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Abstract 

Analogical learning has long been seen as a powerful way of extending the reach of one’s knowledge.  We present domain transfer 

via analogy (DTA) as a method for learning new domain theories via cross-domain analogy.  Our model uses analogies between pairs 

of textbook example problems, or worked solutions, to create a domain mapping between a familiar and a new domain.  This mapping 

allows us to initialize a new domain theory.  After this initialization, another analogy is made between the domain theories 

themselves, providing additional conjectures about the new domain.  We present two experiments in which our model learns 

rotational kinematics by an analogy with translational kinematics, and vice versa.  We compare these learning rates against a version 

of the system that is incrementally given the correct domain theory. 
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Introduction 

Cognitive scientists have long argued that cross-domain analogy is an important element in people‟s adaptability to new 
situations.  It has been studied in the contexts of learning new domains quickly (Gentner & Gentner 1983; Gentner 2003), 
producing paradigm shifts in scientific thought (Gentner et al. 1997; Holyoak & Thagard 1989; Falkenhainer 1988), and 
future reasoning in new domains (Rand et al. 1989).  While analogies are powerful, Gick and Holyoak (1980) found that 
people have difficulties spontaneously producing cross-domain analogies, but they succeed when given hints.  Collins & 
Gentner (1987) report that successful cross-domain analogies require a known base domain and a domain mapping.  A 
domain mapping consists of correspondences between the objects and relationships of the two domains.  Additional evidence 
of the utility of cross-domain analogies comes from textbook authors, who routinely use them to explain concepts.  The linear 
kinematics section of the textbook used for this work (Giancoli 1991) contains eight worked through examples, or worked 
solutions.  These include instantiations of all four linear kinematics equations.  In the rotational kinematics section, however, 
there are only two worked solutions, neither of which utilizes two of the equations necessary for completing problems from 
this chapter.  The summary section of the rotational motion chapter invites the learner to use analogy to fill in the details: 
“The dynamics of rotation is analogous to the dynamics of linear motion” (p. 197, Giancoli 1991).  Our model seeks to 
understand this kind of learning. 
 One method students use to learn physics is by completing problem sets. Afterwards, students compare their reasoning 
against worked solutions to refine their understanding.  Our model, domain transfer via analogy (DTA), uses worked 
solutions as a starting point for learning a new domain theory through multiple cross-domain analogies.  Given a known base 
domain with worked solutions and a worked solution from a new domain, DTA begins by learning the domain mapping.  Our 
model uses this domain mapping to initialize the new target domain theory and constrain an analogy between the base and 
target domain theories.  This analogy results in inferences about the new domain that are added to the agent‟s knowledge 
after verification.  This paper describes DTA, which uses existing computational models of analogy and similarity based-
retrieval to learn new domain theories. 
 We begin by discussing the structure-mapping theory of analogy and the computational models used in this work.  Next, 
we describe the representations for the problems, worked solutions and domain theories our model uses.  We then outline the 
DTA method of domain transfer and illustrate this process with an example.  We evaluate our model via two experiments in 
which our model learns rotational kinematics by an analogy with translational kinematics, and vice versa.  We compare these 
learning rates against a version of the system that is incrementally provided the correct domain theory.  We close with a 
discussion of related work and implications for future work. 

Structure-mapping and Analogy 

We use Gentner’s (1983) structure-mapping theory, which postulates that analogy and similarity are computed via structural 

alignment between two representations (the base and target) to find the maximal structurally consistent match.  A structurally 

consistent match is based upon three constraints: tiered-identicality, parallel connectivity, and one-to-one mapping.  The 

tiered-identicality constraint provides a strong preference for only allowing identical predicates to match, but allows for rare 

exceptions.  Parallel connectivity means that if two statements are matched then their arguments must also match.  The one-

to-one mapping constraint requires that each element in the base corresponds to at most one element target, and vice versa.  

To explain why some analogies are better than others, structure-mapping uses the principle of systematicity: a preference for 

mappings that are highly interconnected and contain deep chains of higher order relations. 
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The Structure Mapping Engine (SME) simulates the structure-mapping process of analogical matching between a base and 

target (Falkenhainer et al. 1989).  The output of this process is one or more mappings.  A mapping is a set of 

correspondences representing a construal of what items (entities and expressions) in the base go with what items in the target.  

Mappings include a structural evaluation score indicating the strength of the match, and candidate inferences which are 

conjectures about the target using expressions from the base which, while unmapped in their entirety, have subcomponents 

that participate in the mapping’s correspondences.  SME operates in polynomial time, using a greedy merge algorithm 

(Forbus & Oblinger 1990).  If one mapping is clearly the best, it produces only that mapping, but it can produce up to three if 

there are close competing matches.  Pragmatic constraints can be specified to guide the alignment process, e.g., one can state 

that particular entities and/or statements must match, or must not match.  We use this capability to guide abstract domain 

mappings with correspondences found via the more concrete worked solution mappings.     
 MAC/FAC (Forbus et al. 1994) is a computational model of similarity-based retrieval.  The inputs are a case, the probe, 

and a case library.  The first stage (MAC) uses a computationally cheap, non-structural matcher to filter candidate cases from 
the case library, returning up to three if they are very close.  The second stage (FAC) uses SME to compare the cases returned 
by MAC to the probe and returns the best candidate as determined by the structural evaluation score of each match (or 
candidates, if they are very similar).  Both SME and MAC/FAC have been used as performance systems in a variety of 
domains and as cognitive models to account for a number of psychological findings (Forbus 2001). 

Different domains are often represented using different predicates, especially when they are first being learned and 
underlying commonalities with previous knowledge have yet to be found.  Minimal ascension (Falkenhainer 1988) is one 
method for matching non-identical predicates.  If two predicates are part of a larger aligned structure and share a close 
common ancestor in the taxonomic hierarchy, then SME can include them in the mapping.  Figure 1 demonstrates an 
example of two expressions that are placed in correspondence because they have identical predicates, stepUses.  The entities 
for the objects, events, and steps are already in correspondence, given the rest of the mapping.  In order to include these 
expressions in the mapping, primaryObjectMoving would have to map to objectRotating.  Minimal ascension allows this 
mapping because both relationships are children of objectMoving in the ResearchCyc

1
 ontology, the taxonomic hierarchy 

used in this work. 

 

Representations and Problem Solving 

Before we describe how cross-domain analogy enables the learning of new domain theories, we must describe the 
representation of the problems, worked solutions, and domain theories used by our model.  The representations used in this 
work are in CycL, the predicate calculus language of the ResearchCyc knowledge base (Matuszek et al. 2006).  The 
representations use the ontology of ResearchCyc, plus our own extensions.  These concern QP theory (Forbus 1984) and 
problem-solving strategies, and are small compared to the 30,000+ concepts and 8,000+ predicates already defined in the KB.  
Thus, objects, relations, and events that appear in physics problems such as “rotor”, “car”, and “driving” are already defined 
in the ontology for us, rather than being created specifically for this project.  This reduces the degree of tailorability in our 
experiments. 

Example Problem and Worked Solution 

All the problems used in this work were taken from the same physics textbook (Giancoli 1991).  We represent the problems 
and worked solutions as cases, consisting of sets of predicate calculus facts.  Consider the problem of “How long does it take 
a car to travel 30m if it accelerates from rest at a rate of 2 m/s

2
?” (Example problem 2-6, p. 26).  This problem is represented 

in our system as a case of nine facts, shown in Figure 2.  First, there are two entities in the problem, a transportation with land 
vehicle event, Acc-2-6, and an automobile, Car-2-6.  Next, there are 4 facts describing the motion of Car-2-6 during Acc-2-
6.  The last 3 facts describe the case and the question of the problem. 

 

                                                           
1  http://research.cyc.com/ 

Figure 1: Minimal ascension aligns 

primaryObjectMoving to objectRotating 

 

Base Expression: 
(stepUses Gia-2-6-WS-Step-2 

  (primaryObjectMoving Acc-2-6 Car-2-6)) 

Target Expression: 
(stepUses Gia-8-5-WS-Step-2 

     (objectRotating Acc-8-5 Rotor-8-5)) 



 
 

Worked solutions are represented at the level of explained examples found in textbooks.  They are neither deductive proofs 
nor problem-solving traces produced by our solver.  Because the textbook has only a limited number of worked solutions for 
rotational kinematics, in instances where there are no worked solutions, we created our own from problems at the end of the 
chapter.  The worked solutions, like the problems themselves, are represented generally, not in the internal control vocabulary 
of the problem-solver.  The worked solution for this example problem consists of four steps:  

1. Categorize the problem as a constant acceleration linear mechanics problem 
2. Instantiate the distance by velocity time equation (d = vit + .5at

2
) 

3. Because the car is stationary at the start of the event infer that its velocity is zero (vi = 0 m/s) 
4. Solve the equation for t (t = 5.8s) 

The entire worked solution consists of 38 facts.  Figure 3 shows the predicate calculus representation for the third worked 
solution step.  The first four facts indicate the type of solution step and its sequential position in the worked solution.  The 
last two facts state that the step uses the fact that Car-2-6 is stationary at the beginning of Acc-2-6 to infer that its speed at 
that point is 0 m/s. 

Domain Theories for Problem Solving 

Our domain theories consist of encapsulated histories (Forbus 1984) representing equations.  Encapsulated histories, unlike 
model fragments, permit constraints to be placed on the duration of events and time intervals.  This is necessary for 
representing equations, such as the velocity/time law required to solve the problem above which involves events as well as 
their durations.  During problem solving, our system instantiates applicable encapsulated histories to determine which 
equations are available. 

Figure 3: Representation for step 3, inferring that the car’s velocity is 0 m/s 

 

(isa Gia-2-6-WS-Step-3 WorkedSolutionStep) 
(hasSolutionSteps Gia-2-6-WorkedSolution Gia-2-6-WS-Step-3) 
(priorSolutionStep Gia-2-6-WS-Step-3 Gia-2-6-WS-Step-2) 
(stepOperationType Gia-2-6-WS-Step-3 
  DeterminingSpecificScalarOrVectorValuesFromContext) 
(stepUses Gia-2-6-WS-Step-3 
  (objectStationary (StartFn Acc-2-6) Car-2-6)) 
(stepResult Gia-2-6-WS-Step-3 
  (valueOf 
    (MeasurementAtFn ((QPQuantityFn Speed) Car-2-6) (StartFn Acc-2-6)) 

    (MetersPerSecond 0))) 

 (isa Car-2-6 Automobile) 
 (isa Acc-2-6 TransportWithMotorizedLandVehicle) 
 (objectStationary (StartFn Acc-2-6) Car-2-6) 
 (primaryObjectMoving Acc-2-6 Car-2-6) 
 (valueOf ((QPQuantityFn DistanceTravelled) Car-2-6 Acc-2-6) 

(Meter 30)) 
 (valueOf  (MeasurementAtFn ((QPQuantityFn Acceleration) Car-2-6) Acc-2-6) 
   (MetersPerSecondPerSecond 2)) 
 (isa Gia-Query-2-6 PhysicsQuery) 
 (hypotheticalMicrotheoryOfTest Gia-Query-2-6 Gia-2-6) 
 (querySentenceOfQuery Gia-Query-2-6 

(valueOf ((QPQuantityFn Time-Quantity) Acc-2-6) Duration-2-6))) 

 

Figure 2: Example problem 2-6 representation 

 



 
 

Figure 4 shows the definition for the encapsulated history representing the equation vf=vi+at, velocity as a function of time.  
There are two participants, theObject and theEvent, which must satisfy their type constraints, the abstractions PointMass 
and Constant1DAccelerationEvent, respectively.  Furthermore, the conditions of the encapsulated history must be satisfied 
in order to instantiate it and conclude its consequences.  In this case, it is necessary that theObject be the object moving in 
theEvent.  The compound form shown in Figure 4 is automatically translated into a set of predicate calculus facts for use in 
our system. 

Solving physics problems requires a number of modeling decisions.  For example, in a scenario of dropping a ball off a 
building, one must view the ball as a point mass, the falling event as a constant acceleration event, and that the acceleration of 
the ball as equal to Earth‟s gravity.  Our system currently uses hand coded rules to make these decisions.  While this is 
sufficient for the goals of this work, our future plans involve integrating more robust modeling decision methods. 

The objective of domain transfer via analogy (DTA) is learning domain theories that are represented with schema-like 
knowledge.  In this work, DTA learns the encapsulated histories of a new domain via cross-domain analogy, in terms of 
participants, conditions and consequences.  To evaluate the accuracy of learned abstract knowledge, it must be able to solve 
problems.  The physics problems in this work all ask for the values of specific quantities.  Our system solves for quantities in 
three ways.  First, the quantity may be given directly in the problem.  Second, a modeling decision could indicate the 
appropriate value for the quantity (e.g. the object is in projectile motion on Earth, and air resistance is ignored; Therefore, our 
system assumes the acceleration on the object to be 10 m/s

2
).  Third, our system is able to instantiate an encapsulated history 

with a consequence of an equation mentioning the desired quantity.  In this case, our system recursively solves for the other 
parameters in the equation before solving the equation for the sought after quantity using algebra routines inspired by the 
system described in Forbus & De Kleer (1993). 

Domain Transfer via Analogy 

Domain transfer via analogy (DTA) learns a new (target) domain theory using multiple cross-domain analogies.  In this work, 
DTA transfers encapsulated histories from a known base domain to the target domain theory.  Analogical learning is invoked 
after failure to solve a problem in the new domain.  Our model is provided the worked solution for that problem.  DTA uses 
this worked solution to create conjectures about knowledge in the new domain, via the algorithm outlined in Figure 5.  The 
algorithm contains four main sections, learning the domain mapping, initializing the new domain theory, extending the new 
domain theory, and verifying the learned knowledge.  We describe each in turn. 

Figure 4: Definition for the velocity by time encapsulated history 

 

(def-encapsulated-history 

 VelocityByTime-1DConstantAcceleration 

  :participants  

 ((theObject :type PointMass) 

      (theEvent  :type Constant1DAccelerationEvent)) 

 :conditions 

 ((primaryObjectMoving theEvent theObject)) 

 :consequences 

 ((equationFor VelocityByTime 

  (mathEquals  

   (AtFn (Speed theObject) (EndFn theEvent))  

       (PlusFn (AtFn (Speed theObject) (StartFn theEvent)) 

    (TimesFn  

        (AtFn (Acceleration theObject) theEvent) 

        (Time-Quantity theEvent))))))) 

 



 
 

Learn the Domain Mapping 

DTA learns the domain mapping through a comparison between worked solutions from the two domains.  Using the worked 
solution for the failed problem as a probe to MAC/FAC, our model retrieves an analogous worked solution from a case 
library containing worked solutions from the known domain.  Next, SME is used to find an analogy between the retrieved 
worked solution and the worked solution to the failed problem.  The output of this process is up to three mappings, each 
containing a set of correspondences which are used to form the domain mapping.  Because SME can produce multiple 
mappings, our model starts with the best mapping, as determined by the structural evaluation score.  Then, it iterates through 
the rest of the mappings adding the correspondences to the domain mapping that do not violate the one-to-one constraint.  For 
example, if the best mapping had a correspondence between PointMass and RigidObject and the second mapping had a 
correspondence between PointMass and Ball, the domain mapping would only include the mapping between PointMass and 
RigidObject.  The reason for combining multiple mappings is that each mapping may only cover some aspects of the worked 
solutions. 

Initialize the Target Domain Theory 

When the system attempts the first problem in a new domain, its theory for that domain is empty.  DTA uses the domain 
mapping to initialize the new domain theory.  For each encapsulated history from the base domain theory mentioned in the 
domain mapping, our model attempts to create an encapsulated history in the target domain.  Before transferring the 
encapsulated history, our model verifies that all of the quantities and types mentioned in the encapsulated history appear in 
the domain mapping.  If they do not, this encapsulated history is not transferred to the target domain theory.  If they are, then 
using the domain mapping, our model proceeds by substituting concepts in the base encapsulated history with the appropriate 
concepts from the target domain with one exception.  We do not substitute numbers in the base domain with numbers from 
the target.  This is because we assume these correspondences between numbers to be spurious (e.g. 1 in the one domain 
should not be considered as 2 in another domain).  The resulting encapsulated history is then added to the target domain 
theory. 

Extend the Target Domain Theory 

After initializing the target domain theory, DTA extends it through another cross-domain analogy.  This time the comparison 
is between the base and target domain theories themselves.  The base and target domain theories consist of the facts 
representing the encapsulated histories.  Our model constrains this match with the domain mapping, ensuring that the overall 
domain theory is consistent.  Recall that SME forms candidate inferences, i.e., conjectures about the target, using expressions 
from the base which are partially mapped.  Because the base domain theory is made up encapsulated histories, these 
candidate inferences describe corresponding encapsulated histories in the target domain theory.  Before adding these 
candidate inferences to the target domain theory, our model processes them in two ways.  First, the candidate inferences may 
include skolem entities which are entities appearing in the base but have no correspondence in the mapping.  In this case, our 
model creates a new entity for each skolem to be assumed in the target domain theory.  Second, if a number is mentioned in 
the inference, as during the initialization step, we substitute the corresponding number from the base.  After these processes, 
the candidate inferences representing new encapsulated histories are stored into the target domain theory. 

Verify the Learned Knowledge 

While powerful, cross-domain analogies are risky and frequently contain invalid inferences.  Therefore, DTA verifies the 
newly proposed encapsulated histories by retrying the problem whose failure began the entire process.  If this problem is 

Figure 5: The DTA method for domain learning via cross-domain analogy 

 

Domain Transfer via Analogy (DTA) method: 

1. Learn the domain mapping 

o Retrieve analog using MAC/FAC, with the worked solution to the failed problem as the probe.  

o Use SME to create mappings between the retrieved analog and the worked solution. 

o Create domain mapping by selecting correspondences in which the base element appears in the base domain 

theory. 

2. Initialize target domain theory using the domain mapping 

3. Extend target domain theory 

o Use SME to create a match between the base and the target theories constrained by the domain mapping 

o Transfer domain theory contents using the candidate inferences 

4. Verify learned domain theory by attempting the failed problem again 

o If failure, go once more to step 1.  Otherwise, accept new target domain knowledge as correct 

 



 
 

solved correctly, our system assumes that the newly acquired domain theory is correct.  Otherwise, our model forgets both 
the new domain theory and the domain mapping, and attempts the entire process one more time, removing the analog worked 
solution from the case library.  Currently, we only let the model try two different analogous worked solutions to learn an 
acceptable target domain theory.  In the future, this parameter could be under control of the system.  Next, we describe an 
example of our model‟s operation. 

Example 

To better understand how DTA uses multiple cross-domain analogies to transfer domain theories, we describe an example of 
how it learns rotational kinematics through an analogy to linear kinematics.  The system begins with a linear kinematics 
domain theory and worked solutions.  Because the system has no knowledge, i.e., encapsulated histories, of rotational 
kinematics, it fails to solve the following problem, “Assuming constant angular acceleration, through how many turns does a 
centrifuge rotor make when accelerating from rest to 20,000 rpm in 5 min?”  Because the system failed, we invoke DTA by 
providing the worked solution to this problem.  Using this worked solution as a probe, the model retrieves an analog from its 
case library of worked solutions from linear kinematics using MAC/FAC.  In this case, the analogous worked solution 
retrieved is for the problem discussed previously, “How long does it take a car to travel 30m if it accelerates from rest at a 
rate of 2 m/s

2
?” 

 Our model uses an analogy between these two worked solutions to produce the domain mapping necessary for cross-
domain analogy.  In this case, the mathematical relationships are isomorphic, d = vit + .5at

2 
and θ=ωit + .5αt

2
, which places 

the quantities between the domains into correspondence.  It should be noted that SME handles partial matches, allowing 
correspondences to be created even when the mathematical relationships in the problems being compared are not completely 
isomorphic.  The minimal ascension example from Figure 1 is also part of this mapping.  Next, the mapping‟s 
correspondences are extracted to create the domain mapping, a subset of which appears in Table 1. 
 

 Once the domain mapping has been made, the system attempts to initialize the target domain theory.  This is done by 
searching the domain mapping for encapsulated histories from the base domain.  In this example, DistanceByVelocityTime-
1DConstantAcceleration is returned.  This encapsulated history contains two types, PointMass and ConstantLinear-
AccelerationEvent and four quantities, Acceleration, Speed, Time-Quantity and DistanceTravelled.  All of these 
elements appear in the domain mapping, therefore our model is able to transfer this encapsulated history to the target domain.  
For each fact in the base domain theory mentioning DistanceByVelocityTime-1DConstantAcceleration, we substitute all 
subexpressions based upon the domain mapping.  This results in a new encapsulated history, DistanceTime-Rotational, 
which represent the rotational kinematics equation, θ=ωit + .5αt

2
.  Our model initializes the target domain theory by adding 

this new encapsulated history. 
 Next, our model attempts to extend this new domain theory with an analogy between the base and target domain theories 
themselves.  To maintain consistency, this analogy is constrained with the domain mapping acting as required 
correspondence constraints.  The 41 facts describing the linear mechanics encapsulated histories make up the base, and the 6 
facts of the newly initialized rotational mechanics domain theory are the target.  As expected, the sole target encapsulated 
history maps to the corresponding linear mechanics encapsulated history.  This mapping includes the quantities, conditions 
and types of these encapsulated histories.  These correspondences result in candidate inferences involving the facts of the 
other encapsulated histories from the base.  For example, the candidate inference shown in Figure 6 suggests that there is an 
encapsulated history in the target analogous to the VelocityByTime-1DConstantAcceleration linear mechanics encapsulated 
history.  This candidate inference states that the suggested encapsulated history has the operating condition of its object 
rotating during its event.  The AnalogySkolemFn expression indicates that there was no corresponding entity in the target.  

Base Item Target Item 

PointMass RigidObject 

ConstantLinear-
AccelerationEvent 

ConstantRotational-
AccelerationEvent 

primaryObjectMoving objectRotating 

Acceleration AngularAcceleration 

Speed RateOfRotation 

DistanceTravelled AngularDistTravelled 

Time-Quantity Time-Quantity 

DistanceByVelocityTime-
1DConstantAcceleration 

DistanceTime-
Rotational 

Table 1: Domain Mapping 



 
 

Therefore, to extend the target domain theory, DTA creates entities for all the analogy skolems, i.e. turning 
(AnalogySkolemFn VelocityByTime-1DConstantAcceleration) into EHType-1523, and assumes these facts into the 
rotational mechanics domain theory. 
 Finally, we need to verify that the learned knowledge is accurate.  This is done by attempting to solve the original problem 
again.  Since the worked solution contains the answer, we can compare our computed answer against it.  If they match, then 
we infer that the learned knowledge is correct.  If the system gets the problem wrong, then we, first, erase the domain 
mapping and the inferred encapsulated histories in the rotational mechanics domain theory.  Then, the entire process repeats 
one more time with this worked solution removed from the case library.  One aspect of our future work is to better diagnose 
faults in our domain theories and domain mappings, which we hope to incrementally improve over time. 

Evaluation 

To examine how well this analogical learning method works, we need a baseline.  Our baseline spoon-fed system consists of 
the exact same problem-solver, but with DTA turned off.  Instead of providing the spoon-fed system a worked solution after 
failing a problem, we provide it with the general encapsulated histories needed to solve that specific problem.  We performed 
two experiments, one in which our model learns rotational kinematics by an analogy with linear kinematics, and the other 
learns linear kinematics based upon rotational kinematics.  The kinematics problems for both domains are listed in Figure 7.  
Both systems begin with the necessary rules for problem-solving strategies and modeling decisions.  The systems are then 
tested on a series of problems from the target domain. 

 
 

Experiment 1 

In this experiment, we use linear kinematics as the base domain and rotational kinematics as the learning domain.  Learning 
curves were created by running 120 trials representing every possible ordering of the problems in the learning domain.  In 

Figure 7: Evaluation materials 

 

Linear Kinematics Rotational Kinematics 

a) How long does it take a car to travel 30m if it 

accelerates from rest at a rate of 2 m/s
2
? 

b) We consider the stopping distances from a car, 

which are important for traffic saftey and traffic 

design. The problem is best deal with in two parts: 

(1) the time between the decision to apply the brakes 

and their actual application (the "reaction time"), 

during which we assume a=0; and (2) the actual 

braking period when the vehicle decelerates. 

Assuming the starting velocity is 28 m/s, the 

acceleration is -6.0 m/s
2
, and a reaction time of .5 s, 

What is the stopping distance? 

c) A baseball pitcher throws a fastball with a speed of 

44 m/s. It has been observed that pitchers accelerate 

the ball through a distance of 3.5 m. What is the 

average acceleration during the throwing motion? 

d) Suppose a ball is dropped from a 70m tower how far 

will it have fallen after 3 seconds? 

e) A jetliner must reach a speed of 80 m/s for takeoff.  

The runway is 1500 M long, what is the constant 

acceleration required? 

a) Through how many turns does a centrifuge rotor 

make when accelerating from rest to 20,000 rpm in 5 

min? Assume constant angular acceleration 

b) A phonograph turntable reaches its rated speed of 33 

rpm after making 2.5 revolutions, what is its angular 

acceleration? 

c) Through how many turns does a centrifuge rotor 

make when accelerating from rest to 10,000 rpm in 

270 Seconds? Assume constant angular acceleration 

d) An automobile engine slows down from 3600 rpm to 

1000 rpm in 5 seconds, how many radians does the 

engine turn in this time? 

e) A centrifuge rotor is accelerated from rest to 20,000 

rpm in 5 min, what is the averaged angular 

acceleration? 

  

  

  

  

 

Figure 6: Candidate inference suggesting a condition of an encapsulated history type 

 

  (qpConditionOfType 
    (AnalogySkolemFn VelocityByTime-1DConstantAcceleration) 

    (objectRotating :theEvent :theObject)) 



 
 

each trial, after each problem, the system was given either the worked solution or encapsulated histories for that problem, 
depending on the condition.  After each trial, the system‟s knowledge was reset. 
 

 

Figure 8: Rotational mechanics learning curves 

 Figure 8 compares the rotational kinematics learning rates for the analogy and baseline conditions.  The analogy system 
using DTA exhibited perfect transfer.  That is, after studying just one worked solution, the analogy system was able score 
100% on the rest of the problems.  Because the analogy system performed perfectly, there were only 120 transfer attempts, all 
of which succeeded.  Of these, 72 attempts (60%) required an additional retrieval to generate a successful cross-domain 
analogy.  After one problem, the baseline system was only able to solve the next problem 45 percent of the time.  Also, the 
baseline system‟s ceiling was at 80 percent.  This was due to the fact it was unable to solve rotational kinematics problem „b‟ 
from Figure 7 regardless of what problems it had already seen, because none of the other problems use the same equation.  
DTA overcomes this through the analogy between the domain theories themselves allowing it to infer equations not 
mentioned explicitly in the worked solution.   

Experiment 2 

This experiment followed the same form as the previous experiment but with the opposite base and learning domains.  Here, 
we use rotational kinematics as the base domain and linear kinematics as the learning domain.  Once again, we are interested 
in comparing the learning rates between our baseline system and our model of domain transfer via cross-domain analogy. 



 
 

 
 Once again, the DTA system outperformed the baseline system.  Figure 9 graphs the learning curves of the two conditions.  
After the first problem, the analogy system got the next problem correct 60% of the time, compared with the 40% 
performance of the baseline.  After seeing two worked solutions, the analogy system scored 90% on the third problem where 
the baseline system scored 80%.  On problems 4 and 5, both systems performed at a ceiling of 100%.  The baseline condition 
was able to achieve a ceiling of 100% as every equation required was used by at least two problems.  In the analogy 
condition, DTA was unable to transfer the correct domain theory for two linear kinematics problems.  This led to 180 transfer 
attempts, of which 120 (66%) were successful.  Of the successful attempts, none of them required using an additional 
retrieval. 

Discussion 
In both experiments, domain transfer via analogy outperformed the spoon-fed baseline system.  DTA learned faster and 
achieved a ceiling that was the same or higher than the baseline.  An analysis of the few linear kinematics transfer failures 
indicates that certain sub-event structures and time intervals increase the difficulty in generating an appropriate domain 
mapping.  Linear kinematics problems „b‟ and „d‟ both contained such structures.  One requirement for successful transfer in 
these scenarios is that an objectRotation statement in the rotational kinematics worked solution must correspond with a 
primaryObjectMoving statement in the linear kinematics worked solution.  In order for this to occur, the entities which make 
up these expressions must already be in alignment.  Given the structure and number of the events and time intervals in these 
two problems, the events listed in these statements may differ from the events and time intervals referenced in the quantities 
and equations.  Therefore, one aspect of our future work is to incorporate rerepresentation strategies (Yan et al. 2003) to 
bring these worked solutions into better alignment with the analogous rotational kinematics worked solutions.  The added 
complexity of the linear kinematics problems also slowed the baseline learning system.   
 Another interesting result of these experiments is the difference in the utility of retrieving an additional worked solution if 
the first one fails.  In experiment 1, this part of the algorithm was critical to the analogy system‟s perfect transfer.  On the 
other hand, in experiment 2, the additional retrievals never produced an adequate domain mapping.  This supports our 
intuition that the decision to retrieve additional analogs should be controlled by the system based upon its goals. 

Related Work 

There are three main branches of related work: AI systems of analogy and case based reasoning, cognitive science models of 
cross-domain analogy, and integrated reasoning systems working towards human-level capabilities.  The majority of 
analogical and case based systems focus on using previous experiences to guide future problem-solving (Koloder 1991).  
This work has occurred in a variety of domains including transportation (Veloso & Carbonell 1993), physics problem solving 
(van Lehn 1998), inductive theorem proving (Melis & Whittles 1999) and thermodynamics problem-solving (Ouyang & 
Forbus 2006).  These systems use examples to provide search control knowledge in order to solve future problems faster.  
DTA differs by focusing on learning schema-like domain knowledge, in this case encapsulated histories. 

Figure 9: Linear mechanics learning curves 

 



 
 

 On the other hand, cross-domain analogy research has focused on this problem of learning abstract knowledge.  The 
closest project to our approach is Falkenhainer‟s (1988) PHINEAS.  PHINEAS used comparisons of (simulated) behaviors to 
create an initial cross-domain mapping.  The mapping results in inferences that were used to create a partial theory for the 
new domain.  Our model differs from PHINEAS in several significant ways: (1) We use analogies between problem 
explanations to drive the process, (2) We are learning quantitative, rather than qualitative, domain theories, which require 
very different verification work, and (3) We are using a more psychologically plausible retrieval mechanism, MAC/FAC.  
Holyoak and Thagard's (1989) PI model used a pragmatic theory of analogy to model solve variations of the radiation 
problems through schema induction.  PI placed an emphasis on analogy during problem solving.  On the other hand, our 
model makes analogies between the domain theories themselves.  This allows DTA to transfer domain knowledge not 
explicitly referenced in the worked solution instances used in creating the domain mapping. 

A number of recent projects working towards human-level AI have built architectures emphasizing the importance of 
integrating analogy with other forms of reasoning.  Kühnberger et al.‟s I-Cog (2008) explores the trade-offs between analogy 
and two other reasoning modules, all of which operate over noisy data, using the Heuristic-Driven Theory Projection (Gust et 
al. 2006) model of analogy.  Schwering et al. (2008) identifies the importance of combining analogy with deductive and 
inductive techniques for achieving human level reasoning.  Kokinov‟s AMBR (2003) explores the role of analogy in various 
aspects of memory, such as retrieval and distortion effects.  We agree that analogy is integral to the robustness of human 
reasoning.  Our cognitive architecture, Companions cognitive systems (Forbus & Hinrichs 2004), emphasizes that analogy is 
a common operation as opposed to an exotic event undertaken rarely.  For example, in DTA, each attempt at transfer requires 
an analogy between worked solutions as well as between domain theories themselves.  We plan to integrate DTA into our 
Companions-based learning system (2007), which utilizes within-domain analogies to formulate the models necessary to 
solve AP Physics problems.  By focusing on human-level tasks, we believe we will learn about the constraints on the 
analogical processes themselves in addition to learning how to utilize them in building AI systems (Forbus 2001). 

Conclusions and Future Work 

We have shown that a domain theory for solving physics problems can be learned via cross-domain analogies, using our 
DTA method for cross-domain transfer.  DTA is very general; it should work with any domain theory where reasoning 
involves schema-like domain theories and where analogous worked solutions are available.  Furthermore, our experiments 
demonstrate that such analogical learning can be very efficient.  In fact, when the two domains are sufficiently similar, DTA 
can outperform a baseline system that is incrementally given the correct domain theory.  The process of constructing domain 
mappings by exploiting structural similarities in worked solutions, and using that mapping to import theories from one 
domain to another, is, we believe, a general and powerful process. 

There are several directions we intend to pursue next. First, we have only tested our model with learning encapsulated 
histories, so we want to extend it to handle other types of domain knowledge, such as model fragments and modeling 
knowledge.  Currently, we are developing a method for learning modeling decisions via generalization and incorporating it 
into our domain transfer system.  Second, while DTA has an explicit verification step, this does not guarantee that all the 
learned knowledge is correct.  Therefore, we plan to implement model-based diagnostic strategies to debug our analogically-
derived domain theories, similar to the strategies used by de Koning et al. (2000) to diagnose misconceptions in student 
models.  Finally, we plan to explore a broader range of domain pairs, including domains which are quite distant such as those 
found in system dynamics (Olsen 1966).  While linear and rotational mechanics are quite similar, the analogy between 
mechanics and electricity, two superficially different domains, is quite systematic.  This will explore the extent that 
similarities in worked solution structure can learn an adequate domain mapping.  Finally, an analogy between mechanics and 
heat flow will stress that only certain aspects of the domain should transfer, as there are important non-analogous aspects 
between these domains.
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