
 
Figure 1: An example of the skeletal arm concept drawn 

in CogSketch. 
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Abstract 
Modeling how concepts are learned from experience is an 
important challenge for cognitive science.  In cognitive 
psychology, progressive alignment, i.e., comparing highly 
similar examples, has been shown to lead to rapid learning.  
In AI, providing negative examples (near-misses) that are 
very similar has been proposed as another way to accelerate 
learning.  This paper describes a model of concept learning 
that combines these two ideas, using sketched input as a 
means of automatically encoding data to reduce tailorability.  
SEQL, which models analogical generalization, is used to 
implement progressive alignment.  The processing of near-
miss examples is modeled by using the Structure Mapping 
Engine to hypothesize classification criteria based on 
differences.  This near-miss analysis is performed both on 
labeled negative examples provided as input, and by using 
analogical retrieval to find near-miss examples when positive 
examples are provided.  We use a corpus of sketches to show 
that the model can learn concepts based on sketches and that 
incorporating near-miss analysis improves learning.   
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Introduction 
How concepts are learned from experience is a central 
question in cognitive science.  It is well-known that some 
concepts can be viewed as analytic, having compact 
necessary and sufficient defining criteria (e.g., grandparent 
or triangle), whereas others are based on similarity or 
typicality (e.g., chair, bachelor).   Prior work has explored 
analogical generalization as an explanation for learning 
similarity-based categories.  The SEQL model of analogical 
generalization (Kuehne et al 2000a) has been used to model 
learning of perceptual stimuli (Kuehne et al 2000b), stories 
(Kuehne et al 2000a), spatial prepositions (Lockwood et al 
2008) and causal models (Friedman & Forbus, 2008; 
Friedman & Forbus, 2009).  SEQL’s ability to construct 
probabilistic generalizations provides a model of typicality, 
i.e., high-probability relationships and attributes are more 
typical.  SEQL has been used to model progressive 
alignment (Gentner et al 2007), where sequences of highly 
similar exemplars lead to more rapid learning (Kuehne et al 
2000a).  Progressive alignment alone may suffice to 
generate rule-like concepts (e.g., Gentner & Medina, 1998), 
but another possibility is to use negative examples to 
hypothesize and sharpen criteria for concepts.  Winston 
(1970) proposed the idea of a near-miss, a labeled negative 
example that differs from the intended concept in only one 

way.  A near miss exemplar should be highly alignable with 
some instances of a concept1.    

This paper describes a model of concept learning that 
combines analogical generalization and near-miss analysis 
to capture both similarity-based and analytic aspects of 
concepts.  Its inputs are labeled positive or negative 
examples of concepts.  It uses SEQL to construct 
generalizations for each concept, thus capturing similarity-
based aspects of concepts (and typicality, via probability).  
When a positive example is provided, the corresponding 
concept is updated.  When a negative example is provided, 
analogical retrieval is used to find the closest prior positive 
example or generalization, and analogical matching is used 
to construct and update hypotheses about inclusion and 

exclusion criteria for that concept.  Near-miss analysis is 
also attempted when a positive example is provided, using 
analogical retrieval over negative examples to look for a 
candidate near-miss.  (The use of analogical retrieval to find 
positive concepts and a system’s own near-misses is a 
significant advance over Winston’s model, which used only 
a single abstract description for concepts and required a 
teacher to supply all negative examples.)  To test the model, 
we use sketches to describe concepts which are 
automatically encoded by a sketch understanding system.  
We show that the model can indeed learn concepts from 
sketches, and that including near-miss analysis improves 
learning.  Our simulation is implemented using the 
Companions cognitive architecture (Forbus et al, 2009), 
which integrates analogical processing and sketching. 

                                                 
1 For disjunctive concepts, some exemplars will not be similar. 
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Figure 2: SEQL generalization contexts for Arch and 

Triangle concepts, with associated inclusion and exclusion 
hypotheses (hi and he, respectively). 

The next section summarizes the simulations of 
analogical processing and sketch understanding that our 
model is built upon.  We describe our model next, followed 
by a description of our experiments.  We close with related 
and future work. 

Simulation Components 

Analogical processing 
Our system uses three cognitive models as components to 
learn concepts and categorize examples.   Similarity-based 
retrieval is used to find similar examples across conceptual 
boundaries.  Analogical comparison is used to compare 
examples and generate classification hypotheses.  Finally, 
analogical generalization is used to generalize examples.  
We use the Structure Mapping Engine (SME) (Falkenhainer 
et al, 1989) to model analogical matching, MAC/FAC 
(Forbus et al, 1995) to model retrieval, and SEQL (Keuhne 
et al, 2000) to model analogical generalization. 

SME is based on Gentner’s (1983) structure-mapping 
theory of analogy.  Given two relational representations, a 
base and a target, SME computes mappings which represent 
how they can be aligned.  A mapping consists of 
correspondences which describe “what goes with what” in 
the two representations and a numerical score indicating 
their degree of similarity.  SME also computes candidate 
inferences from the base to the target and from the target to 
the base.  Candidate inferences suggest possible relations 
that can be transferred across representations, using the 
correspondences in the mapping as support. 

Given a probe case and case library, MAC/FAC 
efficiently retrieves a case from the case library that is 
similar to the probe.  For scalability, its first stage estimates 
similarity via dot products on vectors automatically 
produced from the structured, relational representations used 
as cases.  At most three descriptions are passed to the 
second stage, which uses SME to compare their full 
relational versions to the probe, in parallel, to find the best 
case, or up to three cases if they are very close to the best. 

Our model uses SEQL for generalization.  Each concept 
has its own generalization context, which SEQL uses to 
maintain a list of generalizations and ungeneralized 
examples.  Given a new example, it is first compared 
against each generalization in the context, using SME.  If 
the SME similarity score is over the assimilation threshold, 
the example is merged to update the generalization.  
Otherwise, the new example is compared with the 
ungeneralized examples in the context.  Again, if the score 
over threshold, the two examples are then combined to form 
a new generalization in the context.  Otherwise, the example 
is added to the context’s list of ungeneralized examples.  
Figure 2 depicts generalization contexts for concepts Arch 
and Triangle. 

CogSketch 
CogSketch2 (Forbus et al, 2008) is an open-domain sketch 
understanding system.  The ink that a user draws to 
represent an entity is represented as a glyph, which can be 
labeled with concepts from an OpenCyc3-derived 
knowledge base.  For example, in the sketch shown in 
Figure 1, each bone is labeled a Bone-BodyPart, which is 
stored as an attribute for each of the individual entities.   

CogSketch automatically computes spatial relations (e.g., 
above, rightOf, touchesDirectly) between glyphs.  
CogSketch also computes candidate visual/conceptual 
relations for pairs of sketched entities based on the types of 
entities they are and the visual relationships that hold 
between the glyphs that depict them.  For example, the fact 
that the glyphs depicting the carpus and metacarpus in 
Figure 1 touch suggests that the objects they depict might be 
touching or connected in some way.  The user can browse 
these candidate relationships and select those which are 
accurate.  In our input stimuli, correct visual/conceptual 
relationship candidates were always included.  

Similarity & near-miss concept learning 
Our model takes as input a stream of labeled sketches.  

There are two kinds of labels: A positive label indicates that 
the example is an instance of a concept, e.g., an arch.  A 
negative label indicates that, whatever it is, it is not an 
example of that concept (e.g. not an arch).  Currently the 
model assumes that, given two concepts C1 and C2, a 
positive example of C1 is a negative example of C2, and 
vice-versa.   When the first positive example for a new 
concept is provided, a generalization context is created for 
that concept.  Positive examples are added to the 
corresponding generalization context, and SEQL is used to 
construct probabilistic generalizations.  MAC/FAC is used 
with the set of all negative examples to find a negative 

                                                 
2 http://www.qrg.northwestern.edu/software/cogsketch/ 
3 www.opencyc.org 



          hi:  (isa a wedge)          he:   (and (isa a block) 
        (adjacentTo b c) 
        (adjacentTo c b) 
                                  (touchesDirectly b c) 
                                  (touchesDirectly c b)  
 

  
  

Figure 3: A near miss of concept arch and the resulting 
inclusion hypothesis hi and exclusion hypothesis he. 

example similar to the positive example.  If a sufficiently 
similar exemplar from another concept is found, near-miss 
analysis is invoked.  Similarly, when a negative example is 
provided, MAC/FAC is used to retrieve the closest positive 
exemplar or generalization, which is then used for near-miss 
analysis.   

When given an example to categorize, the model uses 
MAC/FAC to generate a reminding from each concept’s 
context.  The system tests the new example against the 
classification criteria for each concept. Of the concepts 
whose criteria are satisfied, the one with the most similar 
reminding is chosen as the category of the new example. 

In explaining our model, we use as a running example 
learning the concept of an arch, which was first used by 
Winston (1970), who used hand-generated representations. 

 
Near-miss analysis.  Winston argued for the importance of 
near misses in learning concepts.  A near miss consists of a 
positive example e1 (e.g. Figure 3, left) and a negative 
example e2 (e.g. Figure 3, right) that differ in only one 
property.  In analogical reasoning terms, e1 and e2 are highly 
alignable, enabling a learner to conjecture that differences 
between them could be useful for classification.   Two kinds 
of hypotheses are computed to enhance concept 
discrimination.  Inclusion hypotheses represent potential 
necessary conditions for something to be an instance of the 
concept.  Exclusion hypotheses represent potential negative 
conditions that are sufficient to prevent something from 
being classified as an instance of that concept.   
 Near-miss analysis starts with a positive and a negative 
example.  As noted above, one of these examples is a new 
learning example, while the other is a previous example 
retrieved via MAC/FAC.  A similarity threshold of 0.75 is 
used for their comparison, to ensure high alignability. 

Figure 3 shows a near miss that was processed by our 
simulation.   The positive example is used as the base 
whereas the negative example is used as the target, and they 
are compared via SME.  SME aligns a with e, b with f, c 
with g, and the grounds d with h.  The conjunction of 
positive→negative candidate inferences in the mapping 
becomes a new inclusion hypothesis (Figure 3, hi) 

designating criteria that might be necessary for concept 
membership.  Similarly, the conjunction of all 
negative→positive candidate inferences is becomes a new 
exclusion hypothesis (Figure 3, he) designating criteria that 
might prevent concept membership.  Here the unaligned 
attribute (isa a wedge) is the sole forward candidate 
inference, so it becomes the inclusion hypothesis hi.  
Similarly, the block attribute, touchesDirectly 
relations, and adjacentTo relations comprise the 
conjunctive exclusion hypothesis he. 

Inclusion and exclusion hypotheses are associated with 
the positive example in the near miss, as shown in Figure 2. 
Consequently, when MAC/FAC retrieves more than one 
near miss for a given positive example, the system 
computes more than one inclusion and exclusion hypothesis 
about the example, and must combine them.  Inclusion 
hypotheses pertaining to the same example are combined 
via a set union operation, with the intuition that all 
necessary facts must hold for positive classification.  
Conversely, only one exclusion hypothesis needs to hold to 
affect classification, and so exclusion hypotheses pertaining 
to the same example are kept separate. 

In the Figure 3 example, the inclusion hypothesis hi 
generated by the system erroneously asserts that all arches 
have wedges as their topmost structure.  This error reflects 
one learning bias of the model, which is the immediate 
assumption that all differences detected in the near miss of a 
concept are important to the definition of the concept.  Such 
errors can be removed during analogical generalization, 
which we discuss next. 
 
Analogical generalization.  During training, our learning 
system incrementally develops a disjunctive model of a 
concept through the observation of positive and negative 
examples.  As positive examples are observed, they are 
added to a SEQL generalization context for the concept, 
where they are generalized with sufficiently similar 
examples.  When an example is generalized, resulting in 
new or larger generalizations (shown in Figure 2) the system 
revises the near-miss hypotheses associated with the 
generalization constituents. 
 Across generalizations, the near-miss hypotheses can be 
considered disjunctive hypotheses about the concept.  For 
example, suspension bridges may be different enough from 
beam bridges that the classification hypotheses required of 
them differ.  We can capture this distinction if suspension 
bridge examples and beam bridge examples form separate 
generalizations when added to the generalization context for 
the concept bridge.  During classification, we may claim 
that an example is a bridge if it is similar enough to the 
suspension bridge generalization and satisfies the conditions 
for suspension bridge, or if it is similar enough to the beam 
bridge generalization and satisfies the conditions for beam 
bridge.  The construction of disjunctive hypotheses based 
on similarity introduces another learning bias of the model, 
which assumes that similar examples of a concept are 
subject to the same rules for membership.  



 

hi:  (isa a wedge)   
he:  (and (isa a block)   
   (adjacentTo b c)    
   (adjacentTo c b)   
   (touchesDirectly b c) 
   (touchesDirectly c b) 
 

 

hi: (and  (isa i block) 
  (onPhysical i k) 
  (touchesDirectly i k) 
he1: (and (adjacentTo j k) 

   (adjacentTo k j) 
   (touchesDirectly j k) 
   (touchesDirectly k j) 

he2: (isa i wedge) 

  

 

hi: (and (onPhysical gai gck) 
  (touchesDirectly gai gck) 
he: (and (adjacentTo gbj gck) 

  (adjacentTo gck gbj) 
  (touchesDirectly gbj gck) 
  (touchesDirectly gck gbj) 

  
 

 

Figure 4:  The generalization of two positive examples and 
their inclusion and exclusion hypotheses 

 After an observed positive example is generalized with an 
existing generalization or ungeneralized example, their 
hypotheses are generalized.  Figure 4 shows how a new 
example (top) and a previously ungeneralized example 
(middle) are merged into a new generalization with revised 
hypotheses (bottom). 

 The first step in generalizing inclusion hypotheses is 
mapping the hypotheses from their respective generalized 
examples to the newly created generalization.  This involves 
replacing the names of entities with the names of 
corresponding entities in the generalization.  Next, inclusion 
hypotheses are pruned by removing any assertions that do 
not hold on the new generalization.  In Figure 4, the facts 
(isa a wedge) and (isa i block) are pruned from 
the inclusion hypotheses of the constituent examples 
because they are not true of the resulting generalization; 
rather, the corresponding generalized entity gai is not known 
to be either wedge or block.  After pruning, the two 
inclusion hypotheses are joined by a union operation on 
their component facts, and become a conjunctive hypothesis 
associated with the new generalization 
 Next, the system uses the generalization operation to 
identify and discard erroneous exclusion hypotheses.  In 
Figure 4, exclusion hypothesis (isa i wedge) of the 
middle example is erroneous because it shares a 
generalization with the topmost example whose 
corresponding entity a is a wedge.  Consequently, the 
exclusion hypothesis is discarded. Remaining exclusion 
hypotheses are mapped onto the resulting generalization.  
Finally, the system discards exclusion hypotheses of the 
resulting generalization that are more specific than other 
associated hypotheses.  For some exclusion hypothesis 

composed of fact set f, any hypothesis of fact set f’ such that 
f ⊆ f’ is eliminated.  In Figure 4, hypothesis he of the 
topmost example is discarded for this reason. 

Classification 
Given a new testing example enew, our model decides 
whether it is an instance of one of its learned concepts.  The 
model decides this using similarity-based retrieval and by 
testing the hypotheses created during learning. 

For each learned concept, the system uses MAC/FAC to 
retrieve the most similar generalization or ungeneralized 
example of the concept ec from the concept’s generalization 
context.  The inclusion and exclusion hypotheses associated 
with ec (as shown in Figure 2) are used as criteria for 
classifying enew. 

The inclusion and exclusion hypotheses associated with ec 
are represented in terms of the entities in ec, which typically 
do not exist in enew.  Consequently, structural alignment is 
used to perform the analogical equivalent of rule 
application. SME is used to find entity correspondences 
between ec and enew, and the entities of ec are substituted 
with the corresponding entities in enew in each hypothesis. 

 Testing the classification criteria is the final step in 
classification.  If an inclusion hypothesis does not hold in 
enew, or if an exclusion hypothesis does hold in enew, it is not 
an instance of the concept.  Otherwise, enew is an instance of 
the concept.  If enew is a viable instance of multiple concepts, 
given the exclusion and inclusion criteria, the system 
chooses the concept whose MAC/FAC reminding similarity 
score was higher. 

Experiment 
We created a series of 44 sketches representing six concepts 
for learning and categorization, summarized in Table 1.  The 
false arches, false triangles, and false squares sketches are 
all highly alignable with examples of their associated 
concept, but are not positive examples themselves. 
 

Table 1: Sketched examples for simulation. 
 

Arches: 8 Triangles: 4 
False arches: 8 False triangles: 4 
Bridges: 4 Squares 4 
Skeletal arms: 4 False squares: 4 
Skeletal legs: 4   

 
Our experiment follows a four-fold cross validation 

format covering all 44 sketches.  The system trained on 
three 11-example segments, for a total of 33 examples for 
learning.  The remaining 11-example segment is used for 
classification testing.  We repeat this four times, so each 11-
example segment is used for testing, and the results of the 
four trials runs are averaged.  

We tested our simulation under two conditions: The full 
condition uses the entire model, while in the similarity-only 
condition, near-miss analysis is turned off.  In similarity-
only, the system classifies a new example by using 



 
Figure 5: Effectiveness of using structural similarity alone 

for classification, as a function of similarity threshold. 

MAC/FAC to retrieve a similar representation from the 
concept context, and asserts concept membership if the 
normalized SME similarity score is above a threshold of 
0.85.  We expected that, based on prior experiments 
(Kuehne et al 2000b), similarity-only will learn quite well 
with only a handful of examples.  However, we also expect 
that it will show false positives due to misleadingly similar 
negative examples, which near-miss analysis should 
prevent. 

In the similarity-only condition, 79% correct 
classification is achieved with a similarity threshold of 0.75 
(Figure 5), well above chance (p < 0.001).  Inspection of the 
results revealed that almost all of the 20% error can be 
attributed to false positives.  One such false positive is the 
rightmost example in Figure 3, which shares considerable 
relational structure with other arches. 

With near-miss analysis turned on, 86% correct 
classification was achieved, which is better than chance with 
p < 0.001.  The number of false positives decreased from 
eight to two but the number of false negatives increased 
from one to four due to overly restrictive hypotheses.  The 
rightmost example in Figure 3 was among the negative 
examples correctly classified.  Just as with similarity-only, 
the model determined that this example was sufficiently 
similar to a generalization of the concept arch.  However, it 
reported a failure to meet classification conditions due to a 
satisfied exclusion hypothesis, 

(TheSet (adjacentTo f g) 
   (touchesDirectly g f)) 

which expresses the justification “This is not an arch 
because f is adjacent to g and g touches f directly.” 

Discussion & Future Work 
We have described a model that extends analogical 
generalization with near-miss analysis to learn concepts 
from sketches.  We have generalized the notion of near-miss 
that Winston (1970) used in two important ways.  First, 
Winston assumed that near-misses were always provided by 
a teacher.  We have shown that near misses can also 
naturally arise from the process of similarity-based retrieval, 
thereby providing more self-direction in learning.  Second, 

Winston’s system had one description of the target concept 
it was learning, and hence did not capture the possibility of 
disjunctive concepts and finding the appropriate conceptual 
representation, which we do via a combination of SEQL and 
MAC/FAC.   A version of the model without near-misses, 
using similarity alone, performs well over chance.  
However, similarity alone leads to a pattern of 
misclassification errors, which is partially corrected by near-
miss analysis.  The incorporation of classification criteria 
enables the model to make more expressive justifications for 
its classification decisions, as in the case of the negative 
example from Figure 3.  We also believe that near-miss 
analysis will allow the model to more readily benefit from a 
larger training set, as hypotheses from new near-misses will 
add potentially valuable criteria to reduce false positives and 
hypothesis generalization will alleviate over-restrictiveness, 
which accounted for all but one of the false negatives.  We 
expect the similarity-only classifier to gain less from 
additional training, since the examples it misclassifies are 
mostly negative examples that bear high relational similarity 
to positive examples.    Thus near-miss analysis provides an 
important extension to similarity-based concept learning. 

Our concept learning model learns several concepts 
simultaneously, with relatively few examples.  It requires 
orders of magnitude fewer examples than existing 
connectionist models of concept learning (e.g., Krushke, 
1992; Regier 1996; Elman 1999), and unlike such models, 
uses automatically encoded relational stimuli, to reduce 
tailorability.  We believe our model makes more realistic 
demands, although it could be argued that our model learns 
too quickly.  One reason that we see such rapid learning in 
simulation experiments is that our system, unlike people, 
has many fewer distracters.  Everyday life does not always 
afford closely packed sequences of similar concept 
instances, and human perception may contain more 
attributes and relations than CogSketch currently computes. 
However, studies such Gentner et al (2009) suggest that 
people can learn a spatial concept quickly with highly 
alignable near-misses, which our model captures nicely. 

Winston (1982, 1986) also explored learning rules from 
analogies, using simplified English inputs.  His system 
generalized based on one example, rather than several, and 
produced logical quantified rules, while ours uses analogical 
matching to apply hypotheses to new examples. His if-then 
rules and censors are functionally similar to our inclusion 
and exclusion hypotheses, respectively. 

There are several aspects of concept learning that our 
model does not currently capture.  For example, our 
sketched input does not include causal relationships, goals, 
or functional constraints (Lombrozo, 2009; Rehder & Kim, 
2006).  Based on prior work (Falkenhainer, 1987; Friedman 
& Forbus, 2009) we believe our model will handle such 
information if it is included in the initial encoding, since it 
basically adds relational structure that influences similarity 
judgments, and hence classification, in our model.   Other 
factors, such as ontological structure (Medin & Smith, 
1984) and centrality and mutability of properties (Sloman, 



Love, & Ahn, 1998) we believe can be handled by further 
exploiting the statistical information gathered via SEQL in 
cross-concept analyses.  We plan to explore both of these 
issues in future work.   
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