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ABSTRACT 

Using Analogy to Model Spatial Language Use and Multimodal Knowledge Capture 

Kate Lockwood 

 Language and knowledge capture are two skills that allow us to create structured 

representations of the physical world for reasoning and communication.  Spatial prepositions are a form 

of specialized language that is used to relate two objects in space.  In addition to communicating the 

static location of objects, spatial prepositions contain layers of information about the interactions and 

potential interactions between objects, agents, and their environments.   While a large amount of 

information is encoded in spatial prepositions, the components of scene that contribute to their use are 

only a fraction of the possible features available.  In order to learn the correct spatial prepositions 

categories in a language, a learner must figure out how to abstract the important concepts without 

being distracted by surface features. 

 When communicating about complex spatial relationships, a diagram can often, as the saying 

goes, “be worth a thousand words”.  Diagrams can communicate complex spatial concepts concisely, 

which is why they are often used in educational materials.  Information from text accompanying 

diagrams must be integrated with the spatial information from the diagram to create a cohesive 

understanding of the concepts being communicated.  This process is called multimodal knowledge 

capture.  It is multimodal because the information being captured is presented in two different 

modalities: text and diagrams.  Often spatial language, in particular spatial prepositions, in the text 

provides clues about how to best integrate the different representations. 

 This dissertation addresses computational modeling of both learning spatial prepositions and 

multimodal knowledge capture.  In particular, it examines the role that structure-mapping plays in both 

tasks.  In spatial preposition use, sequential generalization over multiple scenes results in the 
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abstraction of core category concepts.  In multimodal knowledge capture, structure mapping provides a 

framework for integrating structured representations from different modalities.   
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1 INTRODUCTION 

 Language and spatial reasoning are two of the skills that give people the ability to quickly and 

easily assimilate new knowledge and pass it along to others; both play key roles in multimodal 

knowledge capture and in spatial language use.   Multimodal knowledge capture is the process of taking 

a source of information that contains multiple modalities (for example, text and diagrams) and 

converting it into the structured knowledge needed for later tasks.  Spatial language, in particular spatial 

prepositions, has developed to enable people to communicate clearly about the locations of objects in 

the world.  Often these processes happen so effortlessly that we do not stop to consider the mechanics 

behind them – nobody stops to think “how is it that I am able to convert this newspaper and its graphics 

into usable knowledge?”  Likewise, one rarely stops to ponder why it is that they consider coffee to be in 

their cup.   

 While these types of processes are second-nature to people, they are quite hard for AI systems 

to accomplish.  And although they seem like two unrelated processes, spatial language and capturing 

multimodal knowledge share some common structure.  Both rely heavily on pre-existing world 

knowledge and spatial perception skills.  We claim that aspects of both can also be modeled using the 

structure-mapping theory (Gentner, 1983) of analogy and similarity.  Specifically, learning spatial 

language categories can be cast as a problem of progressively abstracting the salient common structure 

from labeled instances of a spatial relation.  Similarly, multimodal knowledge capture requires mapping 

between representations built from each of the modalities.  These are the main claims of this 

dissertation: 

1. Sequential generalization can be used to model the learning of spatial prepositions, taking 

into account both functional and geometric features of a scene.  In addition, sequential 
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generalization can learn spatial preposition categories using far fewer training trials than 

existing models. 

2. Structure mapping can be used to model the integration of multi-modal knowledge sources 

in a domain-general fashion without relying on predefined, domain-specific conventions. 

These claims sit within a larger theoretical framework that applies structure-mapping principles to 

spatial reasoning, spatial language, and perception tasks.  The physical world contains a large amount of 

naturally occurring structure and we rely on that structure, which we encode and represent via 

structured, relational representation, to navigate in the world, to communicate about our place in that 

world, and to reason about the world.  Our language and visual representation conventions have also 

developed to be highly structured.  Structure-mapping provides a framework for comparing and 

abstracting the structural features of both visual and natural language stimuli.  Aligning common 

structure allows us to attend to the deeper, spatial and functional commonalities between 

representations regardless of the modality or differing surface features.  

 

 Furthermore, spatial language plays an important role in multimodal knowledge capture.  The 

two examples of multimodal information in Figure 1 show how spatial language can give insights into 

how to interpret diagrams.  In the example on the left, the prepositions explain how the steps of a 

 

By analogy, the useful 

water in a tank is 

the water stored above 

the outlet. Once the 

depth drops below 

the outlet, the remaining 

volume won't flow out, 

so it's not 

useful 

In the first class (fig. 1-2, 

part A), the fulcrum is 

located between the 

effort and the resistance. 

As mentioned earlier, the 

seesaw is a good example 

of a first-class lever. The 

amount of weight and the 

distance from the fulcrum 

can be varied to suit the 

need. 

Figure 1. Two examples of multimodal information sources highlighting the importance of spatial language 
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process occur in different areas of the diagram.  In the example on the right, the prepositions highlight 

the important spatial relationships in the diagram.  This dissertation presents a series of experiments on 

learning and using spatial prepositions and an evaluation of a multimodal knowledge capture system.  

While these two efforts are, for the moment, separate entities, the conclusion lays out a plan for how 

they might be combined in future work. 

1.1 MODELING THE LEARNING AND USE OF SPATIAL LANGUAGE 

 The problem of modeling spatial language use is decoding how people map from relationships in 

the world to a small, closed-class set of words (the spatial prepositions).  There have been different 

approaches to this question ranging from minimal specification to full specification.  Minimal 

specification approaches (e.g. Miller & Johnson-Laird, 1976) take the stance that there are a small 

number of template-like structures that indicate how to carve Euclidean space into different regions 

associated with each preposition.  Under minimal specification, spatial language use comes down to 

learning how to manipulate the templates to fit different situations.  At the other end of the spectrum, 

full specification approaches (e.g. Herskovits, 1985, 1986; Brugman & Lakoff, 1988; Lakoff, 1987) call for 

creating a large number of templates, one for each possible meaning or use of a preposition.  Under full 

specification, using a preposition comes down to choosing the correct template/sense.     

 
 

a. 

    
 

 

b. 

 
c. 

Figure 2 Stimuli from human subjects studies of spatial preposition use. 
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 More recent work in cognitive psychology has moved beyond looking at the placement of 

objects in space to considering the other factors that influence spatial preposition usage.  Consider 

Figure 2 which highlights stimuli from experiments trying to discover how different aspects of a scene 

influence spatial prepositions use.  Part a is an example stimulus from a study by Feist and Gentner 

(2003) showing that ground label, ground curvature, ground animacy, figure animacy and label of the 

ground (e.g. “bowl” vs “dish”) all impacted subjects’ judgments of in and on.  Part b shows an example 

from Coventry (1998) showing an acceptable example of “the coffee is in the cup” along with an 

unacceptable example of the same situation and an acceptable example of “the flowers are in the vase”.  

These three examples are meant to demonstrate the importance of the containment role of the 

preposition in.  In the two acceptable uses of in the ground object is functionally containing the figure 

object.  In the unacceptable example of the coffee being in the cup, it is impossible that the cup is 

actually fulfilling its role of containing the coffee despite the fact that the objects in that instance are in 

the same general spatial arrangement as the flowers in the vase.  Part c is an example stimulus from 

Coventry and Mather (2002) who demonstrated the role of naïve physics in spatial preposition use, and 

provided further evidence that some prepositions such as over are much more sensitive to function 

information than others such as above.  In addition to studies examining single languages, a number of 

cross-linguistic experiments have investigated the varying ways that different languages carve up the 

space of spatial relations (e.g.  McDonough, Choi and Mandler, 2003; Gentner and Bowerman , 2009). 

  The aspects of a visual scene that are listed above are just a sampling of the factors that have 

been shown to impact spatial language use.  The same diversity that makes spatial language an 

interesting topic of study for cognitive psychologists has drawn in the computer science community.  

There have been a variety of attempts to model subsets of spatial prepositions, employing multiple 
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techniques from machine learning and artificial intelligence (for example Regier, 1995; Cangelosi et al, 

2005).   

1.2 MULTIMODAL KNOWLEDGE CAPTURE 

 When humans solve problems, they rely on a variety of previous knowledge – everything from 

commonsense knowledge about objects and actions in the world to advanced, domain specific 

knowledge.  Artificial Intelligence systems designed to do the same tasks necessarily need access to the 

same kinds of information.  This problem is solved by providing such systems with knowledge bases 

containing the facts and axioms necessary for a given task or set of tasks.  The construction of 

knowledge bases is currently done primarily by hand.  This process is time consuming, expensive, and 

can lead to knowledge that is overly tailored to a specific domain or problem.  For example the Cyc 

knowledge base (Lenant, 1995), the largest effort at a common sense knowledge base, has been in 

development since 1984 at an estimated cost of at least $50 million and over 600 man-years of effort 

(2002).  Today’s Cyc has around 3 million rules of thumb plus around 300,000 terms or concepts, but still 

falls short of human-like common sense knowledge.  The HALO project is attempting to build a system 

that can answer AP test questions in Biology, Chemistry and Physics.  Their knowledge base is hand built 

by subject matter experts, at a reported time of 22 minutes per concept (Chaudhri et al, 2007).  Projects 

such as these, while effective, are clearly not ideal. 

To get around the problem of hand-constructed knowledge bases, the learning by reading (LbR) 

community has been creating systems that can automatically construct structured knowledge from 

natural language sources like books, newspapers, and the web.  While much progress has been made in 

LbR, one area that remains largely underexplored is knowledge capture from multimodal information 

sources.  Multimodal sources are those where the information is presented in more than one modality – 

such as narration and animation or text and diagrams.  For example, HALO discards the diagrams from 
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their sources and the MOBIUS (Barker et al, 2007) project also does not handle diagrams despite 

operating in a domain that includes highly structured spatial information (the structure of the human 

heart).  This is a particularly interesting combination since it is pervasive in educational materials and 

often the information in the diagram is not reproduced in the text.  Figure 3 below shows an example of 

the kind of multimodal information that we are interested in capturing.  You can see that both the text 

and the diagram are necessary for a full understanding of the concepts being communicated. 

 There is a lot of research on how people learn from multimodal information sources, and under 

many circumstances, learning is better from multimodal sources than from single modality sources (for 

an overview see Mayer, 2001).  So, it makes sense that the LbR community should be interested in 

exploiting these types of information sources as well.  Indeed, many traditional sources of instructional 

materials, such as textbooks, contain multiple modalities of information.  Studies examining how and 

why people learn from multimodal sources of information appear to indicate that people engage 

cognitively with the material, at times going back and forth between the text and the diagram in an 

attempt to create a coherent mental representation of the information being presented (Hegarty & Just 

1993; Mayer, 2001).  This process of integration appears to involve a mapping between the description 

in the text and the spatial objects in the diagram which lends itself well to modeling via analogy. 

 

You will find that all levers have three basic parts: the 

fulcrum (F), a force or effort (E), and a resistance (R). 

Look at the lever in figure 1-1.  You see the pivotal point 

(fulcrum) (F); the effort (E), which is applied at a 

distance (A) from the fulcrum; and a resistance (R), 

which acts at a distance (a) from the fulcrum.  Distances 

A and a are the arms of the lever. 

 

Figure 3  An example of multimodal input from the physics textbook Basic Machines consisting of both text 

and an accompanying diagram. 
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1.3 CLAIMS AND CONTRIBUTIONS 

 This dissertation contains two sets of experiments.  The first set examines the formation and use 

of spatial prepositions and the second involves the creation and evaluation of a multimodal knowledge 

capture system. 

 The first set of experiments examines the use of spatial prepositions.  As spatial language use 

has been a topic of much inspection by cognitive psychologists, there have also been many attempts to 

computationally model subsets of spatial prepositions. The work in this dissertation takes a different 

approach than existing models by using analogical generalization to model the formation of spatial 

categories.  This approach allows for a more knowledge-rich approach than others and also can 

demonstrate learning in a smaller, more plausible number of inputs and trials.  There are two sets of 

experiments using this technique: one looking at five English prepositions (in, on, above, below, and left) 

and another modeling the support-containment relations in English and in Dutch.  Two additional 

experiments show how the kind of output produced by generalization might be used as part of a system 

that labels prepositions in novel scenes and can account for some results showing the effect of spatial 

language on memory.   

 The second set of experiments demonstrates the use of analogy to model integration during 

multimodal knowledge capture.  The multimodal knowledge capture system built uses a combination of 

sketched diagrams and simplified English to represent the input source.  The sketches are turned into 

structured representations using CogSketch and the text is processed using EA NLU (both of which are 

described in Chapter 3).  Then, integration of the two representations is done using the SME model of 

analogy and similarity.  This approach to multimodal knowledge capture is much more flexible and 

domain-independent than many other similar systems.  The performance of the system is evaluate on 
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the contents of a simple physics textbook (Basic Machines) by evaluating the system’s ability to answer 

the publisher-provided homework assignments. 

1.4 DISSERTATION ORGANIZATION 

 Chapter 2 provides the theoretical background for both the spatial language and knowledge 

capture work.  This background is drawn from the literature in cognitive psychology and learning 

sciences.  

 Chapter 3 describes the existing systems that were used in different parts of this work.  Included 

are the large-scale knowledge base and reasoning engine that underlie all of the systems.  Also included 

are three related models of analogy: the SME model of analogy and similarity, the SEQL model of 

analogical generalization, and the MAC/FAC model of similarity-based retrieval.  EA NLU and CogSketch 

which provide a means of input for the experiments in this dissertation are also introduced.   

 Chapter 4 describes three experiments modeling the formation and use of spatial language 

categories.  Related work is also discussed. 

 Chapter 5 introduces a multimodal knowledge capture system and summarizes experiments 

that show its performance over a simple physics textbook.  The results of a system evaluation based on 

its ability to answer publisher-provided homework questions are provided.  Related work on multimodal 

knowledge capture, diagram understanding, and learning by reading is discussed. 

 Chapter 6 returns to the claims of this thesis, summarizes the results and discusses some 

important future directions including how the two themes of the dissertation may be combined in 

future work. 
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2 THEORETICAL BACKGROUND 

2.1 INTRODUCTION 

The experiments in this thesis model processes that occur at the intersection of language and 

space.  Spatial prepositions are used to communicate the spatial arrangements of objects in a quick and 

compact format.  Learning to use them correctly requires understanding which features of a spatial 

scene need to be attended to in order to form the agreed upon set of categories in a given language.  

Multimodal knowledge capture requires being able to integrate information from language (text) and 

spatial information from a diagram.  Conceptual segmentation of diagrams involves being able to extract 

the correct region or edge from a diagram based on a language cue.  This requires not only attending to 

both modalities, but also understanding which features of an object play a role in how its spatial extent 

is determined.   

 To computationally model cognitive processes involving language and space, it is important to 

first understand current theories of how these processes occur in human subjects.  First of all, human 

subjects studies provide a ready supply of carefully crafted and normed stimuli as fodder for cognitive 

modeling.  Using these stimuli as input into cognitive models reduces the extent to which inputs can be 

tailored to suit a given model’s strengths.  More importantly, by tying cognitive modeling closely to the 

underlying psychology, the two fields form a mutually beneficial feedback cycle.  Psychology benefits by 

having another avenue to test their findings and to help identify potential gaps.  AI benefits by creating 

systems that perform more like their human users and are therefore more intuitive to interact with.   

 This chapter first examines cognitive psychological theories of spatial preposition use.  While 

some historical context is provided, the focus is on current theories which explore the role of functional 

information about objects as opposed to treating spatial relationships as purely geometric.   The results 
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discussed in the spatial prepositions section provide the basis for the experiments in Chapter 4.  Next, 

the literature on multimodal knowledge capture in humans is discussed, in particular the multimedia 

learning theory of Richard Mayer, on which the MMKCap model described in Chapter 5 is based.   

2.2 ACQUISITION AND USE OF SPATIAL PREPOSITIONS 

2.2.1 SPATIAL PREPOSITIONS: THE BASICS 

 Spatial prepositions describe the relation of one object (called the located object, or figure) with 

respect to another object (called the reference object, or ground).  For example, in the sentence “the 

cup is on the table” the figure is the cup, the ground is the table, and on is the spatial preposition 

describing the relationship between the two.  In English, spatial prepositions form a closed-class of 

words, and there are relatively few of them when compared with the large number of words in other 

syntactic categories (e.g., around 10,000 count nouns in the standard lexicon) (Landau & Jackendoff, 

1993). Table 1 below enumerates the common spatial prepositions (leaving out domain-specific 

prepositions such as aft or starboard).  Despite their relatively small number, many prepositions have a 

wide range of syntactic, semantic, and even idiomatic interpretations.  Figure 4 (from Coventry and 

Garrod, 2004) shows a classification hierarchy for prepositions. 

  Even within the limited scope of space, the assignment of spatial prepositions to visual 

arrangements of objects is a complex cognitive process.  At first glance, this problem appears to boil 

down to simply mapping linguistic labels to arrangements of objects in geometric space.  However, 

there is no one-to-one mapping between language and the external world in the case of spatial 

prepositions, and a variety of non-geometric features have been found to influence spatial preposition 

use.  Like many other cognitive tasks, coming up with a neat discretization for spatial language has 

proven to be quite difficult.  One reason for this is the polysemy of spatial prepositions.  Each 
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preposition can be correctly used in a variety of situations with slightly different meanings.  For example, 

consider the following uses of the preposition on: 

(A) The mug is on the table. 

(B) Bob hung the clothes on the line. 

(C) Put your coat on before you go outside. 

(D) Sally got on the bus. 

Figuring out how humans map from the complexities of the world to the small set of spatial prepositions 

is a key task for cognitive psychologists and computer modelers alike. 

Table 1. The English Spatial Prepositions from (Herskovits, 1998) 

Primarily Location Primarily Motion 
at/on/in across 

upon along 

against to/from 

inside/outside around 

within/without away from 

near/(far from) toward 

next toward 

beside up/down to 

by up/down 

between into/(out of) 

beyond onto/off 

opposite out 

amid through 

among via 

throughout about 

above/below ahead of 

under/over past 

beneath  

underneath  

alongside  

on top/bottom of  

on the top/bottom of  

behind  

in front/back of  

left/right of  

at/on/to the left/right/front/back of  

at/on/to the left/right side of  

north/easy/west/south of  

to the east/north/south/west of  

on the east/north/south/west side of  
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Figure 4. Preposition Classifications (Coventry and Garrod, 2004) 

 

2.2.2 HOW HUMANS USE SPATIAL LANGUAGE/IMPLICATION FOR COMPUTATION 

 The use of language to describe space is an area with a long history in psychological research. 

Early theories of spatial preposition use claimed that people assigned spatial prepositions based solely 

on the geometry of a scene.  They focused on developing minimally specified definitions for spatial 

prepositions.  For example, Cooper (1968) suggested the following definition for “in”; 

IN: X in Y: X is located internal to Y with the constraint that X is smaller than Y – where X is the 

located object and Y is the reference object.  

While this definition works for a number of cases where in is appropriate, it is relatively easy to find a 

counter-example, e.g., a bouquet of flowers in a vase.  As counter-examples were found for existing 

definitions, others would be suggested.  Here is another suggested definition for in (Miller & Johnson-

Laird, 1976) which covers the case of the flowers in the vase: 

 IN(X, Y): A referent X is “in” a relatum Y if: 

(i) [PART(X, Z) & INCL (Z, Y)] 

Prepositions

Grammatical Uses Local Uses

Spatial Uses Temporal Uses

Locative/relational Directional

Topological Projective/dimensional

Simple Topological Proximity Terms  
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but again, counter-examples are relatively easy to find.  Such definitional approaches to spatial 

prepositions showed two major problems:  

(1) Overgeneration: the generation of examples that should fit based on the definition, but do 

not actually work. 

(2) Situations where the definition does not fit, but the preposition is appropriate (like the 

flowers and vase example given above). 

Another problem with definition based (also called minimal specification) accounts was 

explaining the constraints on transitivity.  For example, consider figure 3a below.  It is reasonable to say 

that the yellow atlas is on the table, despite the stack of books between the atlas and the table.  

However, in figure 3b, it is far less natural to say that the lid is on the table despite the fact that visually 

the situations are very similar. 

 

 

 

 

Figure 5. Transitivity for on in different situations 

 

 All minimal specification accounts start from the assumption that there is some core definition 

for a preposition and that there were guidelines describing how that definition could be stretched to 

cover all of the possible uses of a given preposition.  As it became clear that counter-examples could be 

found for any definition-based account of spatial preposition use, psychologists and linguists began to 

look at other influences.  Searle (1979) discussed the importance of background conditions.  One 

Lid 

Jar 

  Atlas 
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example he used was that the phrase “the cat is on the mat” presupposes the background condition of 

gravity.   

Another approach to spatial preposition definition was the exhaustive listing of all possible 

situations in which it was appropriate.  Methods fitting this approach are often referred to as full 

specification.  Annette Herskovits (1986) proposed a theory based on use cases.  These use cases are 

normal situation types which Herskovits claims can be stretched to cover most cases of spatial 

preposition use.  Several near principles are defined as the methods with which to stretch the use cases.  

The near principles are: salience, relevance, tolerance, and typicality.   

Brugman (1988; 1981, as reported in Coventry & Garrod, 2004) listed over 100 kinds of uses for 

the preposition over.  Approaches such as those of Herskovits and Brugman attempt to fully specify the 

cases in which a particular preposition is applicable.  One problem with this approach is that there must 

be some mechanism to index and to select from between the different cases.  Also, they rely on 

strategies like Herskovits’s near principles to fit many situations.  There must also be a mechanism for 

selecting the near principle to apply and which case to modify.  Another problem is that many of the 

cases depend on primitives like “higher than” – these primitives must be defined and recognized as well. 

A similar approach is that of “spatial templates”.  Logan and Sadler (1996) advocated a method 

of spatial templates centered on the reference object.  The spatial templates for different prepositions 

would be evaluated for “goodness of fit”.  An example of a template for above is shown in Figure 6. This 

approach faces the same problems as fully-specified accounts – how to select the correct template and 

how to find the best fit.  
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Figure 6. Example of a spatial template for above, 

where G = good region, A = acceptable region and B 

= bad region.  Taken from Coventry and Garrod 

(2004) who adapted it from Carlson-Radvansky and 

Logan (1997) 

 

More recent work in psychology has focused on the different features of a scene that influence 

spatial preposition use.  In addition to geometry, many other factors have been shown to impact the use 

of spatial prepositions.   One important factor is the functional relationship between the figure and the 

ground.   Much of the recent work on “in-ness” and “on-ness” has focused on the roles that 

containment and support play.  Whether the ground object is traditionally considered to be a container 

(e.g. Feist & Gentner, 1998), alternative sources of control (e.g. Coventry, 1999; Garrod, et. al., 1999) 

and liquid in the container (Coventry et al., 1994) can all influence how well an in relationship describes 

a visual scene. 

Other work has highlighted the role that functional relationships play in other prepositions.  

Carslon-Radvansky and Radvansky (1996) show that in front of is more likely to be used when there is a 

functional relationship between the figure and ground (“the postman is in front of the mailbox”) as 

opposed to when there is no functional relationship (“the postman is near the birdhouse”).  Additionally, 

the functional relationship must be able to be fulfilled in the scene, in the postman/mailbox example, 
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near is used instead of in front of if the mailbox opening is facing away from the postman.   The 

fulfillment of functional roles has also been shown to influence the use of over.  Coventry, Prat-Sala, and 

Richards (2001) showed that whether or not an umbrella was protecting a person from rain was key to 

whether or not it was described as over the person.  This effect was extended to objects that don’t 

normally function as protection (such as a briefcase held over a person to block the rain).  Carlson-

Radvansky et al. (1999) showed that people were more likely to describe a coin as over a piggy bank if it 

was lined up with the slot as opposed to lined up over the center of mass of the bank.  When placing 

objects into given relationships, subjects are biased towards functionally related parts of the objects, for 

example, when placing a tube of toothpaste over a toothbrush, subjects are biased towards the bristles.  

This bias is lessened if the tube of toothpaste is replaced with a similarly-shaped tube of paint.  Features 

of objects can also influence acceptability judgments, especially for objects where different features 

have different functional roles.  Adding cartoon eyes to an object has a significant impact on  

acceptability judgments for in front of (Landau, 1996).   

  

 

Figure 7. Scenes used by Coventry, Prat-Sala and Richards (2001) 
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Coventry and Mather (2002) demonstrated that over differs from above in that over is extremely 

sensitive to object-specific knowledge and functional relations between objects, including knowledge of 

the naïve physics between objects.  In one study, subjects were presented with images of a plane and a 

building and were asked where the plane should be for the expression “the plane is over the building” to 

hold, either without a context, or within the context of the plane dropping a bomb on the building.  With 

the context the ratings corresponded significantly with the location where the subjects thought the 

bomb should be dropped in order to hit the building as opposed to a canonical above relationship. 

 

Figure 8. Example stimuli from Coventry and Mather (2002) 

Different languages capture different distinctions between spatial scenes.  For example, Dutch 

differentiates between attachment by a point versus a surface – both of which are instances of on in 

English (the clothes are on the line and the cup is on the table respectively).  Spanish, on the other hand, 

has a single preposition en which covers all situations that would be covered by both English in and 

English on.  Other languages rely more on verbs than prepositions to capture the meaning in a spatial 

scene.  Figure 9 shows how different languages divide the containment-support continuum.  This 

variation between languages is interesting from a cognitive psychology perspective since it raises 

questions about what aspects of spatial cognition are innate and which are culturally influenced.  Since 

spatial language is grounded in perception, it makes sense that some part of the relationships we extract 

could be common between cultures and languages.  At the same time there is clearly much variation.  
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Cross-linguistic variation is also interesting from a computational perspective since models of spatial 

preposition use should be flexible enough to learn prepositions from different languages. 

 

Figure 9. Support and containment prepositions in various languages. This 

continuum was used in a study by Bowerman and Pederson (in press) and was 

referenced in (Bowerman and Choi, 2001) 

 

In an attempt to account for many of the findings described above, Coventry and Garrod (2004) 

have developed what they call the functional geometric framework.  Their theory takes into account not 

only the findings on how people see the world, but also how people interact with objects and how 

objects interact with each other.  The functional geometric framework is composed of three basic 

components: geometric routines, dynamic-kinematic routines and object knowledge (where the latter 

two together can be referred to as extra-geometric information).  The geometric routines in the 

functional geometric framework encode “where” objects are located in the world.  Dynamic-kinematic 

routines encode “how” the objects are interacting or how they may interact.  The object knowledge 

captures how “what” objects are may influence our perceptions of “where” they are.  Describing their 

theory, they point out that part of the role of spatial prepositions is not just to indicate where a given 

object is at a certain time, but also how likely it is to remain in that location in the future.  Knowing how 
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objects interact and how likely they are to interact has an important influence on how we describe their 

spatial relationship.   

This recent work from psychology, including the functional geometric framework, has strong 

implications for how computational models of spatial preposition use should work.  Models that hope to 

capture the complexities of human preposition use cannot rely solely on simple geometric relationships.  

They need to incorporate knowledge about objects in the world and their typical roles.  Models will also 

need to be able to use qualitative physics to understand the potential kinematics of given arrangements 

of objects.    Since spatial language plays such an important role in human cognition and activity, having 

good artificial intelligence models of its use is critical to many tasks.  Domains from GPS/GIS to image 

processing to game playing all critically need a human-like understanding of spatial language to be 

effective.  Hence, spatial language modeling has also been an area of active research in the artificial 

intelligence community.  The richness of spatial language makes computational modeling of it both 

algorithmically and computationally complex.  Various AI groups have tried different approaches to this 

problem. Mukerjee (1998) provides a roadmap of the types and techniques of a number of spatial 

language models.  Any model necessarily makes tradeoffs between breadth and depth of coverage – 

how many prepositions will be covered, how many factors will be considered, how varied will the stimuli 

be, etc.  Chapter 4 of this thesis describes several models of spatial preposition use, and positions them 

within the context of these other models of spatial language while this section has provided the 

psychological background necessary to motivate and inform this work. 

2.3 MULTIMODAL KNOWLEDGE CAPTURE 

 Multimodal knowledge capture (learning from multimodal sources) happens when people are 

presented with information in more than one modality.  Traditionally, textbooks have been the primary 

source of multimodal learning, presenting students with combinations of diagrams and written 
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language, but the term also covers other multimodal sources of information like animations with written 

text or animations with spoken dialogs.  The case for presenting material in multiple modalities is that 

people can understand an explanation better when presented with words and pictures than when 

presented with words alone (e.g. Mayer, 1989; Mayer and Gallini, 1990).  A number of studies have 

explored these effects, the conditions under which they occur, and the role that individual differences 

play in their appearance (e.g. Mayer, 2001; Hegarty and Just, 1993; Larkin and Simon, 1987).   

In a series of experiments, Richard Mayer and colleagues (summarized in Mayer, 2001), 

examined whether learners perform better on retention and transfer tests when they learn from 

multimodal sources of information than from single modality sources.  Retention tests involve being 

able to recall information that was in the presented materials.  Transfer tests involve being able to use 

that information to solve novel problems.  In six of nine experiments subjects performed better on 

retention tests when they learned the original material from a multimodal source than when they 

learned from a single modality source.  In all nine of those experiments, the multimodal subjects 

performed better on transfer questions.  The retention results are even more impressive if only the 

results from book-like combinations of text and diagrams are considered – the multimodal subjects 

outperformed the single modality subjects on 5 out of 6 of those experiments (the other experiments 

involved animation + audio narration).  There is also evidence that multimodal effects are stronger on 

delayed-recall tests than on immediate-recall (e.g. Peeck, 1989; summarized in Levie and Lentz, 1982). 

In addition to studying if multimodal effects occur, learning scientists are interested in how and 

why people learn better from multimodal sources.  Previous theories have suggested that multimodal 

sources are more useful for learning simply because the information is presented multiple times, 

reinforcing the concepts.  Another potential explanation is that since the material is presented in 

multiple modalities, each learner can attend to the one that they best learn from.  However, more 
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recent research focuses on the role that active learning plays in the multimodal effect.  Active learning 

occurs when learner must engage cognitively with the material in an attempt to build a coherent 

understanding.  Mayer’s multimedia learning theory (2001) claims that multimodal sources of 

information encourage this kind of active engagement and that engagement may be what leads to the 

multimedia effect. 

Mayer’s theory relies on several underlying assumptions about human thought and learning.  

The first assumption is that of active learning.  The second assumption is that people have dual channels 

for processing incoming information.   There are separate channels for auditory and visual information, 

where auditory and visual are defined in terms of presentation mode (i.e. whether the stimulus is verbal 

(words) or non-verbal (pictures).  This is similar to Paivio’s dual coding theory (Paivio, 1986).  The third 

assumption is that human working memory has limited capacity, i.e., we are limited in the amount of 

information that we can process in each channel at one time.  Limited capacity forces learners to make 

metacognitive decisions about what information to attend to and which connections between different 

pieces of information are worth building. 

Figure 10. The five steps in Mayer’s multimedia learning theory 

  

(1) selection (2) selection

(3) organization (4) organization

(5) integration Existing 

knowledge
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There are three cognitive processes that make up Mayer’s theory of multimedia learning: selecting 

relevant material, organizing selected material, and integrating selected material with existing 

knowledge.  These three processes can be further broken down into five distinct steps as shown in 

Figure 10. 

(1) selecting relevant words for processing in verbal working memory  

(2) selecting relevant pictures for processing in visual working memory 

(3) organizing selected words into verbal mental model 

(4) organizing selected pictures into visual mental model 

(5) integrating verbal and visual representations along with prior knowledge  

The key step is (5) integrating the verbal and visual representations along with prior knowledge.  In this 

step the learner goes from two separate representations to one integrated representation in which 

“corresponding elements and relations from one model are mapped onto the other” (Mayer, 2001). 
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Figure 11. An example of multimedia learning in action, showing how the original material (top) is partitioned 

into selections by the learner (bottom) (compiled from two figures in Mayer & Simms, 1994) 

 

Figure 11 is an example demonstrating Mayer’s multimedia learning theory (2001).  This example shows 

how a simple pump works.  The figure illustrates how the learner breaks the text and diagram into 
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segments for integration (steps 1 and 2 of the multimedia learning process).  Studies with human 

subjects lend support to a theory of incremental integration.  For example Hegarty and Just (1989) 

found that subjects viewing text and diagrams of a pulley system looked back and forth between the 

text and the diagram multiple times while reading a selection.   

 There are multiple other variables that can affect how the presence of diagrams impacts 

learning.  Learner ability, both in the subject matter (Mayer and Gallini, 1990; Mayer et al, 1995) and 

spatial ability more generally (Mayer and Simms, 1994), has been shown to influence how diagrams are 

used.  The proximity of diagrams to their accompanying text (Mayer, 1989) and the inclusion or 

exclusion of distracting material (Mayer et al, 1996; Harp and Mayer, 1997) can also impact learning.  

Beyond the placement of diagrams/illustrations, the content also matters.   

Consider the two diagrams from Basic Machines shown in Figure 12.   The diagram/text pair on 

the left serves to illustrate the parts of a lever and the text refers directly to the labels in the diagram, 

highlighting important relationships.  The text/diagram pair on the right serves a very different purpose, 

it is more illustrative, or entertaining, than informative, it illustrates a higher-level concept.  One 

challenge of multimodal knowledge capture is to not only learn to extract information from diagrams, 

but to also be able to distinguish between different types of diagrams and how to tailor the type of 

information extracted to the type of diagram.   For example, a system reading Basic Machines should 

invest much more time in extracting and understanding the spatial relationships in the diagram on the 

left in Figure 9 than the diagram on the right.   
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You will find that all levers have three basic parts: the 

fulcrum (F), a force or effort (E), and a resistance (R). 

Look at the lever in figure 1-1.  You see the pivotal point 

(fulcrum) (F); the effort (E), which is applied at a 

distance (A) from the fulcrum; and a resistance (R), 

which acts at a distance (a) from the fulcrum.  Distances 

A and a are the arms of the lever. 

 

 
You know that machines help you to do work. What 

is work? Work doesn’t mean simply applying a force. If 

that were so, you would have to consider that the sailor 

in figure 7-1 is doing work. He is busy applying his 

220-pound force on the seabag. However, no work is 

being done! 

Figure 12. Two text/diagram pairs showing different uses of diagrams in text. 

 

 The multimedia theory of learning described here serves as a rough guide for the MMKCap 

model in Chapter 5.  MMKCap owes many of its high-level design choices to this theory: text and 

diagrams are selected into individual chunks, the text chunks and diagram chunks are processed 

separately, and then they are integrated based on mappings between them.  MMKCap, like Mayer’s 

subjects should be able to learn and recall information from multimodal knowledge sources.  However, 

it does not address some of the finer-grained distinctions such as specific working memory constraints, 

or coding modalities. 
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3 SYSTEMS BACKGROUND 

3.1 INTRODUCTION 

 This chapter focuses on the existing and evolving systems that form the basis for several of the 

experiments in this thesis.  In Artificial Intelligence and Cognitive Modeling, there is a temptation to 

build a system or model once to explain a particular phenomenon and then to move on to the next 

project.  While this strategy allows for exploring a variety of different ideas, the systems developed are 

often short-lived and overly-tailored to one specific set of circumstances.  An alternate approach, and 

the one in this work, is to work with a set of existing broad-domain models or systems that have been 

tested using a variety of input and to build on top of them.  The benefit to this approach is that the 

component systems have been rigorously tested and their broad usage means that they cannot be 

tailored to facilitate the specificities of a given experiment.  As additional experiments are done, new 

information can be fed back into the original systems, informing future development and strengthening 

the platforms for future work.  The systems described in this chapter have been used in various 

configurations to simulate everything from perception to higher-level reasoning.   

 In this chapter, I first describe the large common sense knowledge base and the FIRE reasoning 

engine that reasons over it.  Next, I discuss the Structure Mapping Engine (SME) model of analogy and 

similarity and the SEQL model of analogical generalization which uses SME to model category formation.  

Then I describe the EA NLU natural language understanding system and conclude by introducing the 

CogSketch open-domain sketch understanding system.  Both EA NLU and CogSketch are used as input 

modalities for different experiments in this thesis.  Relying on open-domain systems to create 

representations reduces the tailorability of experimental inputs and is much more time and effort 

efficient than creating representations by hand.   This chapter gives general background on these 
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systems while chapters 4 and 5 describe their uses in spatial language and multimodal knowledge 

capture experiments. 

3.2 LARGE COMMON SENSE KNOWLEDGE BASE AND THE FIRE REASONING ENGINE 

3.2.1 COMMON SENSE KNOWLEDGE BASE 

 There is a large amount of commonsense information that humans rely on when they interact 

with the world around them.  This information is often so basic that it is almost never explicitly stated in 

day-to-day human life (e.g. “all dogs are animals, but not all animals are dogs” or “a car pool is not a 

place to swim inside a vehicle”) but need to be articulated for artificial intelligence systems.  AI systems 

need this kind of knowledge so that they can engage in the same types of reasoning tasks that people do 

on a daily basis.  In AI, this information is provided in knowledge bases (KBs) which are collections of 

structured facts and axioms that codify knowledge about the world.  The ResearchCyc Knowledge Base 

is a product of the Cyc project (Lenat, 1995) whose goal is to build a knowledge base that captures a 

broad selection of commonsense background knowledge.  The work in this dissertation uses a subset of 

the ResearchCyc KB containing 2,182,300 facts and 14,257 relations, including a small number of 

extensions related to natural language understanding and QP theory (Forbus, 1984).  Using externally 

developed ontologies is one way in which I have reduced the tailorability of my experiments.  

 The knowledge in ResearchCyc is expressed in CycL (Matuszek et al., 2006), a language based on 

predicate calculus.  In CycL, constants denote specific individuals or collections.  For example, Dog could 

denote the collection of all dogs and DogTraining all events where a dog is trained.  An individual 

might be a tangible individual such as RoverTheDog, or an individual could be a relation like 

likesAsFriend or ownsPet.  CycL also uses formulas in which a relation is applied to some 

arguments.  Sentences are well-formed formulas with a relation in the first position such as 
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(likesAsFriend DickCheney JonStewart).  The other type of CycL formula is a non-atomic term. 

These have a logical function (i.e. a predicate which is an instance of Function-Denotational)as the first 

term, for example (FruitFn AppleTree) or (GovernmentFn France).  This brief overview of CycL 

should be enough to understand the examples in this thesis.  For a more thorough explanation of CycL 

conventions, please see the online documentation1.  ResearchCyc uses a microtheory structure to 

provide contextualization of facts – every fact must be stored in one or more microtheories.  This allows 

for the consistent coexistence of facts which are contradictory at face-value.  For example, a fact stating 

that dinosaurs rule the earth is true in the context of the Jurassic period, but is currently false.    

3.2.2 THE FIRE REASONING ENGINE 

 FIRE is the reasoning engine used in this work to organize and access KB contents.  FIRE is 

designed to support building general-purpose reasoning systems operating over large knowledge bases 

(in this case drawn from ResearchCyc).  As in Cyc, microtheories are used to specify the logical 

environment for reasoning.  FIRE is designed from the ground up to support analogical processing (via 

the Structure-Mapping Engine which is described in the next section).  Analogy in FIRE is considered to 

be more primitive than even backchaining.   

 The working state associated with a system using FIRE is stored in one or more reasoners.  

Reasoners include a working memory that stores the assumptions and results specific to a particular 

session or use of an application.  The working memory in FIRE is implemented using a version of the 

LTRE from Chapter 10 of (Forbus & deKleer, 1993).   In this dissertation, FIRE is used to perform 

analogical mapping and to retrieve and store information in the knowledge base.   

                                                           
1
 http://www.cyc.com/doc/tut/ppoint/CycLsyntax_files 
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3.3 ANALOGY AND SIMILARITY: SME, SEQL AND MAC/FAC 

3.3.1 SME 

 The Structure-mapping Engine (SME) (Falkenhainer, Forbus & Gentner, 1989) is a model of 

analogy and similarity based on Gentner’s (1983) Structure-mapping Theory.  In structure-mapping, 

analogy and similarity are defined in terms of a structural alignment process operating over structured, 

relational representations.  SME takes as input two cases, a base and a target.   Each input case is a 

structured representation consisting of entities, attributes, and relations.  Given the two cases, SME 

produces one to three mappings between them by aligning their common structure, with the goal of 

constructing the maximal structurally consistent match.   A structurally consistent match is one that 

satisfies the following three constraints: tiered-identicality, parallel connectivity, and one-to-one 

mapping.  Tiered-identicality enforces a strong preference for matches only between identical 

predicates, but allows for rare exceptions (e.g. matching aligned functions in cross-domain analogies).  

For example, minimal ascension (Falkenhainer, 1988) allows non-identical predicates to match, but only 

if they are part of a larger mapped structure and share an ancestor in the ontological hierarchy.  Parallel 

connectivity states that if two statements are matched then their arguments must also match.  One-to-

one mapping means that each element in the base can align with no more than one element in the 

target and vice versa. 

Each mapping in SME contains: (1) a set of correspondences between elements in the base and 

elements in the target, (2) the structural evaluation score which is a numerical measure of similarity and 

(3) candidate inferences which are inferences that are carried over from the base to the target, 

according to common structure.  Structural evaluation prefers mappings which align higher-order 

relations; this is the principle of systematicty. SME has been used to model many phenomenon, 

including perceptual similarity (Lovett, Dehghani & Forbus, 2008), learning of physics concepts from 
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examples (Klenk & Forbus, 2007) and moral decision making (Dehghani et al., 2008).  In this work, SME is 

used in question answering, which serves as the evaluation for the techniques of multimodal knowledge 

capture. 

3.3.2 SEQL 

 In the spatial language experiments in Chapter 4, I model category formation using analogical 

generalization via SEQL (Skorstad, Gentner, & Medin, 1998; Kuehne et al., 2000; Halsted & Forbus, 2005) 

which uses SME as a component.  SEQL creates generalizations from an incoming stream of examples.  

In supervised learning experiments, generalizations are organized in generalization contexts.  For 

example, in learning language categories, there would be one generalization context per word/label.  

There can be more than one generalization per context, since real-world concepts are often messy and 

hence disjunctive. Each generalization context consists of a set of generalizations and a set of 

unassimilated exemplars. 

 When a new example arrives, it is compared against every generalization in turn, using SME.  If it 

is sufficiently close to one of them (as determined by the assimilation threshold), it is assimilated into 

that generalization.  The probabilities associated with statements that match the example are updated, 

and the statements of the example that do not match the generalization are incorporated, but with a 

probability of 1/n, where n is the number of examples in that generalization.  If the example is not 

sufficiently close to any generalization, it is then compared against the list of unassimilated exemplars in 

that context.  If the similarity is over the assimilation threshold, the two examples are used to construct 

a new generalization, by the same process. An example that is determined not to be sufficiently similar 

to either an existing generalization or unassimilated example is maintained as a separate example. 

 SEQL has been used to model everything from infant learning (Kuehne, Gentner & Forbus, 2000) 

to conceptual change (Friedman & Forbus, 2008) to generating rules for proposing perpetrators of 



46 

 

terrorist activities (Halstead & Forbus, 2007).  In this work it is used to model the formation of spatial 

language categories. 

3.3.3 MAC/FAC 

 MAC/FAC (Many are Called/Few are Chosen) (Forbus, Gentner, & Law 1995) is a model of 

similarity-based reminding created to capture the seemingly contradictory psychological phenomenon 

that surface similarity is often more important than structural similarity in retrieval, while structural 

similarity is weighted more heavily in similarity judgments. MAC/FAC takes as input a probe and a case 

library.  The probe contains the structured representation for the situation under consideration (for 

example, a physics problem to be solved).  The case library is a set of cases, each itself a structured 

representation, representing the available examples to match (for example, a set of previously worked 

physics problems).  MAC/FAC uses a two-stage process to select a reminding case from the case library 

based on its similarity with the probe. 

 In the first stage (MAC) a feature vector is created for the probe.  The components of the vector 

correspond to individual predicates and have a value that is proportional to the number of occurrences 

of that predicate in the case.  The case(s) from the case library with the highest dot product with the 

probe is returned from MAC.  Up to three cases can be returned, based on how close the dot product 

results are (this threshold is a parameter that can be set by the user).   The second stage (FAC) uses SME 

to do a more detailed, structural comparison of the probe with each of the candidate cases returned 

from the MAC stage.  The candidate case with the highest structural evaluation score is returned as the 

reminding by MAC/FAC.  Alternatively, if the scores are extremely close, MAC/FAC may return up to 

three remindings. 



47 

 

3.4 EA NLU 

 The Explanation Agent Natural Language Understanding (EA NLU) (Tomai & Forbus, 2009) is 

used to create representations from English language input for the experiments in this thesis.  

Unrestricted automatic natural language understanding is beyond the state of the art, so EA NLU uses a 

simplified language, QRG Controlled English (QRG-CE), and relies on semi-automated disambiguation.  

This practical approach is a significant improvement over having experimenters construct 

representations entirely by hand, which is time consuming and allows for increased tailoring of inputs.  

The EA NLU approach also allows us to make the syntax problem tractable, to build deep 

representations suitable for complex reasoning, and to handle a wide range of potentially ambiguous 

inputs.  EA NLU is used by multiple projects.  Experiment-specific alterations and additions are explained 

on an experiment by experiment basis. 

 EA NLU relies on several off-the-shelf components.  It uses Allen’s bottom-up chart parser 

(Allen, 1995) in combination with the COMLEX lexicon (Macleod et al., 1998) and a simplified English 

Grammar (Kuehne & Forbus, 2004).  The parser uses subcategorization frames from ResearchCyc for 

word and common phrase semantics.  Compositional frame-based semantics from the parsing process 

are transformed using dynamic logic principles from Discourse Representation Theory (DRT) (Kamp & 

Reyle, 1993).  The resulting set of discourse representation structures (DRS) supports numerical and 

qualitative quantification, negation, implication, modal embedding, and explicit and implicit utterance 

sub-sentences.  EA NLU has been used previously to create representations for models of moral decision 

making (Dehghani et al., 2008). In this work, EA NLU is used to create representations of input for a 

multimodal knowledge capture system.  
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3.5 COGSKETCH 

 CogSketch2 (Forbus, et al, 2008) is an open-domain sketch understanding system, built on the 

nuSketch (Forbus, Ferguson, & Usher, 2001) architecture.  CogSketch is being developed for three main 

applications: (1) as a cognitive simulation of visual and spatial reasoning and learning, (2) as a platform 

for collecting data from human subjects, and (3) as an educational tool.  In this thesis we use it in the 

first capacity, as a means of creating input stimuli for cognitive modeling and artificial intelligence 

research.  A previous version of CogSketch, called sKEA, was used for some of the experiments reported.  

For the mode of sketching used, the fundamental properties of the sketches and the spatial 

relationships computed are the same in the two programs; the main difference is the underlying 

knowledge base: CogSketch uses a subset of OpenCyc while the sKEA KB is based on ResearchCyc3. 

 The main insight in CogSketch is that recognition is not a necessary aspect of human to human 

sketching.  People often use language to label their sketches in real time instead of relying on 

themselves or others to recognize the objects drawn (think of the ubiquitous cocktail napkin sketch).  

This is a key insight, as recognition-based sketching systems (e.g. (Alvarado, Oltmans, & Davis, 2002)) 

must restrict themselves to tightly-controlled domains with a relatively small number of highly-

differentiated symbols in order to operate correctly.  CogSketch operates as a general purpose sketching 

system and bypasses the problems associated with object recognition by providing users with tools to 

segment and label their own ink.  Users segment sketches into distinct objects as they sketch by clicking 

a button when they start drawing an object, and again when they finish.  Each object created is a glyph.  

Each glyph has ink and content.  Ink consists of one or more polylines, lists of points representing what 

the user drew.  The content is a symbolic token that represents what the glyph denotes.  Conceptual 

                                                           
2
 http://www.spatiallearning.org/ 

3
 This difference is due to licensing.  CogSketch is available for free download, so it uses the unrestricted OpenCyc 

knowledge base.   
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labeling allows users to indicate the type of the content of the glyph in terms of the underlying 

knowledge base.  In addition to a conceptual label, glyphs in CogSketch can be given a name which is a 

natural language string used to identify the glyph.  Figure 13 below shows an example of a CogSketch 

sketch.  There are three glyphs in this sketch, the sun, the planet and the orbit.  The glyph representing 

the planet is named “Earth” and conceptually labeled with the ResearchCyc concept Planet, therefore 

in later reasoning it can be identified by its name “Earth”, and the system will be able to access 

everything that ResearchCyc knows about the concept planet.     

 CogSketch also automatically computes a number of qualitative visual relations and attributes 

for glyphs in sketches.  These represent the general visual features of the sketch and therefore do not 

make use of any task or domain specific information.  For example, a glyph’s size is computed based on 

the relative size of its bounding box.  The bounding box and blob boundary are automatically computed 

for each glyph.  The RCC-8 qualitative relations (Cohn, 1996), which describe all possible topological 

relations between two-dimensional shapes, are computed between all pairs of glyphs.  RCC-8 relations 

are used to guide the generation of other relations, including positional relationships and containment 

and connection.   

 

Figure 13 

A CogSketch sketch containing three glyphs: a 

planet, a sun, and an orbit.  The glyphs 

representing the planet and the orbit form a 

connected glyph group while the glyphs 

representing the orbit and the sum form a 

contained glyph group with the orbit filling the 

role of the container. 
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The visual positional relationships that are computed depend on the genre and pose of the 

sketch under consideration.  Genre is used to tell CogSketch the overall type of what is being drawn, 

while pose tells CogSketch how to interpret the sketch coordinates in terms of the kind of thing being 

drawn.  The sketches in this dissertation are all drawn in the default genre, physical, and the default 

pose, looking from side.  In this genre/pose, the positional relations computed are: rightOf, above, 

enclosesHorizontally, and enclosesVertically.  Containment and connection trigger the creation of 

contained glyph groups and connected glyph groups.  Contained glyph groups consist of a single 

container glyph and all of the glyphs contained inside of it.  Connected glyph groups consist of all glyphs 

whose ink strokes intersect.  In the sketch in Figure 13, the planet and the orbit form a connected glyph 

group since their ink overlaps.  The orbit and the sun form a contained glyph group with the orbit as the 

container.   

 All of the relations we have discussed up to this point are done on or between glyphs.  It is also 

possible to decompose glyphs in CogSketch into their component edges using the Perceptual Sketchpad 

(PSketch)(see Lovett, Dehghani, & Forbus, 2008 for a more detailed description).  Decomposition is done 

over the polylines that make up a glyph.  Starting with each polyline as a candidate edge, PSketch uses a 

five step algorithm to refine its list of candidate edges.  Once PSketch has identified the edges in a glyph, 

it attempts to find cycles of edges that potentially form a closed shape.  PSketch then computes a 

qualitative structural representation based on the relationships between the edges 
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 In addition to standard glyphs, CogSketch allows users to create annotation glyphs.  Annotation 

glyphs provide a means of highlighting important properties of a glyph.  Examples include the length or 

height of an object, or the force acting on an object.  Like other glyphs, annotation glyphs consist of both 

ink and the entity that is represented by the glyph (in this case chosen from a list of properties of 

glyphs).  Unlike other glyphs, annotation glyphs also refer to the other glyph in the sketch depicting the 

entity that they are providing information about.  Annotation glyphs may also have values and units 

associated with them.  For example, in Figure 14, the Resistance Arm is an annotation glyph of type 

LengthIndicator, indicating the length of the Resistance Arm of the depicted lever.  The Resistance 

Arm glyph has a slot referring to the lever glyph, since the lever is the object being described.  The 

Resistance Arm glyph also has an associated value of 1 foot.  Due to their special status, annotation 

glyphs do not participate in the computation of spatial relationships.   

 Since CogSketch is an open-domain system, it has been used in a variety of settings.  CogSketch 

is being integrated with QR systems for use in the early stages of engineering design (Wetzel & Forbus, 

2008).  CogSketch has also been used to create input for a variety of cognitive modeling experiments 

(e.g. (Lovett, Lockwood & Forbus, 2008)).  In this thesis CogSketch is used to create inputs for modeling 

spatial language use and to create diagrams for multimodal knowledge capture. 

 

Figure 14 

Sketch showing the use of annotation 

glyphs.  The Resistance Arm is an 

annotation glyph of type 
LengthIndicator and indicates an 

important property of the lever glyph 

that it annotates. 
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3.6 DISCUSSION 

 This chapter has described the existing component systems that I used in this thesis.  Unless 

otherwise noted, all systems were developed in the Qualitative Reasoning Group at Northwestern 

University.  First, I covered the ResearchCyc knowledge base and the FIRE reasoning engine which form 

the common-sense knowledge base for the other systems and my work.  I also described the SME model 

of analogy and similarity and the related SEQL model of analogical generalization, both of which are 

used in my simulation experiments.  Finally, I introduced the EA NLU natural language understanding 

system and the CogSketch sketch understanding system, both of which are used throughout my 

experiments to create structured representations from natural language and sketched input.  The 

descriptions in this chapter are necessarily brief and intended only to give enough background on each 

system to enable the reader to understand the experiments in this document.  For theoretical and 

implementation details, the referenced papers will give more in-depth information.  Any experiment-

specific alterations or additions to existing systems are described in the section on that experiment. 
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4 SPATIAL PREPOSITION EXPERIMENTS 

4.1 INTRODUCTION 

 Spatial relationships play an important role in human reasoning, from navigation to solving 

physics and engineering problems.  Space is a fundamental organizing principle of human cognition and 

primitives to communicate spatial relationships show up across languages and cultures.  In English-

speaking countries we use the spatial prepositions (e.g. in, on, above, below) to talk about the spatial 

arrangement of objects in our environment.  While the number of prepositions in English is a closed set 

and is quite small (around 100) compared to sets of other word types, the assignment of these 

prepositions to actual scenes is quite complex.  Psychologists have made significant progress in 

determining the scene characteristics that contribute to spatial preposition assignment, yet there are 

still many open questions.  For a more in-depth coverage of the psychological factors influencing spatial 

preposition use, please see the discussion in Chapter Two.  Computational models of spatial preposition 

use lag behind the psychological discoveries, and very few of these models have been applied to more 

complex reasoning tasks.  In this chapter I present models of both the learning of spatial prepositions 

from sketches and the use of spatial prepositions to label relationships in novel sketched scenes.   

 For the first line of experiments, I present the SpaceCase model of spatial preposition use.  

SpaceCase is a Bayesian model of spatial preposition assignment that uses evidence from a scene to 

update its preference between in and on.  I describe the architecture of the model and its success in 

modeling results from several psychological studies (Lockwood et al., 2005).  SpaceCase Experiment 1 

examines how four properties of the figure and ground influence spatial preposition use based on the 

results of Feist and Gentner (2003).  SpaceCase Experiment 2 models the role of spatial language in 

memory for visual scenes (Feist & Gentner, 2001).   
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 In the remaining two lines of experiments, I model the formation of spatial preposition 

categories using analogical generalization.  While others have modeled the formation of spatial 

categories, my approach is unique in that my system demonstrates the ability to learn spatial categories 

using a considerably smaller and more cognitively plausible number of training examples than previous 

models.  I present results from categorizing sketches containing simple geometric figures (squares, 

circles, triangles).  The two experiments in the first line in this section: Geometric Shapes Experiment 1 

and Geometric Shapes Experiment 2 examine the categories created from generalizing canonical 

examples (in Experiment 1) and what happens to those categories when ambiguous cases are added (in 

Experiment 2). 

 In the final line of experiments, the stimuli involve real-world objects where functional aspects 

of the items must be considered in addition to scene geometry.  With these stimuli, I also demonstrate 

the ability to use the same sketches and the same general processes to learn spatial prepositions from a 

second language.  While some type of spatial language shows up across languages and cultures, the 

form that language takes differs greatly in both its specificity and the importance of different properties 

in the environment (e.g. Bowerman, 1996; Gentner & Bowerman, 2009).  The Cross-linguistic 

Experiment classifies the stimuli from Gentner and Bowerman (2009) according to the English 

preposition labels and also classifies the same sketches according to the Dutch preposition labels. I 

conclude this chapter with a discussion of the results from all three lines of experiments and what they 

contribute to our understanding of computational models of spatial preposition use.  

4.2 PROBLEM DESCRIPTION 

 There are two problems to tackle when modeling human spatial preposition use 1) category 

formation and 2) labeling of novel scenes.  Category formation examines how spatial language 

categories are learned, including what properties of a scene are most important for distinguishing 
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category membership.  Labeling of novel scenes is the problem of assigning a preposition to a scene (or 

a subset of a scene) which has not been encountered before, based on the categories formed.  The 

SpaceCase experiments deal with the second problem – given existing category constraints, taken from 

the literature, can novel scenes be labeled in a manner consistent with human subjects?  The other two 

lines of experiments address the first problem – can the category contents needed to classify future 

scenes be automatically learned?  The learning experiments here do not currently produce output in a 

format that can be directly used by SpaceCase, however, ideas for implementing this in future work are 

discussed in Chapter 6. 

4.3 SPACECASE MODEL OF SPATIAL PREPOSITION USE 

 This section describes the two experiments based on the SpaceCase model of spatial preposition 

use.  SpaceCase was developed to model the phenomenon of spatial language use in a way that can 

account for psychological findings that show that functional features of objects are important to 

consider, in addition to the geometry of a given scene.  We assume that the assignment of spatial 

prepositions rests on the knowledge and skills that people bring to bear on other spatial tasks.  Spatial 

prepositions encode a combination of geometric and functional properties, making them both 

detectable in visual scenes and able to provide information about what possibilities are relevant in that 

scene when detected.  For example, the distinction between in and on in English includes an aspect of 

location control, with more control when in is used than when on is used.  Consider an apple in a bowl 

and an apple on a plate.  When the bowl is moved the apple will always move with the bowl although it 

may roll around a little inside.  The apple on the plate is in a much more precarious situation and may 

easily take a tumble if the plate is moved quickly.   

 We assume that there are multiple, situation-specific criteria that determine when it is 

appropriate to use one term over another – location control is just one example of such criteria.  We 
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view each of these criteria as evidential, in that they tend to suggest rather than uniquely determine 

answers.  Thus, we describe our SpaceCase model in terms of evidence rules, which given a situation, 

provide levels of belief about how prepositions should be assigned.   

4.3.1 SPACECASE EXPERIMENT 1: LABELING  

4.3.1.1 Overview 

 In SpaceCase Experiment 1, we focus on modeling the results of Feist and Gentner (2003).  They 

examined the role of four factors in in/on determinations in visual scenes involving two objects: a figure 

object (located object) and a ground object (reference object).  The four factors considered were: (1) the 

geometry (curvature) of the ground, (2) the animacy of the ground, (3) the animacy of the figure, and (4) 

the functional role of the ground.  The curvature of the ground was varied to be one of three qualitative 

values {high-curvature, medium-curvature, low-curvature}.  The animacy of the ground was varied by 

using either a hand (an animate ground) or a variety of inanimate objects as the ground figure.  The 

animacy of the figure was varied by using either a coin (inanimate) or firefly (animate) object as the 

figure.  The functional role of the ground was studied by varying the inanimate labels assigned to the 

ground from the set: {bowl, dish, plate, slab, rock}. 

 In the original study, subjects were shown simple pictures of figure objects located with respect 

to ground objects.  The different factors (geometry, animacy, and function) were systematically varied in 

the different stimuli.  Subjects were given sentences of the following format: “<figure> is in/on the 

<ground>” where <figure> and <ground> were replaced with the labels that matched the pictorial 

stimuli.   The subjects were asked to indicate which preposition best fit the situation displayed in the 

stimulus.   
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 All four factors studied were shown to affect preposition assignment.  Specifically, high 

curvature of the ground was more likely to lead to in and low curvature is more likely to be associated 

with on.  If the ground is animate (the hand), in was more likely to be used (presumably because the 

hand can close around the figure object and better contain it) whereas if the figure is animate (the 

firefly), on was used more often (because the firefly is able to move away from the ground of its own 

volition).  Moreover, subjects were more likely to use in than on when they were told that the ground 

was a container (such as a bowl) than when they were told it was something that is usually considered 

to be a surface (plate or slab), even when the object exhibited the same level of curvature.  While all of 

these factors influenced the use of prepositions, the strength of the effect varied.   

4.3.1.2 Materials 

 The original stimuli from the Feist and Gentner (2003) study were used as input to the 

SpaceCase model.  Each of the original stimulus objects was sketched using the CogSketch sketch 

understanding system.  A total of six sketches were created: one of each variation on ground curvature 

(low, medium, high) with a firefly as the figure and one of each variation on ground curvature with the 

coin as the figure.  All other variations were created by relabeling the ground object in one of the 

existing sketches. This made for a total of 36 stimuli accounting for each variation along the four 

dimensions (summarized in Table 2 below).  Figure 15 shows an example of a stimulus from the original 

experiment along with the sketched equivalents. 
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Table 2. Variations of scene factors taken from Feist and Gentner (2003).  An asterisk indicates an approximation 

taken from the ResearchCyc contents and a plus indicates a new concept that was created for this 

experiment. 

 

The sketched stimuli differed from the original stimuli in that they were 2-D renditions of the 

original 3-D stimuli.  From CogSketch we were able to extract a variety of qualitative geometric 

properties directly from the ink and to use the conceptual labels to describe the necessary functional 

information (figure and ground animacy and function of the ground).   SpaceCase collects information 

on each of the four factors under consideration from each input sketch.  The geometry of the ground is 

computed from the properties of the ink in the sketch and the other three factors are collected via 

inference about the kinds of entities involved.  These inferences are based on the conceptual labels 

assigned to the figure and ground objects in the sketches.  For many of the stimuli, the knowledge base 

already contained the appropriate concept: Hand (hand), Coin-Currency (coin), DinnerPlate 

(plate), StoneObject-Natural (rock), and Bowl-Generic (bowl) were all taken directly from the 

existing KB contents.  There wasn’t a concept directly corresponding to dish, so that was approximated 

with the concept EatingVessel.  Slab was approximated with Block which has many of the same 

 

Dimension Variations Determined by ResearchCyc label 

Geometry of the ground high-curvature 

medium-curvature 

low-curvature 

Ratio of height to 

width of the 

bounding box of 

the ground 

N/A 

Animacy of the ground 

Function of the ground 

hand 

dish 

bowl 

plate 

slab 

rock 

genls inferencing Hand 
EatingVessel* 
Bowl-Generic 
DinnerPlate 
Block* 
StoneObject-
Natural 

Animacy of the figure coin 

firefly 

genls inferencing Coin-Currency 
Firefly+ 
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properties as a slab.  The knowledge base did not have a concept for firefly, so a new concept Firefly 

was created based upon the entry for Dragonfly.  Table 2 summarizes these labels.  In all of the 

sketches, in addition to the conceptual labels given, the figure object was named “figure” and the 

ground object was named “ground”.   

Figure 15. Example stimuli from the original study (left) and the sketched equivalent (right) 

 

Table 3. Rules for determining the label for ground function 

Label Criteria 

Strongly functions as a container both ContainerArtifact and Basin in genls 

hierarchy 

Weakly functions as container ContainerArtifact in genls hierarchy AND 

Smooth NOT in genls hierarchy 

OR 

HolderGripper in genls hierarchy 

Functions as a surface Anything that does not fall into one of the other 

categories 
 

 

Curvature information is approximated from the ink by examining the height to width ratio of 

the bounding box of the ground glyph in the sketch.  This is a very rough approximation of curvature and 

works only in 2D situations such as this where the objects are viewed from a side perspective, and we 

know that they will be curves.  Assignment to one of the three qualitative categories (high, medium, 

low) is based on numerical cutoffs for each category.  Animacy of the ground and animacy of the figure 

are binary values and are based on genls hierarchy in the knowledge base.  An object is considered to be 
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animate if it has the concept Animal somewhere in its genls hierarchy.  The function of the ground is 

qualitatively assigned to one of three categories: strongly functions as a container, weakly functions as a 

container, or functions as a surface.  These categories were created based on the human subjects data.  

Assignment to a category depends on the genls hierarchy.  Table 3 shows the genls inferencing rules 

used to determine the function label for the ground object.  These criteria were set to try to capture the 

phenomenon from the human data as closely as possible.  For example, one hypothesis was that an 

animate ground (hand) produced more occurrences of in because it could close around the object and 

contain it, so HolderGripper was chosen as the genls target.  The comment for the concept describes 

it as “[an instance of HolderGripper] can apply pressure to another object and thereby grip it in such 

a way that its motion is restricted”, which captures the spirit of the original data. 

 

4.3.1.3 System Design 

 All of the information gathered about each input scene is fed as evidence into a Bayesian 

updating algorithm that assigns a probability that either of the prepositions (in or on) accurately 

describes the scene.  We use Everett’s (1999) evidential rule engine, which in turn uses Pearl’s (1986) 

hierarchical updating algorithm.  Evidence contributes to the support for a preposition based on the 

likelihood of that piece of evidence for that preposition.  Again, these values are taken from the human 

subjects data.  For example, Feist and Gentner showed that an animate ground led subjects to choose in  

over on.  Consequently, in our model an animate ground is considered evidence that increases the 

likelihood that on is the correct preposition to describe the scene.  Likelihood in this case is defined as: 

)|(

)|(
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n
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 After all of the evidence is considered and propagates through the model, if the likelihood of 

any preposition exceeds a threshold, that preposition is proposed as the correct descriptor for the 

scene.  At present, the only options available are: in-ContGeneric, on-Physical, and other-

preposition.  The first two are formal predicates which are used in the knowledge base for covering a 

very large set of specialized cases, defined by a hierarchy of specialized predicates. For example, in-

ContGeneric has thirteen specializations including different levels of location control (e.g. open 

versus closed containers) and on-Physical has two specializations corresponding to floating on a 

liquid and particles strewn over a surface. 

 Currently SpaceCase has a total of ten evidential rules.  Three of the rules are used to describe 

the support relationship between the ground and the figure.  This is an example of using CogSketch to 

provide perceptual information to the system, since the triggers for these rules depend on the visual 

relationship between the sketched figure and ground relationships.  The three support relationship rules 

are: 

• figure-completely-supported-by-ground 

• figure-partially-supported-by-ground 

• figure-not-supported-by-ground 

These rules trigger based on how many of the figure’s bottom edge points intersect with the ground’s 

edge points.  The first rule (complete support) increases the likelihood that the figure is either in or on 

the ground.  The second and third rules (no support or only partial support) increase the probability that 

another preposition would be more likely to describe the scene.  For SpaceCase Experiment 1 (labeling), 

all of the figure ground pairs were in complete support relationships in keeping with the original stimuli.   

 The other seven rules in the SpaceCase system collect the evidence necessary to make in/on 

judgments based on the results from the Feist and Gentner (2003) study.  Therefore, they are related to 
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the four factors that were studied in those experiments (animacy of the figure and ground, ground 

function and ground geometry).  The variables that represent these likelihoods are: 

• ground-high-curvature 

• ground-medium-curvature 

• figure-animate 

• ground-animate 

• ground-function-container-strong 

• ground-function-container-weak 

• ground-function-surface 

 Based on the results from the human subjects trials, the ground high and medium curvature 

rules increase the likelihood that the figure is in the ground. The ground animate and ground function 

container rules also increase the likelihood of in. The figure animate and ground function surface rules 

increase the likelihood that the figure is on the ground.  The curvature rules are triggered by the 

curvature that CogSketch computes from the digital ink for the glyph that represents the ground.  The 

other rules are all triggered by inferences made from the knowledge base, using the concept instance 

information asserted when the glyphs are drawn as discussed in the Materials section. 
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 Figure 16 shows how information propagates through the SpaceCase model.  When each rule is 

triggered, it creates an evidence element that contains the name of the preposition to update (in, on or 

other) as well as the amount by which to update its likelihood. The evidence values associated with each 

rule are parameters of the model.  The values chosen were based on the pattern of results found in the 

human subjects experiments.  For example, the function of the ground, for people, has a much stronger 

influence on the number of in responses than the curvature of the ground.  Therefore, the ground 

function strong rule increases the likelihood of an in response by a greater value than the ground high 

curvature rule.  The values of the likelihood update variables in the current incarnation of SpaceCase are 

described in Table 4 below.  Later we will see that SpaceCase is not terribly sensitive to the specific 

values of these parameters.  As long as their ordinal relationships fit the pattern of results found in the 

original study, SpaceCase’s answers will accurately model the data. 

 

CogSketch
Input sketch

KB

Evidence

Qualitative spatial 

information
Functional 

information

Bayesian Updating Algorithm

in, on, other judgment
 

 
Figure 16. SpaceCase model 
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Table 4. SpaceCase rules along with the preposition they support and their likelihood values 

 

Variable Name Preposition Likelihood 

figure-complete-support in/on 5 

figure-partial-support other 10 

figure-no-support other 30 

ground-high-curvature in 3 

ground-medium-curvature in 2 

figure-animate on 3 

ground-animate in 5 

ground-function-container-strong in 10 

ground-function-container-weak in 5 

ground-function-slab on 10 
 

 

4.3.1.4 Results 

 SpaceCase was consistent with human subjects on all 36 experimental stimuli for the values of 

the parameters given in Table 4.  Importantly, SpaceCase is not overly sensitive to the specific values 

chosen for the likelihood parameters.  As long as the parameters reflect the relative strengths of the 

factors as found by Feist and Gentner (2003), the correct results are derived.  We determined this via a 

series of sensitivity analyses, looking at how the results changed when parameters were varied.  

Because this is a large space, we have focused on two-dimensional subspaces of these parameters at a 

time, with the other parameters keeping the values from Table 4.  Figure 17 is an example plot showing 

the 2x2 sensitivity analysis for the figure-animacy and ground-container-strong parameters.  The lighter 

gray squares indicate parameters settings where SpaceCase’s answers are consistent with human 

subjects and the darker square indicate inappropriate results.  
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Examining the instances that give inappropriate answers can lead to interesting insights.  For 

example, the firefly-hand stimulus proves to be particularly interesting since both are animate and an 

animate ground should bias the response towards in while an animate figure should bias responses 

towards on.  Subjects from the original study were in fact more likely to respond with “the firefly is in 

the hand,” and Feist and Gentner (2003) reported a much larger positive effect on in usage for ground 

animacy than the effect for on generated by figure animacy.  SpaceCase shows the same pattern of 

results, providing in as the answer unless the figure-animate parameter is set sufficiently higher than the 

ground-animate parameter in which case it returns on.  Thus, when SpaceCase’s parameters violate 

constraints found by psychological experimentation, it fails, suggesting that it is failing for the right 

reasons.  

 

 
Figure 17. Example of 2x2 sensitivity analysis run on the SpaceCase likelihood values 
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4.3.2 SPACECASE EXPERIMENT 2: THE EFFECT OF SPATIAL LANGUAGE ON RETRIEVAL 

4.3.2.1 Overview 

 SpaceCase was also used to model a second set of spatial preposition experiments showing the 

effects of spatial language on memory.  Feist and Gentner (2001) describe a series of experiments where 

human subjects were shown pictures that were ambiguous as to whether or not the figure was in a 

particular spatial relationship with the ground.  In some trials, subjects were also shown a sentence 

describing the scene using spatial prepositions. For example, in Figure B (initial picture) it is ambiguous 

as to whether the block is on the building.  The experimental group in the original study might be asked 

to rate the applicability of the sentence “the block is on the building” while being shown the picture 

(there were several variations of the experiment to rule out alternate explanations such as 

concentrating on the picture, and language without prepositions), and the control group would see the 

picture without any language.  Later, subjects would be shown pictures and were asked to pick out the 

stimuli that they had originally seen.  In the retrieval phase subjects would see the original picture, as 

well as two variations, a plus variant which unambiguously satisfies the spatial preposition and a minus 

variant which is even worse in regards to exhibiting the spatial preposition than the original stimulus.  All 

three of these variations are shown in Figure 18 below.  Subjects tended to believe that they had seen 

the plus variant when they were also exposed to the appropriate spatial language during encoding, thus 

illustrating that language can affect the encoding and memory of spatial relations in visual stimuli. 
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4.3.2.2 Materials 

 To model these results, we recreated all of the stimuli (original pictures as well as plus and 

minus variants) using CogSketch. Because SpaceCase currently only handles in/on distinctions where the 

figure is supported by the ground, we eliminated stimulus sets that involved other pairs of prepositions.  

This left us with a total of 10 sets of stimuli, and 30 total sketches (3 variants in each set).  The full set of 

final sketches used in this experiment, including all three variants, can be found in Appendix A.  For 

retrieval we used Forbus et al.’s (1994) MAC/FAC model of similarity-based reminding.  MAC/FAC’s case 

library consisted of the sketched versions of the stimuli from the original experiments (all three variants 

for every stimulus).   

4.3.2.3 Experimental Design and Results 

SpaceCase Experiment 2.1  

 For the first experiment, SpaceCase Experiment 2.1, every variation of each input sketch was run 

through the SpaceCase model to determine the applicability of the intended preposition (in or on) to the 

initial situation.  This is similar to one experiment run against the human subjects to show the 

applicability of the preposition to each variant of the initial stimuli.  The results are summarized in Table 

5 below, these results are averaged across all of the stimuli, there were 30 total sketches, 10 in each 

category.  

 
Figure 18. Example Stimulus from the original Feist and Gentner study 
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Table 5. Average applicability of the appropriate preposition (in or on depending on the stimulus) for each of the 

stimuli in the experiment as determined by SpaceCase 

Initial sketch 0.363 

Plus variant 0.859 

Minus variant 0.243 
 

 

 These results are consistent with the human-subject trials where the plus variant was given the 

highest applicability rating, the initial sketch an in-between rating, and the minus variant, the lowest 

applicability rating.  These results also pointed out some weaknesses in our current version of SpaceCase 

which will be addressed in a later version.  For example, one of the stimulus sets involved a block on top 

of a building (pictured in Figure 18). For this particular stimulus, the rule for the ground acting as a 

container fired, since a building can be inferred to be a container based on genls inferencing in the 

knowledge base.  Clearly, a building can be a container, but in this particular case (a block on the roof of 

the building) the support relationship pictured is not one of containment (as opposed to a person inside 

of the building, which is a containment relationship).  SpaceCase needs to be able to use visual 

properties as well as conceptual properties to ensure that containment is actually occurring in a given 

scene.   

SpaceCase Experiment 2.2 

 To provide a baseline of comparison, the next experiment, SpaceCase Experiment 2.2, involved 

probing each case library with the initial variants of the sketches to see which sketch was retrieved.  This 

setup is similar to human-subject trials where there was no spatial language.  As expected, the initial 

sketch was retrieved in all cases.   

 The experimental design in SpaceCase Experiments 2.2 and 2.3 is slightly different than the 

original Feist and Gentner design; this is due to the way that MAC/FAC works (for a more in depth 
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discussion of MAC/FAC, please see Chapter 3).  In the original experiment, subjects would be shown only 

the initial variants during the encoding stage, and then retrieval would be tested using all three variants.  

For each stimulus shown during the retrieval trials, the subject would indicate whether they had seen 

that particular stimulus before (during the encoding trials).  MAC/FAC operates with a probe case and a 

case library and returns the object in the case library that it determines to be most similar to the probe.  

So, in our experiments, all the variants of all of the stimuli are added to the case library, and then an 

individual sketch (the initial variant in SpaceCase Experiment 2.2 and the initial variant + spatial 

language in Experiment 2.3) is used as the probe.   

SpaceCase Experiment 2.3 

 For the final experiment, SpaceCase Experiment 2.3, the sketches were run again with the 

model, but we added the formal equivalent of the spatial language indicated by the sentence into the 

representation of the probe sketches.  This was done by asserting a statement with the spatial 

preposition information (e.g. “The spider is on the bowl” would be asserted as (on-Generic Spider 

Bowl)) in the case for the probe sketch.  Doing this before running MAC/FAC led to retrieving the plus 

variant of the sketch from the case library rather than the initial sketch in all 10 trials.  This is consistent 

with the human-subjects results that subjects with the spatial language sentence were much more likely 

to mistakenly recognize the plus variant. 

4.4 GEOMETRIC SHAPES EXPERIMENTS 

4.4.1 INTRODUCTION 

 The experiments in the previous section investigated labeling scenes with spatial prepositions, 

when given likelihood rules indicating how to update beliefs.  This section examines a different problem: 

how to learn the contents of different spatial language categories.  That is, given a set of sketches, can 
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we learn to classify them into categories based on the spatial relationships present and by doing so, 

learn the important factors necessary to create the categories?  We use SEQL (for a detailed description 

of the SEQL algorithm, please see chapter 3), an existing model of analogical generalization to construct 

relational descriptions from stimuli that are input as hand-drawn sketches.  In this set of experiments we 

are attempting to learn to distinguish between in, on, above, below and left after being trained on 

simple sketches exemplifying each preposition.  Again we rely on CogSketch to automatically compute 

qualitative spatial relationships for each of the sketched stimuli. 

4.4.2 GEOMETRIC SHAPES EXPERIMENT 1 

4.4.2.1 Input  

 Input was provided as sketches created using CogSketch.  Each sketch contained two geometric 

shapes named figure/ground and conceptually labeled with their common shape names (for example in 

the figure below, in the in example the square was named “figure” and conceptually labeled “square”).  

All of the stimuli were constructed from simple shapes from the set {circle, triangle, rectangle, square}.  

In the first experiment, the library of sketches used contained 50 sketches.  Each sketch was designed to 

be a good example of one of five spatial prepositions: in, on, above, below or left with 10 sketches 

created for each of the five prepositions.  By “good example” we mean that each sketch would be easily 

and unequivocally recognized as an example of the English use of that preposition.  For example, for all 

of the on sketches, the figure object was smaller than the ground object and the entire bottom surface 

of the figure object was in contact with the top surface of the ground object.  For all of the in sketches, 

the figure object was smaller than the ground object and was completely contained by the ground 

object which was a closed shape.  Each preposition had examples containing different shapes in the 

figure and ground roles.  All sketches were 2-dimensional and were drawn from the side-view 
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perspective.  One sketch for each of the five prepositions is show in Figure 19.  All of the sketches used 

in the experiment are available in Appendix B. 

 The sketches were inspired by, and drawn from, stimuli in the psychological literature studying 

spatial preposition use in humans, particularly from studies where the stimuli were simple geometric 

shapes.  The sketches for above and on were taken in part from examples provided in Regier (1995). 

Other sketches for left and above were created based on information from Gapp (1995a, 1995b), whose 

experiments explored the effect of distance and shape (extent) and size of the ground in judgments of 

applicability for projective spatial relationships.  The sketches were also informed by a variety of 

experiments that discuss limitations on regions of acceptability for prepositions such as Logan and 

Sadler (1996) and Regier and Carlson (2001).  Figure 20 shows examples of the original stimuli from 

previous studies that served as inspiration for our input. 

 Initial processing is done on each sketched stimulus to extract visual information from the ink.  

This information is meant to approximate high-level visual processing.  For example, RCC-8 relations 

(Cohn, 1996) are computed between the objects in the sketch to determine topological relationships 

  
 

  

on in above below left 

Figure 20. Examples of the sketched inputs for Geometric Shapes Experiment 1. 

 
a 

 

 
b  

c 
 

d 

 

 
e 

 Figure 19. Examples of the stimuli that served as inspiration for the inputs for Geometric Shapes Experiment 

1. Figure a taken from (Regier & Carlson, 2001) b-e from (Regier, 1995). 
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such as touching (RCC8-EC) and inside (RCC8-nTPP). We use these qualitative spatial relations as one 

source of perceptually salient relationships in the sketch. To review, CogSketch also automatically 

computes a variety of other qualitative spatial relationships from the ink.  For example, spatial 

processing indentifies groups of glyphs that form connected and contained glyph groups.  In the latter 

case it also specifies which glyph acts as the container and which acts as the insider.  Also computed are 

positional relationships (i.e., above and right-of) between all pairs of glyphs in a sketch that are disjoint 

from each other.  It is important to note that above as computed by CogSketch is very different from its 

English language counterpart. The spatial relationship above in CogSketch is derived by comparing the 

relative positions of the centers of area of the bounding boxes of the glyphs involved.  This alone is not 

enough information to parse different prepositions.  For example, the positional relationship above 

shows up in the generalizations for both above and on. 

 Our model does some minimal additional processing based on the spatial relationships 

computed from the sketch.  Each occurrence of a glyph name in a fact was replaced with the label 

“figure” or “ground” instead of the internal CogSketch reference.  For consistency, positional relations 

are always rewritten so that the figure is in the first argument and the ground is in the second argument 

i.e. (above ground figure) would be rewritten (below figure ground). This is necessary 

because to avoid duplication, CogSketch only computes the above facts.   For each sketch, this visual 

information and any conceptual information about the entities in the sketch is stored as a case.  Any 

unnecessary information, like bookkeeping facts representing specifics of our implementation, is filtered 

out since we do not view them as psychologically relevant.  All filtering and processing procedures were 

done over the entire case library of exemplars – individual sketches were never singled out for 

processing.  The parameters describing the filtered objects are available in Appendix C. 
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4.4.2.2 Experimental Design and Results 

 All 50 sketches were run through SEQL using an assimilation threshold of 0.9.  Our goal in doing 

these experiments is to see whether we can achieve human-like classification results automatically and 

what specific set of factors are needed to do so.  The fifty simple, unlabeled sketches were automatically 

classified by SEQL into the five generalizations expected (corresponding to in, on, above, below and left) 

based on the combination of perceptual features in each case.  These unsupervised learning results 

were stable over a variety of match threshold values between 0.8 and 0.9.  Inspection of the 

generalizations created shows the common features of the sketches that created that generalization.  

Figure 21 shows the generalization that was created for on, all of the facts appeared in all member 

sketches, so there are no probabilities,all are definite facts. All five of the generalizations are available in 

Appendix D. Figure 22 shows the process used to create the spatial categories from the sketched stimuli. 

 The information included in the generalization is visual information based on the spatial 

arrangement of the glyphs in the sketch.  Looking at the facts generalized, it makes sense that the 

salient perceptual information needed to assign the label on would be a combination of tangential 

connection between the figure and the ground and the figure being above the ground (keeping in mind 

that all of the input sketches were canonical examples of on with the full bottom surface of the figure 

being in contact with the top surface of the ground).  It is also important to note again that the simple, 

individual qualitative relations computed by CogSketch are not enough to generate these categories, it is 

their combination that leads to meaningful results. 

(enclosesHorizontally ground figure) 

(connectedGlyphGroupTangentialConnection figure ground) 

(connectedGlyphGroupTnagentialConnection ground figure) 

(rcc8-EC figure ground) 

(above figure ground) 

 

Figure 21. The generalization created for the preposition in 
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 These are surprisingly good results considering that we used only 10 sketches for each 

preposition.  Also, relatively few facts were needed in each case to determine which category a sketch 

fell into.  The average number of facts per generalization was 5.6.  The largest number of facts in a 

generalization was 7.  It is also important to note that not just any set of facts will result in a useful 

classification.  If bookkeeping information is not filtered out, it will overwhelm the cases and the 

categories that result will be meaningless.  Also, object-centric perceptual information (such as relative 

size and roundness) had to be filtered out, as it ended up being irrelevant to the spatial preposition 

categories and was adding noise to the similarity comparisons.   

 Likewise, while doing these experiments, we found several additional spatial relationships that 

had not previously been computed that were needed to create meaningful generalizations.   In order to 

get the above and below cases to generalize correctly, we added a computation about the grazing line.  

CogSketch
Input sketch

Case of Structured Facts

Preprocessing

SEQL

Generalizations/Category Descriptions

Removal: removed 

bookkeeping facts (e.g. time 

created)

Replacement: rewrote all 

positional facts with figure 

in first argument for 

consistency (e.g. (above 

ground figure) -> 
(below figure 
ground))

Addition: added necessary 

facts (e.g. grazing line)

 
 

Figure 22. Experimental design for Geometric Shapes Experiment 1 
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The grazing line is a horizontal line that grazes (is tangential to) the very top of the ground object.  

Regier and Carlson (2001) suggest that above ratings from human subjects were sensitive to the grazing 

line and we found the same for our system in our experiments.  Whenever the figure and ground objects 

do not touch (RCC8-DC) a grazing line computation is triggered and one of two facts 

{(aboveGrazingLine figure ground), (belowGrazingLine figure ground)} is added to the 

sketch case.    

 When glyphs partially overlap, a fact is also asserted based on percentage of total area overlap 

(LessThan10Overlap, DefiniteOverlap, MoreThan90Overlap).  This computation is a rough 

approximation based on the blob boundaries of the two glyphs.  These facts are useful for 

disambiguating cases of partial overlap from those that are just poorly drawn examples of in or on and 

are computed for every sketch where overlap exists.  Since none of the simple sketches in Geometric 

Shapes Experiment 1 had any overlap, these facts do not show up in any of the generalizations created, 

however they are important in Geometric Shapes Experiment 2 described in the next section.  
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Table 6. Summary of the perceptual relationships that form the content of the generalizations created in Simple 

Geometry Experiment 1 and the categories in which they appear 

 

Relationship Categories 

Horizontal enclosure below, above, on 

Vertical enclosure left 

Left of left 

RCC8-DC (disjoint) below, above, left 

Above above, on 

Below below 

Above grazing line above 

Below grazing line below 

Contained glyph group in 

RCC8-NTPP/TPP (inside) in 

Connected glyph group on 

RCC8-EC (touching) on 
 

 

 The set of facts retained in generalizations is summarized in Table 6 along with the categories 

they appear in.  It is interesting that this small set of relationships is sufficient to distinguish between 

these prepositions.  Efforts were made to remove redundant and unnecessary information.  For 

example, in addition to recognizing contained glyph groups, CogSketch also asserts information about 

which object is designated as the container and which is the insider.  At this level of classification, 

removing that information had no impact on the generalizations created.  Keeping just the information 

that the ground and the figure form a contained glyph group is enough to ensure that the correct 

generalization will form. 

4.4.3 GEOMETRIC SHAPES EXPERIMENT 2 

 In Geometric Shapes Experiment 1, all of our stimuli were very good examples of the type of 

preposition they were meant to represent.  In the second experiment, we wanted to look at what would 

happen if we added stimuli that were “less good” examples of the same prepositions.  For example, if 
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instead of having some stimuli where the figure was strictly above the ground and some stimuli where 

the figure is strictly to the left of the ground, what happens if there are some stimuli where the figure is 

both slightly to the left of and slightly above the ground?  Stimuli like these are often used in the 

psychological literature to test the boundaries of different prepositions.  Subjects will be shown a variety 

of ambiguous arrangements and be asked either (1) which preposition best describes the scene or (2) to 

provide a goodness judgment for how well a given preposition fits the scene.  Since these stimuli are, by 

definition, outliers, they were not used in Geometric Shapes Experiment 1 where the goal was to 

examine the core constituents of preposition categories.  Instead, in this experiment, the goal is to see 

how the ambiguous sketches are assimilated (or not) into existing canonical categories. 

4.4.3.1 Input 

The input for Geometric Shapes Experiment 2 was very similar to that for Geometric Shapes 

Experiment 1.  The same 50 sketches from Geometric Shapes Experiment 1 were used.  In addition, 20 

new sketches were created which were more complicated (non-standard) and/or ambiguous cases of 

the spatial prepositions used, the full set of these sketches is in Appendix F.  Figure 23 below shows four 

sketches from the 20 added that illustrate different reasons for inclusion.  The sketch in part a is an 

example of an ambiguous situation (the circle could be on or in the square).  The sketch in part c is a 

non-standard instance of on with vertical as opposed to horizontal support (this is similar to the case 

“the picture is on the wall”). For the rest of this discussion, the 50 original sketches from Geometric 

Shapes Experiment 1 will be referred to as the simple sketches and the 20 additional sketches added in 

Geometric Shapes Experiment 2 will be referred to as the complex sketches. 
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 The 20 complex sketches obviously could not cover every possible arrangement of figure and 

ground, so we focused on the following deviations: 

• sketches where the figure overlaps the ground by varying amounts (ambiguous between in and 

on) as in Figure 23, part a. 

• sketches ambiguous between above and left (Figure 23, part b) 

• sketches where the figure is attached to the side of the ground – vertical as opposed to 

horizontal support (as in Figure 23, part c) or where the ground is sloped 

• on and above examples where the figure was larger (larger vertical or horizontal extent) than 

the ground (Figure 23, part d)  

The idea that some scenes are better examples of certain prepositions than others is common in the 

literature.  For example, Logan and Sadler (1996) argue that for spatial templates, there are three 

regions of acceptability for spatial relationships: the good region, the region of examples that are not 

good, but are acceptable and the region of unacceptable examples.  The 20 complex sketches are 

intended to fall into the acceptable but not good category. 

4.4.3.2 Experimental Design and Results 

 As in Geometric Shapes Experiment 1, we use CogSketch to create a case of facts from each 

sketch and then use SEQL to classify the sketch cases.  In this set of experiments the simple sketches 

were classified using SEQL in a first-pass at classification which created the same generalizations as in 

 
a 

 
b 

 
c 

 
d 

Figure 23. Examples of the ambiguous stimuli used in Geometric Shapes Experiment 2, highlighting the types 

of variations included 
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the first experiment.  Once the base generalizations based on the simple sketches were in place, the 

complex sketches were added and the SEQL generalization algorithm was run again to incorporate the 

new sketches.  Several different runs were done with varying match threshold values, and again we 

found good results at the 0.8 and 0.9 levels. 

 As mentioned in the previous section, the 50 simple sketches created five generalizations, one 

corresponding to each of the prepositions (on, in, above, below and left).  This result was unchanged in 

this experiment.  After the complex sketches were added, the generalizations were changed in the 

following way: 

• The ambiguous above/left sketches divided – the one that was most like the above sketches 

joined that generalization while the other two created a separate generalization.   

• The sketches where the figure overlapped the ground by varying amounts all joined the in 

generalization.   

• The on category assimilated all of the other sketches that were meant as complex or ambiguous 

examples of that preposition.   

• There was one example of an ambiguous over sketch that was not incorporated into any of the 

generalizations and remained an exemplar.   

The incorporation of these instances into the overall generalization altered the facts that were 

considered part of the generalization as can be seen in Figure 24 and Figure 25. 

On - simple On - complex 

 

 

 
 

 Figure 24. An example of one of the original examples of on and one of the complex examples  
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 Clearly this new generalization covers a much broader arrangement of objects.  However, it is 

important to note that all sketches that were included in this generalization depict a relationship that 

could reasonably be classified in English using the preposition on.  The facts common to all of the 

sketches were those that pertain to connectedness/support which is key to the use of the preposition 

on.  The other facts allow for some variation in exactly how the two objects are connected in space and 

how the support is provided to the figure by the ground.  This is the general pattern for how the existing 

generalizations were altered by the addition of the complex sketches – the core components of the 

preposition (containment, support, positioning relative to the grazing line) remained largely intact with 

small variations in things like vertical/horizontal containment, left/right positioning, and amount of 

overlap.  The in generalization changed to allow for either contained groups or significant overlap to 

signal containment.  Over retained the requirement that all instances have the figure above the grazing 

line of the ground, but allowed for variation in the horizontal containment constraint.  The two 

ambiguous left/above instances that formed their own generalization both failed the grazing line test.  

 The Geometric Shapes experiments provide insight into the core components of a scene that 

--DEFINITE FACTS: 
(rcc8-EC figure ground) 
(connectedGlyphGroupTangentialConnection ground figure nil) 
(connectedGlyphGroupTangentialConnection figure ground nil) 
(ConnectedGroup figure ground) 
--POSSIBLE FACTS: 
88%: (above figure ground) 
65%: (enclosesHorizontally ground figure) 
--UNLIKELY FACTS: 
6%: (enclosesHorizontally figure ground) 
6%: (enclosesHorizontally figure ground) 
6%: (enclosesVertically ground figure) 
6%: (leftOf figure ground) 
6%: (rightOf figure ground) 
 

Figure 25. The new generalization for on after the complex sketches have been added 
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might signal the use of a spatial preposition to describe it.  They also suggest how core spatial categories 

may be stretched to cover non-standard cases.  However, there were several shortcomings in these 

experiments.  First of all, the use of geometric shapes limits the usefulness of the categories created 

since much of spatial preposition use can be attributed to the functional features of the objects 

involved.  Secondly, these experiments were done with unsupervised learning (i.e. unlabeled inputs).  

This is very unlike the way that people are exposed to prepositions where arrangements of objects are 

most likely labeled verbally.  Finally, these experiments examined only English prepositions.   These 

shortcomings are all addressed in the next set of experiments involving the containment and support 

relations in English and Dutch. 

4.5 CROSS LINGUISTIC EXPERIMENTS: CONTAINMENT-SUPPORT RELATIONS IN ENGLISH AND 

IN DUTCH  

4.5.1 INTRODUCTION 

 In the Geometric Shapes experiments I looked at automatically creating categories of spatial 

language based on sketched inputs.  In this set of experiments I set out to correct several shortcomings 

of the previous work.  First of all, in the previous experiments, the input sketches were unlabeled and I 

relied on pre-processing to prune all irrelevant facts.  While this worked in the model, it seems likely 

that it is not very similar to the way that humans learn spatial categories.  Instead, humans hear spatial 

scenes in their lives described (labeled) from a very young age (e.g. “put the toys in the box”) and the 

hearers learn over time what factors of a scene are needed to make judgments and which can be 

discarded.  So, I wanted to repeat the experiments with labeled training data and to decrease the 

amount of preprocessing that needed to be done. 
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 The previous experiments also dealt exclusively with scenes composed of simple geometric 

shapes.  This was useful for allowing us to focus on the geometric aspects of scenes that contribute to 

spatial language use, but did not allow us to look at the range of functional aspects of scenes that have 

also been shown to influence spatial language use.  In this set of experiments I wanted to focus on 

scenes involving real-world objects so that functional properties could be considered in category 

formation as well as geometric ones.   

 The final aspect of spatial preposition use that I was hoping to address with this set of 

experiments is cross-linguistic variation.  Given that spatial language varies so much from culture to 

culture, I wanted to specifically see if my system could learn the labels for the same set of sketches in 

more than one language using exactly the same inputs and the same classification method – but with 

different, language-specific labels.   

 Luckily I was able to address all three of these goals (1) labeled training sets (2) input with real 

world objects and (3) cross-linguistic variation in one set of experiments.  This section describes my work 

modeling the results of a Gentner and Bowerman study looking at the containment and support 

relationships in both Dutch and English. 

4.5.2 CROSS-LINGUISTIC EXPERIMENT  

4.5.2.1 Original Gentner and Bowerman Study 

 As previously mentioned, this work is based on a set of psychology experiments conducted by 

Dedre Gentner and Melissa Bowerman (2009). Gentner and Bowerman were testing the Typological 

Prevalence hypothesis, that the frequency with which distinctions and categories are found across the 

world’s languages provides a clue to conceptual “naturalness” and how easy that particular distinction is 

to learn.   To explore this, they focused on a subset of spatial prepositions in English and Dutch.  The 



83 

 

English and Dutch languages divide the support-containment continuum quite differently.  In English 

there are two prepositions: in is used for containment relationships and on is used for support 

relationships.  However, Dutch distinguishes three different forms of support.  The prepositions for 

Dutch and English are outlined in Table 7.   

Table 7. The containment and support spatial prepositions in English and Dutch 

 

English Dutch Relationship Example 

on op Support from below 

 
on aan Hanging attachment 

 
on om Encirclement with contact 

 

in in Containment 

 
 

 

 Bowerman and Pederson found in a previous study (1992) that some ways of dividing up the 

containment-support continuum are very common cross-linguistically while others are relatively rare.  

English follows a more linguistically common approach by grouping all support relations together into 

the on category while the Dutch op-om-aan distinction is extremely rare. Both use the very common in 

containment category.  Following the Typological Prevalence Hypothesis, both English and Dutch 

children should learn the common and shared category of in around the same time.  It should take 

Dutch children longer to learn the rare aan/op/om distinctions for support than it takes the English 

children to learn the common on category.   
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 Gentner and Bowerman tested children in five age groups (2, 3, 4, 5, and 6 years old) as well as 

adults who were native speakers of English and Dutch.  Each subject was shown a particular 

arrangement of objects and asked to describe the relationship in their native language.  In the original 

experiment, 3-dimensional objects where used.  So, for example, a subject would be shown a mirror on 

the wall of a doll house and asked “Where is the mirror”.  The set of all stimuli is shown in Table 8 

below. 

 

 

The results of the study were consistent with the Typological Prevalence hypothesis.   

Specifically, Dutch children are slower to acquire the op, aan, om system of support relations than 

English children are to learn the single on category.  Both groups of children learned the in category 

early and did not differ in their proficiency using the term.  Across all prepositions, English-speaking 3 to 

4 year old children used the correct preposition 77% of the time, while the Dutch children used the 

Table 8. The original stimuli from the Gentner and Bowerman experiment 

 

op/on aan/on om/on in/in 
cookie on plate mirror on wall necklace on neck cookie in 

bowl 

toy dog on 

book 

purse on hook rubber band on 

can 

candle in 

bottle 

bandaid on leg clothes on line bandana on head marble in 

water 

raindrops on  

window 

lamp on ceiling hoop around doll stick in straw 

sticker on  

cupboard 

handle on pan ring on pencil apple in ring 

lid on jar string on 

balloon 

tube on stick flower in 

book 

top on tube knob on door wrapper on gum Cup in tube 

freckles on 

face 

button on 

jacket 

ribbon on candle Hole in towel 
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correct preposition 43% of the time. Within the Dutch children, the more typical op category was 

learned sooner than the rarer aan and om categories.  For a more detailed description of the results, 

please see the original paper (Gentner and Bowerman, 2008). 

4.5.2.2 Materials 

 All 32 original stimuli from the Gentner and Bowerman study were sketched using CogSketch.  

Each sketch was stored as a case containing: (1) the automatically computed qualitative spatial 

relationships and (2) information about the types of objects in the sketch.  In the original experiment 

subjects were cued as to which object should be the figure (e.g. “where is the mirror”) and which should 

be the ground.  To approximate this, each sketch contained two glyphs, one named figure and one 

named ground, and these names were used by the model.  Recall that names in CogSketch are just 

strings that are used to refer to the objects.  Each object was also conceptually labeled using concepts 

from the KB.  For instance, in the mirror on the wall stimulus, the mirror was declared to be an instance 

of the concept Mirror and the wall was labeled as an instance of WallInAConstruction.  All of the 

sketches used can be found in Appendix G and Appendix H lists the concepts used in conceptual 

labeling. 

 When people learn to identify spatial language categories in their native languages, they learn 

to focus on the relationships between objects, and to retain only the important features of the objects 

themselves rather than focusing on the surface features of the objects.  This allows people to correctly 

use prepositions to describe a relationship even if they have not seen the figure or ground object before, 

or if they have seen the same objects in different configurations.  For example a bandaid on a leg as 

opposed to a bandaid in a box.  The preposition depends not on the fact that there is a bandaid 

involved, but on the specific properties of the bandaid that are applicable in each situation.  As noted 

above, having conceptual labels and a knowledge base allows us to simulate this type of knowledge.  For 
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each conceptual label, additional concepts from its genls hierarchy were extracted from ResearchCyc.  

The genls hierarchy specifies subclass/superclass relationships between all the concepts of the KB.   So, 

for example, Animal and Dog would both be genls of Daschund.  Here we were particularly interested 

in facts relating to whether objects were surfaces or containers – since this has been shown to be an 

important factor in spatial preposition use (e.g. Feist and Gentner, 2003).    

 In the original study, the physical objects used as stimuli were manipulated to make the 

important relationships more salient to subjects.  We approximated this by drawing our sketches so as 

to highlight the important relationships for the individual spatial language categories.  For example, the 

sketches for aan that required showing a connection by fixed points were drawn from an angle that 

made the connectivity between the parts observable.  Figure 26 below shows two aan sketches: knob 

aan door and clothes aan line.  They are drawn from perspectives that allow the system easy access to 

the point-contact relationship.    

 The basic spatial category learning algorithm is this: For each word to be learned, a 

generalization context is created.  Each stimulus representing an example of that word in use is added to 

the appropriate generalization contexts using SEQL.  (Since we are looking at both Dutch and English, 

each example will be added to two generalization contexts, one for the appropriate word in each 

language.)   Recall that SEQL can construct more than one generalization, and can include unassimilated 

 

 

Figure 26. Two examples of ann drawn to highlight the type of connection. 
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examples in its representation of a category.  Each generalization context acts as a defacto label, making 

this set of experiments a type of supervised learning. 

 To test this model, we did a series of trials constructed as shown in Figure 27.  Each trial 

consisted of selecting one stimulus as the test probe, and using the rest of the sketches as the training 

examples to create the categories.  The test probe (T) was then labeled as follows:  We let the score of a 

generalization context be the maximum score obtained by using SME4 to compare T to all of the 

generalizations (G) and unassimilated examples (E) in that context.  The word associated with the 

highest-scoring generalization context represents the model’s decision.  The trial was correct if the 

model generated the intended label for that stimulus.  There were a total of 32 trials in English (8 for in 

and 24 for on) and 32 trials in Dutch (8 each for in, op, aan, and om) one for each stimulus sketch.     

   

                                                           
4
 See Chapter 3 for a discussion of the SME algorithm 

OPIN OMAAN

SEQL SEQL SEQL SEQL

G G E E EG G E EGG G G EEE

Test sketch

Training sketches

 
 

Figure 27. Experimental setup for the Cross-linguistic experiments 



88 

 

 

4.5.2.3 Results 
 

 The results of our experiment are shown below.  The generalizations and numbers given are for 

running SEQL on all the sketches for a category.  Table 9 below summarizes the number of sketches that 

were classified correctly, for each preposition the number is out of 8 total sketches except for English on 

which has 24 total sketches.  All results are significantly different from chance (p < 10-4), except for the 

English in (p< 0.2).  For an in-depth discussion of the error patterns, see the Error Analysis section. 

 

Table 9. Results for both English and Dutch.  All are significant, except for English in 

 

 Recall that within each generalization context, SEQL was free to make as many generalizations 

as it liked.  SEQL was also able to keep some cases as exemplars if they did not match any of the 

other cases in the context. The table below summarizes the number of generalizations and 

exemplars for each context for one run of the experiment. 

 

 At first the amount of variation within the contexts might seem surprising.  However, since the 

stimuli were chosen to cover the full range of situations for each context it makes more sense.  

English Dutch 

in 6 75% in 6 75% 

on 21 

 op 7 87% 

87% aan 6 75% 

 om 8 100% 

 

 

Table 10. Number of generalizations and exemplars created within each context 

 English Dutch 

 in on in op aan om 

Generalizations 2 6 2 2 3 3 

Exemplars 2 0 2 2 0 2 
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Consider the Dutch category op.  The 8 sketches for this one generalization included very different 

situations: clingy attachment (e.g. sticker op cupboard), traditional full support (e.g. cookie on plate) 

and covering relationships (e.g. top on jar).  Two of the English generalizations are shown in Figure 28 

and Figure 29.  For each generalization the cases that were combined are listed followed by the facts 

and associated probabilities.   
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Best Generalization IN 
Size: 3 
 (candle in bottle, cookie in bowl, marble in water) 
--DEFINITE FACTS: 
(rcc8-TPP figure ground) 
--POSSIBLE FACTS: 
33%: (Basin ground) 
33%: (Bowl-Generic ground) 
 

 

 
 

 

Figure 28. One generalization created for in (which is the same in both Dutch and English) and the 

sketches that were the generalized cases 

Best Generalization ON 
Size: 2 
 (top on tube, lid on jar) 
--DEFINITE FACTS: 
(Covering-Object figure) 
(above figure ground) 
--POSSIBLE FACTS: 
50%: (definiteOverlapCase figure ground) 
50%: (rcc8-PO figure ground) 
50%: (rcc8-EC figure ground) 
 

  
 

Figure 29. One generalization created for English on and the sketches that were the generalized cases 
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4.5.2.4 Error Analysis 

 Closer examination of the specific errors made by SEQL is also illuminating.  For example, both 

the Dutch and English experiments failed on two in stimuli.   It was the same two stimuli for both 

languages: flower in book, and hole in towel.  The first case, flower in book, is hard to represent in a 

sketch.  In the original study, actual objects were used, making it easier to place the flower in the book.  

It is not surprising that this case failed given that it was an exemplar in both in contexts and did not 

share much structure with other stimuli in that context.  Hole in towel fails for a different reason.  The 

ResearchCyc knowledge base does not have any concept of a hole.  The closest suggested category is 

Cavity which is a type of ConcaveTangibleObject which would be useful for describing a hole in 

the ground (which might be considered a type of container) but not for a hole in a towel (which is just 

the absence of material).  Moreover, how holes should be considered in spatial relationships seems 

different than for physical objects.  

 Many of our errors stem from the small size of our stimuli set.  For contexts that contained 

multiple variations, there were often only one or two samples of each.  An interesting future study will 

be to see how many stimuli are needed to minimize error rates.  (Even human adults are not 100% 

correct on these tasks.)  Interestingly, om is one of the prepositions that is harder for Dutch children to 

learn (it covers situations of encirclement with support).  However, it was the only Dutch preposition for 

which our system scored 100%.  This again is probably explainable by sample size.  Since the entire 

context contained only cases of encirclement with support, there was more in common between all of 

the examples as opposed to categories with more variation where the individual sketches had less in 

common. 
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4.5.2.5 Discussion 

 Our model was able to successfully learn the support-containment prepositions in both Dutch 

and English with a small number of training trials.  We see three lines of investigation suggested by 

these results.  First, we would like to expand our experiments to include more relationships (e.g. under, 

over, etc).  Second, we would like to expand to other languages.  For example, Korean uniquely divides 

the containment relationship into tight fit and loose fit relations.  Third, we are in the process of building 

a sketch library of more instances of spatial relations.  With more sketches, we will have additional 

evidence concerning the coverage of our model.  

 There is also clearly a tradeoff between using a cognitively plausible number of training 

examples and having enough training examples to get good generality.  For example, adding the ability 

to automatically extract the important object types and features (e.g. containers) and ignore the 

spurious ones (e.g. that something is edible) requires enough training examples to be able to extract the 

necessary patterns.  We are planning future experiments to examine this issue by varying the number of 

training trials used.  It will also be interesting to see if we can use the same set of experiments to model 

the development of spatial language categories in children by varying the availability of different types 

of information.  Experiments like the Gentner and Bowerman work modeled here often report on 

common misuses of prepositions by children (i.e. over extension of common prepositions).  It would be 

interesting to try to replicate these types of errors by varying the content of the cases used in 

generalization and the assimilation threshold.    
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4.6 RELATED WORK 

 All of the experiments described in this chapter are attempts to model different aspects of 

spatial preposition usage.  This is a rich area of research in the cognitive modeling community, and there 

are a variety of approaches, each with their own benefits and tradeoffs. 

 A number of models of spatial preposition usage rely on representational templates that are 

created by hand.  For example, Herskovits (1980, 1986) categorizes spatial language into use cases 

based on object and contextual features as well as typicality.  Along the same lines, Logan and Sadler 

(1996) classify geometric scenes using spatial templates.  Template based models like these require a 

priori an exhaustive list of the use cases/templates available, mechanisms for selecting the correct one, 

and an account of what modifications can be made to fit an imperfect template to a scene.  By contrast, 

our use of SEQL produces relational templates automatically and reduces the imperfect fit problem to 

structural alignment.  The computational model of DiTomso et al (1998) attempts to computationally 

implement a model based on ideal meanings.  Their model incrementally refines its understanding of a 

preposition, starting with a set of all ideal meanings and then eliminates those that do not fit with the 

characteristics of the objects filling the figure and ground roles.  Their model is interesting in that it has 

the ability to rule out unlikely scenarios (e.g. the box is in the book vs. the book is in the box) however, it 

suffers from the same drawbacks as other template-based models –the templates must be hand 

constructed, and it is virtually impossible to build an exhaustive set of templates. 

 A similar approach is to use functions to delineate areas of applicability for different 

prepositions.  This is the approach taken by the VITRA project, in particular the SOCCER application 

(Andre, Herzog & Rist, 1988; Blocher & Stopp, 1998), which aims to create radio-style reports of soccer 

games.  In this system, cubic spline functions are created for every combination of reference (ground) 

object and preposition which describes the degree of applicability with respect to the position of a 
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located (figure) object.  This is made easier by the assumption that the background is always a soccer 

field, making the potential landmarks constant (goals, penalty lines, corners, etc).  So for example, there 

would be one function representing the acceptable classification for “in front of the left goal”, another 

for “left of the left goal”, etc.  There would be another set of functions for the right goal, each corner, 

and every other discernable landmark on the soccer field.  There are also more general areas defined 

such as “field”, “right-half of field”, etc.  This approach allows SOCCER to describe the location of any 

located object at various levels of detail and in real time.  However, this approach is limited to the 

domain at hand and other domains where the background is known a priori as are the potential 

relations and the spline functions.  Fuhr, et al. (1998) have a system that can describe the location of 

building toys in 3D space to a human partner (and react to the human partner’s locative descriptions).  

They also use a set of functions to define regions of acceptability.  In this case each object partitions the 

3D space into its own set of 3D acceptance volumes, in the process creating 79 acceptance volumes for 

each object.  When an object is moved, its acceptance volumes must be updated.   

 There have been many attempts to create models of spatial prepositions.  However, most of 

these have been based, like our first set of classification experiments, on purely geometric models 

(Logan & Sadler, 1996; Regier, 1996; Gapp, 1995).  Edwards and Moulin (1998) use the Voronoi model of 

space (Okabe, Boots & Sugihara, 1992) to computationally model spatial relations, but again, that model 

refers only to the topology of a scene.  One model that is often cited is Terry Regier’s (1995, 1996) 

model which predicts spatial term acceptability judgments in a variety of languages based on five-frame 

movies.  Regier and Carlson’s (2001) Attentional Vector Sum (AVS) model uses an attentional beam that 

is focused on the landmark (ground) at the point that is closest to being aligned with the located object 

(figure).  Attentional strength is maximized at the focus of the beam and drops off with distance.  A 

vector is also projected from each point on the landmark towards the located object.  These two 
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components are joined to form an attentionally weighted vector sum.  Each vector is multiplied by the 

attentional strength at its root and these values are summed together.  This vector sum represents the 

overall spatial alignment between the two objects.  They are then measured with respect to the 

reference axis for prepositions (for example the upright vertical axis for above).This model was 

consistent with human results when run with simple shape drawings where a small circle was placed at 

various locations “over” larger triangles, squares, and “L” shapes (Regier & Carlson, 2001).  While these 

results were encouraging, they are quite limited in scope for the same reason as our geometric 

classification experiments, as they only apply to very simple 2-D shapes.  Additionally, our model has the 

advantage of requiring far fewer exposures to fewer total stimuli in order to create spatial language 

categories. 

 Recently, there has also been a group of models that attempt to incorporate extra-

geometrical/functional attributes of scenes in spatial prepositions (Regier, Carlson, & Corrigan, 2004; 

Coventry, et al., 2005).  The Reiger, Carlson, & Corrigan work is an adaptation of AVS created to be 

consistent with the findings of Carlson-Radvansky, et al. (1999) that showed that the functional parts of 

objects were important in preposition use.  In the new version of AVS, attention is focused on the 

functional parts of objects using an importance parameter for different regions of objects that is set by 

the human-user of the model.   For example, when modeling a tube of toothpaste over a toothbrush, 

the bristles on the brush are tagged as the functionally important part of the object.  This is very 

interesting work, but requires human intervention to assign the weights to different parts of the objects.  

Also, in different arrangements, the part of an object that is functionally important may change, 

meaning that in every new scene the functionality parameters would have to be adjusted.  For example, 

consider the difference in attention to parts of the table in “the table is on the rug” and “the apple is on 

the table”.  However, our model, while it does consider functionality, is not currently able to separately 
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consider the functionality of different parts of one glyph.  The Coventry et al. work uses a connectionist 

model to predict and simulate the knowledge needed for the dynamic-kinematic routines in the 

functional geometric framework.   This model uses a neural network whose input is descriptions of 

visual scenes.  These descriptions are created using variables to encode various factors that were found 

to influence over/under/below/above judgments in human subjects: orientation, function, 

appropriateness, and object type (Coventry, Prat-Sala & Richards, 2001).    

 The main benefit of our approach is the flexibility and extendibility of the system.  Since the 

input is sketches, it is very quick and easy to create more stimuli and to test more arrangements of 

objects.  It also reduces the slippery slope inherent in hand-coded representations.  Since conceptual 

labeling allows us to tie objects in our sketches to concepts in an underlying off-the-shelf knowledge 

base, functional information can be added through inference, as it was the English/Dutch experiments.   

4.7 4.7 GENERAL DISCUSSION 

 In this chapter we described three sets of experiments looking at the formation and usage of 

spatial language categories.  The first experiments involved the SpaceCase model of spatial preposition 

use.  SpaceCase was able to correctly label occurrences of in and on in sketched scenes based on 

evidential rules in a Bayesian updating algorithm.  The evidential rules were hand-coded based on the 

findings of Feist and Gentner (2003).  This same model was used in a second set of experiments to 

model the effect of spatial language on memory encoding by simulating the results of another Feist and 

Gentner study (2001).   

 Work with SpaceCase led us to further explore whether the features for category membership 

could be learned automatically (rather than be coded by hand into the evidentiary rules).  This led to the 

Geometric Shapes experiments, attempting to automatically learn spatial language categories for in, on, 

above, below and left.  The stimuli in these experiments were simple scenes involving geometric shapes.  
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By carefully tuning the qualitative spatial relationships available in the exemplar cases, we were able to 

use SEQL to automatically learn all five preposition categories without supervision. 

 While SEQL was successful in modeling spatial language with geometric sketches, these 

experiments did not address the fact that language learning is typically supervised.  So, in the third set of 

experiments we (1) used labeled training data to more closely emulate the way that humans learn 

spatial prepositions. (2) we used stimuli that contained real-world objects and harnessed the power of 

the underlying KB to infer the functional information needed in spatial language categories. (3) we used 

the same set of stimulus sketches, based on a psychology study, and the same general method of 

classification to learn the containment-support relations in both English and Dutch. 

 In all of these experiments, we ignore to a large degree the actual geometry of the figure and 

ground objects, using rough approximations (bound box, blob boundary).  Herskovits (1998) argues that 

often features of the figure/ground are necessary and at other times specific types of schematization 

are important.   For example, many times a solid object acting as a figure can be represented as a point 

and a path can be conceptualized as a ribbon.  Using a bounding box or blob boundary is one type of 

schematization that in some situations may be indistinguishable from the schematization itself.  

However examining the objects and their roles in more detail is an interesting area for future work.  

Others have pointed out that parts of objects often come into play, for example, the top of a table is 

particularly important when considering the applicability of on or the accessible side of a chair when 

considering the applicability of in front of.  Again, this is something that we are not currently utilizing as 

we are dealing with glyphs as atomic units and not further breaking them down into surfaces. However, 

the ability to segment a glyph is built into CogSketch, and this is another possible direction for future 

work.   
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 We also are largely ignoring issues of reference frame assignment and ground selection which 

both influence preposition use.  We rely on CogSketch’s genre and pose to provide the frame of 

reference, and all of our stimuli are created with this in mind.  In all of the experiments here, the figure 

and ground objects are unambiguously labeled as such and all of the sketches have only two objects, 

making ground selection unnecessary.  However, both frame of reference and ground object selection 

are interesting problems for future work, especially on sketches that involve more than two objects and 

are from varying scales and perspectives. 

 These experiments demonstrate that sequential generalization combined with sketched input is 

a powerful method for modeling the learning of spatial language categories.  Sketching for input allows 

us to quickly and easily create any number of inputs containing any number of objects without the 

biases that arise from hand-coded inputs.  Sketching with conceptual labeling also gives us the flexibility 

to extract functional information about the objects in the sketch from the underlying knowledge base in 

addition to extracting automatically computed qualitative spatial relationships from the ink.   

 SEQL with generalization contexts lets us create multiple generalizations within each context, 

allowing us to capture the variety of concepts often represented by a single spatial language label.  

Unlike many other models of spatial preposition use, SEQL requires very few training examples to work 

successfully, although the optimal number of examples is an open empirical question.  SEQL is also 

flexible enough to model multiple languages using the same set of sketches and the same progressive 

alignment algorithm.   
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5 MULTIMODAL KNOWLEDGE CAPTURE 

5.1 INTRODUCTION 

 Researchers from psychology and learning sciences have examined the question of whether, 

and under what conditions, people learn better from multimodal presentations of information than 

from single-modality information (e.g. Mayer, 2001; Hegarty and Just, 1993).  Many of these studies 

have shown that subjects are able to perform better on tests of retention and transfer when they were 

presented with multimodal information sources, such as animations with narration or text with 

diagrams.  Indeed many traditional sources of instructional material contain multiple modalities, e.g., 

textbooks contain both text and diagrams.  To exploit such materials, knowledge capture systems should 

be able to integrate information across modalities into coherent chunks of knowledge.   

 There are multiple theories as to how and why multimodal sources of information lead to better 

recall and transfer performance.  The multimedia learning theory (Mayer, 2001) posits that instead of 

passively absorbing information, learners cognitively engage with it in an active attempt to understand 

(see chapter 2 for a more thorough discussion).  Under this theory, multimedia presentations of 

information lead to better understanding because learners actively engage in sense making activities as 

they attempt to integrate information from the two modalities, and it is this active engagement with the 

material that leads to deeper learning.  

 This chapter presents a multimodal knowledge capture system (MMKCap) based on this theory, 

which asserts that such learning is a five step process: 

1) Selecting relevant words for processing in verbal working memory 

2) Selecting relevant images for processing in visual working memory 

3) Organizing selected words into verbal mental model 
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4) Organizing selected images into visual mental model 

5) Integrating verbal and visual representations along with existing knowledge. 

 In MMKCap steps 1 and 2 (selection) are done manually by dividing the text and diagrams into 

discrete chunks.  Text chunks are determined by paragraph structure in the text and by diagram 

references in the text.  Each diagram is its own diagram chunk.  Step 3, developing a representation 

from the text, is done using the EA NLU natural language understanding system.  Extraction of 

information from the diagrams (step 4) is accomplished via the CogSketch sketch understanding system.  

The final step, Integration, uses the Structure Mapping Engine model of analogy and similarity to 

perform the cognitive task of comparing and integrating the two representations.  Descriptions of these 

systems can be found in Chapter 3. 

 After describing each of these steps in more detail, this chapter presents an experiment in which 

MMKCap is used to learn a chapter of content from a physics textbook: Basic Machines (1994). The 

system is evaluated on its ability to answer the homework questions provided by the publisher.  After 

the evaluation, the related problem of conceptual segmentation is discussed along with a proof-of-

concept diagram segmentation system.  We conclude with related work. 

5.2 MATERIALS 

 The text chosen to demonstrate the MMKCAP system is Basic Machines, a Naval training manual 

that covers basic physics concepts.  Basic Machines was chosen due to the relatively high volume of 

diagrams in the text, and because portions of it have been used in cognitive psychology experiments 

examining how people learn from multimodal information sources.  Additionally, Basic Machines has a 

set of homework assignments provided by the publisher that are designed to test comprehension.  This 

homework set forms the basis of the system evaluation.  The examples and evaluation presented here 

cover Chapter one of Basic Machines: Levers and the associated homework questions. 



101 

 

 

5.2.1 TEXT 

 The contents of a given chapter can be broken down into text content and diagram content.  

The text is further divided into basic informational text (which is itself divided into paragraphs), and 

worked example problems.  Example problems typically involve a short paragraph of background 

information followed by a formula and substitutions of values from the background into the formula.  

Figure 30 shows and example of a worked solution from Chapter 1 of Basic Machines. 

 

 
Now let’s take another problem and see how it 
works out. Suppose you want to pry up the lid of a paint 
can (fig. 1-8) with a 6-inch file scraper, and you know 
that the average force holding the lid is 50 pounds. If the 
distance from the edge of the paint can to the edge of the 
cover is 1 inch, what force will you have to apply on the 
end of the file scraper? 
 
According to the formula, 

 
here, 
L = 5 inches 
l = 1 inch 
R = 50 pounds, and 
E is unknown. 
 
Then, substituting the numbers in their proper places, 
we have 

 
and 

 
You will need to apply a force of only 10 pounds. 
 

Figure 30.  A worked example problem from the text  
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 In addition to information about levers, Chapter 1 of Basic Machines contains a general 

introduction to the whole book and a chapter summary.  These two sections are ignored in this 

evaluation; plans to address the summary are included in future work.  The remaining text includes 28 

paragraphs with an average length of 3.89 sentences each.  Chapter 1 also contains 9 worked examples.  

There are a total of 15 diagrams, 7 of which are associated with worked examples in one form or 

another.   Figure 31 shows the diagram associated with the worked example in Figure 30.  All of the 

diagrams from Chapter 1 can be found in Appendix J.   

 

 

Figure 31. The diagram from Basic Machines 

associated with the worked example in Figure 30. 

 

5.2.2 QUESTIONS 

 The first 29 questions of Basic Machines Assignment 1 address the content of Chapter 1.  All of 

the questions are either TRUE/FALSE or multiple choice and can be found in Appendix K.   



103 

 

5.3 THE MMKCAP MODEL 

5.3.1 OVERVIEW 

 This section steps through the multimodal knowledge capture (MMKCap) model, using examples 

from Basic Machines to illustrate the different steps.  Each step from Mayer’s multimedia learning 

theory, i.e.: 

1) Selecting relevant words for processing in verbal working memory 

2) Selecting relevant images for processing in visual working memory 

3) Organizing selected words into verbal mental model 

4) Organizing selected images into visual mental model 

5) Integrating verbal and visual representations along with existing knowledge. 

has a corresponding step in the MMKCap model.  Figure 32 shows an overview of this process. 

 

(1) selection (2) selection

(3) organization (4) organization

(5) integration Existing 

knowledge
 

Figure 32. An overview of the steps of the MMKCap model 
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5.3.2 SELECTING RELEVANT WORDS AND IMAGES (STEPS 1 AND 2) 

 In Mayer’s theory, steps one and two involve the learner deciding which portions of the text and 

diagrams to attend to in working memory.  Selection is necessary due to limits on working memory 

capacity.  Selection serves a similar purpose in MMKCap, to organize the information into discrete, 

coherent chunks.  Currently, this step is done manually.  A text chunk is determined by the structure of 

the source material according to the following rules:   

(1) Each paragraph in the original book is a separate chunk.   

(2) A paragraph may be further sub-divided if there is a reference to a figure that pertains to 

part of the paragraph and not to another.   

Rule (2) is necessary for paragraphs where only a portion of the text refers to the diagram.  In keeping 

with Mayer’s model, only the relevant portions of the paragraph will be integrated with the diagram in 

the multimodal integration step.  The other part of the paragraph will be separately processed as a text-

only chunk. 

 Diagram selection is also done manually following a similar set of rules: 

(1) Each diagram in the text is an individual diagram chunk 

(2) Complex, multi-part diagrams may be separated into individual chunks (one per part) if they 

are referred to separately in the text.  An example of a multi-part diagram is shown in Figure 

33.  Each of the three sections becomes its own diagram chunk. 
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Figure 33. Example of a multi-part diagram.  Each part 

(A, B, C) becomes its own diagram chunk during 

the diagram selection step. 

 

5.3.3 ORGANIZING SELECTED WORDS (STEP 3)  

 Step 3 of Mayer’s model involves translating the selected chunk of text into an internal 

representation.  In MMKCap, step 3 also creates a reasoning-ready representation from the original text.  

Representation in this case is done using EA NLU (see Chapter 3 for a description).  The input to EA 

during this step is QRG-CE, a simplified, natural language representation of the original text.  The output 

is a case (called a discourse case) of predicate calculus facts representing the semantic content of the 

text.   

 While translating from the original text to QRG-CE does involve human intervention, it is far 

easier than hand-converting directly to predicate calculus.  This simplification step was included to get 

around potential parsing difficulties and to allow this dissertation to focus on the multimodal aspects of 
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knowledge capture.  A strict set of guidelines are used when doing the translation to QRG-CE to ensure 

that the simplified text adheres as closely as possible to the original: 

1) Sentences that do not contribute topical information can be deleted: e.g. “[Machines] have 

taken much of the backache and drudgery out of the sailor’s lift.” or “Machines are your 

friends.”  Future versions should distinguish between useful and non-content sentences 

automatically, but for now this is done by hand. 

2) Long sentences or sentences containing conjunctions are broken into shorter, easier to parse 

sentences.  (see Figure 34 for an example of original text and its simplified counterpart) 

3) The mathematical steps in worked examples in the text (involving equations and numerical 

substitutions) are hand-represented in predicate calculus to make the steps in the problem 

solving process clear, and available for later use.  This is another step that will be automated in 

the future.   

4) Summary information at the end of the chapter is excluded for now.  This information is 

redundant (by definition).  Later a method will be developed to use summary information as a 

first pass check of knowledge capture  

5) Vocabulary is standardized to create a more cohesive understanding of the information.  For 

example, in chapter 1 of Basic Machines, the words “weight” and “resistance” are used 

interchangeably to refer to the load on a lever.  To make the text clearer, “weight” was always 

substituted for “resistance” in the text.  In future versions of MMKCap, there will be methods for 

automatically recognizing and handling this type of vocabulary resolution. 

Figure 34 shows an example of a text chunk and diagram chunk from the original text along with the 

QRG-CE representation of the text content.  For processing, the original paragraph has been further 
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subdivided into two chunks: chunk 1 contains the text that doesn’t refer to the diagram and chunk 2 

contains the text that does directly require the diagram.  Figure 35 shows the discourse case output 

from EA after processing chunk 2.  Processing was done using the user interface for EA where parsing 

and interpretation ambiguities are manually disambiguated (see Figure 36 for an example of this 

interface).  Then the final discourse case is stored using a preexisting function.  If the original text 

referenced a diagram, a fact is added to the discourse case indicating which diagram should be 

integrated with the text (e.g. the sketchForDiscourse fact in Figure 35). 

 

You will find that all levers have three basic 

parts: the fulcrum (F), a force or effort (E), and a 

resistance (R). Look at the lever in figure 1-1.  

You see the pivotal point (fulcrum) (F); the effort 

(E), which is applied at a distance (A) from the 

fulcrum; and a resistance (R), which acts at a 

distance (a) from the fulcrum.  Distances A and a 

are the arms of the lever. 

 

CHUNK 1 

A lever has three basic parts.   

A fulcrum is a basic part of a lever.   

A force is a basic part of a lever. 

A weight is a basic part of a lever. 

 

CHUNK 2 

F is the Fulcrum 

E is the force  

R is the weight 

A2 is the distance between the weight and the 

fulcrum.  

A1 is the distance between the force and the fulcrum.  

A1 is an arm of the lever.   

A2 is an arm of the lever. 

 

 

 
 
Figure 34. An example of a paragraph from the text and its associated diagram.  In the second column, the 

text has been translated to QRG-CE and the diagram has been sketched in CogSketch. 
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(isa lever6354 Lever) 
(isa a2 LeverArm) 
(possessiveRelation lever6354 a2) 
(isa f Fulcrum) 
(isa e ForceVector) 
(isa r Weight) 
(isa a2 Distance) 
(between r f a2) 
(isa a1 Distance) 
(between e f a1) 
(isa a1 LeverArm) 
(isa lever6231 Lever) 
(possessiveRelation lever6231 a1) 
(possessiveRelation lever6231 a2) 
(sketchForDiscourse " Figure1-1.sk" (DrsCaseFn DRS-3446218074-8197)) 

 
 

Figure 35. The discourse case for chunk 2 of text in Figure 34 

 

 
 

Figure 36. Example of the EA NLU manual disambiguation interface.  

  

During processing, EA attempts to tie entities in the text to collections in the knowledge base and takes 

advantage of several NL-specific types of facts to aid in parsing and interpretation.  For some of the 

concepts in Basic Machines, the NL-specific facts or the underlying collections were not in the 

knowledge base, so additional knowledge was added to facilitate interpretation.  All of the added 

knowledge can be found in Appendix L.  The majority of the added knowledge was necessary for one of 

the following reasons: 

• A collection was needed for a concept, or sense of a concept, that did not previously exist in 

the knowledge base.   



109 

 

• Multi-word string facts were added to alert EA that a given string should be processed as 

one entity (e.g. “mechanical advantage” and “resistance arm”) 

• Facts providing part-of-speech information 

• Denotation information tying an English word to a concept in the knowledge base 

Some concepts needed to be completely created from scratch.  For example, the word “Seesaw” was 

not recognized in the lexicon and a corresponding collection did not exist in the knowledge base, so 

both types of information needed to be added.  Other concepts may have been in the lexicon, but did 

not have a collection in the knowledge base corresponding to the correct sense of the word.  For 

example, the word “Wedge” is in the lexicon, but the concepts in the knowledge base refer to Wedge-

TheSandwhich and Wedge-TheGolfClub, so a new collection had to be added for Wedge-TheTool.  

Currently all new concepts and lexical information must be added by hand, however the future work 

section discusses some ideas for automating this process in the future.   

 After each discourse case is created, some additional facts are created to provide book-keeping 

information.  A firstDRSForChapter fact is added to the first discourse case for each chapter.  Each 

subsequent discourse case contains a previousDRSInChapter fact to preserve the order of the 

discourse cases during the integration step.  These facts also tie each discourse to the chapter in which it 

occurs.  All of the discourse cases for each chapter are stored together in one .meld file for replicability 

as well as being stored in the knowledge base.   The original sentences are discarded. 

5.3.4 ORGANIZING SELECTED PICTURES (STEP 4) 

 Like the previous step, step four in multimedia learning involves turning the selected modality 

into an internal representation.  The CogSketch sketch understanding system is used to create 

representations from the textbook diagrams.  First, each diagram is sketched using CogSketch.  This 

simplifies the image interpretation problem, allowing this work to focus on reasoning with the 
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information in the diagram.  Like the translation of the text into QRG-CE, a series of rules governs the 

translation of diagrams into sketches to ensure that the original diagram is maintained as faithfully as 

possible and that only information present in the original diagram is created in the sketched version: 

1) Objects in the sketch are drawn to preserve existing spatial relationships  

2) Objects in the sketch are only labeled in the sketch if they are labeled in the source 

diagram  

3) Objects labeled with conceptual information in the source diagram (i.e. Fulcrum) are 

given a conceptual label in CogSketch 

4) Objects that only have identifying labels in the original source (i.e. “A”) are labeled using 

the glyph name in CogSketch.  Note that names in CogSketch are case insensitive, so 

labels in the text that rely on case sensitivity must be changed to be distinguishable in 

CogSketch 

5) If an object is labeled with a numerical value in the source material then it is drawn as 

an annotation glyph in CogSketch with that numerical value. 

One departure from this set of guidelines is that items are also labeled if they are clearly meant to be 

recognized by their shape (e.g. triangles used to denote fulcrums).  This is done because currently 

domain-specific recognition capabilities are not built into the CogSketch system.    

 After each sketch has been created, it is exported as a case of facts representing the objects in 

the sketch and the spatial relationships between them.  As part of storing each sketch, a function is 

called which recomputes all of the qualitative spatial relationships calculated by CogSketch.  In addition 

to the regularly computed relationships, we also include the annotation glyphs, which is a departure 

from regular CogSketch operation.  Some of the spatial relationships calculated are redundant and can 

overwhelm the SME matches performed during the evaluation, so they are filtered out.  At this point, 
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bookkeeping information is also filtered out of the cases.  All filtering is done using the filter functions 

found in Appendix M.  The remaining facts are stored as a case in the knowledge base containing 

information about the objects in the sketch and the spatial relationships between them.  Figure 37 

shows several types of facts included in the case for the sketch in Figure 34.   

(enclosesHorizontally (GlyphFn Object-4 Layer-2) 
                      (GlyphFn Object-147 Layer-2)) 
(rcc8-EC (GlyphFn Object-4 Layer-2) 
         (GlyphFn Object-141 Layer-2)) 
(visualQuantityQuantitativeMeasurement((ConceptKnownAsFn "A1")  

(GlyphFn Object-4 Layer-2)) A1) 
(above Object-145 Object-4) 
 

Figure 37. Several facts from the diagram case created for the diagram in Figure 34 

 

5.3.5 INTEGRATION (STEP 5) 

 Integration in our MMKCap model is done using the Structure-Mapping Engine (SME, see 

Chapter 3 for a description) and a set of automatic preprocessing routines that prepare the cases for 

integration.  The system iterates through the discourse cases in order, checking for 

sketchForDiscourse facts which indicate that there is a sketch associated with the given discourse.  

If a discourse case has no sketchForDiscourse fact, the discourse case itself is considered the final 

outcome of the multimodal knowledge capture for that portion of the text.  If there is a diagram 

associated with a discourse, the corresponding sketch case is retrieved and the two cases are integrated. 

 The first step of integration is a preprocessing routine that checks for correspondences between 

the text and the diagram.  Required correspondences are created between objects in the sketch case 

and the discourse case to restrict the SME mapping (the corresponding objects must align in the 

mapping) as follows: 

1) An entity in the discourse case is identified by the same string as an entity in the sketch 

case.  For example, in Figure 34, the text contains the following: “You see the pivotal 
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point (fulcrum) (F)” and the corresponding diagram has an entity (the fulcrum) labeled 

“F”.  In this case, a required correspondence is created between “f” in the discourse 

case and the glyph in the sketch case that has the name “F”.  

2) There is a spatial preposition in the text, such as “The fulcrum is between the weight and 

the force”.  If there are objects in the sketch with the same types as the role fillers in the 

spatial relationship (here: fulcrum, weight and force) then a correspondence is created 

between the object in the text and the glyph in the sketch with the same type. 

3) A running list of chapter correspondences is created based on the running results from 

#1 that contains label/type pairs (e.g. “F”/Fulcrum).  This list was added to 

accommodate the fact that often the same label will be used in diagrams throughout 

the chapter (e.g. “F” to indicate the fulcrum).  Entries to this list are created during the 

check for label-based correspondences, the label, along with the Collection associated 

with it is stored in the list.  Later, if the label appears in a sketch, the glyph with that 

label will be placed in a required correspondence with any item in the discourse case 

that is of the type (e.g. a correspondence would be created between a glyph labeled “F” 

and an entity in the discourse case that was of type “Fulcrum”)  

There is one additional preprocessing step that does not involve the creation of required 

correspondences.  If the discourse case contains both (1) an implies-DrsDrs fact where the 

antecedent is of the form (isa ?entity ?Collection) and (2) a reference to a diagram, then that 

discourse is considered to contain information that is core to the concept ?Collection.  In this case, 

the diagram is also considered to be a canonical example of ?Collection and a fact is added to the 

discourse case of the form (sketchForConcept ?diagram ?Collection). Figure 38 below 
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shows an example of a discourse that fits this pattern with the important facts colored red.  In this case, 

the diagram (Figure1-2) is tagged as being a good example of the concept first-class lever. 

 
(sketchForDiscourse "Figure1-2A.sk" (ExplicitCaseFn DRS-3447867971-7696)) 
(discourseForChapter (ExplicitCaseFn DRS-3447867971-7696) "BMChapter1") 
(previousDRSInChapter DRS-3447867971-7696 DRS-3447867185-7342 "BMChapter1") 
 
(drsImplies (DrsCaseFn DRS-3447867971-7697) (DrsCaseFn DRS-3447867972-7698)) 
 
(in-microtheory DRS-3447867971-7697 :exclude-globals t) 
(genlMt DRS-3447867971-7697 Chapter1RawText) 
(isa first-class-lever7447 Lever-FirstClass) 
 
(in-microtheory DRS-3447867972-7698 :exclude-globals t) 
(genlMt DRS-3447867972-7698 Chapter1RawText) 
(between force7539 weight7589 fulcrum7487) 
(isa force7539 ForceVector) 
(isa fulcrum7487 Fulcrum) 
(isa weight7589 Weight) 
 

Figure 38. An example discourse case showing how sketchForDiscourse facts are created. 

 

After the required correspondences are created (there may not be any for a given discourse-

diagram pair), an SME match is run with the diagram case as the target and the discourse case as the 

base.  An integrated case is created which contains the contents of the diagram case plus the candidate 

inferences from the SME match.  The candidate inferences represent the information from the text that 

is connected to the diagram.  Figure 39 below shows the candidate inferences from the match between 

the discourse and diagram cases created by the example in Figure 34.   Integrated cases are stored in the 

knowledge base and are also dumped to a text file for archiving.  Worked examples from the text are 

integrated using the same algorithm as the regular text.   
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(isa Object-416 Weight) 

(isa Object-412 Fulcrum) 

(isa Object-434 LeverArm) 

(isa Object-422 ForceVector) 

(isa Object-430 Distance) 

(possessiveRelation (AnalogySkolemFn lever6231) Object-434) 

(possessiveRelation (AnalogySkolemFn lever6231) Object-430) 

(between Object-422 Object-412 Object-430) 

(between Object-416 Object-412 Object-434) 

(possessiveRelation (AnalogySkolemFn lever6354) Object-434) 

(isa Object-430 LeverArm) 

(isa Object-434 Distance) 

 
Figure 39. Candidate inferences from the integration of the discourse and 

diagram cases from the example in Figure 34 

 

5.4 EVALUATION 

 The MMKCap system was evaluated using a publisher-provided set of homework problems.  To 

facilitate the evaluation, a test-harness was built to query for the information in each question and to 

test the correctness of the system’s response.  To eliminate errors in question comprehension or 

problem solving, each question and the associated multiple choice answers were hand-translated into 

predicate calculus and stored in the knowledge base.  Each question was also tagged with a fact tying it 

to the appropriate chapter.  Questions that referred to a diagram had an added fact that referred to the 

diagram and the diagram itself was sketched using CogSketch and stored as a sketch case using the 

procedure used for diagrams in the original text.  Each question in the homework set was categorized 

into one of six question types.  The test harness retrieves all of the questions for a chapter and then 

applies a different problem-solving technique depending on the question type.  An additional fact is 

created for each question indicating which of the multiple choice options is correct. 

 



115 

 

5.4.1 QUESTION TYPES AND ANSWER STRATEGIES 

 Each question in the test set was tagged with a fact indicating which of six question types it 

represents.  These facts aid the problem solving system in picking the correct solving strategy for each 

question.  The six types are: 

1) True/False 

2) Simple Query: A factual multiple-choice question 

3) Diagram-Concept: Pick the diagram that matches the concept (e.g. first-class lever) 

4) Diagram-Measurement: Read off a measurement from a diagram 

5) Algebraic: Use the formulas in the chapter to work out a solution to the problem 

6) Algebraic + Diagram: Same as #5, but with a diagram that provides some of the necessary 

information for the question 

This section describes each question type in detail and discusses the technique used by the solver to 

answer each type of question.  The questions are multiple-choice, but the problem solving system was 

not allowed to guess if it did not find an answer.   

 The first type of question is a typical TRUE/FALSE question.  Scenario information may be 

supplied and then the test-taker must determine whether a given statement is true or false.  Figure 40 

shows an example of a TRUE/FALSE question from the test set and its translation into predicate calculus.  

The test harness simply queries for the information in the question and selects true if it is found in the 

knowledge base and false otherwise.  The selected answer is compared to the correct answer to 

determine whether the question was answered correctly. 
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1-2. When a chain hoist is used to 
multiply the force being exerted on 
a load, the chain is pulled at a 
faster rate than the load travels. 
 
1. True 
2. False 
 

 
(querySentenceOfQuery BasicMachines1-2 
   (implies 
      (isa ?hoist Pulley) 
      (and 
         (isa ?load Weight) 
         (isa ?force ForceVector) 
         (isa ?travel MovementProcess) 
         (isa ?travel ComparisonEvent) 
         (comparee ?travel ?force) 
         (comparer ?travel ?load) 
         (comparativeRelation ?travel  
               (HighAmountOfFn Speed))))) 
 

Figure 40. Example of a True/False question 

  

Figure 41 shows an example of a simple query type of question.  Simple query questions are 

straightforward factual questions based on the material in the chapter.  Like TRUE/FALSE questions, 

simple query questions are solved by simply querying for the requested information.  The results from 

the query are compared to the list of possible answers.  If an option matches, it is chosen as the answer.  

If none of the multiple choice answers match, the system does not answer.  In some of the questions, 

the multiple choice answers provide several potentially correct answers.  For example one of the 

questions provides the following multiple choice options: “first-class lever”, “second-class lever”, “first- 

or second-class lever”.  In cases like this, the option that has the highest overlap with the answer 

returned by the query is chosen as the answer for the question.   

 
1-5. Which of the following 
simple 
machines works on the same 
principle as the inclined 
plane? 
 
1. Screw 
2. Gear 
3. Wheel and axle 
4. Block and tackle 
 

 
(termToSolveFor  
   (querySentenceOfQuery 
      BasicMachines1-5 
      (and (refersToTypeOf ?tool InclinedPlane) 
           (isa ?tool ?collection))) 
    BasicMachines1-5 
    ?collection) 

Figure 41. Example of a simple query question 
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For the most part, simple query and TRUE/FALSE questions rely on knowledge captured from 

the text to construct an answer.   In most cases, they do not take advantage of knowledge resulting from 

the multimodal integration portion of the MMKCap model.  However, they do demonstrate the 

effectiveness of EA NLU in capturing knowledge from the text portion of the materials.  Also, these 

questions show that the multimodal integration does not interfere with the knowledge capture from the 

text. 

 The next two types of questions, diagram-concept and diagram-measurement, would be 

impossible to answer, in many cases, without multimodal information from the text.  In the first case 

diagram-concept, the question gives a set of pictures and asks the test taker to select the picture(s) that 

correspond to a given concept.  In the example in Figure 42, the question is which picture(s) illustrate a 

second class lever.  To solve this problem, the system searches through the text for a known example of 

a second-class lever.  Priority is given to retrieved instances of integrated cases that contain a 

sketchForConcept fact (created during the integration process).   If no sketchForConcept fact is 

found, then the system will pick any integrated case that contains a diagram and has facts about second-

class levers.  In the example in Figure 42, a sketchForConcept fact is found and the integrated case 

containing information about the sketch in Figure 43 is retrieved.   
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1-8. Which part illustrates a 
Second-class lever? 
 
1. D 
2. C 
3. B 
4. A 
 

(termToSolveFor  
   (matchConceptToPicture Lever-SecondClass  
      (TheSet  
         (sketchForQuery "Question1-7A.sk"   
                          BasicMachines1-8) 
         (sketchForQuery "Question1-7B.sk"                
                          BasicMachines1-8) 
         (sketchForQuery "Question1-7C.sk"  
                          BasicMachines1-8) 
         (sketchForQuery "Question1-7D.sk"  
                        BasicMachines1-8))) 
    BasicMachines1-8 
    ?sketch) 

 
Figure 42. Example of a diagram-concept question 

 

The sketch from the integrated case retrieved is then compared to each of the sketches in the 

problem description using SME.  In this example, the sketch in Figure 43 would be compared to each of 

the sketches (A-D) in the problem.  The sketch that matches with the highest structural evaluation score 

is chosen as the answer for the problem.   

 
Figure 43. Retrieved example of a second class lever. 
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 In diagram-measurement questions, like the one shown in Figure 44, the task is to use the 

diagram to find the numerical (or symbolic) measurement for a given component.  In the example 

pictured, the length of the resistance arm is the quantity that is asked for.   To solve this type of 

question, the system searches for an integrated case that contains a reference to an object of the 

correct type (in this example resistance arm).  This reference can either be in the form of an isa: (isa x 

ResistanceArm-LeverArm) or a glyph name in a sketch.  The second option is a side-effect of the 

interface for creating annotations in CogSketch.  When an annotation is created, only one collection can 

be used to specify the type and that must be one of the designated annotation types (e.g. 

LengthIndicator), so if an object also needs to be labeled as something else (e.g. a Resistance Arm) 

this must be done using the name slot for the glyph.   

 Continuing the running example, once all of the integrated cases containing a resistance arm are 

retrieved, the best match between the retrieved cases and the problem sketch is found (again using the 

SME structural evaluation score to determine best match), the best matched sketch is shown on the 

right in Figure 45.  A new mapping is done between the best matched retrieved case and the problem 

sketch.  The mapping is examined for a correspondence between the glyph labeled as the resistance arm 

in the retrieved case and a glyph in the problem sketch.  In this case a correspondence is found between 

the resistance arm and Obejct-121 in the problem sketch, so the numerical value associated with that 

object is returned as the answer to the question.  In this case, that value is 1ft. which is the correct 

answer.  
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IN ANSWERING QUESTIONS 1-12 THROUGH 
1-14, SELECT THE CORRECT ARM 
MEASUREMENTS FROM FIGURES 1B AND 1C. 
 

 

1-14. Resistance arm in figure 1C 
1. 1 ft 
2. 3 ft 
3. 4 ft 
4. 5 ft 
 

 
(sketchForQuery "Questions1C.sk"  
                   BasicMachines1-14) 
(determineMeasurementFromSketch  
                   ResistanceArm-LeverArm  
                   BasicMachines1-14) 

Figure 44. Example of a Diagram-Measurement Question.  The diagram needed for the question is sketched 

using CogSketch and a fact is created indicating which measurement is needed. 

 

  

Figure 45. Example of the sketch from the problem on the left and the retrieved best match on the right.  

An SME mapping is done between the two cases and the glyph in the sketch on the left that is in 

correspondence with the ResistanceArm glyph (indicated in purple) in the sketch on the right is 

determined.  In this case, the corresponding glyph is Object-121 (blue glyph), so its numerical value 1ft 

is returned as the answer. 

 

 The next two types of questions both involve working out algebraic solutions to problems using 

the formulas from the chapter.  In algebraic questions, background information needed for the question 

is presented in text.  In algebraic+diagram questions, the background information needed to solve the 

problem is presented in a combination of text and an accompanying diagram.  In both types of 

problems, the algorithm for finding a solution is: 
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1) Use MAC/FAC to retrieve the best match from among the worked examples in the chapter 

text (a worked example may also have contained text only or a text-diagram pair) 

2) Use SME to do a mapping between the retrieved example (base) and problem (target) 

3) Use candidate inferences from the mapping to determine the equation and value 

substitutions to use to solve the problem 

4) Make the value substitutions into the equation 

5) Use a pre-existing algebraic problem solver to solve the equation for the desired value 

 

 
Questions 1-17 and 1-18 are related 
o to a 300-pound load of firebrick 
stacked on a wheelbarrow. Assume 
that the weight of the firebrick is 
centered at a point and the barrow 
axle is 1 1/2 feet forward of the 
point. 
 

(isa Wheelbarrow1-17 Wheelbarrow) 
(isa BarrowAxle1-17 Axle) 
(isa BarrowAxle1-17 Fulcrum) 
(isa LoadOfBricks1-17 Weight) 
(valueOf LoadOfBricks1-17 (Pound-  
                          UnitOfForce 300)) 
(isa distance1-17b Distance) 
(distanceBetween LoadOfBricks1-17  
              BarrowAxle1-17 distance1-17b) 
(valueOf distance1-17b (Foot-UnitOfMeasure  
                                      1.5)) 

1-17.If a Seaman grips the barrow 
handles at a distance of three feet 
from the point, how many total 
pounds will the Seaman have to lift 
to move the barrow? 
 
1. 65 lb 
2. 100 lb 
3. 150 lb 
4. 300 lb 
 

 
(isa Seaman1-17 ForceVector)  
(isa distance1-17a Distance) 
(distanceBetween Seaman1-17 BarrowAxle1-17  
                             distance1-17a) 
(valueOf distance1-17a (Foot-UnitOfMeasure  
                                        3)) 
 
(querySentenceOfQuery BasicMachines1-17 
   (valueOf Seaman1-17 ForceNeeded1-17)) 

Figure 46. Example of an algebraic question 
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1-26. The mechanical advantage of 
the 
lever pictured in figure 1J is 
1. five 
2. six 
3. seven 
4. one-sixth 
 

(sketchForQuery "Question1J.sk"  
                 BasicMachines1-26) 
 
(isa lever1-26 Lever) 
 
(querySentenceOfQuery 
   BasicMachines1-26 
   (valueOf (mechanicalAdvantageOf     
                   lever1-26) MA1-26)) 

 
Figure 47. Example of an Algebraic w/Diagram Question 

  

 In all of the question types, the answer returned by the system is compared to the known 

correct answer to determine whether the question was correctly solved.   

5.5 RESULTS 

 Table 11 shows a break-down of the number of correct questions by query type for the 

evaluation of Chapter 1 of Basic Machines.   

Table 11. Summary of evaluation results 

Question Type Total Number Number Correct p-value 

TRUE/FALSE 2 2 0.25 

Simple Query 9 9 < 10-5 

Diagram-Concept 3 2 0.16 

Diagram-Measurement 4 2 0.09 

Algebraic 6 4 N/A 

Algebraic + Diagram 5 1 N/A 

TOTAL 29 20 < 10
-6* 

* total p-value excludes algebraic questions 
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 A close examination of the failures provides additional insights and suggests improvements.  The 

diagram/concept matching question that fails is the example in Figure 48.  Figure 48 also shows the 

diagram that is retrieved as the example of a third class lever from the text.  It is compared (via SME) to 

the sketched versions of the levers in the problem.  The system should match to option A (shown circled 

with a solid line), which is an example of a third class lever, but instead matches to option C (shown 

circled with a dashed line), which is an example of a first class lever.  This mistake occurs because our 

system currently cannot recognize that the lever in option A needs to be flipped over the horizontal axis, 

so that the fulcrum is underneath the lever in order for the comparison to work correctly.  As the 

pictures are currently drawn, the matching system is overwhelmed by the number of spatial 

relationships in common between the retrieved sketch and the lever in option C (e.g. the fulcrum being 

below the lever and the force and weight being above) and those relations override the important one, 

which is the placement of the fulcrum relative to the weight and effort.  This suggests verifying 

properties of the match, i.e., that forces are being applied in ways consistent with the learned definition.  

If verification fails, then rerepresentation techniques based on spatial properties, like flipping or rotating 

one of the sketches, could be tried.   
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Sketched versions of the diagrams in the 

question 

 
1-8. Which part illustrates a 
third-class lever? 
 
1. A 
2. B 
3. C 
4. D 
 

 

  
 

Retrieved known example of a third-class lever.  

Matches erroneously to option C (dashed circle) 

but should match option A (solid circle) 

 
Figure 48. Example of the failed diagram-concept question 

 

 The two diagram measurement query failures illustrate another shortcoming of our problem 

solving strategy of using a simple, unevaluated match to produce an answer.  The problem shown on the 

left in Figure 49 is the one of the two failed questions of this type.  The Q/A system attempts to solve 

this type of problem by looking for integrated cases that have facts about the type of object that 

participates in the query (e.g. resistance arms) and that have an associated diagram.  In this case it finds 

the case containing the diagram shown on the right in Figure 49 which has a graphical example of both a 

resistance arm, and an effort arm.  The lever arms are annotations in both the test and retrieved cases, 

as they have numerical length values associated with them.  The system performs an analogy between 
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the retrieved sketch and the test sketch and looks for the glyph in the test sketch that aligns with the 

resistance arm glyph in the example sketch. Unfortunately, the retrieved sketch is a different type of 

lever, where the resistance arm length can be read directly from the annotation, without having to add 

values.  Our problem solver is currently unable to handle this situation and returns the wrong value. 

Our current problem solver expects there to be a single annotation glyph it can match against to 

compute the answer, like in the retrieved sketch shown on the right.  However, the correct answer is 5, 

which requires the addition of the two length annotations in the sketch.  Here what is required is to 

realize that the length is the sum of the two glyphs that are in the diagram.  Again, this is more a failure 

of our problem solver than of the knowledge capture process. 

 

 

 

 

 

Figure 49. Diagram-measurement question that was answered incorrectly (left) and the known example 

retrieved to solve it (right).  The correct answer is found by adding the two annotations together. 

 

 The majority of the algebraic+diagram questions fail for the same reason as the diagram-

measurement queries.  When SME performs a mapping, annotations get mapped to each other, even 

though many times the value needed in the problem actually comes from adding two annotations in the 

problem sketch as in Figure 50 below where the length of the effort arm is 9 inches (8.5 + .5).   I am 

currently searching for a general solution to this problem, which arises in other problem solving tasks.  
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Procedural knowledge related to problem solving is much harder to extract from the text as it is often 

not explicitly stated, but must be extracted from the examples given. 

 
1-16. With the aid of the pipe wrench 
shown in figure 1D, how many pounds of 
effort will you need to exert to 
overcome a resistance of 900 pounds?  
 
1. 25 lb 
2. 50 lb 
3. 75 lb 
4. 100 lb 
 
 

Figure 50. Example of an algebra+diagram problem that 

is answered incorrectly 

 

 The MMKCap system has shown that analogy is a good tool for modeling both the integration 

step of multimodal knowledge capture and for solving textbook problems.  There are still several 

shortcomings of this system, both in knowledge capture and in problem solving.  One of the primary 

issues is that the system is quite good at capturing factual knowledge, but is not as good at capturing 

procedural knowledge.  One of the biggest challenges for future versions of the system is to improve its 

ability to capture and apply knowledge that relates specifically to problem solving techniques. 
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5.6 DIAGRAM UNDERSTANDING 

5.6.1 PROBLEM DESCRIPTION: CONCEPTUAL SEGMENTATION 

  Part of Mayer’s multimedia learning theory involves the learner selecting the appropriate part of 

a diagram to attend to.  Human learners get quite good at this through repeated exposure to graphical 

learning materials like the example in Figure 51. The caption provides a description of a process, the 

filling of a tank with rainwater, while the diagram provides an illustration of the physical layout of the 

system (tank, pipe, etc).   Parsing the qualitative information in the diagram is easy for people, but quite 

complicated for software.  For example people can both recognize the diagram as a full system and refer 

to its individual components like “the water in the tank”.  Part of this flexibility is due to our familiarity 

with diagrams and their depiction conventions.  Another source of flexibility is our knowledge about 

how things like tanks and pipes and water work.  We are able to use both types of knowledge when 

looking at a diagram.  Being able to interpret diagrams in this way is a key component of multimodal 

knowledge capture.   

 

 

 

Suppose rain is failing on the 

rainwater tray.  The water will flow 

down the pipe and start filling the 

tank.  Some of the incoming 

rainwater will flow into the tank and 

some will flow out of the leak … 

 Figure 51. An example of a diagram that is easily segmented by humans but poses a problem for 

AI systems.  This example is taken from Sun Up, Sun Down  (Buckley, 1979), an introductory 

book on solar energy. 
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This section describes some preliminary work on conceptual segmentation of diagrams.   

Conceptual segmentation is defined to be the assignment of conceptual interpretations to regions and 

edges within the sketch.  Conceptual segmentation is not currently a part of our MMKCap system, but 

will most likely be a necessary component when more complicated texts and diagrams are processed. 

In MMKCap the diagrams are represented by their sketched equivalents.  In CogSketch, glyphs are 

given conceptual labels which do simplify the task of conceptual segmentation.  However, conceptual 

labeling of ink is necessary, but not sufficient, to solving this problem.  Consider the sketch in Figure 52 

below showing a tank partially filled with water.  We will use this example throughout this section.  This 

sketch consists of two glyphs: one closed polygon representing the tank, and one line representing the 

water.  A literal interpretation of this sketch would be that the polygon is the tank and the squiggly line 

glyph itself is the water.  However, the intended interpretation is that the entire area inside the tank and 

underneath the line is the depicted water.   

 

 

 
tank 

 
water 

 

 
Figure 52. CogSketch sketch of a diagram of a tank of water.  The diagram on the left is drawn in two 

glyphs (shown with their labels on the right). 
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One way to address this would be to require users to draw following specific conventions – for 

example, have them trace around the inside of all of the tank/pipe glyphs so that the water glyph was 

one continuous closed shape.  However, while this constraint could be instituted, it only addresses this 

specific situation, and adding new constraints to address every new situation is untenable.  Additionally, 

requiring users to trace the full outline of the water still leaves the situation ambiguous. The system still 

doesn’t have a way to figure out if the user intended just the outline to represent water, or all of the 

space contained by the outline.  For example, consider the two sketches in Figure 53.   In the sketch on 

the left, depicting the layers of the Earth, each layer (e.g. the mantle) is represented not by the entire 

area inside the glyph depicting the mantle, but by the area inside that glyph but outside the outline of 

the core.  In the sketch on the right, depicting the solar system, both the Earth and the orbit are 

depicted as ellipses, however the orbit is meant to be represented only by the path traced out by the ink 

which the planet is meant to be the whole area inside the ink for the Earth glyph.  These two sketches 

show that both drawing conventions and statistical sketch recognition are insufficient for open-domain 

conceptual segmentation. 

 

 
 

Figure 53. Two examples of hard to segment sketched diagrams 
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5.6.2 PRELIMINARY SYSTEM AND RESULTS 

 A proof-of-concept conceptual segmentation algorithm was developed to examine ways to 

automatically interpret diagrams.  The basic algorithm is shown in Figure 54.  Input to the system is a 

CogSketch sketch and a query term indicating the entity to find in the sketch.  So, for example, in the 

water and tank example, the system would be given the sketch of the water and tank and the query 

term “water” indicating that it should find the extent of water in the sketch.  The query term is matched 

against the glyph names in the sketch.  Once the appropriate glyph is identified, we access the 

conceptual label(s) provided by the user.  In our example, the glyph being considered is labeled with the 

concept Water from the ResearchCyc KB.  Knowing what the glyph represents helps the system figure 

out how to interpret the diagram correctly.  For example, ResearchCyc has 335 facts about water.  This 

includes information about its role in the ResearchCyc ontology and, especially important for our 

purposes, some linguistic knowledge about the term.   

(1) The system is given a sketch and a query term 

(2) A check is done for a glyph corresponding to the query term 

(3) Semantic knowledge about the query term is extracted from the KB  

(4) The system decides whether the query term should be represented 

via an edge or region 

(5) The edges of the glyph corresponding to the query term and other 

involved glyphs are decomposed and rejoined to determine the 

correct region or edge 
 

Figure 54. Steps in conceptual segmentation algorithm  

 

 Once the conceptual label is retrieved, conceptual information along with the ink from the 

sketch are used to determine the correct conceptual segmentation of the diagram. Figure 55 shows an 

outline of the process the system uses to determine the correct depiction for a glyph using both the 

conceptual label and the ink.  This figure shows the algorithm as it is currently implemented; as the 

number and type of diagrams that interpreted is expanded, the algorithm will be further refined.  In the 
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first step, the conceptual label is accessed and the knowledge base is queried to determine which 

category the entity belongs to: (1) a mass noun or entity that subclasses from the Cyc concept 

TangibleStuffCompositionType (2) an entity that subclasses from Path-Spatial (3) or a 

physical object. Backchaining rules are used to ascertain whether a concept needs a region versus a 

polyline to depict it.  For example, a concept might contain information that, linguistically, the word 

referring to it is a mass noun or a count noun.  Mass nouns refer to entities that can be viewed as 

spatially flexible pieces of stuff, such as liquids and powders, whose boundaries are highly constrained 

by containment relationships.  The concept Water is linguistically a mass noun, and consequently the 

system infers that it requires a volume to depict it.   

 

Matched glyph

label ink

Stuff/Mass Path-Spatial
Physical 

Object

Line Shape Line Container Empty

Find 

Bounds

Process 

Object

Segment 

Polygons

Process 

Object

Use Line
Use Glyph 

Outline

Fill around 

inner glyphs

 

Figure 55. Decision tree of possible segmentation options for entities in diagrams. 
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 Once the system has inferred the conceptual category for a glyph, it attempts to find or 

construct the appropriate geometric entity.  For the water/tank example (an instance of the stuff/mass 

path through Figure 55) it starts by classifying the geometric properties of the ink for the glyph, 

determining if it is a line or a polygon.  For example, the glyph representing water in Figure 52 is a line, 

not a polygon.  Since the depiction of water requires a region, the system has more work to do.  (A user 

could have drawn the water by tracing out a region inside the tank, in which case the system would be 

satisfied with the glyph itself as the geometric entity.)   

 The next step is to determine if there are other glyphs which can help constrain the extent of 

the object.  In this example, the tank glyph constrains the extent.  The system finds such glyphs by 

looking for RCC8 relationships, i.e., glyphs for which the water is either TPP or NTPP (i.e., Tangential 

Proper Part or Non-Tangential Proper Part).  When these relationships hold between the tank glyph and 

the water glyph, we then do a follow-up check to see if the water intersects (within a threshold) both 

sides of the tank.  Once both glyphs have been found (the water and the tank) the system needs to find 

the region representing the part of the tank where the water is found. This is accomplished by 

combining the ink from the two glyphs and segmenting it into edges and edge cycles. 

 Edges are identified by segmenting the ink at places where one line intersects another, or where 

there is a clear corner along a line. Edge cycles are identified by finding minimal closed cycles among the 

edges. In the current example, CogSketch identifies two edge cycles, one representing the area in the 

tank above the water and the other representing the area in the tank below the water. 

 For stuff/mass nouns, the system assumes the user has drawn the uppermost edge of the 

object, and that the object descends from there to fill the container below it. Thus, in the current 

example, the system looks for a cycle such that glyph for water overlaps with the top of the cycle, while 

the rest of the cycle is made up of points from the tank glyph. If an appropriate cycle is found, it is 
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identified as the region that the user is looking for, and it is then converted to a polygon and processed 

like a physical object.   

 Physical objects (the third path in Figure 55) are checked to see if they contain other glyphs 

(containment is one of the spatial relationships computed automatically by CogSketch).  If the glyph has 

other objects inside of it, the algorithm as currently implemented assumes that the correct 

segmentation for the glyph is the space around the inner objects.   This is the correct interpretation for 

situations like the layers of the earth, or bubbles in soda.  If a physical object has no interior glyphs, the 

whole area of the polygon is considered the correct depiction and it is highlighted in the diagram.  Figure 

56 show a variety of results from running the current conceptual segmentation algorithm on different 

diagrams. 

 

 
a 

 
b 

 
c d 

Figure 56. Results from running conceptual segmentation.   
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 In Figure 56, part a, the results from the simple water in tank example are shown.  In part b, the 

sketch is drawn in three glyphs, one for the tank, one wavy line labeled water, and another wavy line 

labeled oil.  When queried for oil, the system is able to correctly identify the area between the two wavy 

lines as the correct extent of the oil in the sketch.  Figure 56, part C shows the layers of the Earth again, 

when queried for “mantle”.  The system correctly identifies the area between the mantle glyph and the 

core glyph.  Currently the handling of interior glyphs is quite simple, but will have to become more 

sophisticated in future implementations.  For example, in a sketch of a spoon in a glass of water, if the 

system is queried for “water” it should fill over the spoon instead of around it.  Figure 56, part d shows a 

slightly more complicated version of the original water in tank where the water is split over two tanks 

connected by a pipe.  The system is still able to correctly identify all of the water in the sketch. 

 

 

Figure 57. Sketched diagram of the solar system showing 

conceptual segmentation results for both an orbit and 

a solid planet. 

 

 Figure 57 shows the results of querying for both “orbit” and “Earth” in the solar system sketch.  

The system is able to correctly differentiate between an orbit which is represented by a path and a 

planet which requires the entire area of the glyph.  Figure 58 shows the two-tank water example, 

however in this case the system was queried for “water in tank1”.   
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Figure 58. Results of segmentation algorithm with 

the query “water in tank1” 

 

 This section has introduced a proof-of-concept implementation of a conceptual segmentation 

algorithm.  Clearly, it is in very early stages and will need to be expanded in future work.  However, the 

results so far are interesting in that they show that a combination of conceptual information and ink can 

be used to more intelligently segment diagrams automatically.  The final example also shows how a solid 

understanding of spatial prepositions will play a key role in diagram segmentation. 

5.7 RELATED WORK 

 There are three main areas of related work that are relevant to the systems in this chapter: work 

from the diagram understanding, multimodal knowledge capture, and learning by reading communities. 

From the diagram understanding community, the division of scene elements into edges and 

regions in sketches was explored in the Mapsee program of Reiter and Mackworth (1989).  They 

proposed a logical framework for depiction that formalized the mapping between images and scenes of 

simple maps containing roads, rivers, shores (represented as edges in the images) and water and land 

(represented by regions in the images).  They identified a set of six visual relations ({tee, chi, bounds, 

closed, interior, and exterior}) and provided axioms and constraints which combined these visual 
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primitives and mapped them to the scene elements (roads, rivers, etc).   Like Mapsee, the conceptual 

segmentation work is concerned with modeling how conceptual entities are depicted.  However, 

Mapsee was designed for one domain, maps, and its axioms map visual elements directly to 

interpretations in that domain.  By contrast, the conceptual segmentation model works through an 

intermediate distinction – regions versus edges – and performs reasoning over a large-scale, off-the-

shelf knowledge base to identify depiction constraints.  Their task was fundamentally one of image 

interpretation, recognizing unlabelled lines as map elements, whereas the task described here starts 

with conceptually labeled ink.   

Alvarado and colleagues (Alvarado and Davis, 2004; Alvarado, Oltmans and Davis, 2002) 

describe a multi-domain sketch recognition engine.  Their systems use a hierarchical shape description 

language where low level shape description (circles, arrows, etc) are defined once in a domain-

independent fashion.  Then a separate set of rules ties a given shape to a domain specific interpretation 

(e.g. an arrow represents a child link in a family tree diagram).  This approach works well in a very tightly 

constrained domain with a small number of differentiated symbols (family trees, circuit diagrams, etc) 

however, it does not work as well in the more open-domain, unconstrained types of sketches that are 

encountered in multimodal knowledge capture. 

Futrelle has several systems (e.g. (Futrelle, 1990)) that parse the diagrams in scientific papers.  

He uses a set of Generalized Equivalence Relations (GERs) like near and parallel to describe the 

relationships between objects in the diagram. Kara and Stahovich’s SimuSketch (2004) takes a two-stage 

approach to recognition in sketched diagrams containing arrows.  Other ink in the sketches is grouped 

and segmented based on clustering around the head and tail of recognized arrows.  The clusters of ink 

are then matched against 24x24 templates for recognition.  This is a unique and interesting approach to 

segmentation which gets around many cumbersome algorithms such as time outs or requiring single 
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strokes.  SimuSketch is embedded in Matlab’s SimuLink system which uses the recognition to simulate 

and solve actual engineering problems. 

Approaches for diagram understanding like those above that rely on low-level shape recognition 

along with domain-specific rules for interpretation represent a complementary approach to the 

conceptual segmentation work in this chapter.  A hybrid system, which combines low-level recognition 

for common elements (e.g., arrows) and a more generative interpretation process might be useful in 

many tasks.  For example, in a physics system, it might be useful to automatically recognize arrows and 

interpret them as forces while leaving the types of objects that those forces can act on unconstrained 

given the wide variety of physical objects in the world.   

Saund and colleagues (Saund, et al, 2002; Saund, 2003) have also done a lot of work on 

intelligently segmenting sketches.  Like us, they also do not work on recognition.  They focus on 

identifying important relationships between objects in the sketch rather than the specific objects 

represented.  This information can be used to make intelligent decisions about which parts of a sketch a 

user is trying to select or edit.  It also leaves open the possibility of integrating recognition later.  

Anderson and Armen’s DiaSketch (2002) is interested in inter-diagrammatic reasoning – learning from 

multiple diagrams of the same information.  They focus on sketching as a way of interacting with a more 

precisely defined diagram (such as one that was scanned in).   

The MMKCap work in this chapter is related to several systems from the knowledge capture and 

learning by reading communities.  Ferguson’s JUXTA system (Ferguson and Forbus, 1995) reasoned 

about juxtaposition diagrams, diagrams that use comparison to illustrate physical principles, by using 

information from both the diagram and the caption.  JUXTA relied on a pre-defined mapping from 

shapes to domain-specific meaning and required all of the captions to be hand-translated to qualitative 

physics representations.  Bulko’s BEATRIX system (1988) was able to solve the coreference problem for 
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physics problems that contained both text and a diagram.  It relied on a blackboard architecture to align 

objects in the diagram with their references in the text.  BEATRIX relied on hand-coded knowledge 

sources to identify potential objects in the diagrams in its system.  The Figure Understander 

(Rajagopalan and Kuipers, 1994) was also developed to integrate text and diagram representations in 

the physics domain.  Figure Understander was used to input problems into a magnetic fields problem 

solving system.  The system relied on a system of figure semantics that related shading and patterns in 

the diagram with a semantic interpretation for the items.  For example, a circle with white shading 

represented a loop of conducting wire, while black shading represented an immobile supporting object.  

In contrast to these approaches, MMKCap uses the more flexible concept labeling feature of CogSketch 

to allow users to enter objects and attach meaning without relying on a pre-defined library of mappings. 

Watanabe and Nagao (1998) used a combination of spatial information and simple parsing rules 

to categorize the text associated with diagrams in a Japanese pictorial book of flora.  Their method was 

specifically aimed at being able to classify the type of text (whether it described a plant species, plant 

part, etc) based on a combination of textual and spatial information and was limited to the domain of 

Japanese wild flowers.  They also hand-coded the spatial relationships between text and diagrams.  

Currently MMKCap does not take advantage of this type of information, since CogSketch does not 

capture information about the placement of the conceptual label text.  This suggests an interesting area 

of future work for our system, i.e., developing methods to capture the information that can be gleaned 

from the placement of a label in a textbook diagram. 

The HALO project (Chaudhri et al, 2007; Clark et al, 2007) also addressed learning from 

textbooks and solving problems with the captured knowledge.  The AURA system provided an interface 

for subject matter experts to input the knowledge from 50 pages of textbooks in each of physics, 

chemistry, and biology. The associated question answering system used a controlled language to allow 
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users to input AP-like test questions for the system to solve.  The approach used in AURA focused on 

human-generated knowledge and on conceptual knowledge and tables (diagrams were excluded).  This 

approach can be viewed as complementary to the work here as it uses subject-matter experts for the 

knowledge capture portion rather than an automated system. 

MMKCap can also be viewed as a particular form of learning by reading.  The closest systems are 

Mobius (Barker et al, 2007) and Learning Reader (Forbus et al, 2007).   Mobius was used to see how 

existing NL and KR components could be combined to learn from text.  It focused on two narrow 

domains (how human hearts and simple engines work), but was tested with a variety of paragraphs 

written by different people about those topics.  Its knowledge base was small and hand-coded for the 

domain, and its learned knowledge was evaluated by hand inspection.  Learning Reader, like MMKCap, 

uses simplified English and ResearchCyc KB contents, but a DMAP parser instead of the more traditional 

EA NLU system used here.  Learning Reader was tested via automatically generated quizzes, and 

incorporated a process of rumination, where the system asked itself questions off-line to improve its 

performance later on.  Both Mobius and Learning Reader were purely text-based, unlike the multimodal 

approach presented in this chapter.  The system described here will be part of a next-generation 

learning by reading system, also incorporating ideas from Learning Reader. 
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6 CONCLUSIONS AND FUTURE WORK 

6.1 DISCUSSION 

 This dissertation began by examining the problems of spatial preposition use and multimodal 

knowledge capture.  While often approached as two distinct areas of research, the problems share 

several commonalities.  Both multimodal knowledge capture and spatial preposition use are tasks that 

humans typically develop a robust ability for, but that remain challenging for Artificial Intelligence 

systems.  One reason for this is that both tasks draw on a variety of competencies, including knowledge 

about objects in the world, spatial reasoning, and the ability to attend to shared relational structure.  

Spatial preposition use requires the user to be able to extract the important features from a visual scene 

based on previously learned categories.   Multimodal knowledge capture requires the learner to 

integrate information from two distinct modalities based on coreference between the two sources.  The 

reliance of these tasks on finding and exploiting common structure forms the basis for two claims: 

1) Sequential generalization can be used to model the learning of spatial prepositions taking 

into account both functional and geometric features of a scene.  In addition, sequential 

generalization can learn spatial preposition categories using far fewer training trials than 

existing models. 

2) Structure mapping can be used to model the integration of multi-modal knowledge sources 

in a domain-general fashion without relying on predefined, domain-specific conventions. 

The first claim is supported by three sets of experiments described in Chapter 4.  The geometric shapes 

and cross-linguistic experiments show that sequential generalization (SEQL) can be used to model the 

use of spatial prepositions.  The experiments used a variety of stimuli including geometric shapes in the 

geometric experiments and real-world objects in the cross-linguistic experiment.  The cross-linguistic 
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experiment also showed that sequential generalization could be used to model spatial preposition use in 

two different languages.  Not only can sequential generalization model spatial preposition use, a 

comparison with other computational models showed that it can do so using far fewer training 

examples than other computational models.   

The second claim was explored in Chapter 5, where Mayer’s multimedia learning theory formed the 

basis for the MMKCap model of multimodal knowledge capture which integrates text and diagram 

combinations.  In MMKCap, text is first translated into controlled English and then processed using EA 

NLU which creates a discourse case containing predicate calculus facts representing the semantic 

content of the original text.  Diagrams are sketched using CogSketch which then creates a diagram case 

containing predicate calculus facts about the objects in the sketch and the qualitative spatial 

relationships between them.  The discourse and diagram cases are integrated using the Structure-

Mapping Engine (SME) model of analogy.  The MMKCap model was demonstrated using a chapter from 

Basic Machines, and evaluated using the publisher-provided homework questions for that chapter.   

Chapter 5 also introduced some preliminary experiments on conceptual segmentation – the 

intelligent assignment of conceptual interpretations to the regions and edges in a sketch.  This work 

showed that a combination of knowledge about an object and the ink, with which it is drawn, can be 

used to find the intended extent of that object in a sketched diagram.    

This chapter describes some directions for future work in each of these areas.  Section 6.2.1 

discusses future directions for the spatial prepositions experiments of Chapter 4.  Section 6.2.2 

introduces ideas for the next steps in conceptual segmentation.  Section 6.2.3 describes the future of 

MMKCap.  Section 6.3 contains concluding remarks. 
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6.2 FUTURE WORK 

6.2.1 FUTURE WORK IN SPATIAL PREPOSITIONS 

 The first goal of future work on spatial prepositions is to close the loop, so that the results from 

categorization experiments with SEQL can directly feed into the type of rules required for a SpaceCase- 

like system.  This will allow the application of the learned, general-purpose preposition categories to 

other systems.  Many applications using text, diagrams or a combination could be enhanced by adding a 

comprehensive understanding of spatial preposition use.  This will be especially useful in applications 

where human users and AI agents need to collaborate around shared spatial artifacts (such as maps).  

Having a shared understanding of spatial language will allow AI systems and their human users to 

understand each other’s intentions much more clearly.  Such a system would also need to have the 

flexibility to continuously update its understanding of the preposition categories based on newly 

encountered uses and human feedback.   

 Developing an open-domain, flexible understanding of spatial preposition use will require a 

large number of labeled example sketches.  The experiments in Chapter 4 focus on recreating results 

from psychological experiments.  This is a good first step towards preposition understanding, but 

controlled experiments with tens of stimuli cannot truly capture the full range of situations in the real-

world that humans encounter.  A larger library of sketches will need to be developed to serve as a 

training set for future preposition work.  These sketches can be drawn in part from other psychology 

work, but it would be interesting to branch out and consider other sources: children’s books, textbooks, 

or even online sources.  Along with having sketches labeled with English prepositions, larger corpuses 

labeled in different languages will be required to extend the cross-linguistic modeling.  In addition to 

extending to more diagrams, SpaceCase should be able to operate on more complex diagrams.  Moving 
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beyond simple, two object diagrams will require the system to be able to automatically identify an 

appropriate ground object.   

6.2.2 FUTURE WORK IN CONCEPTUAL SEGMENTATION OF DIAGRAMS 

 The conceptual segmentation system in Chapter 5 was an early, proof-of-concept 

implementation, so there is a lot to tackle in future work.  The first step is to use materials from the 

multimodal knowledge capture experiments to build up a larger corpus of sketched diagrams.  A larger 

corpus will help provide a testbed for refining the conceptual segmentation algorithm.  Also, more 

complex diagrams will likely involve drawing conventions, such as cut-aways or call-outs, that have 

different implications for how they should be parsed into conceptually meaningful parts. 

 In addition to multimodal knowledge capture, conceptual segmentation could be useful in a 

variety of other sketching tasks.  Once the algorithm is refined, conceptual segmentation will be 

incorporated in future versions of the CogSketch system.  There it would be applied to student 

worksheets and more general sketching applications.  Moving beyond textbook diagrams means that 

conceptual segmentation will need to be robust to noise in sketches.  For example, students may add 

unnecessary detail (like shading) to a sketch or misuse drawing conventions within a discipline.  While 

situations such as these add challenges to conceptual segmentation, they also highlight the benefit of a 

flexible, domain-independent solution over strictly constrained recognition. 

6.2.3 FUTURE WORK IN MULTIMODAL KNOWLEDGE CAPTURE 

 The first step in future work for MMKCap is to expand the number and types of sources 

processed.  This will ensure that MMKCap is developed as a general multimodal knowledge capture tool, 

as opposed to becoming overly tailored to one type of source.  In addition to other adult-level 

textbooks, there are plans to address learning materials designed for different audiences (such as 
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middle school science books).  One difficulty in acquiring new source material is finding sources that 

contain a significant number of useful diagrams and also come with an external source of evaluation 

(like the publisher-provided assignments in Basic Machines).  It might be interesting to test the ability of 

MMKCap to transfer knowledge from one source to the assignment from another.  For example, 

knowledge learned from a physics textbook should not only lead to solving the assignments for that 

book, but also be useful for AP Physics test questions. 

 Automating several of the steps in MMKCap that require human intervention is another near-

term goal.  Using web-based sources with links and a tag structure may make the chunking of text and 

diagrams relatively easy to automate.  Exploiting the structure of textbooks (i.e. subsections, chapter 

headings, etc) along with other conventions (such as introducing new concepts in bold or italic print) 

may make it possible to automate some of the knowledge engineering and also eliminate the need for 

manual disambiguation.  Another goal is for the system to automatically identify new concepts and 

create collections for them, using the chapter structure to place the new concept in the hierarchy.   

For example, in the evaluation in Chapter 5, the concepts for first, second, and third class levers had to 

be created manually before the text was processed.  The KB already contained the concept Lever.  In the 

first chapter of Basic Machines, the first two sections on levers are “The Lever” and “Classes of Levers”.  

The “Classes of Levers” section has three subsections “First Class”, “Second Class” and “Third Class”.  

Exploiting this structure, the system could recognize that there were three new things being introduced, 

and that they were all types of levers.   First, second and third class lever concepts could be created and 

added as a subclass of levers.  Additionally, multi-word strings could be created for “first class lever”, 

etc.       

A similar strategy could be used to aid in disambiguation.  The system could keep a list of 

domain-specific vocabulary based on chapter and section headings and bolded/italicized words.  Then, 
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when an ambiguous word is found, the available senses could be compared against the senses common 

in the running vocabulary list.  For example, in Basic Machines, “gear” is an ambiguous word, there are 

two sense in the KB corresponding to the 1) a wheel with teeth and 2) personal gear (e.g. camping gear).  

The genls hierarchy in the KB could be used to determine that within the context of Basic Machines, it is 

much more likely that sense 1 was the intended meaning of “gear”.   

While the majority of the diagrams in Basic Machines provided important information, not all 

textbook diagrams are equally useful for learning.  Levin (1981) and others have examined what types of 

illustrations appear in textbooks and what types of diagrams or pictures lead to improved learning 

outcomes (e.g. Levin and Mayer, 1993).  Some illustrations are simply decorative and have a minimal 

impact on learning.  It would be interesting to see if the determination of the usefulness of a given 

diagram could be made automatically based on its characteristics.  If the system could automatically 

identify which diagrams were necessary and which were superfluous it would reduce the chance that 

distracting information gets captured. 

Another area that requires additional work is the encoding of both worked examples and 

procedural knowledge needed for problem solving.  The translation of a worked example in the text to 

the predicate calculus representation of problem solving steps is the first step in this process.  Slightly 

less straightforward is the capture and representation of the metacognitive knowledge about how and 

when to employ different problem solving strategies.  The evaluation in Chapter 5 showed that often 

basic transfer from worked example to homework problem would miss critical problem solving steps.  

The goal is to capture this kind of information in a general purpose way so that the system can build a 

repertoire of problem solving techniques, applicable across different sources. 
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6.3 CONCLUSION 

This dissertation has examined the application of analogy and qualitative spatial representation 

to models of spatial preposition use and multimodal knowledge capture.  In Chapter 4, it was shown 

that sequential generalization over sketched inputs can be used to model the learning of spatial 

prepositions.  This process was shown to be effective over sketches of varying complexity (simple shapes 

versus real world objects) and in two languages.  In addition, the SpaceCase model was introduced.  

SpaceCase uses evidential rules to assign a spatial preposition to a novel visual scene.   

Chapter 5 presented the MMKCap model of multimodal knowledge capture.  MMKCap uses 

CogSketch to create a representation from a textbook diagram, and EA NLU to extract the semantic 

meaning from the associated text.  Then, SME is used to integrate the two representations, showing that 

structure-mapping can be used to model integration of multimodal knowledge sources.   The MMKCap 

model was demonstrated using a chapter from Basic Machines and was evaluated using the publisher-

provided homework for that chapter.     

There were three main bodies of work in this dissertation: (1) spatial prepositions, (2) 

conceptual segmentation of diagrams and (3) multimodal knowledge capture.   Each has its own 

possibilities for future work described in this chapter.  However, some of the most interesting 

possibilities may come from combining these models.  For example, can a better understanding of 

spatial prepositions lead to more natural conceptual segmentation?  How can conceptual segmentation 

be used in MMKCap?   
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8 APPENDICES 

Appendices for this dissertation appear on the following pages. 
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8.1 APPENDIX A: STIMULI FOR SPACECASE EXPERIMENT #2: RETRIEVAL 
Initial Variant Minus Variant Plus Variant 

   
balloon on stick 

   
balloon on table 

   
block on building 

   
coin in hand 

   
dirt in truck 

   
firefly on dish 

   
firefly on wheel 

   
plane on ground 
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puppet on table 

   
spider on bowl 
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8.2 APPENDIX B: STIMULI FOR GEOMETRIC EXPERIMENT 1 
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8.3 APPENDIX C: FACTS FILTERED FROM THE SKETCH CASES  
facts in *initial-space-filter* were filtered if they appeared in the first position in a statement, *third-isa-

atom* facts were filtered if the listed collection appeared as the second argument in a statement with 

isa as the predicate. 

 

(defparameter *initial-space-filter* 

  'd::(askConceptualForBinaryVisualRelation 

       bboxLastModifiedTime 

       containedGlyphGroupTangentialInsider 

       directionalSignature 

       entityTypesLastModifiedTime 

       glyphGraphCWA 

       glyphGraphEdgesFor 

       glyphRepresentsObject 

       hasRCC8Relation 

       inkLastModifiedTime 

       kbDateModified 

       nameString 

       nameStringLastModifiedTime 

       needVisualPositionalRelation 

       nuSketchCaseID 

       nuSketchCreationMachine 

       nuSketchCreator 

       sketchCreatedWithVersion 

       sketchFor 

       sketchModifiedWithVersion 

       sketchRepresentsObject 

       subSketchFor 

       subSketchGroupFor 

       subSketchGroupRepresentsObject 

       subSketchHasPose 

       subSketchHasGenre 

       subSketchRepresentsObject 

       q-2D-orientation 

       q-roundness 

       userCWA 

       voronoiFor)) 

(defparameter *third-isa-atom-filter* 

  'd::(Case 

       Circle 

       Entity 

       Ellipse 

       Glyph 

       Individual 

       LargeSizeGlyph 

       LookingFromSide-SubSketch 

       NotVeryRoundGlyph 

       NuSketchBundle 

       NuSketchCase 

       NuSketchGlyph 

       NuSketchLayer 

       NuSketchSketch 

       PhysicalView-SubSketch 

       QDiagonalDownwardGlyph 

       QDiagonalUpwardGlyph 

       QHorizontalGlyph 

       QVerticalGlyph 

       Rectangle 

       SmallSizeGlyph 

       SomewhatRoundGlyph 

       Sketch-Drawing 

       StaticSituation 

       Square 

       SubSketch 

       SubSketchGroup 

       Triangle 

       TwoDimensionalGeometricThing 

       VeryRoundGlyph)) 
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8.4 APPENDIX D: GENERALIZATIONS CREATED IN SIMPLE GEOMETRIC EXPERIMENT 1 
 

Best Generalization (GenFn SpaceSeql2 45) – EQUIVALENT TO IN 

Size: 10 

--DEFINITE FACTS: 

(spatiallyIntersects (GlyphFn :genent0 :genent1) (GlyphFn :genent2 :genent1)) 

(ContainedGroup figure ground) 

(subCaseOf :genent3 :genent4) 

--POSSIBLE FACTS: 

80%: (rcc8-NTPP figure ground) 

20%: (rcc8-TPP figure ground) 

--UNLIKELY FACTS: 

 

Best Generalization (GenFn SpaceSeql2 36) – EQUIVALENT TO LEFT 

Size: 10 

--DEFINITE FACTS: 

(enclosesVertically ground figure) 

(rcc8-DC figure ground) 

(leftOf figure ground) 

(subCaseOf :genent0 :genent1) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 

 

Best Generalization (GenFn SpaceSeql2 27) – EQUIVALENT TO ON 

Size: 10 

--DEFINITE FACTS: 

(rcc8-EC figure ground) 

(enclosesHorizontally ground figure) 

(connectedGlyphGroupTangentialConnection figure ground nil) 

(connectedGlyphGroupTangentialConnection ground figure nil) 

(above figure ground) 

(ConnectedGroup figure ground) 

(subCaseOf :genent0 :genent1) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 

 

Best Generalization (GenFn SpaceSeql2 18) – EQUIVALENT TO OVER 

Size: 10 

--DEFINITE FACTS: 

(aboveGrazingLine figure ground) 

(enclosesHorizontally ground figure) 

(above figure ground) 

(rcc8-DC figure ground) 

(subCaseOf :genent0 :genent1) 

--POSSIBLE FACTS: 
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--UNLIKELY FACTS: 

 

Best Generalization (GenFn SpaceSeql2 9) – EQUIVALENT TO UNDER 

Size: 10 

--DEFINITE FACTS: 

(belowGrazingLine figure ground) 

(below figure ground) 

(enclosesHorizontally ground figure) 

(rcc8-DC figure ground) 

(subCaseOf :genent0 :genent1) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 
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8.5 APPENDIX E: GENERALIZATIONS CREATED BY GEOMETRIC SHAPES EXPERIMENT 2 
 

Best Generalization  - IN 

Size: 17 

--DEFINITE FACTS: 

(spatiallyIntersects (GlyphFn :genent0 :genent1) (GlyphFn :genent2 :genent1)) 

--POSSIBLE FACTS: 

59%: (ContainedGroup figure ground) 

47%: (rcc8-NTPP figure ground) 

--UNLIKELY FACTS: 

6%: (ConnectedGroup figure ground) 

6%: (above figure ground) 

6%: (enclosesHorizontally ground figure) 

6%: (rcc8-PO figure ground) 

6%: (definiteOverlapCase figure ground) 

6%: (enclosesHorizontally figure ground) 

6%: (enclosesHorizontally ground figure) 

6%: (leftOf figure ground) 

6%: (ConnectedGroup figure ground) 

6%: (above figure ground) 

6%: (rcc8-PO figure ground) 

6%: (definiteOverlapCase figure ground) 

 

Best Generalization - ON 

Size: 17 

--DEFINITE FACTS: 

(rcc8-EC figure ground) 

(connectedGlyphGroupTangentialConnection ground figure nil) 

(connectedGlyphGroupTangentialConnection figure ground nil) 

(ConnectedGroup figure ground) 

--POSSIBLE FACTS: 

88%: (above figure ground) 

65%: (enclosesHorizontally ground figure) 

--UNLIKELY FACTS: 

6%: (enclosesHorizontally figure ground) 

6%: (enclosesHorizontally figure ground) 

6%: (enclosesVertically ground figure) 

6%: (leftOf figure ground) 

6%: (rightOf figure ground) 

 

Best Generalization  - OVER 

Size: 13 

--DEFINITE FACTS: 

(aboveGrazingLine figure ground) 

(above figure ground) 
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(rcc8-DC figure ground) 

--POSSIBLE FACTS: 

77%: (enclosesHorizontally ground figure) 

--UNLIKELY FACTS: 

8%: (enclosesHorizontally figure ground) 

8%: (leftOf figure ground) 

8%: (enclosesHorizontally figure ground) 

 

Best Generalization – LEFT OF 

Size: 10 

--DEFINITE FACTS: 

(enclosesVertically ground figure) 

(leftOf figure ground) 

(rcc8-DC figure ground) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 

 

Best Generalization  - UNDER 

Size: 10 

--DEFINITE FACTS: 

(belowGrazingLine figure ground) 

(below figure ground) 

(enclosesHorizontally ground figure) 

(rcc8-DC figure ground) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 

 

Best Generalization – Ambiguous Over/Left of  

Size: 2 

--DEFINITE FACTS: 

(leftOf figure ground) 

(rcc8-DC figure ground) 

(above figure ground) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 

 

Exemplar   

 (rcc8-DC figure ground) 

(above figure ground) 

(rightOf figure ground) 
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8.6 APPENDIX F: SIMPLE GEOMETRIC EXPERIMENT 2 STIMULI 
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8.7 APPENDIX G: STIMULI FOR EXPERIMENT # LEARNING SPATIAL PREPOSITIONS IN 
ENGLISH AND IN DUTCH 

These sketches are all drawn from the stimuli used in Gentner and Bowerman (in press) and were 

sketched using the CogSketch system 

 

 
bandaid op leg 

 
bandana om head 

 
button aan jacket 

 
candle in bottle 

 
clothes aan line 

 
cookie in bowl 

 
cookie op plate 

 
cup in tube 

 
flower in book 

 
freckles op face 

 
handle aan pan 

 
hole in towel 

 
hoop om doll 

 
knob aan door 

 
lamp aan ceiling 

 
lid op jar 

 
marble in water 

 
mirror aan wall 

 
necklace om neck 

 
purse aan hook 

 
raindrops op window 

 
ribbon om candle 

 
ring om pencil 

 
rubber band om can 
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sticker op cupboard 

 
toy dog op book 

 
sick in straw 

 
top op tube 

 
tube om stick 

 
string aan balloon 

 
wrapper om gum 

 
apple in ring 
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8.8 APPENDIX H: CONCEPTUAL LABELS USED IN THE CROSS-LINGUISTIC EXPERIMENT 
 

Figure Objects Ground Objects 

Original KB Concept Original KB Concept 

cookie Cookie plate DinnerPlate 

toy dog Toy book BookCopy 

bandaid BandAidBandageProduct leg Leg 

raindrops Raindrop window WindowThePortalCovering 

sticker Sticker-Adhesive cupboard Cupboard 

lid Covering-Object jar Jar 

top Covering-Object tube Tube-Container 

freckles Freckle face FaceOfAnimal 

mirror Mirror-Wall wall WallOfAConstruction 

purse Purse hook Hook 

clothes Clothing-Generic line ClothesLine 

lamp Lamp-Hanging ceiling CeilingOfARoom 

handle Handle pan CookingVessel 

string String-Textile balloon Balloon 

knob DoorKnob door DoorInABuilding 

button ButtonTheFastener jacket Coat 

necklace Necklace neck Head-AnimalBodyPart 

rubber band RubberBand can Can 

bandana Bandana head Head-AnimalBodyPart 

hoop Circle doll Doll-Toy 

ring Ring-Jewelry pencil Pencil 

tube Tube stick TreeBranch 

wrapper Wrapper gum ChewingGum 

ribbon String-Textile candle candle 

cookie Cookie bowl Bowl-Generic 

candle Candle bottle Bottle 

marble Marble-Ball water Water 

stick TreeBranch straw SiphonTube 

apple EdilbeFruit ring RingShapedObject 

flower Flower-BotanicalPart book BookCopy 

cup DrinkingGlass tube Tube 

hole n/a towel Towel 
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8.9 APPENDIX I: GENERALIZATIONS CREATED FOR ENGLISH IN AND ON IN THE CROSS-
LINGUISTIC EXPERIMENT WHEN NO TEST CASE IS EXCLUDED (INCLUDES ALL TRAINING 
CASES) 

 

Best Generalization ON 

Size: 4 

--DEFINITE FACTS: 

(rcc8-NTPP figure ground) 

(Clingy figure) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 

 

Best Generalization ON 

Size: 3 

--DEFINITE FACTS: 

(enclosesVertically ground figure) 

(rcc8-EC figure ground) 

--POSSIBLE FACTS: 

67%: (leftOf figure ground) 

33%: (enclosesHorizontally ground figure) 

--UNLIKELY FACTS: 

 

Best Generalization ON 

Size: 3 

--DEFINITE FACTS: 

(enclosesVertically ground figure) 

(definiteOverlapCase figure ground) 

(rcc8-PO figure ground) 

--POSSIBLE FACTS: 

67%: (enclosesHorizontally ground figure) 

33%: (rightOf figure ground) 

--UNLIKELY FACTS: 

 

Best Generalization ON 

Size: 2 

--DEFINITE FACTS: 

(enclosesHorizontally ground figure) 

(above figure ground) 

(rcc8-EC figure ground) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 

 

Best Generalization ON 

Size: 2 

--DEFINITE FACTS: 
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(HollowCylindricalObject ground) 

(leftOf figure ground) 

(above figure ground) 

(Covering-Object figure) 

--POSSIBLE FACTS: 

50%: (definiteOverlapCase figure ground) 

50%: (rcc8-PO figure ground) 

50%: (rcc8-EC figure ground) 

--UNLIKELY FACTS: 

 

Best Generalization ON 

Size: 2 

--DEFINITE FACTS: 

(rcc8-EC figure ground) 

(enclosesVertically ground figure) 

(rightOf figure ground) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 

 

Best Generalization ON 

Size: 2 

--DEFINITE FACTS: 

(rcc8-PO figure ground) 

(enclosesHorizontally ground figure) 

(below figure ground) 

(definiteOverlapCase figure ground) 

--POSSIBLE FACTS: 

50%: (belowGrazingLine figure ground) 

--UNLIKELY FACTS: 

 

Best Generalization ON 

Size: 2 

--DEFINITE FACTS: 

(below figure ground) 

(rcc8-EC figure ground) 

(belowGrazingLine figure ground) 

--POSSIBLE FACTS: 

50%: (Circling figure) 

50%: (enclosesHorizontally ground figure) 

50%: (enclosesHorizontally figure ground) 

--UNLIKELY FACTS: 

 

Best Generalization ON 

Size: 2 

--DEFINITE FACTS: 

(rcc8-TPP figure ground) 
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(Circling figure) 

--POSSIBLE FACTS: 

--UNLIKELY FACTS: 

 

Best Generalization ON 

Size: 2 

--DEFINITE FACTS: 

(rcc8-PO figure ground) 

(enclosesVertically ground figure) 

(definiteOverlapCase figure ground) 

--POSSIBLE FACTS: 

50%: (rightOf figure ground) 

50%: (leftOf figure ground) 

--UNLIKELY FACTS: 

 

Best Generalization IN 

Size: 3 

--DEFINITE FACTS: 

(above figure ground) 

(rcc8-EC figure ground) 

--POSSIBLE FACTS: 

67%: (enclosesHorizontally ground figure) 

33%: (enclosesHorizontally figure ground) 

33%: (RingShapedObject ground) 

Best Generalization IN 

Size: 2 

--DEFINITE FACTS: 

(rcc8-TPP figure ground) 

--POSSIBLE FACTS: 

50%: (Bowl-Generic Object-121) 

50%: (Basin ground) 

--UNLIKELY FACTS: 

 

Exemplar <Exemplar IN> 

Exemplar <Exemplar IN> 

Exemplar <Exemplar IN> 
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8.10 APPENDIX J: DIAGRAMS FROM BASIC MACHINES CHAPTER 1 
 

Original Diagram Sketch(es)* 
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*In some cases, multi-part diagrams were broken into individual sketches for easier processing 
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8.11 APPENDIX K: HOMEWORK QUESTIONS FOR CHAPTER 1 IN BASIC MACHINES  
(this is a subset of assignment 1 which covers chapters 1 through 4). 

Correct answers are indicated in red 

 
1-1. A chain hoist lifts a 300-pound 
load through a height of 10 feet 
because it enables you to lift the 
load by exerting less than 300 
pounds of force over a distance of 
10 feet or less. 
 
1. True 
2. False 
 
1-2. When a chain hoist is used to 
multiply the force being exerted on 
a load, the chain is pulled at a 
faster rate than the load travels. 
1. True 
2. False 
 
1-3. What are the six basic simple 
machines? 
 
1. The lever, the block and 
tackle, the inclined plane, the 
engine, the wheel and axle, and 
the gear 
2. The lever, the block and 
tackle, the wheel and axle, the 
screw, the gear, and the 
eccentric 
3. The lever, the block and 
tackle, the wheel and axle, the 
inclined plane, the screw, and 
the gear 
4. The lever, the inclined plane, 
the gear, the screw, the 
fulcrum, and the torque 
 
1-4. Which of the following basic 
principles is recognized by 
physicists as governing each simple 
machine? 
 
1. The wedge or the screw 
2. The wheel and axle or the gear 
3. The lever or the inclined plane 
4. The block and tackle or the 
wheel and axle 
 
1-5. Which of the following simple 
machines works on the same 
principle as the inclined plane? 
 
1. Screw 
2. Gear 
3. Wheel and axle 
4. Block and tackle 

 
1-6. The fundamentally important 
points 
in any lever problem are (1) the 
point at which the force is 
applied, (2) the fulcrum, and (3) 
the point at which the: 
 
1. lever will balance 
2. resistance arm equals the 
effort arm 
3. mechanical advantage begins to 
increase 
4. resistance is applied 
 

 
 
1-7. Which, if any, of the following 
parts illustrates a first class 
lever? 
 
1. A 
2. B or C 
3. D 
4. None of the above 
 
1-8. Which part illustrates a 
Second-class lever? 
 
1. D 
2. C 
3. B 
4. A 
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1-9. What part illustrates a third-
class 
lever? 
 
1. A 
2. B 
3. C 
4. D 
 
1-10. Which of the following classes 
of levers should you use to lift a 
large weight by exerting the least 
effort? 
 
1. First-class 
2. Second-class 
3. First- or second-class 
4. Third-class 
 
1-11. You will find it advantageous 
to use a third-class lever when the 
desired result is 
 
1. a transformation of energy 
2. an increase in speed 
3. a decrease in applied effort 
4. a decrease in speed and an 
increase in applied effort 
 

 
 

 
 
IN ANSWERING QUESTIONS 1-12 THROUGH 
o 1-14, SELECT THE CORRECT ARM 
MEASUREMENTS FROM FIGURES 1B AND 1C. 
 
1-12. Effort arm in figure 1B 
 
1. 1 ft 
2. 3 ft 
3. 4 ft 
4. 5 ft 
 
1-13. Resistance arm in figure 1B 
 
1. 1 ft 
2. 3 ft 

3. 4 ft 
4. 5 ft 
 
1-14. Resistance arm in figure 1C 
 
1. 1 ft 
2. 3 ft 
3. 4 ft 
4. 5 ft 
1-15. Two boys find that they can 
balance each other on a plank if one 
sits six feet from the fulcrum and 
the other eight feet. The heavier 
boy weighs 120 pounds. How much does 
the lighter boy weigh? 
 
1. 90 lb 
2. 106 lb 
3. 112 lb 
4. 114 lb 
 

 
 
1-16. With the aid of the pipe 
wrench shown in figure 1D, how many 
pounds of effort will you need to 
exert to overcome a resistance of 
900 pounds?  
 
1. 25 lb 
2. 50 lb 
3. 75 lb 
4. 100 lb 
 
Questions 1-17 and 1-18 are related 
o to a 300-pound load of firebrick 
stacked on a wheelbarrow. Assume 
that the weight of the firebrick is 
centered at a point and the barrow 
axle is 1 1/2 feet forward of the 
point. 
 
1-17. If a Seaman grips the barrow 
handles at a distance of three feet 
from the point, how many total 
pounds will the Seaman have to lift 
to move the barrow? 
 
1. 65 lb 
2. 100 lb 
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3. 150 lb 
4. 300 lb 
 
1-18. If a Seaman grasps the handles 
3 1/2 feet from the point where the 
weight is centered, how many pounds 
of effort will be exerted? 
 
1. 50 lb 
2. 90 lb 
3. 100 lb 
4. 120 lb 
 
1-19. In lever problems, the length 
of the effort arm multiplied by the 
effort is equal to the length of 
the 
 
1. resistance arm multiplied by 
the effort 
2. resistance arm multiplied by 
the resistance 
3. effort arm multiplied by the 
resistance arm 
4. effort arm multiplied by the 
Resistance 
 
 

 
 
1-20. The length of the effort arm 
in figure 1E is equal to the length 
of the 
 
1. curved line from A to C 
2. curved line from A to D 
3. straight line from B to C 
4. straight line from B to D 
 

 
 
1-21. Refer to figure 1F. If a 
person exerts at point B a pull of 
60 pounds on the claw hammer shown, 
what is the resistance that the 
nail offers? 
 
1. 60 lb 
2. 120 lb 
3. 480 lb 
4. 730 lb 
 
1-22. Which of the following 
definitions describes the mechanical 
advantage of the lever? 
 
1. Effort that must be applied to 
overcome the resistance of an 
object divided by the resistance of 
the object 
2. Amount of work obtained from 
the effort applied 
3. Gain in power obtained by the 
use of the lever 
4. Resistance offered by an object 
divided by the effort which 
must be applied to overcome 
this resistance 
 
1-23. The mechanical advantage of 
levers can be determined by dividing 
the length of the effort arm by the 
 
1. distance between the load and 
the point where effort is 
applied 
2. distance between the fulcrum 
and the point where effort is 
applied 
3. distance between the load and 
the fulcrum 
4. amount of resistance offered by 
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the object 
 

 
 
1-24. The mechanical advantage of 
the lever in figure 1G is 
 
1. one-fifth 
2. one-fourth 
3. four 
4. five 
 

 
 
1-25. The mechanical advantage of 
the lever in figure 1H is 
 
1. one 
2. two 
3. one-half 
4. one-fourth 
 
1-26. The mechanical advantage of 
the lever pictured in figure 1J is 
1. five 
2. six 
3. seven 
4. one-sixth 
 
1-27. The combination dog and wedge 
of textbook figure 1-10 is a complex 
machine since it consists of which 
two simple machines? 
 
1. Lever and the screw 
2. Two first-class levers 
3. Lever and the inclined plane 
4. One first-class lever and one 
second-class lever 
 
Information for questions 1-28 and1-
29: The handle of a hatch dog is 
9 inches long. The short arm is 3 
inches long. 
 
1-28. What is the mechanical 
advantage of 

the hatch dog? 
 
1. 12 
2. 27 
3. 3 
4. 9 
 
1-29. With how much force must you 
push down on the handle to exert 210 
pounds force on the end of the 
short arm? 
 
1. 105 lb 
2. 80 lb 
3. 70 lb 
4. 25 lb 



8.12 APPENDIX L: KNOWLEDGE ADDED TO THE KNOWLEDGE BASE TO FACILITATE 
KNOWLEDGE CAPTURE 

 

(in-package :data) 

(in-microtheory EANLU :exclude-globals t) 

 

(isa BasicMachine Collection) 

(genls BasicMachine MechanicalDevice) 

 

(isa InclinedPlane Collection) 

(isa Wedge-Tool Collection) 

(genls InclinedPlane MechanicalDevice) 

(genls Wedge-Tool MechanicalDevice) 

(isa HatchDog Collection) 

(genls HatchDog MechanicalDevice) 

 

(isa Lever-FirstClass Collection) 

(isa Lever-SecondClass Collection) 

(isa Lever-ThirdClass Collection) 

(genls Lever-FirstClass Lever) 

(genls Lever-SecondClass Lever) 

(genls Lever-ThirdClass Lever) 

(isa FirstClass Individual) 

(isa FirstClass NonNumericQuantity) 

(isa FirstClass EvaluativeQuantity) 

(isa SecondClass Individual) 

(isa SecondClass NonNumericQuantity) 

(isa SecondClass EvaluativeQuantity) 

(isa ThirdClass Individual) 

(isa ThirdClass NonNumericQuantity) 

(isa ThirdClass EvaluativeQuantity) 

 

(isa LeverArm Collection) 

(isa EffortArm-LeverArm Collection) 

(isa ResistanceArm-LeverArm Collection) 

(genls EffortArm-LeverArm LeverArm) 

(genls ResistanceArm-LeverArm LeverArm) 

 

(isa MechanicalAdvantage Individual) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; nouns 

 

(isa Seesaw-TheWord LexicalWord) 

(isa Seesaw-TheWord EnglishWord) 

(posForms Seesaw-TheWord CountNoun) 

(denotation Seesaw-TheWord CountNoun 85 PlaygroundEquipment) 
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(denotation Pivot-TheWord CountNoun 85 Fulcrum) 

 

(isa Sailor-TheWord LexicalWord) 

(isa Sailor-TheWord EnglishWord) 

(posForms Sailor-TheWord CountNoun) 

(denotation Sailor-TheWord CountNoun 85 CrewMemberOnShip) 

 

(multiWordString (TheList "inclined") Plane-TheWord CountNoun InclinedPlane) 

(multiWordString (TheList "mechanical") Advantage-TheWord CountNoun MechanicalAdvantage) 

(multiWordString (TheList "lever") Arm-TheWord CountNoun LeverArm) 

(multiWordString (TheList "effort") Arm-TheWord CountNoun EffortArm-LeverArm) 

(multiWordString (TheList "resistance") Arm-TheWord CountNoun ResistanceArm-LeverArm) 

(multiWordString (TheList "hatch") Dog-TheWord CountNoun HatchDog) 

 

(denotation Arm-TheWord CountNoun 0 LeverArm) 

(denotation Wedge-TheWord CountNoun 0 Wedge-Tool) 

(denotation Resistance-TheWord MassNoun 85 Weight) 

 

(isa Oarlock-TheWord LexicalWord) 

(isa Oarlock-TheWord EnglishWord) 

(posForms Oarlock-TheWord CountNoun) 

(denotation Oarlock-TheWord CountNoun 85 Joint-Junction) 

 

(multiWordString (TheList "wheel" "and") Axle-TheWord CountNoun WheelAndAxle) 

 

(compoundString Pair-TheWord (TheList "of" "pliers") CountNoun Pliers) 

 

(verbSemTrans Start-TheWord 85 (PPCompFrameFn TransitivePPFrameType At-TheWord) 

               (startOfPath :OBLIQUE-OBJECT :SUBJECT)) 

 

(denotation Load-TheWord Noun 0 Weight) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; verbs 

 

(verbSemTrans Move-TheWord 85 IntransitiveVerbFrame  

              (and (isa :ACTION Movement-TranslationEvent) 

                   (distanceTranslated :ACTION :OBJECT) 

                   (primaryObjectMoving :ACTION :SUBJECT))) 

 

(verbSemTrans Move-TheWord 0 IntransitiveVerbFrame 

                          (and 

                           (isa :ACTION Movement-TranslationEvent) 

                           (primaryObjectMoving :ACTION :SUBJECT) 

                           (distanceTranslated :ACTION :MEASURE))) 
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(verbSemTrans Equal-TheWord 85 IntransitiveVerbFrame 

              (equals :SUBJECT :ACTION)) 

 

(adjSemTrans Equal-TheWord 85 RegularAdjFrame 

              (equals :SUBJECT :ACTION)) 

 

(verbSemTrans Divide-TheWord 85 (PPCompFrameFn TransitivePPFrameType By-TheWord) 

               (QuotientFn :SUBJECT :NOUN)) 

 

(isa DivisionEvent Event) 

(isa dividend ActorSlot) 

(isa divisor ActorSlot) 

(arg1Isa dividend DivisionEvent) 

(arg1Isa divisor DivisionEvent) 

 

(verbSemTrans Divide-TheWord 86 IntransitiveVerbFrame 

              (and  

                   (isa :ACTION DivisionEvent) 

                   (dividend :ACTION :SUBJECT) 

                   (divisor :ACTION :OBJECT))) 

 

(verbSemTrans Curve-TheWord 0 RegularVerbFrame  

       (physicalStructuralFeatures :NOUN Curved)) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; adjectives 

 

(denotation First-TheWord OrdinalAdjective 1 FirstClass) 

(denotation First-Class-TheWord Adjective 0 FirstClass) 

(denotation Second-Class-TheWord Adjective 0 SecondClass) 

(denotation Third-Class-TheWord Adjective 0 ThirdClass) 

 

;;; want to do the more general case 

(multiWordString (TheList "first") Class-TheWord CountNoun FirstClass) 

(multiWordString (TheList "first" "class") Lever-TheWord CountNoun Lever-FirstClass) 

 

(multiWordString (TheList "second") Class-TheWord Adjective SecondClass) 

(multiWordString (TheList "second" "class") Lever-TheWord CountNoun Lever-SecondClass) 

 

(multiWordString (TheList "third") Class-TheWord Adjective ThirdClass) 

(multiWordString (TheList "third" "class") Lever-TheWord CountNoun Lever-ThirdClass) 

 

(denotation Light-TheWord Adjective 85 (LowAmountOfFn Weight)) 

(denotation Basic-TheWord Adjective 85 ConfigurationTypeByComplexity-NoAmount) 
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(denotation Complex-TheWord Adjective 85 ConfigurationTypeByComplexity-HighAmount) 

 

(adjSemTrans Perpendicular-TheWord 85 RegularAdjFrame 

             (perpendicularObjects :NOUN :OBLIQUE-OBJECT)) 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; prepositions 

 

(denotation Through-TheWord Preposition 85 trajectoryPassesThrough) 

 

(prepSemTrans Through-TheWord 85 Post-NounPhraseModifyingFrame  

       (trajectoryPassesThrough :NOUN :OBJECT)) 

 

(prepSemTrans From-TheWord 1 Post-NounPhraseModifyingFrame 

              (thereExists :THIS 

                           (and 

                            (isa :THIS Distance) 

                            (distanceBetween :NOUN :OBJECT :THIS)))) 

 

(arity distanceBetween 3) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; adverbs 

 

(definitionInDictionary COMLEX31Lexicon "farther" (farther (adverb (orth "farther") (root far2) (modif 

clausal-adv) (comparative +) (gradable +) (manner-adv +)) farther2)) 

 

(denotation Less-TheWord Adverb 0 lessThan) 

 

(adverbSemTrans Less-TheWord 0 RegularAdjFrame 

                (denotesRelation-Underspecified :SUBJECT lessThan)) 

 

(denotation Fast-TheWord Adverb 85 (HighAmountOfFn Speed)) 

 

(denotation Further-TheWord Adverb 85 (HighAmountOfFn Distance)) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; test setup predicates 

 

(arity sketchForDiscourse 2) 

(arity discourseForChapter 2) 

(isa LeverEffortProblem Collection) 

(isa LeverMAProblem Collection) 

 

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 

;;; knowledge needed for test questions 
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(arity sketchForQuery 2) 

(arity multipleChoiceCorrectAnswer 2) 

(arity determineMeasurementFromSketch 2) 

(arity previousDRSInChapter 3) 

(arity mechanicalAdvantageOf 1) 

(arity workedSolutionMtForTestMt 2) 

(arity workedSolutionForKBContentTest 2) 

(arity equationForSolution 2) 

(arity mathEquals 2) 

 

(arity comparee 2) 

(arity comparer 2) 
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8.13 APPENDIX M: FILTER USED TO EXTRACT BOOKKEEPING INFORMATION FROM SKETCH 
CASES 

 

(defun remove-mmkcap-filter (reasoner fact) 

  (declare (ignore reasoner)) 

  (when (and (consp fact)  

             (eq (car fact) 'd::ist-Information) 

             (consp (third fact))) 

    ;; only case facts are useful here 

    (let ((inner-fact (third fact))) 

      (and (not (filter-mmkcap-info? inner-fact)) 

           (not (filter-isa? inner-fact)))))) 

 

(defparameter *initial-mmkcap-filter* 

  'd::(askConceptualForBinaryVisualRelation 

       bboxLastModifiedTime 

       connectedGlyphGroupMember 

       connectedGlyphGroupTangentialConnection 

       containedGlyphGroupContainer 

       containedGlyphGroupInsider 

       containedGlyphGroupTangentialInsider 

       defaultUnits 

       directionalSignature 

       entityTypesLastModifiedTime 

       glyphAssociation 

       glyphGraphCWA 

       glyphGraphEdgesFor 

       glyphRepresentsObject 

       hasRCC8Relation 

       inkLastModifiedTime 

       kbDateModified 

       nameStringLastModifiedTime 

       needVisualPositionalRelation 

       nuSketchCaseID 

       nuSketchCaseNotes 

       nuSketchCreationMachine 

       nuSketchCreator 

       nuSketchLayerOf 

       nuSketchLayerForCase 

       nuSketchSketchOf 

       nuSketchSketchForCase 

       sketchCreatedWithVersion 

       sketchFor 

       sketchModifiedWithVersion 

       sketchRepresentsObject 
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       subCaseOf 

       subSketchFor 

       subSketchGroupFor 

       subSketchHasPose 

       subSketchHasGenre 

       subSketchRepresentsObject 

       q-2D-orientation 

       q-roundness 

       userCWA 

       voronoiFor)) 

 

(defparameter *third-isa-atom-filter* 

  'd::(Case 

       ConnectedGlyphGroup 

       ContainedGlyphGroup 

       ContainedGlyphGroupFn 

       ConnectedGlyphGroupFn 

       Glyph 

       Individual 

       Latitude 

       Longitude 

       LookingFromSide-SubSketch 

       NotVeryRoundGlyph 

       NotVeryRound 

       NuSketchBundle 

       NuSketchCase 

       NuSketchGlyph 

       NuSketchLayer 

       NuSketchSketch 

       PhysicalView-SubSketch 

       SomewhatRoundGlyph 

       SomewhatRound 

       Sketch-Drawing 

       StaticSituation 

       SubSketch 

       SubSketchGroup 

       VeryRoundGlyph 

       VeryRound 

       QDiagonalDownwardGlyph 

       QDiagonalUpwardGlyph 

       QHorizontalGlyph 

       QVerticalGlyph 

       SmallSizeGlyph 

       LargeSizeGlyph 

       Yard-UnitOfMeasure)) 
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(defun filter-mmkcap-info? (fact) 

  (member (car fact) *initial-mmkcap-filter* :test #'eq)) 

 

(defun filter-isa? (fact) 

  (and (eq (car fact) 'd::isa) 

       (member (third fact)  *third-isa-atom-filter* :test #'eq))) 

 


