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Abstract. Cognitive simulation offers a means of more closely examining the 

reasons for behavior found in psychological studies.  This paper describes a 

computational model of the visual oddity task, in which individuals are shown 

six images and asked to pick the one that doesn’t belong. We show that the 

model can match performance by participants from two cultures: Americans 

and the Mundurukú.  We use ablation experiments on the model to provide 

evidence as to what factors might help explain differences in performance by 

the members of the two cultures. 
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1   Introduction 

A central problem in studying spatial cognition is representation.  Understanding and 

modeling the visual representations people construct for the world around them is a 

difficult challenge for cognitive science.  Dehaene and colleagues [7] made important 

progress on this problem by designing a study which directly tests what features 

people represent when they look at geometric figures in a visual scene. Their study 

utilized the Oddity Task methodology: participants were shown an array of six images 

and asked to pick the image that did not belong (e.g., see Fig. 1). By varying the 

diagnostic spatial feature, i.e., the feature that distinguished one image from the other 

five, they were able to test which features their participants were capable of 

representing and comparing. 

Dehaene and colleagues ran their study on multiple age groups within two 

populations: Americans and the Mundurukú, an indigenous group in South America. 

They found that while the Americans performed better overall, the Mundurukú 

appeared to be capable of encoding the same spatial features. The Mundurukú 

performed above chance on nearly all of the 45 problems, and their pattern of errors 

correlated highly with the American pattern of errors. Dehaene concluded from the 

results that many spatial features are universal in human representation. However, 

several questions remain: (1) What makes one problem harder than another? (2) Why 

is it that, despite the high correlation between population groups, some problems 

seem especially hard for Americans, while other problems seem especially hard for 

the Mundurukú? (3) To what extent can questions 1) and 2) be answered in terms of 
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the process of encoding representations, versus the process of operating over those 

representations to solve problems? 

 

This paper presents a cognitive model designed to explore these questions. Our 

model is based upon two core claims about spatial cognition: (1) When people encode 

a visual scene, they focus on the qualitative attributes and relations of the objects in 

these scene [11]. This provides them with a more abstract, more robust representation 

than one filled with quantitative details about the scene. (2) People compare low-level 

visual representations using the same mapping process used to perform abstract 

analogies. Our model of comparison is based on Gentner’s [14] structure-mapping 

theory of analogy. 

Our model uses four components to simulate the oddity task from end-to-end.  We 

use a modified version of CogSketch1 [13], a sketch understanding system, to 

automatically construct qualitative representations of sketches and other two-

dimensional stimuli.  We use the Structure-Mapping Engine (SME) [8], a 

computational model of structure-mapping theory, to model comparison and 

similarity judgments.  We use two additional components based on structure-mapping 

theory: MAGI [9], which models symmetry detection, and SEQL [18], which models 

analogical generalization.  Using this approach, we have modeled human performance 

on geometric analogy problems [25] (problems of the form “A is to B as C is to …?”); 

a subset of the Raven’s Progressive Matrices [20], a visually-based intelligence test; 

and basic visual comparison tasks [19,21]. However, the Dehaene task offers a unique 

opportunity in that it was designed to isolate specific spatial features and check for 

their presence or absence in one’s representation. 

This paper presents our cognitive model of performance on the Oddity Task and 

uses it to study factors that contribute to difficulty on the task. In comparing the 

model with human results, we focus on two population groups: American children 

                                                           
1 Publicly available at http://www.spatialintelligence.org/projects/cogsketch_index.html 

Fig. 1. Six example problems from the Oddity Task. 
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aged 8-13, and the full set of Mundurkú of all ages. We consider these groups because 

their overall performance on the 45 problems in the Dehaene study was comparable: 

75% for the Americans and 67% for the Mundurkú. We provide evidence for what 

might distinguish these groups from each other via ablation studies using the model. 

We begin by briefly reviewing the components of our model.   We then show how 

these component models are combined in our overall model of the Oddity Task. We 

analyze the results produced by running the model on the 45 problems from the 

original study, and use ablation studies to explore possible explanations for 

performance differences between the two groups.  We close with a discussion of 

related and future work. 

2   Modeling Comparison via Analogy 

Our model of comparison is based on Gentner’s [14] structure-mapping theory of 

analogy. According to structure mapping, people compare two objects by aligning the 

common structure in their representations of the objects. Comparison is guided by a 

systematicity bias; that is, people prefer mappings that place deeper structure with 

more higher-order relations into correspondence.  Structure-mapping has been used to 

explain and predict a variety of psychological phenomena, including visual similarity 

and differences [15,22].  Next we describe three computational models based on 

structure-mapping, each of which is used in the present study. 

2.1   Structure-Mapping Engine 

The Structure-Mapping Engine (SME) [8,10], is a computational implementation of 

structure-mapping theory. It takes as input two cases, a base and a target. Each case is 

a symbolic representation consisting of entities, attributes of entities, and relations. 

There are both first-order relations between entities and higher-order relations 

between other relations. SME returns one to three mappings between the base and 

target. Each mapping has three components: a set of correspondences between 

elements in the base and elements in the target, a structural evaluation score, which 

estimates the degree of similarity between the cases; and a set of candidate 

inferences, inferences about the target supported by the mapping and unaligned 

structure in the base. 

2.2   MAGI 

MAGI [9] is a model of symmetry detection based upon SME. Essentially, it 

identifies symmetry in a representation by comparing the representation to itself, 

while avoiding perfect self-matches. MAGI is important in modeling spatial cognition 

because it is often necessary to identify axes of symmetry in a visual scene, or in a 

specific object. 
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2.3   SEQL 

SEQL [18] is a model of analogical generalization. SEQL is based upon the idea that 

individuals learn generalizations for categories through a process of progressive 

alignment [16], in which instances of a category are compared and the commonalities 

are abstracted out as a direct result of the comparison. Given a set of cases, SEQL can 

build one or more generalizations from them by comparing them via SME and 

eliminating the structure that fails to align between cases, leaving only the structure 

that is common across all the cases in the generalization. Because the generalization is 

in the same form as individual case representations, new cases can be compared to the 

generalization to measure their similarity to a category. 

3   Modeling Qualitative Representation via CogSketch 

One of our core claims is that people use qualitative spatial representations when 

reasoning over or comparing images. While quantitative data, such as the exact sizes 

of objects or the exact orientation of edges, may vary widely, even between images of 

the same object, qualitative relations are much more consistent. For example, nearly 

every face contains an eye to the right of another eye, with both eyes above a nose 

and a mouth. The key to qualitative representation is to encode what Biederman calls 

the nonaccidental properties [4]. These are the relations that are unlikely to have 

occurred by accident in a sketch. For example, two lines chosen at random are 

unlikely to have exactly the same orientation. Therefore, when two lines are parallel, 

this is unlikely to have occurred by random chance, and so it is probably significant. 

There is abundant evidence that people encode qualitative relations corresponding 

to nonaccidental properties in visual scenes. For example, parallel lines are salient for 

children as young as three [1]. Adults and infants can distinguish between concave 

and convex shapes—a qualitative distinction [3], and humans have been shown to 

have a preference for objects aligned with a vertical or horizontal axis, as opposed to 

those with an arbitrary orientation [2]. Huttenlocher and colleagues [17] have shown 

that when individuals memorize a point’s location in a circle, they pay special 

attention to which quadrant of the circle the point lies in, again a qualitative 

distinction. While it is obviously the case that individuals are capable of encoding 

quantitative information in addition to these qualitative relations, the qualitative 

relations appear particularly well-suited to spatial problem-solving, as they can be 

easily encoded symbolically and used to compare different scenes. Thus, in our 

present work we explore the hypothesis that spatial tasks can be solved relying 

exclusively on qualitative representations.  

We see qualitative spatial representations as hierarchical (e.g., [24]). Each of the 

shapes in an image can have its own attributes and relations. At the same time, each 

of the edges that make up that shape can also have its own attributes and relations. 

This gives rise to two representational foci: the shape representation and the edge 

representation. A further claim we are evaluating with the current study is that these 

two representational foci will never be used together. That is, a comparison or other 



operation will always run on either an image’s shape representation or its edge 

representation. 

 3.1   CogSketch 

CogSketch [13] is a sketch understanding system based upon the nuSketch [12] 

architecture. Users sketch a series of glyphs, or objects in a sketch. CogSketch then 

computes a number of qualitative spatial relations between the glyphs, building up a 

structural representation of the sketch that corresponds to the shape representation. 

CogSketch can also decompose a glyph into its component edges and construct a 

representation of the qualitative relations between the glyph’s edges. This corresponds 

to the edge representation. 

Many of the spatial relations in the shape representation (e.g., relative position, 

containment) are computed based on the relative position and topology of the glyphs. 

However, some shape relations can only be computed by first decomposing a glyph 

into its edges and constructing the glyph’s edge representation. By comparing two 

glyph’s edge representations using SME, CogSketch can identify the corresponding 

edges in the two glyph’s shapes. These correspondences can be used to determine 

whether the two glyphs are the same shape, and whether one glyph’s shape is a 

transformation of the other (e.g., a rotation or a reflection). Furthermore, a glyph’s 

edge representation can be compared to itself via MAGI to identify axes of symmetry. 

Table 1.  Qualitative vocabulary for the edge representation. 

Edge Attributes 

 Straight/Curved/Ellipse 

 Axis-aligned (horizontal 

or vertical) 

 Short/Med/Long (relative 

length) 

 

Edge Relations 

 Concave/convex corner 

 Perpendicular corner 

 Edges-same-length 

corner 

 Intersecting 

 Parallel 

 Perpendicular 

 

3.2   Representing the Oddity Task stimuli 

In order to model the Oddity Task, we examined the Dehaene [7] stimuli and 

identified a set of qualitative attributes and relations that appeared to be important for 

solving the problems. All attributes and relations had to be among those that could be 

computed automatically by CogSketch. 

Table 1 summarizes qualitative attributes and relations for the edge 

representations. Many relations are based on corners between edges. The other 

relations can only hold for edges that are not connected by a corner along the shape. 
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Table 2.  Qualitative vocabulary for the shape representation.  

Shape Attributes 

 Closed shape 

 Convex shape 

 Circle shape 

 Empty/Filled 

 Axis (Symmetric, 

Vertical, and/or 

Horizontal) 

 

Shape Relations 

 Right-of/Above 

(relative position) 

 Containment  

 Frame-of-Reference 

 Shape-proximity-group 

 Same-shape 

 Rotation-between 

 Reflection-between 

 
Line-Line Relations 

 Intersecting 

 Parallel 

 Perpendicular 

 

Line-Point Relations 

 Intersecting 

 Colinear 

 Centered-On 

 

 

Table 2 summarizes attributes and relations for shapes. Empty/filled is a 

simplification of shape color; it refers to whether the shape has any fill color. Frame-

of-Reference relations are used when a smaller shape is located inside a larger, 

symmetric shape (i.e., a circle).  The inner’s shape location is described in terms of 

which quadrant of the larger shape it is located in; additionally, the inner shape may 

lie exactly along the larger shape’s axes of symmetry. Shape-proximity-group refers 

to shapes grouped together based on the Gestalt law of proximity [26]. Currently, 

grouping by proximity is only implemented for circles. 

Line/Line and Line/Point relations apply only to special shape types. Line/Line 

relations are for shapes that are simple, straight lines (thus these relations are a subset 

of the edge relations). Line/Point relations are for when a small circle lies near a line. 

The centered-on relation applies when the circle lies at the center of the line. This 

relation is essentially a special case of the frame-of-reference relation for a dot lying 

at the center of a circle. 

Axes of symmetry, same-shape, rotation-between, and reflection-between are all 

computed by comparing shapes’ edge representations, as described above. Reflections 

are classified as X-Axis-Reflections, Y-Axis-Reflections, and Other-Reflections. 

4   Modeling the Oddity Task 

Our approach to performing the Oddity Task is to identify what is common across the 

images in an array by generalizing over their representations with SEQL. Individual 

images can then be compared to the generalization using SME. If one image is 

noticeably less similar to the generalization, then it must be the odd image out. Most 

of the time (e.g., Problem B in Fig. 2), the odd image out lacks a qualitative feature 

that is present in the other five images, in this case parallel lines. However, in some 

cases (e.g., Problem C), the odd image out possesses an extra feature beyond those 

found in the other images. 



4.1   Theoretical Claims of Model 

Our model of the oddity task is based on the following theoretical claims:  

1) People encode qualitative, structural representations of visual scenes and use 

these representations to perform visual tasks. 

2) For a given problem, people will focus on a particular representational level 

(either the shape level or the edge level) in solving that problem. 

3) Qualitative spatial representations are compared via structure-mapping, as 

implemented in SME. 

4) People will identify the common features across a set of images via 

analogical generalization, as implemented in SEQL. 

 

Note that these claims are general enough to apply to many spatial tasks. 

However, they are not detailed enough to fully specify how any task would be 

completed. Thus, it is necessary to make additional modeling assumptions in order to 

fill out a complete computational model of the task. 

4.2   Modeling the Process 

Our model attempts to pick out the image that does not belong by performing a series 

of Generalize/Compare trials. In each trial, the system constructs a generalization 

from a subset of the images in the array (either the top three or the bottom three). This 

generalization represents what is common across all of these images. For example, 

consider the right-angled triangle problem (Fig. 1, Problem A). The generalization 

built from the three top images will describe three connected edges, with two of the 

edges being perpendicular. In the rightmost top image, the two perpendicular edges 

form an edges-same-length-corner, but this relation will have been abstracted out 

because it is not common to all three images. 

The generalization is then compared to each of the other images in the array, using 

SME. The model examines the similarity scores for the three images, looking for a 

particular pattern of results: two of the images should be quite similar to the 

generalization, while the third image, lacking a key feature, should be less similar. In 

this case, the lower middle triangle will be less similar to the generalization because it 

lacks a right angle. 

Similarity is based on SME’s structural evaluation score, but it must be 

normalized.  There are two different ways to normalize it: Similarity scores can be 

normalized based only on the size of the generalization (gen-normalized). This score 

measures how much of the generalization is present in the image being compared. 

This measure is ideal for noticing whether an image lacks some feature of the 

generalization. 

Alternatively, similarity scores can be normalized based on both the size of the 

generalization and the size of the image’s representation (fully-normalized). This 

score measures both how much of the generalization is present in the image and how 

much of the image is present in the generalization.  While more complex than gen-

normalized scores, fully-normalized scores are necessary for noticing an odd image 

out that possesses an extra qualitative feature that the other images lack.  For 
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example, it allows the model to pick out the image with parallel lines from the other 

five images without parallel lines (Fig. 1, Problem C). 

4.3   Controlling the Processing 

In each Generalize/Compare trial, the model must make three choices. The first is 

which subset of the images to generalize over (either the top three images or the 

bottom three). The second is whether to use gen-normalized or fully-normalized 

similarity scores. The third is whether to use edge representations or shape 

representations—recall that we are predicting that edge representations and shape 

representations will never be combined in a single comparison.  

These choices are made via the following simple control mechanism: (1) To 

ensure that the results are not dependent on the order of the images in the array, trial 

runs are attempted in pairs, one based on generalizing from the top three images and 

one based on generalizing from the bottom three images. (2) Because the gen-

normalized similarity score is simpler, it is always attempted first. (3) The model 

chooses whether to use edge or shape representations based on the makeup of the first 

image. If the image contains multiple shapes, or if the image contains an elliptical 

shape consisting of only a single edge (e.g., a circle), then a shape representation is 

used. Otherwise, an edge representation is used. Note, however, that an edge 

representation will be quickly abandoned if it is impossible to find a good 

generalization across images, as indicated by different images having different 

numbers of edges. 

After the initial pair of trials is run, the model looks for a sufficient candidate. 

Recall that each Generalize/Compare run produces three similarity scores for the three 

images that have been compared to the generalization. A sufficient candidate is 

chosen when the lowest-scoring image has a similarity score noticeably lower than 

the other two (< 95% of the second lowest-scoring image), meaning the image is 

noticeably less similar to the generalization. 

In cases where a sufficient candidate is not found, the model will attempt 

additional trials. (1) If the model was previously run using edge representations, it 

will try using shape representations.  (2) The model will try using a fully-normalized 

similarity score, to see if the odd image out possesses an extra feature. At this point, if 

no sufficient candidate has been identified, the model gives up (this is the equivalent 

of a person guessing randomly, but we do not allow the model to make such guesses). 

5   Simulation 

We evaluated our model by running it on the 45 problems from the Dehaene [7] 

study. The original stimuli, in the form of PowerPoint slides, were copied and pasted 

into CogSketch, which automatically converted each PowerPoint shape into a glyph. 

Four of the 45 problems were touched up in PowerPoint to ease the transition—lines 

or polygons that had been drawn as separate parts and then grouped together were 

redrawn as a single shape. Five additional problems were modified after being pasted 



into CogSketch. In all five cases, we removed simple edges which had been added to 

the images of the problem to help illustrate an angle or reflection to which 

participants were meant to attend. Because the model was unable to understand the 

information these lines were meant to convey, they would have served only as 

distracters. Aside from the changes to these nine problems, no changes were made to 

the stimuli which had been run on human participants.  

In analyzing the results, we consider first the model’s overall accuracy, including 

the correlation between its performance and that of both the American participants 

and the Mundurukú participants. We then use the model to identify four factors that 

could contribute to problem difficulty. We examine the correlation between these 

factors and human performance on the subset of problems that are correctly solved by 

the model. 

5.1   Model Accuracy 

Our model correctly solves 39/45 problems. Note that chance performance would be 

7.5/45. Furthermore, there is a strong correlation between the model’s performance 

and the performance of the human participants. Table 3 shows the Pearson correlation 

coefficient between the model and each of the human populations. As the table shows, 

the model correlates better with the American participants. However, there is also a 

high correlation with the Mundurukú participants. The coefficient of determination, 

which is computed by squaring the correlation coefficient, indicates the percentage of 

the variance in one variable which is accounted for by another. In this case, the 

coefficient of determination between the model and the Mundurukú participants is 

(.493
2
 = .243), meaning the model accounts for about ¼ of the variance in the 

performance of the Mundurukú participants. 

 

Table 3.  Correlations between the model and the American and Mundurukú participants. 

 Americans Mundurukú 

Model .656 .493 

Americans * .758 

Mundurukú .758 * 

 

Fig. 2 plots the performance of the two populations and the model. As the figure 

shows, the six problems on which the model fails are among the hardest for both 

populations. The one clear exception is problem 21 (see Fig. 3). Although the model 

fails on this problem, the Mundurukú performed quite well on it (86% accuracy).  
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Fig. 2. Performance of Americans, Mundurukú, and our model on the Oddity Task. 

Discussion. Fig. 3 shows the six problems which our model fails to solve. As the 

percentages show, these problems were for the most part quite difficult for both the 

Americans and the Mundurukú, with performance on some problems little or no 

higher than chance (17%).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Overall, these six problems can be roughly broken down into three categories 

based on what is required to solve them. First, problem 22 requires encoding whether 

the dot lies along the axes of the asymmetric quadrilateral. Our model simply does not 

encode this relation—nor, it appears, do Americans, as they actually fall below 

chance on this problem. Interestingly, the Mundurukú are well above chance; at this 

time, it is difficult to say why they are better at solving this problem. 

Fig. 3. The six problems the model fails to solve. Above each problem the average 

accuracy for the Americans and the Mundurukú are listed, respectively, followed by the 

number of the correct answer. 

       39 (24% / 20%)      (1)                                   44 (31% / 23%)      (4) 

     34 (37% / 18%)      (6)                                    38 (60% / 23%)      (6) 

     21 (55% / 88%)      (4)                                    22 (13% / 48%)      (5) 
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Problems 38 and 44 both require identifying a rotation between shapes found in 

different images. Our model only looks for rotations between shapes within a single 

image. As the percentages show, the participants, and particularly the Mundurukú, 

had difficulty solving these problems. We believe the most likely reason is that it did 

not occur to them to look for rotations between shapes in different images. 

Problems 21, 34, and 39 all appear to require encoding a quantitative relation 

between shapes: a percentage distance along an edge for 21, a number of degrees of 

rotation for 34, and a ratio between two shapes’ sizes for 39. The fact that participants 

had so much trouble with these problems supports our prediction that individuals 

primarily encode and compare qualitative spatial features. The one exception here 

was problem 21, which was reasonably difficult for the Americans but actually quite 

easy for the Mundurukú. As with problem 22, it is difficult to say why the Mundurukú 

performed so well on this problem. It may that they are better at dividing a space 

(either a line or a quadrilateral) into smaller parts and qualitatively encoding which of 

those smaller parts a dot lies along. 

5.2   Modeling Problem Difficulty 

We analyzed problem difficulty on the 39 problems that the model correctly solves. 

We used the model to identify four factors that could contribute to difficulty. For this 

paper, we focus on factors related to encoding the stimuli. The factors are:  

(1) Shape Comparison. Some problems (e.g., Fig. 1, Problem D) require 

constructing edge representations of two shapes and comparing them in order to 

identify a relation between the shapes (e.g., a rotation or a reflection). This may be 

difficult because it involves switching between the edge and shape representations, 

and because it requires conducting an additional comparison with SME before one 

begins comparing the six images. 

(2) Shape Symmetry: Some problems (e.g., Fig. 1, Problem E) require comparing a 

shape’s edge representation to itself, via MAGI, in order to identify an axis of 

symmetry. This could be difficult for similar reasons. 

(3) Shape Decomposition: Several problems (e.g., Fig 1, Problem A) require 

decomposing shapes into edges in order to represent each image at the edge 

representation level. It is possible that this will be difficult for individuals because 

there may be a temptation to consider closed shapes only at the shape representation 

level. 

(4) Shape Grouping: A couple problems (e.g., Fig. 1, Problem F) require grouping 

shapes together based on the Gestalt rule of proximity. Normally, one would assume 

this was easy, but preliminary analysis indicated it might be difficult for the 

Mundurukú participants.  

We used the model to produce a measure for each difficulty factor on each problem 

via ablation; for example, we ran the model with the ability to conduct shape 

comparisons turned off in order to identify the problems on which shape comparisons 

were required. We then attempted to find a difficulty function, based on the four 

factors, which correlated highly with each of the human populations. This was done 

by performing an exhaustive search over all possible linear weights for the four 

factors in the range of 0 to 15. 



 

Results. The optimal difficulty function for the American participants is shown in 

Table 4 (the weight for each factor is normalized based on the size of the largest 

weight). In addition to the weight of each factor, the table shows the individual 

contribution of each factor to the correlation between the function and human 

performance. This was computed by removing a factor from the difficulty function 

and considering the drop in the function’s correlation with the human population. 

As Table 4 shows, the difficulty function had an overall correlation of .667 with 

the American participants. This means that the function explains (.667
2
 = 44%) of the 

variance in human performance on the 39 problems. Most of the contribution to this 

correlation comes from shape comparison and shape symmetry. It appears that the 

American participants had a great deal of difficulty with problems that required 

decomposing shapes into edges and comparing the edge representations to identify 

relations between shapes, or symmetry within a single shape. Shape decomposition 

also contributed to the correlation, suggesting that the participants had some difficulty 

with the problems requiring focusing on the edge representations of closed shapes. 

Table 4.  Relative contribution of factors to our difficulty function for American performance. 

Factor Weight in Function Contribution to Correlation 

Shape Comparison .69 .163 

Shape Symmetry 1.0 .267 

Shape Decomposition .38 .062 

Shape Grouping .08 .001 

Overall --- .667 

 

The optimal difficulty function for the Mundurukú participants is shown in Table 

5. This difficulty function had a correlation of .637 with the human data, indicating it 

accounts for (.637
2
 = 41%) of the variance in the Mundurukú performance. By far, the 

most important factor was shape comparison. The other contributing factor was shape 

grouping, suggesting that the Mundurukú participants might have some difficulty with 

problems requiring grouping elements together based on proximity. This is surprising, 

as Gestalt grouping is generally thought to be a basic, low-level operation. Note that 

the Mundurukú participants had no trouble with problems requiring estimating 

relative distances, as indicated by their high performance on problem 21 (Fig. 3).  
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Table 5.  Relative contribution of factors to our difficulty function for Mundurukú 

performance. 

Factor Weight in Function Contribution to Correlation 

Shape Comparison 1.0 .393 

Shape Symmetry .29 .018 

Shape Decomposition .14 .009 

Shape Grouping .71 .081 

Overall --- .637 

 

Table 6 shows the correlation between each difficulty function and each population 

group. As expected, each difficulty function correlates far better with the population 

group for which it was built. The fact that there is still a relatively high correlation 

between the American function and the Mundurukú performance, and between the 

Mundurukú function and the American performance, most likely results from the fact 

that both groups have a great deal of trouble with problems requiring shape 

comparison. 

Table 6.  Correlations between difficulty function and population. 

Difficulty Function American Participants Mundurukú Participants 

American Function .667 .402 

Mundurukú Function .427 .637 

 

Discussion. One of our original goals was to use the model to identify differences 

between the two populations. Our two difficulty functions appear to have 

accomplished this. The difficulty function for American participants suggests that 

they tend to encode images holistically. They tend to have trouble when a problem 

requires breaking a shape down into its edge representation. This may be because the 

academic training in basic shapes encourages Americans to look at shapes as a whole, 

rather than explicitly considering the individual edges that make up a shape. The 

Mundurukú participants, in contrast, appear to encode stimuli more analytically. They 

are better able to consider shapes in terms of their component edges; most noticeably, 

they are better at using a shape’s edges to identify axes of symmetry. However, they 

had difficulty seeing groups of shapes holistically in this task. 



6   Related Work 

Several AI systems have been constructed to explore visual analogy.  Croft and 

Thagard’s DIVA [5] uses a 3D scene graph representation from computer graphics as 

a model of mental imagery.  That is, the system “watches” animation in the computer 

graphics system in order to perceive its mental imagery.  Analogy is carried out via a 

connectionist network over the hierarchical structure of the scene graph.  DIVA’s 

initial inputs, unlike ours, are generated by hand.  Their background knowledge is 

also hand-generated specifically for their simulation, unlike our use of the same 

knowledge base across many simulation systems and experiments.  DIVA has only 

been tested on a handful of examples, and to the best of our knowledge, has not been 

used to model specific psychological findings.  Davies and Goel’s Galatea [6] uses a 

small vocabulary of primitive visual elements (line, circle box) plus a set of visual 

transformation over them (e.g., move, decompose) to describe base and target 

descriptions, and uses a copy/substitution algorithm to model analogy, carrying 

sequences of transformations from one description to the other.  All of Galatea’s 

inputs are hand-generated, as is its background knowledge, and it has only been tested 

on a few examples.  Mitchell and Hofstader’s Copycat [23] modeled analogy as an 

aspect of high-level perception, using comparisons between letter strings as the 

domain. Copycat was domain-specific, and even the potential correspondences 

between items were hand-coded (the slipnet), making it less flexible than SME, which 

is domain-independent.   

7   Discussion 

We have described a model of the Oddity task, using CogSketch to automatically 

encode stimuli in terms of qualitative spatial representations, MAGI to detect 

symmetry, and SME and SEQL to carry out the task itself.  We showed that this 

combination of modules can achieve behavior comparable to the participants in 

Dehaene et al’s study of American and Mundurukú performance on the same stimuli.  

Furthermore, we were able to provide some evidence about possible causes for 

performance differences between the groups, through statistical analysis of ablation 

experiments on the model.   

We find these results quite exciting on their own, but they are also part of a larger 

pattern.  That is, similar combinations of qualitative representations and analogical 

processing have already been used to model a variety of visual processing tasks 

[19,20,25].  This study lends further evidence for our larger hypotheses, that (1) 

qualitative attributes and relations are central to human visual encoding and (2) 

people compare low-level visual representations using the same mapping process they 

use for abstract analogies.  The study also lends support to the proposal that (3) 

comparison operations are performed using either a shape representational focus or an 

edge representational focus. 

We plan to pursue two lines of investigation in future work.  First, this paper 

focused on difficulties related to encoding.  Our model suggests difficulties involving 

comparisons may also be implicated.  For example, a problem might be harder 
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because the six images in the array are less similar, making alignment and 

generalization production more difficult. We plan to explore how well aspects of the 

comparison process can explain the variance. Of particular interest are whether their 

contributions are universal, or whether there will be cultural differences.  Second, we 

plan on using these analyses to construct more detailed models of specific groups 

performing this task (i.e., children and adults, as well as both cultures).  Comparing 

these models to each other, and to models of similar spatial tasks, could help identify 

general processing constraints on such tasks. This may shed light on how universal 

human spatial representations and reasoning are, both across cultures and across tasks. 
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