
Causal Explanations in Counterfactual Reasoning
Morteza Dehghani (morteza@northwestern.edu)

Department of EECS, 2145 Sheridan Rd
Evanston, IL 60208-0834 USA

Rumen Iliev (r-iliev@northwestern.edu)
Department of Psychology, 2029 Sheridan Rd

Evanston, IL 60208-2710 USA

Stefan Kaufmann (kaufmann@northwestern.edu)
Department of Linguistics, 2016 Sheridan Rd

Evanston, IL 60208-4090 USA

Abstract

This paper explores the role of causal explanations in eval-
uating counterfactual conditionals. In reasoning about what
would have been the case if A had been true, the localist in-
junction to hold constant all the variables that causally influ-
ence whether A is true or not, is sometimes unreasonably con-
straining. We hypothesize that speakers may resolve this ten-
sion by including in their deliberations the question of what
would explain the hypothesized truth of A. To account for our
recent psychological findings about counterfactuals, an alter-
native approach based on Causal Bayesian networks is pro-
posed in which the intervention operator utilizes the agent’s
beliefs about the explanatory power of the antecedent of the
counterfactual. The results of three psychological experiments
are reported in which the new method succeeds in predicting
subjects’ responses while the traditional method for evaluating
counterfactuals in Bayesian networks fails.

Keywords: Counterfactual Reasoning; Causal Explanations;
Causal Networks.

Introduction
Counterfactual reasoning plays an important role in causal
inference, diagnosis, prediction, planning and decision mak-
ing, as well as emotions like regret and relief, moral and legal
judgments, and more. Consequently, it has been a focal point
of attention for decades in a variety of disciplines including
philosophy, psychology, artificial intelligence, and linguis-
tics. The fundamental problem facing all attempts to model
people’s intuitive judgments about what would or might have
been if some counterfactual premise A had been true, is to
understand people’s implicit assumptions as to which actual
facts to “hold on to” in exploring the range of ways in which A
might manifest itself. As Goodman (1955) stated it in his
classic example: In asking what would have been the case
if the match had been struck, people tend to infer from the
presence of oxygen that it would have lit; but why not instead
infer that there would have been no oxygen from the fact that
it did not light? There is no principled logical difference be-
hind asymmetries of this sort; something else seems to be at
work.

Many formal theories of counterfactual reasoning are in-
spired by the model-theoretic accounts of Stalnaker (1968)
and Lewis (1973). Minor differences aside, both crucially
rely on a notion of comparative similarity between possible

worlds relative to the “actual” world of evaluation. Simpli-
fying somewhat, a counterfactual ‘If had been A, would have
been C’ (A� C) is true if and only if C is true at all A-
worlds that are maximally similar to the actual one. Stalnaker
and Lewis account for various logical properties of counter-
factuals by imposing conditions on the underlying similarity
relation, but neither attempts a detailed analysis of this no-
tion. Much of the subsequent work on modeling counterfac-
tual reasoning can be viewed as attempts to make the notion
of similarity more precise.

Recent years have seen an increased interest in the role of
causal (in)dependencies in determining speakers’ judgments
about counterfactuals, driven in large part by advances in the
formal representation and empirical verification of causal re-
lations that had originated in statistics and artificial intelli-
gence and had since had a major impact in psychology and
other disciplines (Spirtes et al., 1993; Pearl, 2000). The for-
mal vehicle of choice in this area is that of Causal (Bayesian)
Networks, directed acyclic graphs whose edges represent the
direction of causal influence and whose vertices are labeled
with variables. Each distribution of values over these vari-
ables corresponds to a possible state of the system represented
by the model. Causal networks are partial descriptions of the
world, thus in general each state corresponds to a class of
possible worlds in the Stalnaker/Lewis sense. The standard
analysis of counterfactual reasoning about what would have
been if some variable X had had value x relies on the notion
of an external intervention which forces X to have value x but
cuts all the causal links leading into X, ensuring that all those
variables remain undisturbed whose values are not (directly
or indirectly) caused by that of X. In effect, the counterfac-
tual reasoning thus modeled is maximally “local” in the sense
that for all variables Y which do not lie “downstream” of X
in the direction of causal influence, the counterfactual ‘If X
had had value x, then Y would still have its actual value’ is
invariably true.

It is an empirical question whether and to what extent
speakers’ judgments about particular counterfactuals actually
reflect such highly localized reasoning. There is no doubt
that the method of blocking the flow of information from ef-
fects to causes in modeling counterfactual inference captures
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an intuitively real asymmetry. Yet psychological experiments
have so far yielded only mixed support for the strong version
of this idea (Sloman and Lagnado, 2005) and even systematic
violations in some cases (Dehghani et al., 2007). It appears
that while causal locality is an important factor in counterfac-
tual inference, it interacts with other tendencies which may
outweigh or overrule it in some cases. We believe that a sys-
tematic investigation of those other tendencies and of their
interaction with causal locality is the key to further progress
towards a better understanding of the notion of similarity at
work in counterfactual inference.

In this paper we explore the role of causal explanation in
evaluating counterfactuals. The basic idea is that in reason-
ing about what would have been the case if A had been true,
the localist injunction to hold constant all the variables that
causally influence whether A is true or not is sometimes un-
reasonably constraining, particularly when the hypothesized
truth of A is a very unlikely outcome given their actual val-
ues. We hypothesize that speakers may resolve this tension
by including in their deliberations the question of what would
explain the hypothesized truth of A – that is, whether an alter-
native state of the causes of A would make its hypothesized
truth less surprising.

In the following, we first discuss causal explanation and
Gärdenfors’ definition of the important notion of explana-
tory power. Next, we propose an alternative operator for the
Bayesian network framework which would allow this frame-
work to make more precise prediction about counterfactual
conditionals, taking into account both the causal structure
and the explanatory goodness of events. In the experiments
section of the paper, we discuss three psychological experi-
ments showing systematic violations of the Bayesian network
framework by subjects who were asked to evaluate counter-
factual statements, and how our new operator can account for
these violations.

Causal Explanation
There is abundant evidence that humans have a deeply en-
trenched inclination towards providing and acquiring expla-
nations (Keil, 2006; Lombrozo and Carey, 2006). This need
to answer the “why” question is not limited to proposing
naı̈ve theories about the relationships between objects or
events. Rather, the tendency to search for missing links and to
understand properties has been shown to be linked to variety
of cognitive processes, including predictions (Heider, 1958),
diagnosis (Graesser and Olde, 2003), categorization (Murphy
and Medin, 1985), and attention allocation (Keil et al., 1998).

There are different types of explanations, some of which
(e.g., mathematical proofs) are not necessarily related to
causal links. Typically, however, causality plays a major role
in explanations. When we explain a fire by the action of an
arsonist, we rely on a construal of the situation in which the
arsonist’s action is a cause and the fire is its effect. In many
cases, however, the causal analysis of a situation presents a
complex picture and agreeing on the best explanation (let

alone the “correct” one) can be challenging if not impossi-
ble. Rarely it is the case that real-world events have clear,
equivocal causes and effects. For one thing, in many cases
the casual links are probabilistic rather than deterministic.
Moreover, effects often have more than one relevant cause,
and distinguishing between a focal cause and mere enabling
conditions can be difficult (McGill, 1993). Furthermore, the
process of finding the focal cause may be heavily context-
dependent (Einhorn and Hogarth 1986; see also the papers in
Collins et al. 2004).

Nevertheless, we believe that causal explanations play a
crucial role in the interpretation of counterfactual condition-
als. This is obviously the case in backward counterfactual
reasoning, i.e., reasoning from a hypothesized effect to its
causes, in answering counterfactual questions like (1a).

(1) a. If the Iraq war had not happened, would the 9/11
attacks have happened?

b. If the 9/11 attacks had not happened, would the
Iraq war have happened?

But explanations are also likely to be implicitly involved
in our evaluation of forward counterfactuals like (1b): Even
a speaker who does not believe that the Iraq war was a di-
rect effect of the 9/11 attacks may answer the question quite
differently depending on his or her beliefs about what actu-
ally caused the attacks, what would have prevented them, and
how whatever may explain their non-occurrence would have
affected the events leading up to the war.

In order to make this a bit more precise, we turn to
Gärdenfors’s (1988) formal definition of causal explanation.
Gärdenfors defines an epistemic state as a triple K = 〈W,P,B〉,
where W is a set of possible worlds with a common domain
of individuals; P a function which, for each w ∈W, defines a
probability measure Pw on sets of individuals in w; and B a
probability measure on subsets of W, representing degrees of
belief. The distinction between P and B allows Gärdenfors to
represent beliefs about probabilities, defined as expectations
of P relative to B, and thus to include statements about prob-
abilities in his object language. We ignore this feature for
simplicity.

An agent who may need an explanation for an event E
most likely already holds E to be true. Whether and how
urgently an explanation is needed depends on the degree of
belief given to E in a contracted state KE , an epistemic state
in which E is not known but which is otherwise as similar
to K as possible. There is no unique contraction in general,
but Gärdenfors proposes as “typical” the case that KE is the
agent’s last epistemic state prior to learning E (p. 176).

If, according to KE , E is certain to happen, then the fact
that E did indeed happen does not require an explanation.
An explanation is only required to the extent that E is un-
expected according to KE . In Gärdenfors’s terms, an agent
asking for an explanation for E expresses a cognitive disso-
nance between E and the rest of her beliefs. This cognitive
dissonance is measured by the surprise value of E. Sintonen



(1984) argues that the role of the explanans is to reduce the
cognitive dissonance and provide cognitive relief, which he
measures as the reduction of surprise provided by the update
of KE with the explanans.

Gärdenfors imposes two conditions on explanations rela-
tive to a belief state K. First, if an explanation is needed
for E, it should increase the degree of belief in E accord-
ing to KE . Thus C is considered a worthy explanation if
BE(E|C) > BE(E). A measure of the explanatory power of
C, defined as the difference BE(E|C)−BE(E), is used to pre-
dict speakers’ choices between alternative explanations. The
second condition for a worthy explanation is that it should not
already be known in state K, i.e., B(C) < 1.

In order to define a causal explanation, Gärdenfors first
gives a definition for a cause. In his formalism, C is a cause
for E relative to the epistemic state only if it satisfies the
following two conditions: (i) P(E) = 1, P(C) < 1 and (ii)
PC(E|C)> PC(E). In addition to the two conditions described
for explanations, he restrict causal explanations by imposing
the following additional condition on them: C is a causal ex-
planation for event E, if C is a cause of E in relation to P+

C .
Note that Gärdenfors’ notions of goodness of explanation

and explanatory power crucially refer to the conditional prob-
ability of the explanandum given the explanans, in relation
to the unconditional probability of the explanans. Notably
missing is the prior probability of the explanans. Chajewska
and Halpern (1997) argue convincingly that this is a serious
omission, as this prior probability can play a role in choosing
between different alternative explanations.

Whatever the shortcomings of Gärdenfors’ account are, the
importance of the conditional probability of the explanandum
given the explanans is itself doubtless an important factor in
causal explanation. In this paper, we focus on this conditional
probability in both the theoretical and the experimental part.
We emphasize, however, that this limitation is not intended to
deny that other factors should be considered, and we plan to
consider them in the next phase of this work.

Selective Intervention
In this section, we propose an alternative approach for eval-
uating counterfactual conditionals in causal networks. In
essence, it is a weakened version of the operation associated
with Pearl’s (2000) ‘do’ operator. Recall that Pearl postulates
a three-step procedure in reasoning counterfactually about the
event that X = x: (i) Abduction: updating the exogenous vari-
ables according to the available evidence; (ii) Intervention:
setting X := x and cutting all causal links into X; and (iii)
Prediction. Our modification concerns the second step, Inter-
vention. As before, do(X = x) involves forcing the variable X
to have value x. However, rather than cutting all causal links
into X and thus blocking any consequences of the interven-
tion for X’s non-descendants, the links are cut selectively fol-
lowing an analysis of the possible causal explanations for the
hypothesized event that X = x.

Before going on to describe the operation in more detail,

we point out two questions it raises, whose importance we
acknowledge but whose investigation would go beyond the
scope of the present study. First, what determines whether
or not the intervention is total or selective? Clearly one case
in which some modification to the causes of X is called for
is when the actual values of those causes rule out X’s having
value x. On a clear day, one cannot consistently entertain the
question of what would happen if there was a thunderstorm
without imagining there being clouds in the sky. But we be-
lieve, and some of our experimental data below lend evidence
to this view, that speakers manipulate the causes of X not only
when X = x is impossible under their actual values, but also
when it is merely unlikely. Such cases seem to require an
appeal to a notion like the “cognitive dissonance” discussed
above, which presumably triggers a search for explanation
when it exceeds a certain threshold. What that threshold is
and whether and how it is determined by the details of the
model and/or the nature of the system represented by the
model is an empirical question which requires more inves-
tigation.

While the first question concerns the conditions under
which selective intervention is triggered, the second ques-
tion is the mirror image of the former and concerns cases
in which the variable X has multiple parents in the causal
structure: Once we allow for causal links into X to be left
intact, what determines whether any links will be cut at all?
Leaving all links intact amounts to conditionalizing the entire
network on the observation that X = x. But this is at odds
with the intuition that in counterfactual reasoning the inter-
vention is, though perhaps not radical, still “minimal” in the
sense that as many facts are held constant as is reasonably
possible. Again, our experimental data below show evidence
that even when participants leave some links intact, they do
cut others. To accommodate this observation, what seems to
be required is an appeal to the notion of “cognitive relief”
mentioned above: Speakers are content with manipulations
on the causes that provide sufficient relief, again with respect
to some threshold which may be depend on facts about the
model and/or the situation modeled.

This paper does not offer a precise answer to either of these
questions. What our experiments show is that selective in-
tervention does occur; exactly how it is triggered and con-
strained is a question left for future work.

With these caveats, we now give an informal outline of the
idea behind selective intervention, illustrated with an exam-
ple. The goal is, first, to determine whether an explanation for
the hypothesized event is required, and second, if an explana-
tion is required, which parents of the variable in question the
explanation should make reference to.
Chain and Fork Topologies. Consider first the simple case
of a causal chain, i.e., a graph in which the vertices are lin-
early ordered. Suppose some variable X with parent Y is the
target of the counterfactual premise that X = x. The ques-
tion here is whether this premise would call for an explana-
tion. Assuming that X is known to have some value x′ , x,



the first step is to undo this value setting and recalibrate the
network with X as an unobserved variable. This is reminis-
cent of Pearl’s preparatory abduction step; however, here the
goal is not to update the network with an observation, but to
“downdate” it with the removal of the observation that X = x′.
The next step is to assess in this new network the degree of
surprise or cognitive dissonance that an observation of X = x
would cause in the actual state. This depends on the value
of Y if observed, and on the probability distribution over Y’s
values otherwise. If the surprise is deemed tolerable, then no
explanation is required and the intervention proceeds as usual
by cutting the link Y → X. Otherwise, the link Y → X is left
intact and the actual value of Y , if observed, is un-set, allow-
ing changes in X to affect Y . In either case, the intervention
concludes by setting X := x and updating the network (with
or without the link into X).

Now, clearly the decision to leave the link Y → X intact
cannot be the end of the story. It raises the question of how to
treat the link into Y , the link into Y’s parent, and so on. Cut-
ting no links at all results in a loss of the useful distinction
between intervention and observation, hence of the ability
to distinguish between counterfactual and non-counterfactual
reasoning. We assume that the decision whether to cut the
link into Y is made by applying the above decision proce-
dure again – this time treating the set {Y,X} as unobserved in
downdating the network, then asking how surprising an ob-
servation of X = x would be, and cutting the link into Y if the
surprise would be tolerable. In general, the same procedure
is applied recursively to the ancestors of X until a link is cut.

Selective intervention in the case of a causal fork, in
which Y has multiple outgoing links, essentially follows the
same logic as the causal chain. In a fork network, if an obser-
vation of X = x results in a degree of surprise, then an expla-
nation seems required to account for the change. In that case,
the link Y → X will remain intact. However, if the surprise is
deemed tolerable and no explanation seems required then the
intervention cuts the link Y → X.
Collider Topology. The case in which X has multiple incom-
ing links is not fundamentally different from the chain topol-
ogy. Now, however, instead of merely asking whether or not
to leave the incoming link intact, the question is how many
and which links to keep. Once again, if the values of X’s
parents jointly make the event X = x unsurprising, the in-
tervention proceeds as usual by cutting all links. Otherwise
the intervention is selective, but keeping the number of in-
tact links into X to a minimum. Leaving a single link Y → X
may be sufficient: In this case, Y is affected by the hypothe-
sized X = x, but all other parents of X remain unaffected. As
before, whether it is “sufficient” in this sense to leave a sin-
gle link intact depends on the agent’s tolerance for cognitive
dissonance. If no single link into X in itself provides enough
relief, then all pairs of links into X are considered, and so on,
up to the entire set of incoming links.

Some assumptions underlying the above description are
still subject to empirical verification. For instance, the way

we set up the search predicts that the agent will not even con-
sider leaving two links intact if she can achieve sufficient cog-
nitive relief by leaving only one. This may lead her to forego
considerable relief in case the best way to leave one link is
sufficient but inferior to options that involve leaving more
links. In other words, we predict a strong preference for cut-
ting links, hence for keeping the intervention local. Whether
this prediction is borne out will have to be determined in fu-
ture studies.
Illustration. We use the second experiment of Dehghani et
al. (2007) to demonstrate how selective intervention is ap-
plied. Subjects were presented with a scenario in the collider
topology (A→C← B) in which one cause is explicitly men-
tioned to be stronger than the other (in the above sense of
conditional probability):

A lifeboat is overloaded with people saved from a sinking ship.
The captain is aware that even a few additional pounds could
sink the boat. However, he decides to search for the last two
people: a missing child and a missing cook. Soon, they find
both people, but when they get onboard, the boat sinks.

The subjects were then asked the following counterfactual
questions:

(2) If the boat had not sunk, . . .
a. . . . would they have found the child? (C� B)
b. . . . would they have found the cook? (C� A)

There was a significant tendency for subjects to reply ‘Yes’
to the first question and ‘No’ to the second question. From the
perspective of the procedure outlined in this section, this re-
sult suggests that the link B→ C was cut whereas the link
A→ C was left intact. Assume that the boat’s not sinking
would have come as a considerable surprise to subjects given
what they knew about the scenario, triggering the quest for a
causal explanation of the boat’s staying afloat. By consider-
ing each of A and B separately, subjects can easily check that
the boat is more likely to stay afloat if the cook is not found
(but the child is) than if the child is not found (but the cook
is). Therefore the link from the cook’s whereabouts (A) to
the boat’s fate (C) is left intact. As a result, after the update
of the network with C, the posterior probability that the cook
was not found is high, prompting subjects to answer ‘Yes’
to (2a) and ‘No’ to (2b).

In the next section, we compare the results of three
new psychological experiments to the predictions of Causal
Bayesian Networks and the method discussed in this section.

Experiments
The following experiments involve scenarios which contain
facts with different frequencies of occurrence and investigate
how these different rates affect subjects’ responses to coun-
terfactual questions. We then compare these responses to the
predictions of Causal Bayesian Networks with and without
the selective invention modification. Note that the subjects



were randomly divided into two groups for each question.
Therefore, Group A from Experiment 1 does not correspond
to subjects in Group A in Experiment 2 or Group A in Exper-
iment 3.

Experiment 1
In the first experiment, we examine how in a collider topology
the likelihood of causes affect people’s evaluation of counter-
factual statements. Sloman and Lagnado (2005) suggest that
people are more likely to keep the state of the consequent
intact when the effect is part of the antecedent of the coun-
terfactual statement. Therefore, if the effect has been inter-
vened on, the status of the cause(s) should not change and
hence the likelihood of occurrence of effects should not play
a role when evaluating counterfactuals. We predict the link
between the cause with the highest explanatory power and its
effect will be preserved, while the other links will be severed.
Therefore, people should more often undo the cause with the
highest explanatory power than the other cause.
Method. 58 Northwestern undergraduate students were pre-
sented with a series of scenarios, and after each scenario they
were asked to evaluate the likelihood of a number of counter-
factual statements. The questions were presented in form of a
questionnaire, and subjects were asked to rate the likelihood
of each question from 0 to 10, 0 being “definitely no” and 10
being “definitely yes”. A scenario that described a test situa-
tion was presented between subjects. Group A was presented
with the first question, while group B was presented with the
second question.
Scenario
90% of the time ball A moves, ball C moves.
10% of the time ball B moves, ball C moves.
Balls A, B and C definitely moved.

(A) If ball C had not moved, would ball A have moved?
(C� A)

(B) If ball C had not moved, would ball B have moved?
(C� B)

Results. The mean for C� A was 3.36 while the mean for
C� B was 6.13. The difference between the two questions
was highly significant (t(42) = −2.95, p < 0.005).
Discussion. Causal Bayesian networks predict that the an-
swers to both of the questions should be Yes (10), as inter-
vening on C will result in cutting the link from both of its
parents. However, the participants more often answered ‘No’
to the first question and ‘Yes’ to the second. This results sug-
gests that the B→C link was cut, but the A→C link was left
intact. Ball C not moving results in a degree of surprise, given
that it has been explicitly mentioned in the scenario that ball
C definitely moved. By considering both A and B separately,
subjects can easily see that BC(C|A) > BC(C|B). That is, ball
C is more likely not to move if ball A doesn’t move (and ball
B does) than if A does move (and ball B doesn’t). There-
fore, A contains higher explanatory power for C not moving.

As the results of this, the link between A and C is left in-
tact. After updating the network, the posterior probability of
A moving becomes low, resulting in the answer to the first
question to be ‘No’. However, the posterior probability of
B not moving becomes high resulting in the answer to the
second question to be ‘Yes’. Comparing these predictions to
subjects’ responses reveals that selective intervention seems
to be more consistent with subjects’ answers than the normal
‘do’ operator.

Experiment 2
In this experiment we investigate how intervening on an effect
in a fork topology changes the status of the common cause.
In a fork network, changing the value of the effect for which
the cause is the sole explanation, creates a degree of surprise
and hence, an explanation seems required to account for the
change. Therefore, we predict the link between the common
cause and the child for which the cause is the best (only) ex-
planation is preserved while the other link is dropped.
Method. The same participants were presented with a sce-
nario in the fork topology. Group A was presented with the
first question, while group B was presented with the second
question.
Scenario
Ball A causes Ball B to move 5% of the time.
Ball A causes Ball C to move 100% of the time.
A, B and C definitely moved.

(A) If ball B had not moved, would ball C have moved?
(B�C)

(B) If ball C had not moved, would ball B have moved?
(C� B)

Results. The mean for B� C was 8.38 while the mean for
C� B was 4.00. The difference between the two questions
was highly significant (t(27) = 4.34, p << 0.001).
Discussion. Causal Bayesian networks predict that an in-
tervention on the effect should not change the value of its
cause(s). Therefore, in the case of the fork topology, inter-
vening on one of the child nodes should not effect the value
of other nodes in the graph. Hence, according to this theory,
the answer to both questions should be ‘Yes’ (10). The results
suggest that the subjects however, selectively intervened on B
dropping the A→ B link and not on C, keeping the A→C link
intact. Given that it has been explicitly mentioned that ball A
definitely moved and ball A is the only cause for C moving,
Ball C not moving would call for an explanation. Hence, the
link A→ C would be preserved, as ball C is more likely not
to move if ball A does not move. However, A is not the only
reason for B moving and therefore there could be other expla-
nations for B not moving. The intervention proceeds as usual
by cutting the link A→ B. Analyzing the above questions in
the new network reveals that the answer to the first question
should be ‘Yes’ (10), while the answer to the second question
should be ‘No’ (0).



Experiment 3
The same schema as the second experiment was used in this
experiment. Only the probability of A causing B was in-
creased to 95%, while the other probability was not changed.
Method. The same participants were presented with another
scenario. Group A was presented with the first question,
while group B was presented with the second question.

Scenario
Ball A causes Ball B to move 95% of the time.
Ball A causes Ball C to move 100% of the time.
A, B and C definitely moved.

(A) If ball B had not moved, would ball C have moved?
(B�C)

(B) If ball C had not moved, would ball B have moved?
(C� B)

Results. The mean for B� C was 7.04 while the mean for
C� B was 3.68. The difference between the two questions
was highly significant (t(40) = 3.06, p < 0.005).
Discussion. The predictions of both methods remain the
same as the previous experiment. Even though,the difference
between A causing B and A causing C is only 5%, subjects
clearly distinguished between the two causal links. We be-
lieve this is due to the fact that A is the sole explanation for
C moving. However, B could have potentially been moved
by other causes and A not moving did not trigger a need for
an explanation. This experiment highlights the fact that inter-
vention seems to have a clear qualitative effect, cut or no cut,
rather than a gradient one.

Conclusions
We proposed an alternative approach for evaluating counter-
factual conditionals based on the relationship between causal
explanations and the causal topology of the graph. This ap-
proach consists of a modification to Pearl’s intervention op-
erator. As before, do(X = x) involves forcing the variable X
to have value x. However, rather than cutting all causal links
into X and thus blocking any consequences of the intervention
for X’s non-descendants, we proposed selective intervention
in which the links are cut selectively following an analysis of
the possible causal explanations for the hypothesized event
that X = x.

The result of our experiments show that selective interven-
tion does occur and causal explanations seem to play a role
in this selection. However, causal explanation may not be the
only factor influencing this process. Previously the relation-
ship between fact mutability, intervention and evaluation of
counterfactual have been explored by Dehghani et al. (2007).
Kahneman and Miller (1986) claim that there are certain facts
that are easier to mentally undo, or mutate than others. We
have previously shown that the more mutable a fact is the
more likely it is that the link from its cause would not be cut.

We believe that the notions of explanatory power and muta-
bility can and should be combined in a more comprehensive
and plausible account of selective intervention.
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