
 
Figure 1: An example of the skeletal arm concept, drawn 

in CogSketch. 
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Abstract 

Learning to classify examples as concepts is an important 
challenge for cognitive science.  In cognitive psychology 
analogical generalization, i.e., abstracting the common 
structure of highly similar examples, has been shown to lead 
to rapid learning.  In AI, providing very similar negative 
examples (near-misses) has been shown to accelerate 
learning.  This paper describes a model of concept learning 
that combines these two ideas.  SAGE, which models 
analogical generalization, is used to implement progressive 
alignment. Near-miss analysis is modeled by using the 
Structure Mapping Engine to hypothesize classification 
criteria based on differences between examples with 
conflicting classifications.  Analogical retrieval is used to pull 
near-misses from memory automatically.  We use a sketch 
understanding system to generate qualitative spatial 
representations of examples from a corpus of sketched 
concepts.  We show that the model can learn the typical 
features and classification criteria for a concept from 
sketches, and that the incorporation of near-miss analysis 
improves classification performance over progressive 
alignment and similarity alone. 
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Introduction 

How concepts can be learned from experience is a common 

question for AI systems.  It is well known that some 

concepts can be viewed as analytic, having compact 

necessary and sufficient defining criteria (e.g., grandparent 

or triangle), whereas others are based on similarity or 

typicality (e.g., chair, bachelor).   Prior work has explored 

analogical generalization as an explanation for learning 

similarity-based categories.  The SAGE model of analogical 

generalization, an evolutionary improvement over SEQL 

(Kuehne et al 2000a) has been used to model learning of 

perceptual stimuli (Kuehne et al 2000b), stories (Kuehne et 

al 2000a), spatial prepositions (Lockwood et al 2008) and 

causal models (Friedman & Forbus, 2008; Friedman & 

Forbus, 2009).  SAGE’s ability to construct probabilistic 

generalizations provides a model of typicality, i.e., high-

probability relationships and attributes are more typical.  

SAGE has been used to model progressive alignment 

(Gentner et al 2007), where sequences of highly similar 

exemplars lead to more rapid learning (Kuehne et al 2000a).  

Progressive alignment alone may suffice to generate rule-

like concepts (e.g., Gentner & Medina, 1998), but another 

possibility is to use negative examples to sharpen criteria for 

concept membership.  Winston (1970) proposed the idea of 

a near-miss, a labeled negative example that differs from the 

intended concept in a small number of ways.  A near-miss 

exemplar should be highly alignable with some instances of 

a concept1.  Consequently, a concept learner that uses 

similarity alone might misclassify a near-miss negative 

example as a positive instance, so the similarity can be used 

as a cue for additional analysis.  Presumably, one or more of 

the differences detected could be critical to the definition of 

the concept. 

 Our system uses sketched examples as inputs for learning, 

which are automatically processed into qualitative spatial 

representations by a sketch understanding system.  

Representing the examples with structured, qualitative 

spatial relations allows for the system to use three analogical 

processes for learning: generalization via SAGE, analogical 

retrieval of near-miss examples, and near-miss analysis via 

analogical inference.  The generalizations and classification 

criteria produced by these processes use the same 

vocabulary of qualitative spatial relations and functional 

relationships, which we believe provides a concise, human-

like representation system. 

This paper describes a model of concept learning that 

combines analogical generalization and near-miss analysis 

to capture both similarity-based and analytic aspects of 

concepts.  Its inputs are sketches of physical objects, which 

are labeled as positive or negative examples of concepts 

(Figure 1).  It uses SAGE to construct generalizations for 

each concept, thus capturing similarity-based aspects of 

concepts (and typicality, via probability).  When a positive 

                                                 
1 For disjunctive concepts, some exemplars will not be similar. 
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Figure 2: SAGE generalization contexts for Arch and 

Triangle concepts, with inclusion and exclusion hypotheses. 
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example is provided, the corresponding concept 

generalization(s) are updated, and analogical retrieval is 

used to find near-misses and generate hypotheses about 

classification criteria for the concept.  Similarly, when a 

negative example is provided, analogical retrieval is used to 

find similar prior positive examples.  (Using analogical 

retrieval to find near-misses is a significant advance over 

Winston’s model, which used a single description for 

concepts and was not capable of finding near-miss examples 

automatically.) 

We show that the model can indeed learn concepts from 

sketches, and that including near-miss analysis improves 

learning.  Our simulation is implemented using the 

Companions cognitive architecture (Forbus et al, 2009), 

which integrates analogical processing and sketching. 

The next section summarizes the simulations of 

analogical processing and sketch understanding upon which 

our model is built.  We then describe our model, the 

experiment used to test its learning capability, and results.  

We close with related and future work. 

Simulation Components 

Analogical processing 

Our system uses three cognitive models as components to 

learn concepts and categorize examples: (1) similarity-based 

retrieval is used to find similar examples across conceptual 

boundaries; (2) analogical comparison is used to compare 

examples and generate classification hypotheses; and (3) 

analogical generalization is used to generalize examples.  

We use the Structure Mapping Engine (SME) (Falkenhainer 

et al, 1989) to model analogical matching, MAC/FAC 

(Forbus et al, 1995) to model retrieval, and SAGE (Kuehne 

et al, 2000) to model analogical generalization. 

SME is based on Gentner’s (1983) structure-mapping 

theory of analogy.  Given two relational representations, a 

base and a target, SME computes mappings that represent 

how they can be aligned.  A mapping consists of 

correspondences that describe, “what goes with what” in the 

two representations and a numerical score indicating their 

degree of similarity.  SME also computes candidate 

inferences from the base to the target and from the target to 

the base.  Candidate inferences suggest possible relations 

that can be transferred across representations, using the 

correspondences in the mapping as support. 

Given a probe case and case library, MAC/FAC 

efficiently retrieves a case from the case library that is 

similar to the probe.  For scalability, its first stage estimates 

similarity via dot products on vectors automatically 

produced from the structured, relational representations used 

as cases.  At most three descriptions are passed to the 

second stage, which uses SME to compare their full 

relational versions to the probe, in parallel, to find the best 

case, or up to three cases if they are very close to the best. 

Our model uses SAGE for generalization.  Each concept 

has its own generalization context, which SAGE uses to 

maintain a list of generalizations and ungeneralized 

examples.  Given a new example, it is first compared 

against each generalization in the context, using SME.  If 

the SME similarity score is over the assimilation threshold, 

the example is merged to update the generalization.  

Otherwise, the new example is compared with the 

ungeneralized examples in the context.  Again, if the score 

is over threshold, the two examples are then combined to 

form a new generalization in the context.  Otherwise, the 

example is added to the context’s list of ungeneralized 

examples.  Figure 2 depicts generalization contexts for 

concepts Arch and Triangle. 

CogSketch 

CogSketch2 (Forbus et al, 2008) is an open-domain sketch 
understanding system.  The ink that a user draws to 
represent an entity is called a glyph, which can be labeled 
with concepts from an OpenCyc3-derived knowledge base.  
For example, in the sketch shown in Figure 1, each bone is 
labeled a Bone-BodyPart, which is stored as an attribute 
for each of the individual entities.   

CogSketch automatically computes qualitative spatial 
relations (e.g., above, rightOf, touchesDirectly) 
between glyphs.  In the knowledge representation that is 
produced by CogSketch, these relations are automatically 
applied to the entities that the glyphs represent.   The 
abstraction provided by qualitative representations greatly 
facilitates learning via structural alignment, since an entire 
space of quantitatively similar configurations will lead to 
the same qualitative representation. 

CogSketch also computes candidate visual/conceptual 
relations (again, from the OpenCyc-derived knowledge 
base) for pairs of sketched entities based on the visual 
relationships that hold between them the conceptual labels 
they have been assigned, and the genre and pose of the 
sketch.  For example, the fact that the glyphs depicting the 
carpus and metacarpus in Figure 1 touch suggests that the 
objects they depict might be touching or connected in some 
way.  The list of candidate visual/conceptual relations for 
these objects is further constrained by the Bone-BodyPart 
concept labels they have been assigned, as well as the 
Physical genre and from-side pose of the sketch.  The 

                                                 
2 http://www.qrg.northwestern.edu/software/cogsketch/ 
3 www.opencyc.org 
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Figure 3: A near miss of concept arch and the resulting 

inclusion hypothesis hi and exclusion hypothesis he. 

user can browse the candidate relationships and select those 
that are accurate.   

CogSketch is based on the observation that people talk 
when they sketch, providing verbal labels for what they are 
drawing, and using language to express functional 
relationships (e.g. that two parts can rotate, or that one 
supports another) that the sketch alone cannot convey.   The 
conceptual labels described above, which are applied by a 
simple menu system, model the effect of verbal labeling.  
The possible visual/conceptual relationships described 
above, which are computed automatically and are available 
for the user to choose or not, model the effect of providing 
functional information via language.  This makes the input 
process much closer to what happens in human-to-human 
sketching.  The user draws ink, which CogSketch’s visual 
system analyzes, producing visual and spatial relationships.  
The user-supplied conceptual labels plus the visual/spatial 
analysis enables CogSketch to automatically compute 
visual/conceptual relationship candidates, from which the 
user can select, if they choose.  (In the experiments reported 
here, correct visual/conceptual relationships were always 
chosen, thereby providing some functional information 
about the concept.) 

Similarity & near-miss concept learning 

Our model takes as input a stream of labeled sketches, 

which have been encoded into qualitative propositional 

representations by CogSketch. A positive label indicates 

that the example is an instance of a concept (e.g. an arch).  

A negative label indicates that, whatever it is, it is not an 

example of that concept (e.g. not an arch).  Currently the 

model assumes that concepts are mutually exclusive.   When 

the first positive training example for a new concept is 

provided, a generalization context is created for that 

concept.  Positive examples are added to the appropriate 

generalization context, invoking SAGE on it.  MAC/FAC is 

used to find a negative example similar to the positive 

example.  If a sufficiently similar example of a different 

concept is found, near-miss analysis is invoked.  Similarly, 

when a negative example is provided, MAC/FAC is used to 

retrieve the closest positive example for near-miss analysis.   

When given an example to categorize, the model uses 

MAC/FAC to generate a reminding from each concept’s 

context.  The system tests the new example against the 

classification criteria for each concept. Of the concepts 

whose criteria are satisfied, the one with the most similar 

reminding is chosen as the category of the new example. 

In explaining our model, we use as a running example 

learning the concept of an arch, which was first used by 

Winston (1970). 
 
Near-miss analysis.  Winston argued for the importance of 
near misses in learning concepts.  A near miss consists of a 
positive example e1 (e.g. Figure 3, left) and a negative 
example e2 (e.g. Figure 3, right) that differ only slightly in 
their structured representations.  In analogical reasoning 
terms, e1 and e2 are highly alignable, enabling a learner to 
conjecture that differences between them could be criteria 
for classification.   Two kinds of hypotheses are computed.  
Inclusion hypotheses represent potential necessary 
conditions for something to be an instance of the concept.  
Exclusion hypotheses represent potential negative conditions 
that are sufficient to prevent positive classification.  All 
hypotheses are reified as structural relational expressions. 
 Near-miss analysis starts with a positive and a negative 
example.  As noted above, one of these examples is a new 
training example, while the other is a previous example 
retrieved via MAC/FAC.  A similarity threshold of 0.75 is 
used for their comparison, to ensure high alignability. 

Figure 3 shows a near-miss that was processed by our 

simulation.   The positive example is used as the base, the 

negative example as the target, and they are compared via 

SME.  SME aligns a with e, b with f, c with g, and the 

grounds d with h.  The conjunction of positivenegative 

candidate inferences in the mapping becomes a new 

inclusion hypothesis (Figure 3, hi) designating criteria that 

might be necessary for concept membership.  Similarly, the 

conjunction of all negativepositive candidate inferences 

becomes a new exclusion hypothesis (Figure 3, he) 
designating criteria that might prevent concept membership.  

Here the attribute (isa a wedge) is the sole forward 

candidate inference, so it becomes the inclusion hypothesis 

hi. This hypothesis posits that in any unclassified example, 

the entity alignable with a must have the wedge attribute to 

qualify the example as an arch.  Similarly, the block 

attribute, touchesDirectly relations, and adjacentTo 

relations comprise the conjunctive exclusion hypothesis he. 

Inclusion and exclusion hypotheses are associated with 

the positive example in the near miss that generated them, as 

shown in Figure 2.  Consequently, when MAC/FAC 

retrieves more than one near-miss for a given positive 

example, the system computes a corresponding number of 

hypothesis about the example, and must reconcile them.  

Inclusion hypotheses pertaining to the same example are 

combined via set union, since all necessary facts must hold 

for positive classification.  Conversely, any exclusion 

hypothesis suffices to rule out that concept, so they are kept 

separate. 

In Figure 3, the inclusion hypothesis hi generated by the 

system erroneously asserts that all arches have wedges as 

their top.  This error reflects one learning bias of the model, 
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Figure 4:  The generalization of two positive examples and 

their inclusion and exclusion hypotheses. 

which is the immediate assumption that all differences 

detected in the near miss of a concept are important to the 

definition of the concept.  Such errors can be removed 

during analogical generalization, which we discuss next. 
 
Analogical generalization.  During training, our learning 
system incrementally develops a disjunctive model of a 
concept through the observation of positive and negative 
examples.  As positive examples are observed, they are 
added to a SAGE generalization context for the concept, 
where they are generalized with sufficiently similar 
examples.  When an example is generalized, resulting in 
new or larger generalizations (shown in Figure 2) the system 
revises the hypotheses associated with the generalization. 
 Across generalizations, the near-miss hypotheses can be 
considered disjunctive hypotheses about the concept.  For 
example, suspension bridges may be different enough from 
beam bridges that the classification hypotheses required of 
them differ.  We can capture this distinction if suspension 
bridge examples and beam bridge examples form separate 
generalizations when added to the generalization context for 
the concept bridge.  During classification, we may claim 
that an example is a bridge if it is similar enough to the 
suspension bridge generalization and satisfies the qualitative 
conditions for suspension bridge, or if it is similar enough to 
the beam bridge generalization and satisfies the qualitative 
conditions for beam bridge.  The construction of disjunctive 
hypotheses based on similarity introduces another learning 
bias of the model, which assumes that similar examples of a 
concept are subject to the same rules for membership.  

 After an observed positive example is generalized with an 
existing generalization or ungeneralized example, their 
hypotheses are generalized.  Figure 4 shows how a new 
example (top) and a previously ungeneralized example 

(middle) are merged into a new generalization with revised 
hypotheses (bottom). 
 The first step in generalizing inclusion hypotheses is 
mapping the hypotheses from their respective generalized 
examples to the newly created generalization.  This involves 
replacing the names of entities with the names of 
corresponding entities in the generalization.  Next, inclusion 
hypotheses are pruned by removing any assertions that do 
not hold on the new generalization.  In Figure 4, the facts 
(isa a Wedge) and (isa i Block) are pruned from 
the inclusion hypotheses of the constituent examples 
because they are not true of the resulting generalization, i.e., 
the corresponding generalized entity gai is not known to be 
either Wedge or Block.  After pruning, the facts of the two 
inclusion hypotheses are unioned to create a conjunctive 
hypothesis associated with the new generalization 
 Next, the system uses the generalization operation to 
identify and discard erroneous exclusion hypotheses.  In 
Figure 4, exclusion hypothesis (isa i Wedge) of the 
middle example is erroneous because it shares a 
generalization with the topmost example whose 
corresponding entity a is a Wedge.  Consequently, the 
exclusion hypothesis is discarded. Remaining exclusion 
hypotheses are mapped onto the resulting generalization.  
Finally, the system discards exclusion hypotheses of the 
resulting generalization that are more specific than other 
associated hypotheses (i.e., for every exclusion hypothesis 
composed of fact set f, any hypothesis of fact set f’ such that 
f  f’ is eliminated).  In Figure 4, hypothesis he of the 
topmost example is discarded for this reason. 

Classification 

Given a new testing example enew, our model decides 

whether it is an instance of one of its learned concepts.  The 

model decides this using similarity-based retrieval and by 

testing the hypotheses created during learning. 

For each learned concept, the system uses MAC/FAC to 

retrieve the most similar generalization or ungeneralized 

example of the concept ec from the concept’s generalization 

context.  The inclusion and exclusion hypotheses associated 

with ec (as shown in Figure 2) are used as criteria for 

classifying enew. 

The inclusion and exclusion hypotheses associated with ec 

are represented in terms of the entities in ec, which typically 

do not exist in enew.  Consequently, structural alignment is 

used to perform the analogical equivalent of rule 

application. SME is used to find entity correspondences 

between ec and enew, and the entities of ec are substituted 

with the corresponding entities in enew in each hypothesis. 

 Testing the classification criteria is the final step in 

classification.  If an inclusion hypothesis does not hold in 

enew, or if an exclusion hypothesis does hold in enew, it is not 

an instance of the concept.  Otherwise, enew is an instance of 

the concept.  If enew is a viable instance of multiple concepts, 

given the exclusion and inclusion criteria, the system 

chooses the concept whose MAC/FAC reminding similarity 

score was higher.  Thus our model of concepts combines 

both rule-based and similarity-based aspects. 



 
Figure 5: Effectiveness of using structural similarity alone 

for classification, as a function of similarity threshold. 

Experiment 

We created a series of 44 sketches representing six concepts 

for learning and categorization, summarized in Table 1.  The 

false arches, false triangles, and false squares sketches are 

all highly alignable with examples of their associated 

concept, but are not positive examples themselves. 

 

Table 1: Sketched examples for simulation. 

 

Arches: 8 Triangles: 4 

False arches: 8 False triangles: 4 

Bridges: 4 Squares 4 

Skeletal arms: 4 False squares: 4 

Skeletal legs: 4   

 

Our experiment follows a four-fold cross validation 

format covering all 44 sketches.  The sketches were 

randomly assigned to four groups (folds) of 11 sketches 

each, with the constraint that all groups had the same 

distribution of sketches from the categories in Table 1 (two 

arches, two false arches, one bridge, one skeletal arm, etc).  

The system trained on three 11-example groups, for a total 

of 33 examples for learning.  The remaining group of 11 

examples  is used for classification testing.  We repeat this 

four times, so each group of 11 examples is used once for 

testing, resulting in 44 classifications total.    

We tested our simulation under two conditions: The full 

condition uses the entire model, while in the similarity-only 

condition, near-miss analysis is turned off.  In similarity-

only, the system classifies a new example by using 

MAC/FAC to retrieve a similar representation from the 

concept context, and asserts concept membership if the 

normalized SME similarity score is above a threshold of 

0.85.  We expected that, based on prior experiments 

(Kuehne et al 2000b), similarity-only will learn quite well 

with only a handful of examples.  However, we also expect 

that misleadingly similar negative examples will cause false 

positives, which near-miss analysis should help prevent. 

In the similarity-only condition, 79% correct 

classification is achieved with a similarity threshold of 0.75 

(Figure 5), well above chance (p < 0.001).  Inspection of the 

results revealed that almost all of the 20% error can be 

attributed to false positives.  One such false positive is the 

rightmost example in Figure 3, which shares considerable 

relational structure with other arches. 

With near-miss analysis turned on, 86% correct 

classification was achieved, which is better than chance with 

p < 0.001.  The number of false positives decreased from 

eight to two but the number of false negatives increased 

from one to four due to overly restrictive hypotheses.  The 

rightmost example in Figure 3 was among the negative 

examples correctly classified.  Just as with similarity-only, 

the model determined that this example was sufficiently 

similar to a generalization of the concept arch.  However, it 

reported a failure to meet classification conditions due to a 

satisfied exclusion hypothesis, 
(TheSet (adjacentTo f g) 

   (touchesDirectly g f)) 

which expresses the justification “This is not an arch 

because f is adjacent to g and g touches f directly.” 

Discussion & Future Work 

We have described a model that extends analogical 

generalization with near-miss analysis to learn concepts 

from sketches.  We have generalized the notion of near-miss 

that Winston (1970) used in two important ways.  First, 

Winston assumed that near-misses were always provided by 

a teacher.  We have shown that near misses can also 

naturally arise from the process of similarity-based retrieval, 

thereby providing more self-direction in learning.  Second, 

Winston’s system had one description of the target concept 

it was learning, and hence did not capture the possibility of 

disjunctive concepts and finding the appropriate conceptual 

representation, which we do via a combination of SAGE 

and MAC/FAC.   A version of the model without near-

misses, using similarity alone, performs well over chance.  

However, similarity alone leads to a pattern of 

misclassification errors, which is partially corrected by near-

miss analysis.  The incorporation of qualitative 

classification criteria enables the model to make more 

expressive justifications for its classification decisions, as in 

the case of the negative example from Figure 3.  We also 

believe that near-miss analysis will allow the model to more 

readily benefit from a larger training set, as hypotheses from 

new near-misses will add potentially valuable criteria to 

reduce false positives and hypothesis generalization will 

alleviate over-restrictiveness, which accounted for all but 

one of the false negatives.  We expect the similarity-only 

classifier to gain less from additional training, since the 

examples it misclassifies are mostly negative examples that 

bear high relational similarity to positive examples.    Thus 

near-miss analysis provides an important extension to 

similarity-based concept learning. 

Our concept learning model learns several concepts 

simultaneously, with relatively few examples.  It requires 

orders of magnitude fewer examples than existing 

connectionist models of concept learning (e.g., Krushke, 

1992; Regier 1996; Elman 1999), and unlike such models, 

uses automatically encoded qualitative representations as 



stimuli, to reduce tailorability.  We believe our model makes 

more realistic demands, although it could be argued that our 

model learns too quickly.  One reason that we see such rapid 

learning in simulation experiments is that our system, unlike 

people, has many fewer distracters.  Everyday life does not 

always afford closely packed sequences of similar concept 

instances, and human perception may contain more 

attributes and relations than CogSketch currently computes. 

However studies such Gentner et al (2009) suggest that 

people can learn spatial concepts quickly with highly 

alignable near-misses, which our model captures nicely. 

Winston’s 1970 system used line drawings of 3D Blocks 

World scenes as input, which were automatically processed 

via scene analysis.  Our sketch understanding system uses a 

more general set of 2D representations and hand-drawn 

sketches, which are noisier than line drawings.  Winston 

(1982, 1986) also explored learning rules from analogies, 

using simplified English inputs.  His system generalized 

based on one example, rather than several, and produced 

logical quantified rules, while ours uses analogical matching 

to apply qualitative hypotheses to new examples. His if-then 

rules and censors are functionally similar to our inclusion 

and exclusion hypotheses, respectively. 

There are several aspects of concept learning that our 

model does not currently capture.  For example, our 

sketched input does not include causal relationships or goals 

(Lombrozo, 2009; Rehder & Kim, 2006).  Based on prior 

work (Falkenhainer, 1987; Friedman & Forbus, 2009) we 

believe our model will handle such information if it is 

included in the initial encoding, since it basically adds 

relational structure that influences similarity judgments, and 

hence classification, in our model.   Other factors, such as 

ontological structure (Medin & Smith, 1984), we believe 

can be handled by further exploiting the statistical 

information gathered via SAGE in cross-concept analyses.  

We plan to explore both of these issues in future work.   
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