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Abstract. The need to communicate and reason about space is pervasive in 

human cognition.  Consequently, most languages develop specialized terms for 

describing relationships between objects in space – spatial prepositions.  How-

ever, the specific set of prepositions and the delineations between them vary 

widely.  For example, in English containment relationships are categorized as in 

and support relationships are classified as on. In Dutch, on the other hand, three 
different prepositions are used to distinguish between different types of support 

relations: op, aan, and om.  In this paper we show how progressive alignment 

can be used to model the formation of spatial language categories along the 

containment-support continuum in both English and Dutch. 
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1 Introduction 

Being able to reason and communicate about space is important in many human tasks 

from hunting and gathering to engineering design.  Virtually all languages have de-

veloped specialized terms to describe spatial relationships between objects in their 

environments.  In particular, we are interested in spatial prepositions.  Spatial preposi-

tions are typically a closed-class of words and usually make up a relatively small part 

of a language.  For example, in English there are only around 100 spatial prepositions.  

Understanding how people assign spatial prepositions to arrangements of objects in 

the environment is an interesting problem for cognitive science.   

Several different aspects of a scene have been shown to contribute to spatial prepo-

sition assignment: geometric arrangement of objects, typical functional roles of ob-

jects (e.g. [9]), whether those functional relationships are being fulfilled (e.g. [4]) and 

even the qualitative physics of the situation (e.g. [5]).  The particular elements that 

contribute to prepositions and how they are used to divide the space of prepositions 

has been found to vary widely between languages (e.g. [1, 2]).   

This paper shows how progressive alignment can be used to model how spatial 

prepositions are learned.  Progressive alignment uses the structural alignment process 

of structure-mapping theory to construct generalizations from an incremental stream 



of examples. The specific phenomena we model here is how people make distinctions 

along the containment-support continuum in both English and Dutch, based on a psy-

chological experiment by Gentner and Bowerman [11].  To reduce tailorability in en-

coding the stimuli, we use hand-drawn sketches which are processed by a sketch un-

derstanding system.  We show that our model can learn to distinguish these 

prepositions, using (as people do) semantic knowledge as well as geometric informa-

tion, and requiring orders of magnitude fewer examples than other models of learning 

spatial prepositions.   

The next section describes the Gentner and Bowerman study that provided the in-

spiration for our experiments.  Section 3 reviews structure-mapping theory, progres-

sive alignment, and the analogical processing simulations we use in our model.  It al-

so summarizes the relevant aspects of CogSketch, the sketch understanding system 

we used to encode the stimuli, and the ResearchCyc knowledge base we use for 

common sense knowledge.  Section 4 describes the simulation study.  We conclude 

by discussing related work, broader issues, and future work. 

2 Gentner and Bowerman’s study of English/Dutch prepositions 

Gentner and Bowerman [11] were testing the Typological Prevalence hypothesis that 

the frequency with which distinctions and categories are found across the world’s 

languages provides a clue to conceptual “naturalness” and how easy that particular 

distinction is to learn.   To explore this, they focused on a subset of spatial preposi-

tions in English and Dutch.  The English and Dutch languages divide the support-

containment continuum quite differently.  In English there are two prepositions: in is 

used for containment relationships and on is used for support relationships.  However, 

Dutch distinguishes three different forms of support.  The prepositions for Dutch and 

English are outlined in Table 1 below.   

Bowerman and Pederson found in a previous study [1] that some ways of dividing 

up the containment-support continuum are very common crosslinguistically while 

others are relatively rare.  English follows a more linguistically common approach by 

grouping all support relations together into the on category while the Dutch op-om-

aan distinction is extremely rare.  Both use the very common containment category.  

Following the Typological Prevalence Hypothesis, both English and Dutch children 

should learn the common and shared category of in around the same time.  It should 

take Dutch children longer to learn the rare aan/op/om distinctions for support than it 

takes the English children to learn the common on category.   



Table 1. Table showing the containment and support prepositions in English and Dutch. 

Drawings here are taken from the original Genter and Bowerman paper. 

English Dutch Relationship Example 

on op support from below 

 

on aan hanging attachment 

 

on om encirclement with contact 

 

in in containment 

 

2.1 Experiment 

They tested children in five age groups (2, 3, 4, 5, and 6 years old) as well as adults 

who were native speakers of English and Dutch.  Each subject was shown a particular 

arrangement of objects and asked to describe the relationship in their native language.  

In the original experiment, 3-dimensional objects where used.  So, for example, a sub-

ject would be shown a mirror on the wall of a doll house and asked “Where is the mir-

ror”.  The set of all stimuli is shown in Table 2 below. 

Table 2. Stimuli from the Gentner and Bowerman study 

op/on aan/on om/on in/in 

cookie on plate mirror on wall necklace on neck cookie in bowl 

toy dog on book purse on hook rubber band on can candle in bottle 
bandaid on leg clothes on line bandana on head marble in water 

raindrops on  

window 

lamp on ceiling hoop around doll stick in straw 

sticker on  

cupboard 

handle on pan ring on pencil apple in ring 

lid on jar string on balloon tube on stick flower in book 

top on tube knob on door wrapper on gum Cup in tube 

freckles on face button on jacket ribbon on candle Hole in towel 

 

The results of the study were consistent with the Typological Prevalence hypothe-

sis.   Specifically, Dutch children are slower to acquire the op, aan, om system of 

support relations than English children are to learn the single on category.  Both 

groups of children learned the in category early and did not differ in their proficiency 

using the term.  Across all prepositions, English-speaking 3 to 4 year old children 



used the correct preposition 77% of the time, while the Dutch children used the cor-

rect preposition 43% of the time. Within the Dutch children, the more typical op cate-

gory was learned sooner than the rarer aan and om categories.  For a more detailed 

description of the results, please see the original paper. 

2.2 Motivation for our simulation study 

Modeling these results in detail is a daunting challenge for cognitive simulation.  To 

accurately capture the developmental trajectories of learning over multiple years, for 

example, requires constructing a body of stimuli whose statistical properties are based 

on hypotheses about the commonalities of experiences in the world.  No cognitive 

simulation has ever operated at that scale.  There are practical challenges as well as 

methodological challenges: automatic encoding of stimuli becomes essential, for in-

stance, whereas most cognitive simulations operate over hand-coded representations.  

Consequently, in this paper we focus on a simpler, but still difficult, question: Can 

progressive alignment be used to learn the spatial language containment/support cate-

gories in both English and Dutch?  We use the Gentner & Bowerman stimuli as a 

starting point, a known set of good examples for each of these categories.  

3 Simulation Background 

Several existing systems were used in our simulation.  Each is described briefly here. 

3.1 Simulating similarity via analogical matching 

We use Gentner’s structure-mapping theory of analogy and similarity [12].  In struc-

ture-mapping, analogy and similarity are defined in terms of a structural alignment 

process operating over structured, relational representations.  Our simulation of com-

parison for finding similarity is the Structure-Mapping Engine [8], which is based on 

structure-mapping theory.  SME takes as input two cases, a base and a target.  It pro-

duces as output between one and three mappings describing the comparison between 

base and target.  Each mapping consists of: (1) correspondences between elements in 

the base and elements in the target; (2) a structural evaluation score, a numerical 

characterization of how similar the base and target are; and (3) candidate inferences, 

conjectures about the target made by projecting partially-mapped base structures.  

There is considerable psychological evidence supporting structure-mapping theory, 

including modeling visual similarity and differences [13, 17] and SME has been used 

to successfully model a variety of psychological phenomena. 

3.2 Progressive Alignment and SEQL 

Progressive alignment constructs generalizations by incremental comparisons, as-

similating examples that are sufficiently similar into generalizations.  These generali-



zations are still rather concrete, and do not contain variables.  Attributes and relation-

ships that are not common “wear away”, leaving the important commonalities in the 

concepts.  Probabilities are associated with each statement in the generalization, 

which provides a way of identifying what aspects of the description are more common 

(and hence more central) to the generalization. 

We model progressive alignment via SEQL [14, 15, 20], which uses SME as a 

component.  SEQL creates generalizations from an incoming stream of examples.  A 

generalization context consists of a set of generalizations and examples for a concept.  

For example, in learning spatial prepositions, there would be one generalization con-

text per preposition.  All scenes described with the word op, for example, would be 

processed in the op context.  There can be more than one generalization per context, 

since real-world concepts are often messy and hence disjunctive.   

When a new example arrives, it is compared against every generalization in turn, 

using SME.  If it is sufficiently close to one of them (as determined by the assimila-

tion threshold), it is assimilated into that generalization.  The probabilities associated 

with statements that match the example are updated, and the statements of the exam-

ple that do not match the generalization are incorporated, but with a probability of 

1/n, where n is the number of examples in that generalization.  If the example is not 

sufficiently close to any generalization, it is then compared against the list of unas-

similated examples in that context.  If the similarity is over the assimilation threshold, 

the two examples are used to construct a new generalization, by the same process. An 

example that is determined not to be sufficiently similar to either an existing generali-

zation or unassimilated example is maintained as a separate example. 

3.3 CogSketch 

CogSketch1 is an open-domain sketch understanding system.  Each object in a Cog-

Sketch sketch is a glyph.  Glyphs have ink and content.  The ink consists of polylines, 

i.e., lists of points representing what the user drew. The content is a symbolic token 

used to represent what the glyph denotes.  In CogSketch, users indicate the type of the 

content of the glyph in terms of concepts in an underlying knowledge base.  This is 

one form of conceptual labeling.  The knowledge base used for this work is a subset 

of the ResearchCyc KB, which contains over 30,000 concepts.  In addition to concep-

tual labels, the contents of glyphs can also be given names.  A name is a natural lan-

guage string that the user can use to refer to the content of the glyph.   

CogSketch automatically computes a number of qualitative spatial relations and at-

tributes for glyphs in a sketch.  The relations computed include the RCC-8 qualitative 

relations [3] that describe all possible topological relations between two-dimensional 

shapes (e.g. disconnected, edge-connected, partially-overlapping).  RCC-8 relations 

are also used to guide the computation of additional spatial relationships such as posi-

tional relations like right/left.  CogSketch also computes two types of glyph groups: 

connected glyph groups and contained glyph groups.  Connected glyph groups consist 

                                                           
11 Available online at http://spatiallearning.org/projects/cogsketch_index.html.  The publicly 

available version of CogSketch comes bundled with the OpenCyc KB as opposed to the Re-

searchCyc KB which was used for this work.   



of a set of glyphs whose ink strokes intersect.  A contained glyph group consists of a 

single container glyph and all of the glyphs fully contained within it.  

3.4 ResearchCyc 

Consider the sketch below showing the stimuli “freckles on face”.  If you just look at 

the topological relationship between the freckle glyphs and the face glyph, they 

clearly form a contained glyph group with the face as the container and the freckles as 

the insider.  As work by Coventry and others has shown [6], geometric properties are 

not sufficient to account for the way people label situations with spatial prepositions.  

A purely geometric account would declare freckles to be in the face, but we actually 

say freckles are on/op faces.  To model such findings, we must use real-world knowl-

edge as part of our simulation.  For example, we know that freckles are physically 

part of a face. We use knowledge from the ResearchCyc2 as an approximation for 

such knowledge.  Freckles, for example, are a subclass of PhysiologicalFea-

tureOfSurface, providing the semantic knowledge that, combined with geometric 

information, enables us to model spatial preposition judgments.  As the world’s larg-

est and most complete general knowledge base, ResearchCyc contains much of the 

functional information needed about the figure and ground objects in our stimuli. 

 

 

Fig. 1. Sketch of the spatial arrangement “freckles on face”.  If you examine just the geometric 

information, the freckles are in the area delineated by the face 

4 Experiment 

4.1 Materials 

All 32 original stimuli from the Gentner and Bowerman study were sketched using 

CogSketch.  Each sketch was stored as a case containing: (1) the automatically com-

puted qualitative spatial relationships and (2) information about the types of objects in 

the sketch.  In the original experiment subjects were cued as to which object should 

be the figure (e.g. “where is the mirror”) and which should be the ground.  To ap-

                                                           
2 http://research.cyc.com/ 



proximate this, each sketch contained two glyphs, one named figure and one named 

ground, and these names were used by the model.  Recall that names in CogSketch 

are just strings that are used to refer to the objects.  Each object was also conceptually 

labeled using concepts from the ResearchCyc KB.  For instance, in the mirror on the 

wall stimulus, the mirror was declared to be an instance of the concept Mirror  and 

the wall was labeled as an instance of WallInAConstruction.   

When people learn to identify spatial language categories in their native languages, 

they learn to focus on the relationships between objects, and to retain only the impor-

tant features of the objects themselves rather than focusing on the surface features of 

the objects.  As noted above, having conceptual labels and a knowledge base allows 

us to simulate this type of knowledge.  For each conceptual label, additional concepts 

from its genls hierarchy were extracted from ResearchCyc.  The genls hierarchy spe-

cifies subclass/superclass relationships between all the concepts of the KB.   So, for 

example, Animal and Dog would both be genls of Daschund.  Here we were particu-

larly interested in facts relating to whether objects were surfaces or containers – and 

this was particularly important for ground glyphs.  The original facts were removed 

(in our example “Daschund” would be deleted) to simulate abstraction away from 

specific object types to more important semantic categories.   

In the original study, the physical objects used as stimuli were manipulated to 

make the important relationships more salient to subjects.  We approximated this by 

drawing our sketches so as to highlight the important relationships for the individual 

spatial language categories.  For example, the sketches for aan that required showing 

a connection by fixed points were drawn from an angle that made the connectivity be-

tween the parts observable.  Figure 2 below shows two aan sketches: knob aan door 

and clothes aan line.  They are drawn from perspectives that allow the system easy 

access to the point-contact relationship.   

 

 

 

Fig. 2. Two sketched stimuli showing objects drawn from different angles to make the point 

connections salient 

4.2 Method 

The basic spatial category learning algorithm is this: For each word to be learned, a 

generalization context is created.  Each stimulus representing an example of that word 

in use is added to the appropriate generalization contexts using SEQL.  (Since we are 



looking at both Dutch and English, each example will be added to two generalization 

contexts, one for the appropriate word in each language.)   Recall that SEQL can con-

struct more than one generalization, and can include unassimilated examples in its re-

presentation of a category.   

We model the act of assigning a spatial preposition to a new example E as follows.  

We let the score of a generalization context be the maximum score obtained by using 

SME to compare E to all of the generalizations and unassimilated examples in that 

context.  The word associated with the highest-scoring generalization context repre-

sents the model’s decision.   

To test this model, we did a series of trials.  Each trial consisted of selecting one 

stimulus as the test probe, and using the rest to learn the words.  The test probe was 

then labeled as per the procedure above.  The trial was correct if the model generated 

the intended label for that stimulus.  There were a total of 32 trials in English (8 for in 

and 24 for on) and 32 trials in Dutch (8 each for in, op, aan, and om) one for each 

stimulus sketch.     

 

4.3 Results 

The results of our experiment are shown below.  The generalizations and numbers 

given are for running SEQL on all the sketches for a category.  The table below sum-

marizes the number of sketches that were classified correctly, for each preposition the 

number is out of 8 total sketches except for English on which has 24 total sketches.  

All results are statistically significant (P < 10
-4
), except for the English in (P < 0.2), 

which is close.  For an in-depth discussion of the error patterns, see section 4.4. 

 

Table 3. Summary of correct labels for each preposition category tested 

English Dutch 

in 6 75% in 6 75% 

 op 7 87% 

87% aan 6 75% on 21 

 om 8 100% 

 

Recall that within each generalization context, SEQL was free to make as many gen-

eralizations as it liked.  SEQL was also able to keep some cases as exemplars if they 

did not match any of the other cases in the context. The table below summarizes the 

number of generalizations and exemplars for each context.  

 

Table 4. Number of exemplars and generalizations for each generalization context 

 English Dutch 

 in on in op aan om 

Generalizations 2 6 2 2 3 3 

Exemplars 2 0 2 2 0 2 

 



At first the amount of variation within the contexts might seem surprising.  However, 

since the stimuli were chosen to cover the full range of situations for each context it 

makes more sense.  Consider the Dutch category op.  The 8 sketches for this one gen-

eralization included very different situations: clingy attachment (e.g. sticker op cup-

board), traditional full support (e.g. cookie op plate) and covering relationships (e.g. 

top op jar).   

Two of the English generalizations are shown in the figures below.  For each gen-

eralization the cases that were combined are listed followed by the facts and associ-

ated probabilities.   

                

 

 

 

 

 

 

Figure 3. One of the generalizations for English in along with the sketches for the compo-

nent exemplars 

 

 

 

 
 

 

Best Generalization IN 

Size: 3 

 (candle in bottle, cookie in bowl, marble in water) 

--DEFINITE FACTS: 

(rcc8-TPP figure ground) 

--POSSIBLE FACTS: 

33%: (Basin ground) 

33%: (Bowl-Generic ground) 



      
 

  
 

 

Figure 4. Sample generalizations for English on along with the component sketches 

 

4.4 Error Analysis 

Closer examination of the specific errors made by SEQL is also illuminating.  For ex-

ample, both the Dutch and English experiments failed on two in stimuli.   It was the 

same two stimuli for both languages: flower in book, and hole in towel.  The first case, 

flower in book, is hard to represent in a sketch.  In the original study, actual objects 

were used making it easier to place the flower in the book.  It is not surprising that 

this case failed given that it was an exemplar in both in contexts and did not share 

much structure with other stimuli in that context.  Hole in towel fails for a different 

reason.  The ResearchCyc knowledge base does not have any concept of a hole.  

Moreover, how holes should be considered in spatial relationships seems different 

than for physical objects.  

Many of our errors stem from the small size of our stimuli set.  For contexts that 

contained multiple variations, there were often only one or two samples of each.  An 

interesting future study will be to see how many stimuli are needed to minimize error 

rates.  (Even human adults are not 100% correct on these tasks.)  Interestingly, om is 

one of the prepositions that is harder for Dutch children to learn (it covers situations 

of encirclement with support).  However, it was the only Dutch preposition for which 

our system scored 100%.  This again is probably explainable by sample size.  Since 

Best Generalization ON 

Size: 2 

 (top on tube, lid on jar) 

--DEFINITE FACTS: 

(Covering-Object figure) 

(above figure ground) 

--POSSIBLE FACTS: 

50%: (definiteOverlapCase figure ground) 

50%: (rcc8-PO figure ground) 

50%: (rcc8-EC figure ground) 



the entire context contained only cases of encirclement with support, there was more 

in common between all of the examples.   

4.5 Discussion 

Our results suggest that progressive alignment is a promising technique for modeling 

the learning of spatial language categories.  Using a very small set of training stimuli 

(only 7 sketches in some cases) SEQL was able to correctly label the majority of the 

test cases.  An examination of the results and errors indicates that our model, consis-

tent with human data, uses both geometric and semantic knowledge in learning these 

prepositions.   SEQL is able to learn these terms reasonably well, even with far less 

data than human children, but on the other hand, it is given very refined inputs to be-

gin with (i.e., sketches).  As noted below, we plan to explore scaling up to larger sti-

mulus sets in future work. 

5 Related Work 

There has been considerable cognitive science research into spatial prepositions, in-

cluding a number of computational models.  Most computational models (cf. [16, 18, 

10]) are based only on geometric information, which means that they cannot model 

findings of Coventry et al [6] and Feist & Gentner[9], who showed that semantic 

knowledge of functional properties is also crucial.  Prior computational models have 

also focused only on inputs consisting of simple geometric shapes (squares, circles, 

triangles, etc.).  We believe our use of conceptually labeled sketches is an interesting 

and practical intermediate point between simple geometric stimuli and full 3D vision.   

We also differ from many other models of spatial language use in the number of 

training trials required.  Many current models use orders of magnitude more trials 

than we do.  We are not arguing that people learn spatial preposition categories after 

exposure to only 7 examples.   After all, children have a much harder task than the 

one we have modeled here: they have many more distractions and a much richer envi-

ronment from which to extract spatial information.  On the other hand, we suspect 

that requiring 103-104 exposures, as current connectionist models need, is psychologi-

cally implausible.  For example, one model requires an epoch of 2100 stimuli just to 

learn the distinction above/below/over/under for one arrangement of objects (a con-

tainer pouring a liquid into a bowl/plate/dish) [7].  The actual number of trials that is 

both sufficient and cognitively plausible remains an open question and an interesting 

problem for future work. 

6 Conclusions and Future Work 

Our model was able to successfully learn the support-containment prepositions in 

both Dutch and English with a small number of training trials.  We see three lines of 



investigation suggested by these results.  First, we would like to expand our experi-

ments to include more relationships (e.g. under, over, etc).  Second, we would like to 

expand to other languages.  For example, Korean uniquely divides the containment 

relationship into tight fit and loose fit relations.  Third, we are in the process of build-

ing a sketch library of more instances of spatial relations.  With more sketches, we 

will have additional evidence concerning the coverage of our model.  

There is also clearly a tradeoff between using a cognitively plausible number of 

training examples and having enough training examples to get good generality.  For 

example, being able to automatically extract the important object types and features 

(e.g. containers) and ignore the spurious ones (e.g. that something is edible).  We are 

planning future experiments to examine this issue by varying the number of training 

trials used.  It will also be interesting to see if we can use the same set of experiments 

to model the development of spatial language categories in children by varying the 

availability of different types of information.       
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