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ABSTRACT 

 

How do people learn intuitive models of the 

world from experience?  We describe a simula-

tion that uses analogical generalization to learn 

naïve models of pushing and blocking from 

experience.  Experiences are represented by a 

type of comic strip, consisting of sequences of 

sketches and simplified English that are auto-

matically encoded by the simulation.  We 

show that the models it learns are compatible 

with naïve models found in the literature, and 

analyze the effects of presentation order. 

 

INTRODUCTION 

 
People learn intuitive models of physical do-

mains through their observations and expe-

riences in the world.  Many of these intuitive 

models are at odds with scientific models 

(Smith, diSessa, & Roschelle, 1994; diSessa, 

1993; Brown, 1994).  While productive for 

explaining and predicting physical phenomena, 

intuitive models can cause patterns of miscon-

ceptions.  These misconceptions may result 

from improperly generalizing or contextualiz-

ing experience (Smith, diSessa, & Roschelle, 

1994).  Understanding how such misconcep-

tions are learned is an important problem for 

models of conceptual change and learning 

physical domains (Forbus & Gentner, 1986). 

This paper describes a simulation of learning 

intuitive physics models from experience.  Our 

hypothesis is that learners can form mental 

models of physical domains via analogical 

generalization, and that some of these models 

are scientifically incorrect.  Our system learns 

in three steps: exemplar encoding, analogical 

generalization, and model formalization.  Ex-

periences are provided as sequences of 

sketches accompanied by natural language, 

which are automatically encoded to produce 

exemplars by identifying instances of behavior 

across time. Exemplars are generalized analog-

ically to produce prototypical behaviors.  

These protohistories are automatically forma-

lized into parameterized qualitative models, 

which can be used to make predictions and 

perform simple counterfactual reasoning.  We 

compare the system’s explanations to those of 

human students on reasoning tasks from 

Brown (1994) and the Force Concept Invento-

ry (Hestenes et al., 1992).  We also analyze the 

effects of presentation order on the simulation. 

We first briefly summarize the relevant as-

pects of qualitative process theory and struc-

ture-mapping theory used here.  Then we de-

scribe how the stimuli are represented and en-

coded.  The learning process itself is described 

next, followed by how the learned models are 

used in reasoning.  We show that the system’s 

explanations of two physical situations are 

compatible with student explanations, and we 

analyze the effects of changing stimulus order.  

We close with related and future work. 

 

QUALITATIVE PROCESS THEORY 

 

People’s intuitive physical knowledge appears 

to rely heavily on qualitative representations 
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(Forbus & Gentner, 1986; Baillargeon, 1998).  

Consequently, we use qualitative process 

theory (Forbus, 1984) in our model. In the 

framework of Forbus & Gentner (1986), we 

are modeling the construction of protohistories 

to describe typical patterns of behavior from 

experience, and building on those a causal 

corpus consisting of causal relationships be-

tween those typical patterns.  To represent 

these patterns of behavior, we use the concept 

of encapsulated history (EH) from QP theory. 

An encapsulated history represents a catego-

ry of abstracted behavior, over some span of 

time.  The participants are the entities over 

which an EH is instantiated.  The conditions 

are statements which must hold for an EH in-

stance to be active.  When an EH instance is 

active, the statements in its consequences are 

assumed to be true.  We use encapsulated his-

tories as explanatory schemata: When instan-

tiated, they provide an explanation for a beha-

vior via recognizing it as an instance of a typi-

cal pattern.  Furthermore, they can predict 

possible causes and consequences of a beha-

vior, and hypothesize hidden conditions when 

a behavior is known to be active.  In our simu-

lation, the models of movement, pushing, and 

blocking learned by the simulation are 

represented by EHs.   

Figure 1 shows an EH learned by the simu-

lation.  This can be read as: P1 pushes P2 

while P1 and P2 touch; the direction dir1 from 

the pusher P1 to the pushed P2 matches the 

direction of the push; and pushed P2 conse-

quently moves (M1) in the direction dir1 of the 

push.  When given a test scenario, the system 

checks its EHs to determine whether its partic-

ipants match entities in the scenario.  If so, 

instances of those EHs are created.  Each EH 

instance is active only if the statements in its 

conditions hold in the scenario.  If the conse-

quences fail to hold, that is a prediction failure.  

Encapsulated history consequences may 

contain typicality expressions, such as the 

Normal-Usual attribute in Figure 1.  Infer-

ring this consequence in a scenario context 

indicates that the phenomenon (here, the Pu-

shingAnObject event) has been explained by 

an encapsulated history. 

 
define-encapsulated-history Push05 

Participants: 

Entity(?P1), Entity(?P2),  

PushingAnObject(?P3), 

Direction(?dir1), Direction(?dir2) 
 

Conditions: 

providerOfMotiveForce(?P3, ?P1),  

objectActedOn(?P3, ?P2),  

dir-Pointing(?P3, ?dir1),  

touches(?P1, ?P2), 

dirBetween(?P1, ?P2, ?dir1),  

dirBetween(?P2, ?P1, ?dir2) 
 

Consequences: 

Normal-Usual( 

  and(PushingAnObject(?P3), 

      providerOfMotiveForce(?P3, ?P1), 

      objectActedOn(?P3, ?P2))) 

 

causes-SitProp( 

  Push05, 

  (exists ?M1 

          and(MovementEvent(?M1), 

              objectMoving(?M1, ?P2),  

              motionPathway(?M1, ?dir1))) 

 
Figure 1: An encapsulated history relating push-

ing and movement. 
 

ANALOGICAL GENERALIZATION 

 
Our hypothesis is that people use analogical 

generalization to construct encapsulated histo-

ries.  To model this process, we use SEQL  

(Keuhne et al., 2000).  SEQL is based on struc-

ture-mapping theory (Gentner, 1983), and uses 

the Structure-Mapping Engine, SME (Falken-

hainer et al., 1989).  Given two representa-

tions, a base and a target, SME computes a set 

of mappings that describe how they can be 

aligned (i.e. correspondences), candidate infe-

rences that might be projected from one de-

scription to the other, and a structural evalua-

tion score that provides a numerical measure 

of similarity.  SEQL uses SME as follows.  

SEQL maintains a list of exemplars and gene-

ralizations.  Given a new exemplar, it is first 

compared against each generalization using 

SME.  If the score is over the assimilation 

threshold, they are combined to update the 

generalization.  Otherwise, the new exemplar 

is compared with the unassimilated exemplars.  

Again, if the score is high enough, the exem-

plars are combined to form a new generaliza-
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tion.  Otherwise, the exemplar is added to the 

list of unassimilated exemplars.  A probability 

is maintained for each statement in a generali-

zation, based on how frequently it occurred in 

the exemplars merged into it (Halstead & For-

bus, 2005).  These probabilities are used in our 

simulation for doing statistical tests.  

 

MULTIMODAL STIMULI 

 
To reduce tailorability, we provide experiences 

to the simulation in the form of a sequence of 

sketches (e.g. Figure 2) accompanied by natu-

ral language text.  This serves as an approxi-

mation to what learners might perceive and 

hear in the world.  The sketches are created in 

CogSketch1 (Forbus et al., 2008), an open-

domain sketch understanding system.  In 

CogSketch, users draw and label glyphs, ob-

jects in the sketch, to link the content of the 

sketches to concepts in CogSketch’s know-

ledge base2.  CogSketch automatically com-

putes qualitative spatial relations between the 

glyphs such as topological relations (e.g. 

touching), relative size, and positional rela-

tionships (e.g. above). 

Sketched behaviors are segmented into dis-

tinct states according to qualitative differences 

in behavior (e.g. changes in contact and ac-

tions of agents) based on psychological find-

ings in event segmentation (Zacks, Tversky, & 

Iyer, 2001).  Each state is drawn as a separate 

sub-sketch.  Sequential relationships between 

them are drawn as arrows on the metalayer, 

where sub-sketches are treated as glyphs 

                                                 
1 CogSketch is available online at 

http://www.spatiallearning.org/projects/cogske

tch_index.html 
2 CogSketch uses knowledge from OpenCyc 

(www.opencyc.org) plus our extensions for 

qualitative, analogical, and spatial reasoning. 

(Figure 2).  The child, truck, and car are glyphs 

in the sketched states. The two rightward ar-

rows in state Push-13 are pushing annotations, 

and the two rightward arrows in state Move-13 

are velocity annotations. 

Two lines of evidence motivate our encod-

ing of pushing, movement, and blocking as 

separate concepts.  diSessa (1993) notes that 

people are unlikely to confuse successful resis-

tance (i.e. a wall blocking a person’s push) 

from nonsuccess (i.e. a ball moving due to 

tugging a string) in recalling events, and that 

these phenomena are encoded separately.  

Talmy (1988) attributes this separation of suc-

cess and nonsuccess encoding to varying lan-

guage schemata between the two conditions. 

For information not easily communicated 

via sketching, we use simplified English, 

which is converted to predicate calculus via a 

natural language understanding system (Tomai 

& Forbus, 2009).  One sentence used in con-

junction with the sketch in Figure 2 is, “The 

child child-13 is playing with the truck truck-

13.”  The special names child-13 and 

truck-13 are the internal tokens used in the 

sketch for the child and the truck respectively, 

so that linguistically expressed information is 

linked with information expressed via the 

sketch.  This sentence leads to these assertions 

being added to the exemplar: 

 
(isa truck-13 Truck) 

(isa play1733 RecreationalActivity) 

(performedBy play1733 child-13) 

(with-UnderspecifiedAgent play1733 truck-13) 

 

If the NLU system finds an ambiguity it 

cannot handle, it displays alternate interpreta-

tions for the experimenter to choose.  No hand-

coded predicate calculus statements are in-

cluded in the stimuli. 

This method of simulation input has limita-

tions: Sketches are less visually rich than im-

ages, and they do not provide opportunities for 

the learner to autonomously experiment.  Nev-

ertheless, we believe that this is a significant 

advance over the hand-coded stimuli typically 

used by other systems, given the reduction in 

tailorability.  These multimodal stimuli are 

 
Figure 2: A sketched behavior 

http://www.opencyc.org/
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used by our system as examples for learning 

and as scenarios for reasoning. 

 

LEARNING 

 
The system is provided with a set of target 

phenomena to learn, here pushing, movement, 

and blocking.  We assume that for a truly no-

vice learner, words used in contexts of beha-

viors that they do not understand are clues that 

there is something worth modeling.   

Given a new stimulus, the system finds all 

instances of target phenomena that it describes, 

and generates an exemplar for each instance.  

Since an instance of a particular phenomenon 

may continue across state boundaries, these 

occurrences can span multiple states.  Tempor-

al relationships between these occurrences are 

derived to support learning of preconditions 

and consequences.  For example, consider a 

sketch of states S1-S3 (similar to Figure 2) 

where a man is pushing a crate in S1-S2 and not 

in S3, and the crate moves in S2-S3 but not in 

S1. The motion would have a startsDuring 

relationship with the pushing.  Each stimulus is 

automatically temporally encoded into exem-

plars using this strategy. 

 

Generalizing behaviors 

 
For each target phenomenon, the system main-

tains a separate instance of SEQL, a generali-

zation context (Friedman & Forbus, 2008).  A 

generalization context has an entry pattern that 

is used to determine when an exemplar is rele-

vant.  Entry patterns are variablized expres-

sions describing each target phenomenon, pro-

vided to the system prior to learning.  For ex-

ample, the entry pattern for pushing is: 

 
(and (isa ?x PushingAnObject) 

     (providerOfMotiveForce ?x ?y) 

     (objectActedOn ?x ?z)) 

 

Figure 3 shows the generalization contexts 

and their contents after the learning experiment 

described below.  Our system currently oper-

ates in batch mode, not attempting to construct 

models until after all of the stimuli have been 

processed. 

 

 

 
 

Figure 3: Generalization contexts after learning 

 

CONSTRUCTING INTUITIVE MODELS 

 
The system creates encapsulated histories from 

generalizations in two steps: (1) Statistics are 

used to determine which generalizations are 

worth modeling with EHs, and (2) worthwhile 

generalizations are parameterized to create 

EHs.  We discuss each step in turn. 

 
Filtering generalizations 

 

Not all SEQL generalizations can be paramete-

rized into useful encapsulated histories.  Some 

generalizations are overly broad, and would 

result in EHs that make inaccurate predictions.  

Consequently, the system filters out overly 

broad generalizations using the probability 

information constructed during generalization. 

Generalizations are filtered by identifying 

correlated phenomena within generalizations 

and measuring the phenomena’s correlation 

across generalizations.  We assume a probabil-

ity threshold t (here, 0.9) such that if a target 

phenomenon p is in a generalization with 

probability P(p) ≥ t, then p is considered a cor-

related phenomenon within that generaliza-

tion’s context.  A generalization is decisive if 

the binary entropy H of all correlated pheno-

mena p are less than the binary entropy of t, or 
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H(P(p)) ≤ H(t).  The binary entropy function is 

the appropriate criterion to use because it 

measures information gain (i.e., low entropy 

implies high gain).  Only decisive generaliza-

tions are parameterized into EHs. 

 

Extracting causal models 

 
The system creates one encapsulated history 

per decisive generalization.  Expressions 

whose probability is lower than the probability 

threshold t (here, 0.9) are excluded from the 

EH, thus reducing contingent phenomena.  

Expressions that remain are analyzed to deter-

mine what role they should play in the EH.   

An expression is held to be either (a) a 

cause of the state, (b) a consequence of the 

state, or (c) a condition that holds during the 

state, based on analyzing the temporal rela-

tionships involved.  If an expression begins 

with or before the current state, ends with the 

start of the current state, or ends during the 

current state, it is a possible cause.  If it tempo-

rally subsumes or coincides with the state, it is 

a possible condition.  Otherwise, if it begins at 

any point during or immediately following the 

current state, it is a possible consequence.    

  Probabilities and temporal relationships are 

used in hypothesizing causal relationships.  

For instance, in one generalization, movement 

starts with a pushing with P = 0.5, and starts 

after a pushing with P = 0.5.  Consequently, 

movement is unlikely as a condition for push-

ing because it only satisfies the temporal re-

quirement half the time, P(starts-with) < t.  

Conversely, movement is a likely conse-

quence, because starting with and starting after 

are both permissible temporal relations of con-

sequences, and P(starting-with) + P(starting-

after) > t. 

After the causes, conditions, and conse-

quences are determined, the system defines an 

encapsulated history by introducing variables 

for entities that appear in the conditions, creat-

ing existence statements for the entities that 

appear only in the consequences, and using the 

generalization’s attribute information to con-

struct the participants information (Figure 5).  

Notice that, while the learning process re-

moves most irrelevancies, in Block00 the 

entity ?P1 is included even though it is not 

causally relevant.  It is there because the ex-

amples involving pushing all involve the push-

ing agent standing or sitting on a surface – so 

to the system, blocking must involve touching 

something else. 

 

REASONING WITH ENCAPSULATED 

HISTORIES 

 
Given a new scenario, the system attempts to 

understand it by instantiating its encapsulated 

histories.  For each EH, if its participants and 

conditions hold, it is active, and the statements 

in its Consequences are assumed to hold.  This 

can include predicting new phenomena, as 

illustrated by the movement M1 consequence 

in Figure 1.  When constraints are violated, or 

consequences are not satisfied, the EH instance 

can be used to generate counterfactual expla-

nations, as explained below. 

To illustrate, consider a scenario used by 

Brown (1994) and others (Figure 4).  The 

sketch shows a book on a table.  The scenario 

description includes two occurrences of push-

ing: gravity pushing the book and gravity 

pushing the table.  The encapsulated history in 

Figure 5 can be instantiated sufficiently to be 

considered for inference by the simulation, 

since the criterion is that all non-event partici-

pants be identifiable in the scenario.  Some 

event participants, such as pushing and block-

ing, need not be identified because these can 

be instantiated as predictions. 

 
Figure 4: An example from Brown (1994) 

  
Specifically, activating Block00 to explain 

gravity pushing the book requires assuming 

two additional events, via the conditions in 

Figure 5: (1) the gravity ?P2 pushes the book 

?P3 in the direction ?dir1 of the initial push, 



Learning Prototype Models by Analogical Generalization 

173 

and (2) the entity ?P4 blocks the book ?P3.  

The table alone satisfies the constraints on 

?P4, binding the last of the non-event partici-

pants.  This allows the simulation to assume 

new pushing and blocking events, binding 

them to ?P6 and ?P7, respectively. 

The simulation has two strategies for ans-

wering questions about a scenario.  If the ques-

tion concerns a phenomenon that is predicted 

by an EH, it answers based on that informa-

tion, including any causal argument provided 

as part of the EH.  If the question concerns 

some phenomenon that is not predicted, it as-

sumes that phenomenon occurs and tries to 

activate new EHs to explain it.  The activation 

failures for those EH instances are provided as 

the reasons for the phenomenon not occurring, 

as shown below. 

 
define-encapsulated-history Block00 
Participants: 

Entity(?P1), Entity(?P2), Entity(?P3),  

Entity(?P4), PushingAnObject(?P5), 

PushingAnObject(?P6), Blocking(?P7) 

 

Conditions: 

providerOfMotiveForce(?P5, ?P2),  

objectActedOn(?P5, ?P3),  

dir-Pointing(?P5, ?dir1), 

providerOfMotiveForce(?P6, ?P3),  

objectActedOn(?P6, ?P4),  

dir-Pointing(?P6, ?dir1),  

doneBy(?P7, ?P4),  

objectActedOn(?P7, ?P3),  

dirBetween(?P2, ?P3, ?dir1), 

dirBetween(?P3, ?P4, ?dir1),  

dirBetween(?P3, ?P2, ?dir2),  

dirBetween(?P4, ?P3, ?dir2),  

touches(?P2, ?P3),  

touches(?P3, ?P4),  

touches(?P2, ?P1) 

 

Consequences: 

Normal-Usual( 

  and(PushingAnObject(?P5), 

      providerOfMotiveForce(?P5, ?P2), 

      objectActedOn(?P5, ?P3))) 

Normal-Usual( 

  and(PushingAnObject(?P6), 

      providerOfMotiveForce(?P6, ?P3), 

      objectActedOn(?P6, ?P4))) 

Normal-Usual( 

  and(Blocking(?P7), doneBy(?P7, ?P4), 

     objectActedOn(?P7, ?P3))) 

 
Figure 5: An encapsulated history relating push-

ing and blocking phenomena 

 

EXPERIMENT 

 

To test whether this simulation can learn psy-

chologically plausible models from multimod-

al stimuli, we examine the explanations it pro-

vides for a question from Brown’s (1994) as-

sessment of student mental models and a ques-

tion from Hestenes et al.’s (1992) Force Con-

cept Inventory.  We start by summarizing the 

human results, and then we describe the simu-

lation setup and compare the results. 

 

Brown’s results 

 
A question about the scenario in Figure 5 was 

asked of high school students: Does the table 

exert a force against the book? Brown re-

ported that 33 of 73 students agreed that it 

must, in order to counteract the downward 

force of the book.  This is the scientifically 

correct answer.  However, the 40-student ma-

jority denied that the table exerted a force.  

Their reasons fell into five categories: 

1. Gravity pushes the book flat, and the book 

exerts a force on the table.  The table 

merely supports the book (19 students) 

2. The table requires energy to push (7) 

3. The table is not pushing or pulling (5) 

4. The table is just blocking the book (4) 

5. The book would move up if the table ex-

erted a force (4) 

We query our simulation similarly, to de-

termine whether it can reproduce some of the 

reasons that students gave. 

 

Force Concept Inventory 

 

The Force Concept Inventory (FCI) (Hestenes 

et al., 1992) is an assessment designed to iden-

tify student misconceptions about force.  Many 

FCI questions involve the relationships be-

tween force, mass, and velocity, and the com-

position of forces to determine direction of 

motion.  Figure 6 illustrates our sketch of 

question 6 from the FCI.  The scenario de-

scribes a puck on a frictionless surface, mov-

ing with constant velocity, until it receives an 

instantaneous horizontal kick.  The student 

must decide along which of the five paths (la-
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beled choice-27-a/b/c/d/e below) the puck will 

move after receiving the kick. 

 
Figure 6: An example from the Force Concept 

Inventory (Hestenes et al, 1992) 

 

Five pre-physics student populations, rang-

ing from high school to college, predicted the 

puck would: 

(a) Move upward, in the direction of the kick. 

(34%) 

(b) Per Newtonian principles, move diagonal-

ly. (38%) 

(c) Move upward and then curve to the right. 

(3%) 

(d) Gradually curve in the direction of the 

kick. (6%) 

(e) Curve in the direction of initial motion. 

(18%) 

Other FCI questions concerned velocity, 

mass, and acceleration, which were not target 

concepts of our simulation. 

 

Simulation setup 

 
We implemented our simulation using the 

Companions Cognitive Systems architecture 

(Forbus et al., 2008).  We used 16 sketches 

with accompanied natural language as learning 

stimuli, using examples motivated by the men-

tal models literature cited earlier.  Like Figure 

2, all stimuli include pushing phenomena, and 

either movement or blocking phenomena.  The 

learning stimuli did not include the test scena-

rios.  The SEQL assimilation threshold was set 

to 0.6 and the EH probability threshold was set 

to 0.9.  The temporal encoding step resulted in 

25 pushing exemplars, 15 moving exemplars, 

and 6 blocking exemplars.   

Because the SEQL model of analogical ge-

neralization is order-dependent, different or-

derings of learning stimuli may yield different 

generalizations, which in turn may produce 

different encapsulated histories.  Consequent-

ly, the order in which learning stimuli are pro-

vided to the simulation could affect the simula-

tion’s behavior on the Brown (1994) and FCI 

reasoning tasks.  We ran our simulation with 

60 random orderings of the 16 multimodal 

stimuli.  This is a very small sampling of the 

21 trillion possible orderings, but it demon-

strates that the order of stimuli can affect 

learning and reasoning. 

As expected, varying the stimuli order af-

fected the number and content of SEQL gene-

ralizations, the number and content of encap-

sulated histories, and the behavior on the rea-

soning tasks.  The SEQL organization result-

ing after learning one of the 60 stimuli order-

ings is shown in Figure 3.  Two of the result-

ing encapsulated histories from the same or-

dering are shown in Figures 1 and 5.  We pro-

vide a more detailed analysis in the below. 

 

Comparing Human and Simulation Results 

 
How does the system behavior compare to 

human results?  In each of the 60 trials we ran 

both reasoning tasks, and we discuss the re-

sults below. 

The simulation’s behavior on Brown’s 

(1994) test scenario can be classified in one of 

five ways, as shown in Figure 7: (1) overspe-

cific, (2) counterfactual explanation, (3) citing 

the book pushing the table, (4) providing both 

explanations 2 and 3, and (5) overgeneral.  We 

discuss each classification in turn. 
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Figure 7: Simulation outcomes on Brown’s task 

 

In 28% of the trials, the simulation’s con-

cepts were overspecific – the system could not 

justify or refute the table’s pushing against the 

book.  This occurs when no encapsulated his-

tories are activated during reasoning.  While 

encapsulated histories were produced for all 

overspecific trials, they were too specific to be 

activated during reasoning: they contained 

extra participants or conditions that were not 

present in the test scenario. 

In 47% of the trials, the simulation uses a 

counterfactual explanation by activating an EH 

like that of Figure 1 to make a new prediction: 

The book should move upward as a result of 

the table’s push.  This prediction contradicts 

the book’s lack of motion in the scenario.  

Consequently, it answers that the table does 

not push up on the book.  This is essentially 

the same as answer 5, given by four students. 

In 7% of the trials, the simulation answers 

that the book pushes against the table by find-

ing activated EHs in which the book and table 

jointly participate to explain their behavior in 

the scenario.  Consequently, it uses an EH sim-

ilar to Figure 5 to explain that gravity pushes 

down on the book, that the book pushes down 

on the table, and that the table blocks the book.  

This is similar to answer 4, given by 4 stu-

dents.  This explanation also resembles answer 

1, given by 19 students, though the students 

cite the concept of support, which was not 

among the simulation’s target phenomena. 

Could the system learn models corresponding 

to the other explanations for this scenario?  If 

the target phenomena and corpus included the 

concept of support and energy, it seems likely 

that it could, but this is an empirical question. 

In 13% of the trials, the system used both 

the counterfactual explanation as well as citing 

the book pushing the table.  In these trials, the 

simulation learned both types of EHs (similar 

to figures 1 and 5) necessary to make both 

types of explanation.  As noted in Brown 

(1994), some students provided multiple ex-

planations to justify their answer. 

In the remaining 5% of the trials, the system 

learned overly-general pushing models: push-

ing could occur without blocking or move-

ment.  Consequently, the system justified the 

table’s push on the book and the book’s push 

on the table with these over-general models.  

The statistical criterion for finding decisive 

generalizations failed in these trials: none of 

the generalizations within the pushing context 

were highly correlated with blocking or move-

ment, so movement was not believed to be a 

necessary consequence of pushing.  This al-

lowed the simulation to reason about pushing 

without consequence, so while this behavior 

does not resemble a misconception from 

Brown (1994), it is also scientifically incorrect. 

In the same 60 trials, the simulation’s output 

on the FCI scenario can be classified in two 

ways.  In 48% of the trials, the system acti-

vates the EH from Figure 1 within the “kick” 

state and predicts that the puck will translate in 

the direction of the kick during or immediately 

after the kick.  Upon evaluating all possible 

following states, the system concludes that 

choice-27-a is the only successor state that 

fulfills this prediction.  The system predicts 

this path for the puck, as do 34% of the FCI-

assessed students, making it the most popular 

misconception.  In the remaining 52% of the 

trials, the system is overly specific: all of the 

EHs learned are too specific to be activated in 

the FCI scenario. 

The learned EHs were overly specific for 

the Brown problem about 25% of the time, and 

about 50% of the time for the FCI scenario.  

There were several statistical discrepancies 

between overspecific trials and trials that 

yielded explanations during problem solving.  

Overspecific trials had, on average, 10% more 
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unassimilated exemplars, 20% less decisive 

generalizations, and twice as many indecisive 

generalizations.  We address each of these fac-

tors next. 

An unassimilated exemplar occurs when an 

exemplar is not similar to existing generaliza-

tions and other exemplars.  They are not con-

sidered when building encapsulated histories, 

though they may contain useful data.  With 

few exceptions, when exemplars are excluded 

from the generalizations, the generalizations 

are more specific.  Having more decisive gene-

ralizations results in building more encapsu-

lated histories for use during problem solving.  

Conversely, having more indecisive generali-

zations can result in gaps in conceptual know-

ledge: like unassimilated exemplars, these data 

are not used during problem solving.  This is 

another factor in generating overspecific EHs. 

Overall, the results of this experiment dem-

onstrate that the models learned by the simula-

tion are like those of pre-physics students.  The 

simulation learned the same misconceptions as 

the majority of the students whose answers 

were not scientifically correct. Moreover, we 

have demonstrated that the order of stimulus 

presentation affects the number and content of 

models learned by the simulation. 

 

RELATED WORK 

 

The closest simulations are the COBWEB 

(Fisher, 1987) model of conceptual clustering 

and INTHELEX (Esposito et al., 2000), which 

develops and revises prolog-style theories. 

COBWEB does unsupervised learning of hie-

rarchical relationships between concepts, in 

contrast with our use of supervised learning 

(via entry patterns in generalization contexts) 

of causal models.  COBWEB calculated prob-

abilities of features, whereas SEQL provides 

probabilities of structured relations.  

INTHELEX uses refinement operators to 

model multiple steps in a trajectory of learned 

models, whereas we focus only on one transi-

tion, the first.  Both COBWEB and 

INTHELEX used hand-represented input sti-

muli, whereas ours is derived by the simulation 

from sketches and natural language.  Ram 

(1993) discusses SINS, a robot navigation sys-

tem that retrieves cases, adapts control para-

meters, and learns new associations incremen-

tally.  Both our system and SINS develop con-

cepts incrementally from experience, but our 

system learns models of physical behaviors 

and causal laws, while SINS learns associa-

tions between environmental conditions and 

control parameters.  Our particular method of 

multimodal stimuli encoding has been used by 

Lockwood et al. (2005) to model the learning 

of spatial prepositions. 

 

DISCUSSION & FUTURE WORK 

 
We have described how analogical generaliza-

tion and qualitative modeling can be used to 

simulate the process of learning naive physics 

models and misconceptions.  To reduce tailo-

rability, the simulation inputs were combina-

tions of sketches and simplified English.  The 

answers given by the learned models match a 

subset of those given by human students on the 

same test problems, for many orders of stimu-

lus presentation.   

While we believe that this is a significant 

step, more work remains.  We plan to expand 

the phenomena covered to include the entire 

FCI, for example.  Can this simulation, with an 

expanded corpus, learn a correct model of 

forces and motion as well as cover the entire 

space of human misconceptions?   Another 

important limitation of our model is that it is 

currently batch, whereas people build up mod-

els incrementally with experience.  We plan on 

extending the simulation to operate incremen-

tally, using a model of metacognition to detect 

and hopefully correct errors of over-generality 

and over-specificity.  Finally, we plan to in-

corporate these ideas in a larger-scale learning 

model, where the quality and content of its 

predictions guide future learning.  We have 

presented a model of how misconceived intui-

tive models can be learned from experience, 

which is the first step in a larger model of con-

ceptual change. 
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