Fortunately, the
automatic instantiation of physical process de-
scriptions from a domain theory in a restricted
ontology is an inexpensive and well-understood
operation.

Regarding Explanation Generation and
TMSs

The use of a structured explanation system as
an abstraction layer between interface and rea-
soning system was extremely helpful in develop-
ing CyclePad, since it allowed us to optimize
each independently. We also found, as sug-
gested by Reiter & Mellish (1993), that sophis-
ticated natural language generation techniques
were inappropriate for this task. The ability to
automatically generate hypertext in response to
a user's questions obviates the need for dis-
course planning, and the fixed nature of the task
means that issues such as selecting the appro-
priate level of detail in an explanation can be
postponed. Hypertext allows users to select how
much they want to know about a topic, and since
the hypertext is only generated on demand,

many navigation problems common in static
hypertexts are avoided.

ATMS technology (de Kleer, 1986) has been
widely used in qualitative reasoning systems
because of its ability to rapidly switch between
alternate interpretations. As noted previously,
this ability is unnecessary in CyclePad. and we
suspect that this will be true for most educa-
tional applications. The major surprise we had
was that we had to introduce garbage collection
into the TMS. Students make and retract many
assumptions during an analysis, most of which
are never reused, so that the monotonic growth
in memory usage of a traditional TMS is a bad
bargain. Instead, we designate a subset of facts
(i.e., statements about numerical values) as
statements which should be erased when no
longer believed. The algorithms to do this cor-
rectly are slightly subtle (see Everett & Forbus,
1996 for details), but they allow us to keep the
advantages of a TMS for explanation generation
while avoiding memory problems.

DISCUSSION

CyclePad demonstrates that qualitative phys-
ics has advanced enough to support new appli-
cations of AI to educational problems.
Compositional modeling provides repre-
sentational tools and techniques that can be
used to encode a substantial body of knowledge
about engineering thermodynamics, with con-
straint propagation providing analytic capabili-
ties and qualitative representations providing
the intuition needed to detect student blunders.
Automatically generated hypertext explanations
enable the user to explore the consequences of
his or her assumptions, and figure out what
modeling assumptions are needed to make fur-
ther progress.

The preliminary results from using CyclePad
with students have been sufficiently encourag-
ing that we are carrying out larger-scale experi-
ments with thermodynamics classes at Oxford
University, Northwestern University, and the US
Naval Academy. The extensions described below
are motivated in part by what we think is
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Using Qualitative Physics 31

necessary to make the systems like CyclePad an
integral part of thermodynamics education.

There are several straightforward extensions
to CyclePad that are in progress. First, we are
extending it to handle non-steady flow cycles,
such as Otto and Diesel cycles. Second, we will
add some algebraic capabilities, so that Cy-
clePad can help students derive algebraic ex-
pressions that capture important tradeoffs in
specific systems.

We view CyclePad as part of a virtual labora-
tory for exploring thermodynamic cycles. A vir-
tual laboratory is a software environment
consisting of a set of parts, corresponding to
physical parts or important abstractions in the
domains of interest, tools for assembling collec-
tions of these parts into designs, and facilities
for analyzing and testing designs. By working
in this software environment, students can
"build" their designs and try them out without
expense or danger. In simpler domains some
commercial software exists that can be viewed
as virtual laboratories (e.g., Interactive Physics
for simple dynamics and Electronics Work-
bench). A novel contribution of qualitative phys-
ics is the ability to generate explanations. For
educational applications, explanation genera-
tion is vital, to help students see what aspects
of a situation are important and to tie what they
are observing back to fundamental principles.
One of our next steps is to extend CyclePad's
explanation facilities, by adding coaches (Bur-
ton & Brown, 1982; Lesgold et al., 1992; Schank
& Nohan, 1991) to help students, both to guide
them through the analysis process (including
the representation of real devices in terms of
ideal components) and to suggest improvements
to a student's design. We believe that software
environments that give students more design
experiences, especially conceptual design where
the ratio of principles to details is very high, can
help them gain a deeper appreciation of science
and learn to be better engineers.
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NOTES

1. These observations are based on the experience of
the second author, who teaches engineering thermodynam-
ics to undergraduates.

2. In a typical textbook we surveyed, 90% of the exer-
cises required numerical answers.

3. For example, figuring out that for a gas turbine cycle
the maximum specific work output is achieved when the
pressure ratio is the square of its maximum possible value
(Whalley, 1992).

REFERENCES

Addanki, S., Cremonini, R., & Penberthy, J.S. (1989).
Reasoning about assumptions in graphs of mod-
els. Proceedings ofIJCAI-89.

Brown, J. S., Burton, R., & de Kleer, J. (1982).
Pedagogical, natural language, and knowledge
engineering techniques in SOPHIE I, II. and HI,
(pp. 227-282). In Sleeman, D. and Brown, J.S.
(Eds.), Intelligent Tutoring Systems, Academic
Press.

Burton, R., & Brown, J. S. (1982). An investigation of
computer coaching for informal learning activi-
ties. In Sleeman, D. and Brown, J.S. (Eds.), Intel-
ligent Tutoring Systems, Academic Pres;, 79-98.

de Kleer, J. (1986). An assumption-based truth main-
tenance system. Artificial Intelligence, 28: 127-
162.

El-Wakil, M. (1984). Powerplant Technology,
McGraw-Hill.

Everett, J. (1995). A Theory of Mapping from Struc-
ture to Function Applied to Engineering Thermo-
dynamics. Proceedings ofIJCAI-95.

Everett, J., & Forbus, K. (1996) Scaling up Logic-
Based Truth Maintenance Systems via Fact Gar-
bage Collection. To appear in Proceedings of the
13th National Conference on Artificial Intelli-
gence (AAAI-96).

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 1
1:

18
 0

9 
Se

pt
em

be
r 

20
14

 



32 INTERACTIVE LEARNING ENVIRONMENTS Vol. 5

Falkenhainer, B., & Forbus, K. (1988). Setting up
large-scale qualitative models. Proceedings of
AAAI-88.

Falkenhainer, B., & Forbus, K. (1991). Compositional
Modeling: Finding the Right Model for the Job.
Artificial Intelligence, 51, 95-143.

Forbus, K, & de Kleer, J. (1993). Building Problem
Solvers, MIT Press.

Forbus, K., & Stevens, A. (1981). Using Qualitative
Simulation to Generate Explanations. Proceed-
ings of the Cognitive Science Society.

Govindaraj, T. (1987). Qualitative approximation
methodology for modeling and simulation of large
dynamic systems: Applications to a marine steam
power plant IEEE transactions on systems, man,
and cybernetics, volSMC-17, no. 6.

Gruber, T., & Gautier, P. (1993). Machine-generated
explanations of engineering models: A composi-
tional modeling approach. Proceedings ofIJCCAI-
93.

Hayes, P. (1985). Naive Physics 1: Ontology for Liq-
uids. In Hobbs, J. and Moore, R. (Eds.) Formal
Theories of the Commonsense World, Ablex, Nor-
wood, NJ.

Haywood, R. W. (1985/ Analysis of Engineering
Cycles: Power, Refrigerating and Gas liquefac-
tion Plant, Pergamon Press.

Hollan, J., Hutchins, E., & Weitzman, L. (1984),
STEAMER: An interactive inspectable simulation-
based training system. AIMagazine, 5(2), 15-27.

Lesgold, A., Eggan, G., Katz, S., & Rao, G. (1992).
Possibilities for Assessment Using Computer-
Based Apprenticeship Environments. In Regian,
J., & Shute, V. Cognitive Approaches to Auto-
mated Instruction. Erlbaum.

Massey, L., de Bruin, J., & Roberts, B. (1988). A
Training System for System Maintenance. In
Psotka, J. Massey, L., and Mutter, S. Intelligent
Tutoring Systems: Lessons Learned. Erlbaum.

McAllester, D. (1980). An outlook on truth mainte-
nance. MIT AI Lab memo AIM-551.

Nayak, P. (1992). Automated modeling of physical
systems. Ph.D. dissertation, Computer Science
Department, Stanford University.

Pisan, Y. (1994). Visual reasoning about physical
properties via graphs, submitted for publication.

Reiter, E., & Mellish, C. (1993). Optimizing the costs
and benefits of natural language generation, Pro-
ceedings ofIJCAI-93.

Roschelle, J. (1993). Collaborative Conceptual
Change: Jointly acting social and cognitive proc-
esses. Proceedings ofCogSci-93.

Schank, R. C, & Nohan, M.Y. (1991). Empowering
the student: New Perspectives on the Design of
Teaching Systems. The Journal of the Learning
Sciences, i(7-35).

Skorstad, G., & Forbus. K. (1989). Qualitative and
quantitative reasoning about thermodynamics,
Proceedings of the Cognitive Science Society.

Stallman, R. M., & Sussman, G. J. (1977). Forward
Reasoning and Dependency-Directed Backtrack-
ing in a System for Computer-Aided Circuit Analy-
sis, Artificial Intelligence, 9, 135-196.

Steele, G., & Sussman, G. J. (1980). CONSTRAINTS:
A language for expressing almost-hierarchical de-
scriptions, Artificial Intelligence, 14:1 -39.

Stevens, A., Roberts, B., Stead, L. Forbus, K., Stein-
berg, C, & Smith, B. (1981). STEAMER: Ad-
vanced computer-aided instruction in
propulsion engineering, BBN Technical report
No. 4702.

Whalley, P. (1992). Basic Engineering Thermody-
namics, Oxford University Press.

White, B., & Frederiksen, J. (1990). Causal model
progressions as a foundation for intelligent learn-
ing environments. Artificial Intelligence, 42, 99-
157.

D
ow

nl
oa

de
d 

by
 [

N
or

th
w

es
te

rn
 U

ni
ve

rs
ity

] 
at

 1
1:

18
 0

9 
Se

pt
em

be
r 

20
14

 


