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Abstract 

Complex spatial and physical concepts are often 

communicated using diagrams.  For many qualitative 

reasoning tasks, it is necessary that computers understand 

diagrams in much the same way as their human 

collaborators.  Here we describe some preliminary work on 

basic diagram interpretation based on common depiction 

conventions.  Using a combination of semantic and 

qualitative spatial information we are able to distinguish 

relevant regions and edges in sketched diagrams using the 

CogSketch sketch understanding system. 

Introduction 

 Complex physical concepts are often communicated 

using a combination of text and diagrams.   Often the 

diagram illustrates the physical arrangement of a system 

and accompanying text or captions describe a process that 

happens in that system.  For example, consider Figure 1 

below taken from Sun Up Sun Down (Buckly, 1979) an 

introductory solar energy text.   

Figure 1. An example of a diagram and accompanying 

text from a solar energy textbook 

 

The caption provides a description of a process, the filling 

of a tank with rainwater, while the diagram provides an 

illustration of the physical layout of the system (tank, 

pipe, etc).    

 Parsing the qualitative information in the diagram is 

easy for people, but quite complicated for software.  For 

example people can both recognize the diagram as a full 

system and refer to its individual components like “the 

water in the tank”.  Part of this flexibility is due to our 

familiarity with diagrams and their depiction conventions.  

Another source of flexibility is our knowledge about how 

things like tanks and pipes and water work.  We are able 

to leverage both types of knowledge when looking at a 

diagram.   

 To make intelligent systems that can reason and 

communicate using diagrams, they must understand 

diagrams in ways similar to their human users.  

Additionally, systems need to be able to understand not 

just polished textbook diagrams, but incomplete, messy 

user-sketched diagrams.  For intelligent conceptual design 

aids and intelligent tutoring systems, being able to 

understand informally sketched concepts is paramount.  

 Traditional diagram and sketch understanding work is 

far from exhibiting the human-like flexibility needed in a 

diagram understanding system.  Most sketch systems are 

focused on recognition. First, they segment images into 

lines and then combine the lines into larger objects.  

Objects are then matched against a library of known 

shapes, with the best match considered as the 

interpretation for the object.  Such systems can work well 

in tightly constrained domains that have a small number 

of distinct symbols such as family trees (Alvarado & 

Davis, 2004), circuit and diagrams (Alvarado, Oltmans, & 

Davis, 2002), x,y plots (Futrelle, 1990) and maps (Reiter 

& Mackworth, 1989).  Unfortunately, they do not 

translate well to diagrams like Figure 1.   

 In this paper we are proposing a more integrated 

approach to diagram interpretation using CogSketch, an 

open-domain sketch understanding system.  In our model, 

we use a combination of semantic information about the 

objects and qualitative spatial relationships between them 

to infer relevant depiction conventions.  Specifically, our 

goal is to correctly assign concepts to edges and regions 

in a diagram, consistent with depiction conventions.   

The CogSketch approach is based on two insights: (1) 

In most human-to-human sketching, recognition is a 

catalyst, not a requirement.  People use language to 

explain their sketches; we provide interface tools for 

providing functionally similar ways to conceptually label 

glyphs in a sketch.  (2) Many of the conceptually relevant 

relationships in sketches are qualitative.  For example, in 

the diagram in Figure 1 the specific details of the objects 

depicted does not matter, what matters is the qualitative 

relationships: how the objects are connected, what the 

level of the water is in the tank is relative to the placement 

of the leak, etc.  Our approach is to model human visual 

and geometric processing of the ink in a sketch, combined 

with formal representations of conceptual knowledge 

drawn from a large-scale knowledge base, to provide 

open-domain sketch understanding abilities.   This is very 

important for building intelligent systems for open-ended, 

 Suppose rain is falling 

on the rainwater tray.  

The water will flow 

down the pipe and start 

filling the tank.  Some of 

the incoming rainwater 

will flow into the tank, 

and some will flow out 

of the leak … 

 



domains, such as engineering design, where the set of 

possible objects is extremely broad.   

 The rest of this paper describes our method for 

modeling this flexible interpretation of depiction 

conventions within CogSketch.  First we review 

CogSketch.  Next we describe the spatial extent problem.  

Then we describe how we combine semantic and 

geometric information to interpret a sketch, using a 

detailed example.   We finish with related work and future 

work. 

Sketching  

 All diagrams are sketched using CogSketch1.  

CogSketch is an open-domain sketch understanding 

system built on the nuSketch architecture (Forbus, 

Ferguson, & Usher, 2001).  In CogSketch, each object 

drawn is represented by a glyph.  A glyph contains both 

the actual ink drawn by the user and a conceptual label.  

The conceptual label is supplied by the user and is tied to 

a concept in the underlying knowledge base.  Currently 

we are using a subset of the ResearchCyc2 knowledge 

base (including over 30,000 concepts).  Users can also 

supply a name with which to refer to the glyph.  Names 

can be any natural language string.  For example, Figure 2 

shows a screenshot of a diagram drawn in CogSketch.  In 

this diagram, the cylinder in the sketch is labeled as a 

WaterTank using the concept from ResearchCyc and is 

named “tank”.  This allows the user to refer to the tank 

simply as “tank”.  Likewise, if there were multiple tanks, 

they could each be given different identifying names.  In 

CogSketch, users determine what ink belongs to a glyph 

by clicking a button at the beginning and end of drawing 

each glyph.  All the ink drawn between button presses is 

part of the glyph.   

Conceptual labeling allows CogSketch to truly be 

domain-independent and allows us to operate in domains 

without clear drawing conventions.  All sketch 

understanding work must strike a balance between 

constraints on the user and the depth of interpretation that 

is possible.  While labeling glyphs does require more 

work by the user, in return they gain freedom from 

recognition errors and the ability to be supported by more 

in-depth reasoning.  Aside from manual segmentation, we 

place no other restrictions on how users draw each glyph.  

For example, they can use as many strokes as they like, 

connected or not, and can take as long as they like.  This 

contrasts with a common practice in multimodal 

interfaces of using constraints such as time-outs and pen-

up events to automatically infer segmentation.  For our 

users, who are often thinking hard about what they are 

                                     

1 CogSketch is publicly available at 

http://spatiallearning.org/projects/cogsketch_index.html 

2 http://research.cyc.com/ 

drawing, time-outs and pen-up constraints are poor 

segmentation signals and quite annoying to them.   

CogSketch computes a variety of spatial relationships 

automatically, including the RCC-8 qualitative topology 

(Cohn, 1996) relationships and connected and contained 

groups of glyphs (see (Forbus, Tomai, & Usher, 2003) for 

details).  The digital ink itself is also available in 

subsequent processing, re-sampled into constant-spaced 

intervals from the original time-stamped pen events.   

 

 

Figure 2. A screen shot of CogSketch showing a sketch 

of a tank of water.   

Conceptual Segmentation 

We define the task of conceptual segmentation to be the 

assignment of conceptual interpretations to regions and 

edges within the sketch.  As noted above, conceptual 

labeling of ink is necessary, but not sufficient, for solving 

this problem.  Consider the sketch in Figure 2 above 

showing a tank filled with water.  We will use this 

example as an illustration throughout this paper.  This 

sketch consists of two glyphs: one closed polygon 

representing the tank, and one line representing the water.  

Figure 3 illustrates.   

 

 

 

 

 
Figure 3. The two glyphs that make up the sketch in 

Figure 2.  The glyph on the left is the tank and the glyph 

on the right is water.   

 

If we simply use the conceptual labels, the system 

would think that the object water in the sketch was the 

edge created by the water glyph when in fact it is the area 

http://research.cyc.com/


inside the tank underneath the water glyph.  The situation 

gets even more complex in a sketch like that in Figure 4 

below.  Here again, the water glyph is a single line, but 

this line is discontinuous and spans to different tank 

glyphs.  The system would also need to infer that the pipe 

(another individual glyph) is also filled with water even 

though the pipe glyph does not touch the glyph 

representing the water.  

 
Figure 4. A two tank system as sketched in CogSketch 

 

One way to address this would be to require users to 

draw following specific conventions – for example, have 

them trace around the inside of all of the tank/pipe glyphs 

so that the water glyph was one continuous closed shape.  

However, while we could institute that constraint, it only 

addresses this specific situation, and adding new 

constraints to address every new situation is untenable.  

Additionally, requiring users to trace the full outline of 

the water still leaves the situation ambiguous. The system 

still doesn’t have a way to figure out if the user intended 

just the outline to represent water, or all of the space 

contained by the outline.  For example, consider the two 

sketches in Figure 5 below.  

 

 
 

Figure 5. Two sketches, one of the layers of the Earth and 

another of a planet orbiting the sun.   

 

 Both sketches contain an outer ellipse.  In the sketch 

on the left it represents the crust of the earth, and in the 

sketch on the right it represents the orbit of Earth around 

the sun.  The interpretation for the two ellipses is 

different.  In the sketch on the left the convention is that 

everything between the outer ellipse and the next ellipse 

is the stuff that makes up the crust.  By contrast, in the 

sketch on the right, the orbit is actually just the edge 

represented by the glyph itself.  This is why we need a 

combination of semantic and geometric information in 

order to make a correct interpretation.  There are two 

parts to our interpretation process - the gathering of 

semantic information and the segmentation of the image. 

We are interested in using the fact that we know what 

we are drawing and we know about how things are 

typically drawn – depiction conventions – to 

automatically derive the correct conceptual segmentation 

of the sketch.  We test its segmentations by asking it to 

highlight the region or edge in a sketch representing a 

specific entity.  If the correct area is highlighted, we 

conclude that the system has correctly interpreted that 

portion of the sketch. 

Using semantic information for depiction 

reasoning 

Once the appropriate glyph is identified, we access the 

conceptual label(s) provided by the user.  In our example, 

the glyph being considered is labeled with the concept 

Water from the ResearchCyc KB.  Knowing what the 

glyph represents helps us figure out how to interpret the 

diagram correctly.  For example, ResearchCyc has 335 

facts about water.  This includes information about its role 

in the ResearchCyc ontology and, especially important for 

our purposes, some linguistic knowledge about the term.   

Backchaining rules are used to ascertain whether a 

concept needs a region versus a polyline to depict it.  For 

example, a concept might contain information that, 

linguistically, the word referring to it is a mass noun or a 

count noun.  Mass nouns refer to entities that can be 

viewed as spatially flexible pieces of stuff, such as liquids 

and powders, whose boundaries are highly constrained by 

containment relationships.  The concept Water is 

linguistically a mass noun, and consequently the system 

infers that it requires a volume to depict it.   

Figure 6 below shows an outline of the process we use 

to determine the correct depiction for a glyph using both 

the conceptual label and the ink.  This figure shows the 

algorithm as it is currently implemented, as we expand the 

number and type of diagrams that we interpret, the 

algorithm will be further refined.  In the first step, the 

conceptual label is accessed and the knowledge base is 

queried to determine which category the entity belongs to: 

(1) a mass noun or entity that subclasses from the Cyc 

concept TangibleStuffCompositionType (2) an 

entity that subclasses from Path-Spatial (3) or a 

physical object.    
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Figure 6. Outline of the spatial extent identification 

algorithm as it is currently implemented 

Inferring the geometry of depiction 

Once the system has inferred the conceptual category for 

a glyph, it attempts to find or construct the appropriate 

geometric entity.  For the water/tank example (an instance 

of the stuff/mass path through Figure 6) it starts by 

classifying the geometric properties of the ink for the 

glyph, determining if it is a line or a region.  For example, 

the glyph representing water in Figure 5 is a polyline, not 

a region.  Since the depiction of water requires a region, 

the system has more work to do.  If the user had drawn 

the water by tracing out a region inside the tank, then the 

system would be satisfied with the glyph itself as the 

geometric entity.   

The next step is to determine if there are other glyphs 

which can help constrain the extent of the object.  In this 

example, the tank glyph constrains the extent.  We find 

such glyphs by looking for RCC8 relationships, i.e., 

glyphs for which the water is either TPP or NTPP (i.e., 

Tangential Proper Part or Non-Tangential Proper Part).  

When these relationships hold, between the tank glyph 

and the water glyph, we then do a follow-up check to see 

if the water intersects (within a threshold) both sides of 

the tank.   

Once we have both glyphs (the water and the tank) we 

need to find the region representing the part of the tank 

where the water is found. This is accomplished by 

combining the ink from the two glyphs and segmenting 

the ink into edges and edge cycles.  Edges are identified 

by segmenting the ink at places where one line intersects 

another, or where there is a clear corner along a line. Edge 

cycles are identified by finding minimal closed cycles 

among the edges. In the current example, CogSketch 

identifies two edge cycles, one representing the area in the 

tank above the water and the other representing the area in 

the tank below the water. 

For stuff/mass nouns, the system assumes the user has 

drawn the uppermost edge of the object, and that the 

object descends from there to fill the container below it. 

Thus, in the current example, the system looks for a cycle 

such that glyph for water overlaps with the top of the 

cycle, while the rest of the cycle is made up of points 

from the tank glyph. If an appropriate cycle is found, it is 

identified as the region that the user is looking for, and it 

is then converted to a polygon and processed like a 

physical object.   

Physical objects (the third path in Figure 6) are checked 

to see if they contain other glyphs (containment is one of 

the spatial relationships computed automatically by 

CogSketch).  If the glyph has other objects inside of it, the 

algorithm as currently implemented assumes that the 

correct segmentation for the glyph is the space around the 

inner objects.   This is the correct interpretation for 

situations like the layers of the earth, or bubbles in soda.  

Figure 7 shows the results of the query “mantle” in a 

sketch of the layers of the Earth.  

 

 
Figure 7. The results from the user query “mantle” in a 

sketch of the layers of the Earth. 

 

If a physical object has no interior glyphs, the whole area 

of the glyph is considered the correct depiction and it is 

highlighted in the diagram.  Figure 8 shows the results of 

our system on the water and tank example when queried 

for “water”.   

 

 
Figure 8. A screen shot of CogSketch showing the results 

from the user query “water”.  The shaded are represents 

the region that the system infers is water. 



 

 

This approach easily extends to other, more complex 

situations.  In Figure 9 the sketch is composed of four 

glyphs: tank1 (the tank on the left), a pipe, tank2 (the tank 

on the right), and one glyph representing the water.  Since 

our algorithm for locating cycles of edges is flexible 

enough to find cycles over multiple glyphs, the two tank 

problem is easily handled.   

 

 
Figure 9. Another result for the query “water”.  In this 

case the sketch contains four separate glyphs {tank1, 

tank2, pipe, water}.   

 

We are also able to handle situations where there are 

several glyphs that are conceptually labeled as mass 

nouns, even if they are drawn similarly.  In Figure 10 the 

sketch is a tank with both oil and water in it.  When 

queried for “oil” our system is able to easily identify the 

extent of the area representing oil.   Situations like this 

would be particularly tricky for template based systems 

since both oil and water are drawn with similar glyphs.  

Also, while the wavy line is typical of a convention used 

to indicate liquid in a sketch, it is by no means a 

standardized symbol. 

 

 
Figure 10. In this example, the system is able to easily 

discriminate between the region representing “oil” and 

that representing “water” using the same techniques. 

 

The current algorithm for physical objects has been 

sufficient for all of the diagrams that we have considered 

in this paper, however, when a glyph is a container it isn’t 

always the case that you want just the space around the 

interior glyphs.  For example, consider a glass of water 

with a straw in it.  When you are determining the spatial 

extent of the water, it actually also covers the area 

occupied by the straw.  We are extending the spatial 

extent algorithm to account for situations like this by 

further examining the objects in container/contained 

groups.  This is another example where we will need to 

combine conceptual information from the KB with spatial 

information from the ink to identify the correct spatial 

extent.   

The processing for an entity that has been determined 

to be an instance of a Path-Spatial proceeds much like the 

processing of a mass noun, by first checking to see how 

the object is drawn in the sketch.  Here we will refer back 

to the solar system/orbit example from Figure 5.  In this 

case, the system checks to see if the path is represented by 

a single line, like the orbit in the sketch.  This suggests 

that the points on the line make up the conceptual entity.  

The other option, of course, is that a path is depicted by 

multiple lines or polygons such as a drawing of a railroad 

track or road.  This condition is not currently being 

handled by our system, but is in the process of being 

added.   

 
Figure 11. A screenshot showing the spatial extent 

identified for “orbit” and “Earth” in a simplified drawing 

of the solar system.  Even though both objects are drawn 

similarly, conceptual information provides clues as to 

their different interpretations.  

Compound Queries 

Often the parts of a diagram that need to be referred to are 

more complex than just “water”.  For example, when 

doing problems in physics or chemistry, it may be useful 

to be able to refer to the water in one part of the apparatus 

only.  Our system also handles queries of the form 

<object> <relation> <object>.  Information about 



relations from ResearchCyc is used to understand the 

semantics of such queries.  Figure 12 illustrates the result 

for the query “water in tank1”.  The analysis is essentially 

that of Figure 9 with the additional specification of “in 

tank1” leading to the intersection of the water polygon 

and the tank1 polygon. 

 

 
Figure 12. Screenshot showing the result of the query 

“water in tank1” 

 

Related Work 

The division of scene elements into edges and regions in 

sketches was explored in the Mapsee program of Reiter 

and Mackworth (Reiter & Mackworth, 1989).  They 

proposed a logical framework for depiction that 

formalized the mapping between images and scenes of 

simple maps containing roads, rivers, shores (represented 

as edges in the images) and water and land (represented 

by regions in the images).  They identified a set of six 

visual relations ({tee, chi, bounds, closed, interior, and 

exterior}) and provided axioms and constraints which 

combined these visual primitives and mapped them to the 

scene elements (roads, rivers, etc).   Like Mapsee, we are 

concerned with modeling how conceptual entities are 

depicted.  However, Mapsee was designed for one 

domain, i.e., maps, and its axioms map visual elements 

directly to interpretations in that domain.  By contrast, our 

model works through an intermediate distinction – 

regions versus edges – and performs reasoning over a 

large-scale, off-the-shelf knowledge base to identify 

depiction constraints.  Their task was fundamentally one 

of image interpretation, recognizing unlabelled lines as 

map elements, whereas our task starts with conceptually 

labeled ink.   

Alvarado and colleagues (Alvarado & Davis, 2004; 

Alvarado, Oltmans, & Davis, 2002) describe a multi-

domain sketch recognition engine.  Their systems use a 

hierarchical shape description language where low level 

shape description (circles, arrows, etc) are defined once in 

a domain-independent fashion.  Then a separate set of 

rules ties a given shape to a domain specific interpretation 

(e.g. an arrow represents a child link in a family tree 

diagram).  This approach can work well in a very tightly 

constrained domain with a small number of differentiated 

symbols (family trees, circuit diagrams, etc.) 

Unfortunately, it does scale to the more open-domain, 

unconstrained types of sketches that we are concerned 

with. 

There could be advantages to incorporating some 

carefully restricted low-level shape recognition to our 

depiction reasoning, to identify common elements (e.g., 

arrows).  For example, in a physics system, it might be 

useful to automatically recognize arrows and interpret 

them as forces while leaving the types of objects that 

those forces can act on unconstrained given the wide 

variety of physical objects in the world.   

We believe that recognition is not very important for 

the sketch understanding tasks we are focused on.  Unlike 

sketches in engineering design, where later versions will 

need to be imported to a formal CAD system, the sketches 

produced for student assessments are meant to be short 

lived. Also, while the amount of detail can vary greatly, 

much of it is superfluous to the pedagogical goals of the 

assignment and is not important for the overall 

interpretation of student understanding. 

Conclusions and Future Work 

We have described how to use a combination of semantic 

and geometric information to identify one type of 

depiction convention in sketched diagrams.  Our 

interpretation process closely couples semantic and 

geometric information to reason about depiction 

conventions and to use those conventions to segment the 

sketch into meaningful regions and edges.   

Our work on depiction conventions is motivated by 

several projects.  Creating a platform for sketch-enabled 

educational software is one of our long-range goals.  

Another is the use of sketches in multimodal knowledge 

capture.  For example, diagrams in educational materials 

are accompanied by explanatory text.  We are creating a 

system that learns from sketched diagrams plus 

accompanying simplified English text.  Being able to 

correctly interpret how entities in the diagram are 

depicted is essential for integrating knowledge across 

modalities. 

We are also interested in studying depiction 

conventions which are widely used, but not domain or 

situation dependent.  For example, call-outs and cut-

aways are two conventions that are used across disciplines 

which have important implications for how diagrams (and 

the spatial relations in them) should be interpreted.   

 

 

 

 



 

 

 

 

 

 

Figure 13. Example of a cut-away in a diagram 

 

CogSketch is free and available online (the online 

version comes bundled with OpenCyc, as opposed to 

ResearchCyc which was used for this work).  As more 

people download and use CogSketch, we are hoping to 

amass a large library of sketches.  This library will enable 

us to more thoroughly survey the conventions used in 

sketched diagrams.  It will also provide a corpus of 

labeled sketches that we hope will be useful to us and to 

others in the sketch understanding community. 
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