
Abstract

Deliberative experimental learning is an approach
for learning explicit game strategies in a small
number of trials by posting and experimentally sat-
isfying learning goals. Learning explicit strategies
is important for producing knowledge that can eas-
ily be transferred via analogy to new games, as
well as for rapid learning. In our approach, ex-
periments, or plans for learning, serve to drive both
exploration and credit assignment, by helping to
explain the execution trace. We describe a system
that learns strategic plans for a subset of games in
the General Game Playing (GGP) framework and
present experimental results showing that it learns
to win most of these games in fewer than 10 trials.

1 Introduction

To learn to play a new game in a reasonable number of tri-
als, how much knowledge must be brought to bear? At one
extreme, an agent might play randomly for an enormous
number of trials, applying induction to extract winning
strategies, or perhaps not generalizing at all. At the other
extreme, an agent might start with rich strategic schemas
and operationalize them for each new game. We have pur-
sued a middle ground that we call deliberative experimental
learning (DEL). DEL is an empirical approach to game
learning that could be characterized as "Try things that seem
promising; explain things in ways that seem plausible." In
practice, this means an agent reflects on what it does and
doesn't know and possesses heuristic learning strategies for
performing experiments to find out. These experiments also
help to explain the game outcome in terms of higher-level
strategic tasks. DEL builds in very little knowledge about
game playing, but automatically analyzes game definitions
to heuristically extract spatial or other perceptual informa-
tion about the game that would be immediately accessible to
any human sitting down to play, such as the fact that there
are pieces that have distinct locations and can be moved.
 In this paper, we describe the game-playing task envi-
ronment, the strategy learning problem, and the experimen-
tation approach. We then describe how this process is im-
plemented in an agent that learns strategies for winning a

subset of games in the GGP framework, followed by an
experimental evaluation of the strategy learning mechanism
and a discussion of its effectiveness and applicability.

1.1 General Game Playing

General Game Playing (GGP) was chosen as the task
framework because it can support many different games
with relatively little implementation effort. In GGP, games
are encoded in a Game Definition Language (GDL), which
is similar to a restricted form of Prolog [Love et al, 2006].
The GDL encodes a relational net, which concisely repre-
sents a finite state machine, i.e., games are restricted to fi-
nite, discrete, synchronous deterministic simulations. We
focused in particular on piece-moving games in which there
is either no opponent, or simple deterministic agents in a
two-dimensional spatial grid.
 GGP presents some challenges to an essentially knowl-
edge-directed learning mechanism. Although the complete
rules of a game are accessible to the learning agent, the se-
mantics of predicates can be arbitrarily obscure. GDL
makes explicit the current state of the game, the legal ac-
tions, the goal and terminal state descriptions, but it does not
provide STRIPS-like action models. One challenge is sim-
ply to extract enough information about actions to be able to
use the goals of the game to direct search and experimenta-
tion, rather than working forward blindly. A key research
goal for us therefore is to determine what sorts of game-
playing knowledge the agent must have in order to extract
useful information and learn winning strategies.
 Another challenge with the GGP framework is that each
trial of a game starts with exactly the same initial state. For
a game like chess, this isn’t an issue, but in learning strate-
gies for maneuvering in a maze-like game, this lack of
variation makes it hard to generalize and separate co-
incidences from salient differences. To measure the robust-
ness of learning, we tested our learning agent on 60 variants
of three GGP game domains. A variant is a minor modifica-
tion of initial state, goal definition, resources, or actions.
Although we assisted in the development of one of these
domains, the others were developed by other researchers.
Game 1: Escape. This is a 2-dimensional board game in
which the objective is for the “explorer” to escape across
some number of obstacles to reach the exit (see Figure 1).

Learning Game Strategies by Experimentation

Thomas R. Hinrichs and Kenneth D. Forbus
Qualitative Reasoning Group, Department of EECS

Northwestern University

2133 Sheridan Rd, Evanston, IL 60208

{t-hinrichs, forbus}@northwestern.edu

There are simple resources, such as a hammer, nails, and
logs, and the explorer must collect the resources, combine
them if necessary, and apply them to the obstacle in order to
traverse it. Variants of this game include lashing together
barrels with rope to make a raft, destroying a wall with the
hammer, and crossing multiple obstacles. One peculiarity
of this game is that obstacles are lethal unless destroyed or
compromised. Rather than simply preventing movement, if
the explorer wanders onto a water square, the game is over.

Game 2: Wargame. This game involves a simple maze-
like room in which the “soldier” must kill some number of
“terrorists” in order to exit the room (see Figure 1). A num-
ber of resources are stashed in the room, such as guns, gre-
nades, and different kinds of distracters. This game has
some peculiar simplifications. First, the terrorists are more
like zombies. They always move directly towards the sol-
dier and do no path planning. Second, the gun only has one
bullet, making it much harder to learn to shoot. Third, the
bullets go right through the walls and have infinite range.
Lastly, coming into contact with a terrorist will kill the sol-
dier, even if the terrorist is already dead.
Game 3: Rogue. This is a simplified version of the popular
Rogue dungeon game

1
, limited to a 6x6 grid with two rooms

separated by a doorway (see Figure 1). In each room, there
is a monster such as a snake or hobgoblin that will attack the
“hero”. There are various offensive and defensive weapons
and magical objects, a valuable amulet and an exit. The
hero can attack a monster by trying to move to its square.
Location doesn’t change in an attack, but the health of both
the hero and the monster are decremented by an amount
which depends on the weapons and armor used. The objec-
tive is for the hero to evade or destroy the monsters, acquire
the amulet, and reach the exit. Variations of this game in-
clude different layouts, different weapons and magical items
and goal requirements (e.g., requiring at least one monster
to be killed, to be wearing armor, etc.). The game is simpli-
fied by automatically picking up objects when they are trav-
ersed and wielding armor or weapons when carried.

1 http://rogue.rogueforge.net/rogue-5-4/dod54/

1.2 The Strategy Learning Problem

In GGP, the game definition tells us the complete rules of
the game, but it does not tell us how to win. The perform-
ance goal is presented as an arbitrary formula to be satisfied.
The learning agent must extract whatever it can from the
game definition to operationalize the actions and goals,
guide the playing of games, and explain success and failure
in order to concisely represent the winning strategy.
 Moreover, learning a strategy for a given game is differ-
ent from simply learning to win. Since these GGP games
are deterministic and always have the same initial state,
merely replaying a winning execution trace would guarantee
another win, but only for the exact same game. A strategy
is a more explicit and general statement of how to win that
can be (in principle) adapted to other situations and games.
We represent strategies as hierarchical task networks
(HTNs) that can be re-instantiated and expanded in different
ways in different situations.
 For example, in a game of Rogue, a strategy might be to
first acquire and wield a sword, then acquire and wear ring-
mail, kill a snake, acquire the amulet and exit the dungeon
(Figure 2). Each subgoal has its own plan for achieving it,
such as simply going to the sword. Notice that the strategy
is neither fully general (e.g., “acquire an offensive weapon”)
nor overly concrete (e.g., “go to location 3,4”). The expla-
nation process must lift coordinates and directions to be
relative to entities, but need not generalize the entities them-
selves. Generalizing entities is needed to support transfer
learning across game types, a topic which is beyond the
scope of this paper.

Figure 1: Escape, Wargame, and Rogue

(preconditionForMethod (true)

 (methodForAction (winGame hero)

 (actionSequence

 (TheList

 (achieve (true (carrying weapon1)))

 (achieve (true (carrying armor1)))

 (achieve (true (health snake1 0)))

 (achieve (true (carrying amulet)))

 (gotoLocationOf hero exit))))

Figure 2: Typical learned Rogue strategy expressed as
an HTN method

2 Deliberative Experimental Learning

The key idea in DEL is that explicit learning goals and ex-
periments drive exploration and explanation. A learning
goal is a representation of a knowledge deficit of some sort,
such as the effect of an action primitive, or ways to achieve
the preconditions of some action. We define types of learn-
ing goals and organize them around a hierarchy of models
of the game (see Figure 3). The lowest level model is the
action model, which includes goals for learning the effects
of actions, learning the applicability conditions of actions,
i.e., tasks for achieving their preconditions, and learning
contextual conditions under which an action has an effect.
The physics model captures knowledge about the environ-
ment of the game, what other entities do (adversaries, re-
sources, obstacles), and what causes trends in quantity val-
ues. The tactics model is concerned with breaking the per-
formance goal down to subgoals and learning how to
achieve them. The DecompositionLearningGoal
takes a conjunctive performance goal and creates permuta-
tions of sub-goals from the conjuncts to permit them to be
attempted in different orders. (For complex goals, the per-
mutations are generated as needed.) The strategy model
consists of the top-level goal of learning how to win the
game. The main value of the model organization is that it
permits learning goals to be scheduled in a rational way.
The agent learns to play a game by working primarily from
the bottom-up. Only when the available actions are under-
stood does it make sense to focus on the higher-level goals.
Note that this is not necessarily true in real life, where mis-
placed curiosity can literally kill you. For learning games,
though, we expect to lose early and often.

2.1 Learning experiments drive exploration

Most learning goals have associated experimental strategies.
When deciding what to do in any given turn, one of the top
choices is to pursue an experiment for a learning goal. The
experiments are tasks that are likely, though not guaranteed,
to provide information to satisfy the goal. For example, to
learn what an action does, take the action. Of course, if the
action is not legal, then it must first achieve the precondi-
tions of the action. If there is no known method for achiev-
ing the preconditions, then it must post a learning goal for

learning the applicability conditions of the action and revisit
the experiment after the precondition task is discovered.
The experiments are where game knowledge is encoded.
For example, to learn what an entity does, the experiment is
simply to go to the entity. This presupposes a piece moving
game and the result is often suicide, but it usually provides
critical information.

2.2 Learning Experiments in Credit Assignment

The execution trace is augmented with the reasons for tak-
ing actions. Often the reason is a learning experiment. The
experiment tells us what the higher-level task is, such that a
result can be explained in terms of the abstract task rather
than the ground sequence of primitives. This provides sig-
nificant leverage in lifting reusable plans. For example, if a
subgoal is suddenly satisfied when we intentionally try an
action, then we credit the action and not, say, the turn num-
ber or particular location.
 Credit assignment is defeasible, since it is easy to give an
action too much credit. For example, one of the first ex-
periments performed is usually to attempt moving in each
direction. This helps establish the correspondence between
directions and coordinates, making it possible to plan paths.
However, if the agent/avatar is next to some critical re-
source, it is easy to credit moving north, say, with carrying
the resource. This is easy to correct simply by double-
checking such learned effects for counter examples at the
end of the game and pruning incorrect learned effects.
Pruning is harder to do for the effects of complex tasks, but
the principle is the same.
 For discovering the effects of complex tasks, the difficul-
ties can be characterized as over-fitting and opportunistic
discovery. In over-fitting, the game situation may lead to
ambiguous effects. For example, in Rogue, a monster may
be co-located with another entity such as a scroll. An ex-
periment to find out what the scroll does would involve try-
ing to go there, but in this case that would mean attacking
the monster and losing health points. If the results of an
experiment will be ambiguous, it is not pursued and labeled
as a failure - possibly to be repeated another time.
 Opportunistic discovery entails a different kind of ambi-
guity. If, for example, the hero stumbles over a potion on
the way to the amulet, the agent should learn something, but
not that going to the amulet results in carrying the potion.
After each turn, if an action became newly legal, a precondi-
tion task may be learned by regressing back through the
actions and reconciling them against the conjuncts of the
precondition. Then, co-locations, adjacencies, and direc-
tions are lifted and replaced with path planning tasks to
achieve them. Clauses that can be reconciled against known
learned tasks are also lifted to those tasks. This prevents
precondition tasks from being confused by experimental
intent, at the cost of needing to recognize salient spatial rela-
tions.

WinGameGoal

DecompositionGoal

EnablingConditions

ApplicabilityConds

EffectOfActionGoal

Figure 3: Learning goals are organized by models

tactics

physics

actions

strategies

SourceOfTrendGoal

AffordancesOfEntity

3 Process Description

To apply DEL in a learning agent, are three main processes
to implement: 1) an initial domain analysis, 2) planning and
executing game actions and within-game learning, and 3)
post-game (or post-mortem) analysis.

3.1 Domain Analysis

The first stage in strategy learning is understanding and
elaborating the game through static domain analysis. When
a new game is first presented, the GDL description is essen-
tially a prolog program with a small number of standardized
predicates. From this, domain analysis must determine
which of the remaining predicates correspond to game ac-
tions, which are types, quantities, spatial coordinates, ordi-
nal relations, and so forth. By looking at the collection of
rules, domain analysis first establishes some of the simple
algebraic properties of predicates, such as whether or not
they are functional, take numeric or symbolic values, are
transitive, and/or cyclical. Then, given the assumption of a
spatial game, it identifies the most likely candidate predi-
cates for a coordinate system and determines whether the
game is a piece-moving or marking-type game and what the
tokens or pieces are. Given the defined GDL vocabulary of
init, legal, next, terminal, and goal, it extracts
any special quantity thresholds that may win or lose the
game. Sometimes this takes the form of a deadline (e.g.,
terminate the game after 50 turns), and sometimes there may
be a ‘health-like’ quantity that must not go to zero. In order
to facilitate generalization and lifting, it computes equiva-
lence classes of game pieces, which are those pieces of the
same type that behave the same way and whose only distin-
guishing property is their location.
 It looks at the next (state transition) rules to determine
how quantities are determined by other quantities or by ac-
tions in order to build a simple qualitative model of influ-
ences. This permits planning to drive quantities up or down.
In a similar way, it examines how the next rules relate legal
actions to changes in coordinates of pieces, thereby permit-
ting path planning when appropriate. Quantity analysis and
spatial reasoning are fundamental to board games, and are
therefore worth extracting in order to apply specialist strate-
gies. Instead of learning how to plan paths, we want to
learn how to translate a particular game into path-planning
and quantity-planning problems.
 After performing this bottom-up analysis, it then works
top-down by examining the performance goal description to
try to break it into independently achievable sub-goals.
This is not always computationally feasible, but when it is,
it provides signposts for measuring progress against the
overall game goal. Goal analysis works by separating out
the positive, achievable parts of the goal state description
from the negative conditions to be avoided (which become
constraints). It then attempts to satisfy constraints on the
positive conjuncts and instantiate possible goal states in
terms of concrete pieces, relations, and equivalence classes.
Logical simplification rules then clean up the description
and record the ‘operational’ specification of the goal.

3.2 Planning and Executing Game Actions

At some level of description, playing a game is a repeating
cycle of choosing a legal action, computing the next state,
and trying to learn something. In choosing an action, DEL
guides game-play by checking to see if there are any active
learning goals to be pursued and preferring actions and ex-
periments that satisfy them. Initially, there are no learning
goals and it attempts to win the first game directly by pick-
ing random legal moves. The post-mortem from that first
game posts learning goals to explain the loss and these
guide future games.
 Recall that we stratify the goals into models, as per Fig-
ure 3 above. When there are active learning goals, it fo-
cuses first on goals associated with the lowest-level incom-
plete model. In this way, the learner starts out working bot-
tom-up by pursuing goals that provide information about
actions it can take, their effects, entities in the game, quanti-
ties and their trends. When these goals have been achieved,
it begins to work top-down by decomposing performance
goals, operationalizing the subgoals by replacing variables
with concrete entities in the current situation, and trying
different orderings of subtasks until the game is won.
 After every turn, the agent computes the next state and
tries to learn something by explaining the result. Again,
learning goals guide the process. For example, if an action
became legal and there is an active ApplicabilityConditions
goal, it will attempt to explain how it became legal in a way
that can be written out as an HTN task denoted as the fluent
(PreconditionOfFn <primitive>). If the action be-
came legal at the conclusion of a learning experiment (such
as going to an entity to find out what it does), then that ex-
periment plan becomes the plan for achieving the precondi-
tion of the action. In other cases, it walks back over the
execution trace looking for sequences that can be described
in terms of known tasks and achievable configurations.

3.3 Post mortem Learning

At the end of a game, the learning agent tries to tries to ex-
plain the loss or win through post-mortem analysis. After a
loss, the main purpose of the post-mortem is to generate
new learning goals. If, for example, an immediate antece-
dent of the loss was that some quantity had a particular
value, then the system should be interested in how that hap-
pened. It posts a SourceOfTrend learning goal to monitor
and reify the values of that quantity. It posts Applicability-
Conditions and EffectOfAction learning goals to express an
interest in how to achieve the preconditions of actions and
to characterize their effects. It posts Decomposition learn-
ing goals to learn how to decompose a goal to subgoals and
sequence them. It posts AffordancesOfEntity learning goals
in order to learn what an entity does, i.e., whether it is a
resource of some sort, a threat, or a hazard. In addition to
learning goals, the post-mortem posts nogoods, which are
concrete states to be avoided in future trials.
 After winning a game, the learner walks back through the
execution trace to construct a high-level HTN plan for win-
ning the game in terms of previously-learned subtasks. It
applies the credit-assignment criteria described in section

2.2, and lifts particular coordinates and directions into gen-
eral spatial relations and relative directions. It simplifies the
strategy by removing tasks whose outcome is never used,
such as achieving preconditions of actions that are never
taken.

3.4 Example

To illustrate, consider how it learns to shoot a terrorist in
Wargame. It must first learn to avoid the terrorist, and then
to acquire the gun, get in position, aim and shoot. In the
first trial, the top-level performance goal is simply to be at
the exit, which it attempts to do with fatal results. In the
post mortem, the antecedent of the loss is found to be that
the soldier's health is zero, which upon examining the exe-
cution trace is seen to have occurred when the soldier occu-
pied the same location as the terrorist (a salient spatial coin-
cidence). So the terrorist is labeled as a threat and will be
avoided in future plans. Given the loss, it is clear that the
agent needs to understand the game better, so it posts learn-
ing goals to discover what all the actions and entities do.
 On the next game, one of the top learning goals is to dis-
cover what the gun does, so the solder goes to it. When it
reaches the gun, the game state shows that it is suddenly
holding the gun, so it indexes 'going to the gun' as achieving
'holding the gun'. In addition, it suddenly becomes legal to
shoot, so it learns that holding the gun achieves the precon-
dition of shooting. Since there's a goal to understand the
effects of actions, it shoots in some random direction, and
typically nothing happens. We know from the qualitative
model produced in the initial analysis that under certain
conditions, the shoot action should have some effect on the
health of the terrorist, so the shooting experiment is labeled
a failure and the goal remains active.
 Because there is only one bullet per game, it takes four

trials before it has attempted shooting in all four directions.
Usually, it has still failed to affect the terrorist, despite hav-
ing exhausted arguments to the shoot action. At this point,
some other condition must hold before the action can have
an effect. The simplest condition that this agent can achieve
is a spatial configuration. Since the soldier cannot be co-
located with the terrorist, the next simplest configuration is
to have the same x or y value. It then repeats the shooting
experiments in the context of that configuration. Eventu-
ally, it fires in a cardinal direction at the terrorist, killing it.
It can now plan a clear path to the exit and win the game.
After winning, the fact that the successful experiment was
conducted in a simple cardinal direction to the terrorist is
used in compiling out a transferable strategic plan.

4 Experiments

One way to characterize this performance is in terms of how
fast it can learn to win a game, as measured by how many
game trials it takes. For each of 60 different game variants,
we ran independent learning experiments, repeating trials
until the game was either mastered or exceeded ten trials. A
game variant is a difference in initial state, goal description,
resources, or impediments. ‘Mastery’ here means possess-
ing a reliable, but not necessarily optimal, strategy for win-

ning, as evidenced by consecutive wins. Figure 4 shows the
average learning curves for game variants in each of the
three game domains. These scores are actually averages of
winning games and losing games, so a 60% score for trial N
really means that 60% of the game variants had been mas-
tered by the Nth trial. In all game families, learning con-
verged within ten trials.
 Games that were not mastered failed for one of two rea-
sons: either the agent was reduced to blind choices and
failed to stumble on learnable configurations, or there was a
behavior it could not explain because it lacked the concept.
For example, in Escape the actions for applying resources to
a hazard (to destroy or compromise it) are only applicable
when the explorer is adjacent to the hazard. Since there is
nothing to suggest that it should seek out such adjacent loca-
tions, random exploration would sometimes miss them as it
wandered aimlessly until it ran out of turns. However, when
it did hit on the right configuration, it was able to explain
the condition in terms of the known concept of spatial adja-
cency and create relatively robust strategies.
 Other games were lost because they simply lacked a nec-

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Trials (n=25)

a
v
e
ra
g
e
 g
a
m
e
 s
c
o
re
 (
%
)

Figure 4: Learning rates for games in the a) Es-
cape, b) Rogue, and c) Wargame domains

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Trials (n=18)

a
v
e
ra
g
e
 g
a
m
e
 s
c
o
re
 (
%
)

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Trials (n = 17)

a
v
e
ra
g
e
 g
a
m
e
 s
c
o
re
 (
%
)

essary concept. In Wargame, the games that were not learn-
able involved using grenades and waiting for multiple ter-
rorists to cluster together so that one grenade could elimi-
nate them all. Here, the difficulty was that the concepts of
thresholds, ranging, and doing nothing were not yet present
in the system. Even if it were to randomly win such a game,
it could not have explained its success or represented a
strategy to replicate it. This is not an intrinsic limitation of
the learning approach, but illustrates how it is sensitive to,
and benefits from, fairly general knowledge. The critical
knowledge that was missing was not about grenades and
terrorists per se, but about thresholds, distance and time.

5 Related Work

Treating learning as a deliberative process with explicit
learning goals is not new [Ram and Leake, 1995], though to
the best of our knowledge this is the first time it has been
applied to learning game strategies. Carbonell and Gil ap-
plied experimentation to learning operator refinement [Car-
bonell and Gil 1990]. Our work is in the same spirit, but
operationalizes known preconditions upon success, rather
than learning new conditions by comparing successes and
failures.
 Domain analysis of GGP games has been described pre-
viously in [Kuhlmann et al., 2006]. Their system extracted
some similar features in order to construct search heuristics,
but did not learn from experience.
 CaMeL used candidate elimination over many plan traces
to learn complete and correct preconditions of HTN tasks
[Ilghami et al. 2005]. We learn precondition tasks for
primitive actions and sacrifice the guarantee of correctness
for 1-shot explanation and lifting.
 Partial programming and hierarchical reinforcement
learning have also been successfully applied to strategy
learning [Marthi, et al. 2005]. Partial programs serve a
similar function to HTNs in our work, but our emphasis has
been less on learning optimal strategies in the limit than on
rapidly learning simple, transferable strategies.
 Our explanation process for extracting HTNs from the
game trace is most similar to that described in [Nejati et al.
2006], except that we use explicit learning experiments
recorded in the game trace to help lift subgoals and tasks.

Summary and Conclusions

We have shown that a deliberative experimental approach
can learn effective strategies in a small number of trials, but
also trades off some generality and flexibility. As a knowl-
edge-based technique, it relies on operationalizing known
concepts, such as threat, spatial configuration, and path.
These seem like reasonable, domain-independent concepts
that an agent ought to have before attempting to learn a
game. We did not include more game-specific concepts
such as offense or defense, though they might have helped
produce more robust strategies.
 In general, the rate of learning seems to agree with our
intuitions about how humans learn games. While we may
refine a concept like ‘threat’ over many years throughout

diverse situations, we devise individual strategies for simple
games fairly quickly.
 Nevertheless, an important future direction for this work
is to incorporate inductive generalization of concepts. This
turned out to be impractical for us in the context of GGP
experiments, but seems promising for more long-term open-
ended learning, and will be necessary for learning strategies
that, for example, need to wait for some condition to hold.

Acknowledgments

This research was funded by DARPA under the Transfer
Learning program. We would like to thank Jeff Usher for
programming assistance and David Aha for co-developing
the Rogue implementation with us and running the external
evaluations.

References

[Carbonell and Gil, 1990] Jaimie Carbonell and Yolanda
Gil. Learning By Experimentation: The Operator Re-
finement Method. In Machine Learning: An Artificial In-
telligence Approach, Volume III, Michalski, R.S. and
Kodratoff, Y., eds. Morgan Kaufmann, San Mateo, CA,
1990.

[Ilghami et al., 2005] Okhtay Ilghami, Héctor Muñoz-Avila,
Dana Nau, and David Aha. Learning Preconditions for
Planning from Plan Traces and HTN Structure. Compu-
tational Intelligence 21(4), 388-413, 2005.

[Kuhlmann et al., 2006] Gregory Kuhlmann, Kurt Dresner
and Peter Stone. Automatic Heuristic Construction in a
Complete General Game Player. In Proceedings of the
Twenty-First &ational Conference on Artificial Intelli-
gence, pages 1457-1462, Boston, MA, July 2006.

[Love et al., 2006] Nathaniel Love, Timothy Hinrichs, and
Michael Genesereth. General Game Playing: Game De-
scription Language Specification. Stanford Logic Group
Technical Report LG-2006-01. April 2006.

[Marthi et al., 2005] Bhaskara Marthi, Stuart Russell and
David Latham. Writing Stratagus-playing Agents in
Concurrent ALisp. In Proceedings of the IJCAI-05
Workshop on Reasoning, Representation, and Learning
in Computer Games, Edinburgh, Scotland. 2005.

[Nau et al., 1999] Dana Nau, Yue Cao, Amnon Lotem, and
Héctor Muñoz-Avila. SHOP: Simple hierarchical or-
dered planner. In Proceedings of the Sixteenth Interna-
tional Joint Conference on Artificial Intelligence. 968-
973. 1999.

[Nejati et al., 2006] Negin Nejati, Pat Langley, and Tolga
Könik. Learning Hierarchical Task Networks by Obser-
vation. In Proceedings of the 23

rd
 International Confer-

ence on Machine Learning, Pittsburgh, PA. 2006.

[Ram and Leake, 1995] Ashwin Ram and David Leake, eds.
Goal-Driven Learning. MIT Press, Cambridge MA,
1995.

