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Abstract

Sketching is a powerful means of working out and communicating ideas. Sketch understanding

involves a combination of visual, spatial, and conceptual knowledge and reasoning, which makes it

both challenging to model and potentially illuminating for cognitive science. This paper describes

CogSketch, an ongoing effort of the NSF-funded Spatial Intelligence and Learning Center, which is

being developed both as a research instrument for cognitive science and as a platform for sketch-

based educational software. We describe the idea of open-domain sketch understanding, the scientific

hypotheses underlying CogSketch, and provide an overview of the models it employs, illustrated by

simulation studies and ongoing experiments in creating sketch-based educational software.

Keywords: Sketch understanding; Analogy; Qualitative reasoning; Visual reasoning; Spatial reason-

ing; Spatial cognition; Cognitive simulation

1. Introduction

Sketching enables people to externalize and communicate ideas. People draw maps, the

structure of complex systems, and sequences of sketches illustrating how a process unfolds.

The power of sketching is such that visual languages are invented to depict otherwise

abstract ideas (e.g., electronic circuit schematics, software modeling diagrams, parse trees).

Sketching is fascinating scientifically because it engages visual, spatial, and conceptual

knowledge and skills. Consequently, understanding how people understand and communi-

cate with sketches should provide important insights for understanding human cognition

more generally. Moreover, if we can use models of sketch understanding to create software

that can participate in sketching in human-like ways, there are potentially significant practi-

cal benefits. Consider, for example, intelligent tutoring systems (ITSs), an application of
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cognitive science that has had substantial beneficial impact on education and training already.

Almost no ITSs exist for spatial topics. This means that the benefits of ITSs and intelligent

learning environments are unavailable for highly spatial disciplines, which includes many

aspects of science, mathematics, and engineering. Specific examples include understanding

geological formations and understanding how a mechanical design is supposed to work. Con-

sequently, in the Spatial Intelligence and Learning Center, we are creating a sketch under-

standing system, CogSketch, which is being used to explore spatial cognition and learning.

We have two interdependent goals in developing CogSketch. First, it is a new research

instrument for cognitive scientists, a tool for running simulation experiments and for gather-

ing and analyzing behavioral data. Second, it is a platform for sketch-based educational soft-

ware. The first goal facilitates the second: Simulation experiments are used to improve the

range of the system’s spatial reasoning abilities and cognitive fidelity, and laboratory experi-

ments provide experience in making simplified and robust interfaces, both of which improve

it as a platform for educational software. The second goal also facilitates the first: The range

of knowledge and skills involved in spatial understanding and learning is huge, so we pick

our research topics in part by what problems arise in creating educational software. Our

vision is that within 7 years, sketch-based intelligent educational software will be as widely

available to learners as graphing calculators are today. This vision can only be achieved by

artificial intelligence scientists, psychologists, and learning scientists working closely

together.

We begin by outlining open-domain sketch understanding and the hypotheses that under-

lie CogSketch. Section 3 outlines how CogSketch works. Section 4 summarizes research

using CogSketch in cognitive simulation experiments, and Section 5 describes education

experiments. We close by discussing other related work and future plans.

2. Our hypotheses

Most sketch understanding systems treat understanding as a matter of recognizing ink, or

ink plus speech, as a member of a limited number of predefined symbols [e.g., military sym-

bols (Pittman, Smith, Cohen, Oviatt, & Yang, 1996), electronics ⁄ UML diagrams (Alvarado,

Oltmans, & Davis, 2002), force diagrams (Lee et al., 2007)]. This limits them to expressing

a small, fixed set of concepts. Recognition-based interfaces can be of great practical

value—handwriting recognition is the most successful example—but our goal is fundamen-

tally different. A key insight is that in human-to-human sketching, recognition is a catalyst,

not a requirement (Forbus, Ferguson, & Usher, 2001; Landay et al., 2002). When people

sketch with each other, we typically also talk, using language to label the intended meaning

of pieces of ink, or of the spaces defined by the ink. There are several reasons for this: Most

people are not artists, and most spatial concepts do not have standardized, easily recogniz-

able symbols. Moreover, in many domains, the mapping from shapes to concepts is one to

many: In a sketch describing the layers of the earth, for example, the core, mantle, and crust

are all drawn as circles. Consequently, CogSketch provides several ways for people to con-

ceptually label their ink as they draw, so that recognition is not required. This opens up
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CogSketch to sketching anything for which it has conceptual knowledge. This is what we

mean by open-domain sketch understanding.

We want CogSketch to model the perceptual, spatial, and conceptual understanding that

people bring to sketching. Our key hypotheses are as follows:

Hypothesis: Perceptual processing produces qualitative spatial representations. Qual-

itative representations quantize continuous properties, making meaningful units that can

be manipulated symbolically (Forbus, 2007). Constructing representations of segments,

regions, volumes, and relationships between and within them is, we argue, one of the key

functions of perception. Qualitative spatial representations grounded in metric representa-

tions, such as the Metric Diagram ⁄ Place Vocabulary model (Forbus, 1983), have been

used to create human-like performance in a variety of tasks, including reasoning about

motion through space (Forbus, 1983), reasoning about mechanical systems (Forbus,

Nielsen, & Faltings, 1991; Joscowicz & Sacks, 1991), recognizing patterns in weather

data (Huang & Zhao, 2000), and reasoning about complex dynamical systems (Bradley,

1995; Yip, 1991). AI scientists are not alone in this view: In cognitive psychology, a

roughly equivalent but independently developed distinction is the coordinate ⁄ categorical

approach to spatial representation (Huttenlocher, Hedges, & Duncan, 1991; Kosslyn,

Chabris, Marsolek, & Koenig, 1992). The psychological work provides the strongest

direct evidence for a combination of qualitative and metric representations in human

spatial reasoning, while the AI work provides the strongest direct evidence that these

ideas scale to capture the range of human expertise in spatial thinking.

Hypothesis: Structure-mapping processes are used in visual reasoning. Gentner’s

(1983) structure-mapping theory defines analogy and similarity in terms of comparison of

structured representations. These structured representations are symbolic descriptions

encoding entities, their attributes, relations between them, and relations between relation-

ships (e.g., encoding causality and constraint). There is psychological evidence (Lovett,

Gentner, Forbus, & Sagi, 2009a) that structure-mapping computations are used in visual

processing. Qualitative representations provide visual and spatial structure1 which is used

in analogical operations of matching, retrieval, and generalization. These analogical oper-

ations are used to identify similarities and differences, and form components in models of

larger-scale cognitive processing. For example, analogical matching and retrieval have

been used to model causal reasoning in sketches (Klenk, Forbus, Tomai, Kim, &

Kyckelhahn, 2005) and recognizing potential visual ⁄ conceptual relationships (Forbus,

Usher, & Tomai, 2005).

For analogical processing, we use simulations of structure-mapping theory: SME

(Falkenhainer, Forbus, & Gentner, 1989; Forbus & Oblinger, 1990) models matching, MAC ⁄
FAC (Forbus, Gentner, & Law, 1995) models retrieval, and SEQL (Halstead & Forbus, 2005;

Kuehne, Forbus, Gentner, & Quinn, 2000) models generalization.2 These simulations are

described elsewhere and we omit further description of them for brevity. For a model of con-

ceptual knowledge, we use the contents of the OpenCyc knowledge base,3 plus our exten-

sions. Our extensions include defining concepts and relationships for qualitative reasoning,
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visual processing, and analogical processing. The first two are summarized below; the

analogy ontology is described in Forbus, Mostek, and Ferguson (2002). Everything else (e.g.,

concepts of everyday objects like wheelbarrows, windows, and raindrops) and relationships

between them (e.g., types of physical connections, ownership) comes from the knowledge

base (KB). The OpenCyc KB is quite broad, including over 58,000 concepts, 8,000 relations,

and 1.3 million facts. Its developers used ideas from the cognitive science literature whenever

possible, but of course there is no way to test the detailed fidelity of any large-scale knowl-

edge base, and it is not clear what that would mean, given individual, cultural, and develop-

ment differences between individuals. While far from perfect, we have found it sufficient for

our purposes. Our models of visual representation and processing are outlined in Section 3.2.

3. How CogSketch works

CogSketch combines its visual, spatial, and conceptual knowledge about the elements in

a sketch to create a qualitative, symbolic representation both of the sketch and of what it

depicts. Analogical processing is used in the representation construction process, as well as

in tasks using these representations. This section outlines how this is achieved.

3.1. Core concepts

3.1.1. Glyphs
In CogSketch, every user-drawn object in a sketch is a glyph. Each glyph has ink and

content. The ink consists of one or more polylines, which are lists of points representing

what was drawn. The content is a symbolic token that represents what the glyph denotes.

Visual relationships are computed over glyphs, and depending on the semantics of the

sketch (genre & pose, described below), they can lead to inferences about the spatial

relationships between the content of those glyphs.

CogSketch relies on the user to segment their ink into glyphs and to label them with con-

cepts from the knowledge base. There are several interface mechanics used to accomplish

this, depending on circumstances, which are described elsewhere (Forbus, Usher, &

Chapman, 2003). The most flexible allows the user to type in the name of a concept or rela-

tionship from the underlying knowledge base, which has the drawback of requiring technical

sophistication and a detailed understanding of the OpenCyc ontology. The friendlier, but

more limited, methods use either a short list of concepts (with natural language strings

hiding the ontological details) or palettes of concepts depicted graphically when such con-

ventions are known to a community (e.g., military task symbols). These interfaces have been

used in a variety of experiments with students and military personnel (Barker et al., 2003;

Rasch, Kott, & Forbus, 2002), suggesting that they are sufficiently usable. To support

gathering data in certain types of experiments, CogSketch also includes a mode where unre-

stricted natural language strings can be used as conceptual labels.

Glyphs can be composed hierarchically by grouping. For example, the parts of a

wheelbarrow can be individually drawn and labeled as glyphs, and then combined into a
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higher-order glyph, with its own conceptual label, that includes the other glyphs as parts

(see Fig. 1). There currently is no interface mechanism for decomposing complex glyphs

into parts, although CogSketch’s visual system has facilities for doing this automatically on

demand, as described below.

Relationships between objects can be indicated by relation glyphs, which are drawn as

arrows. The conceptual labels for relation glyphs are restricted to binary relations. Ann-
otation glyphs provide modifiers to glyphs. For example, the radius of a circle or the height

of a building can be indicated via a length annotation. Annotations are also used to express

some physical relationships, for example, applied force or direction of motion.

3.1.2. Subsketches, metalayer, and layers
Sketches have structure. Complex sketches often consist of multiple subsketches. For

example, in describing a building, one might have a subsketch that shows how it looks from

the street, another subsketch representing its floor plan, and a third subsketch that is a

schematic of part of its electrical system. A sketch in CogSketch consists of one or more

subsketches. To express relationships between subsketches, a special interface called the

metalayer is used. On the metalayer, each subsketch is treated as if it were a glyph. Arrows

can be drawn between these glyphs to describe relationships between subsketches. This can

be used to describe sequences of states in a complex behavior (e.g., Fig. 2), and to represent

distinct possible outcomes via comic graphs (Forbus et al., 2003).

In CogSketch, a subsketch consists of one or more layers. Drawing programs commonly

use layers to organize multiple parts of a drawing, a metaphor for using clear acetate sheets

over paper when making complex sketches. Normal layers allow inking, and a special

bitmap layer allows users to specify a bitmap that can be drawn over by other layers. Layers

share the same coordinate system, but many default CogSketch operations are only done

between glyphs on the same layer. Each layer has a genre and pose, which help CogSketch

construct appropriate spatial relationships for the contents from visual relationships between

the glyphs. Genre concerns the intended spatial interpretation of the visual entities in the

sketch, whose geometry is further modified by pose. For example, in the Abstract-View

genre, the visual relationships between the glyphs (left ⁄ right, above ⁄ below) provides no

information about spatial relationships between their contents (e.g., electronic components

in a schematic). For the Physical-View and Geospatial-View genres, the relationship

between visual and spatial relationships also depends on the pose. For example, if glyph A

Fig. 1. A sketch of a wheelbarrow. Each part is drawn as a glyph.
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is above glyph B and the genre is physical and the pose is side-view, then A is above B. But

if the genre is Geospatial-View and the pose is Looking-from-top, then A is north of B.

3.2. Visual processing

Wherever possible, we have used psychological evidence to constrain the visual

representations and computations CogSketch computes. Improving the fidelity of its visual

processing is an ongoing project.

3.2.1. Ink processing
CogSketch automatically computes a number of qualitative visual relations and attributes

for glyphs in a layer. These represent general visual features of the sketch, and so they do

not make use of any task- or domain-specific knowledge about the objects being sketched.

For example, a glyph’s size is based on the area of its bounding box. A symbolic description

of size, ranging from tiny to huge, is computed by comparing this area to the overall size of

the sketch.

CogSketch computes the RCC-8 qualitative relations (Cohn, 1996) that describe all

possible topological relations between two 2D shapes (e.g., disconnected, edge-connected,

partially overlapping).4 RCC-8 relations are used to guide the generation of other relations.

These include positional relations (e.g., above ⁄ below, left ⁄ right) and containment.

Fig. 2. The metalayer can be used to describe complex processes, such as this sequence of states in a student’s

design for a machine that lets a one-handed person easily crack an egg. Each step of this sequence is a sub-

sketch.
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Positional relations are only computed by default between adjacent glyphs, the intuition

being that the network of visual relationships we compute should respect the neighborhood

structure of the sketch. CogSketch calculates adjacency via Voronoi diagrams (Edwards &

Moulin, 1998). There are conditions for which Voronoi adjacency may not accurately reflect

psychological judgments of locality, but empirically it has been sufficient for our purposes.

There are four visual positional relations that are computed between adjacent glyphs:

rightOf, above, enclosesHorizontally, and enclosesVertically. These visual relations are

used along with a layer’s genre and pose to generate spatial positional relations between the

content of the glyphs, as noted above.

CogSketch also uses RCC-8 relations to identify two types of glyph groups in a sketch:

connected glyph groups and contained glyph groups. A connected glyph group consists of a

set of glyphs whose ink strokes intersect. A contained glyph group consists of a single

container glyph and the set of glyphs fully contained within it. Fig. 3 shows an example of a

connected glyph group and a contained glyph group.

3.2.2. Representing shapes of glyphs
For some tasks, decomposing glyphs into their component edges in order to represent

their shape is crucial. CogSketch uses two levels of representation. The scene level treats

glyphs as entities and focuses on relationships between them. The shape level of representa-

tion treats the edges of a glyph as entities and focuses on relationships between them.

CogSketch computes scene-level representations by default, and shape-level representations

on demand. These representations are a key component for analogical processing used in

visual tasks.

CogSketch includes algorithms for decomposing and merging the polylines that make up

a glyph into visually meaningful edges. (For brevity we omit the details; see Lovett, Tomai,

Forbus, & Usher, 2009b.) Qualitative representations are then computed for the edges of a

glyph and the relationships between them. The qualitative representations include three

kinds of information:

1. Attributes describing basic shape properties. For edges, these include shape (Straight ⁄
Curved ⁄ Ellipse), length relative to the longest edge in the glyph (Tiny ⁄ Short ⁄

Fig. 3. Examples of glyph groups. The glyphs in a connected glyph group (left) all touch a common glyph. Here,

the whiskers and ears all touch the glyph representing the cat’s head. In a contained glyph group (right), a set of

glyphs are inside another glyph. Here, the eyes, nose, and mouth of the cat are inside the glyph for the head.
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Medium ⁄ Long), and whether they are aligned with the horizontal or vertical axis.

Corners are classified as concave or convex.

2. Relations that describe whether two edges are parallel, perpendicular, connected, inter-

secting (i.e., connected at an X-junction), or edge-intersecting (i.e., connected at a

T-junction).

3. Higher-order relations that describe relationships along contours. For example, the

cycleAdjacentAngles relation is used to relate every pair of adjacent corners moving

clockwise around the contour of a shape. Similarly, relationships are added to corners

that are determined to be right angles or whose edges are of equal length.

These qualitative relationships help SME find mappings between two shape representa-

tions. The higher-order relationships provide local orientation-independent cues about sub-

sets of the shape which help guide matching. The particular representation choices are

motivated by both the psychological literature and our own simulation experiments. For

example, we encode corners as concave ⁄ convex, as opposed to acute ⁄ right ⁄ obtuse, because

this distinction is more fundamental and is known to be visually salient (Ferguson, Aminoff,

& Gentner, 1996).

An important role of SME in visual processing is determining whether two shapes are the

same, different, or rotated ⁄ reflected versions of each other. This process involves first identi-

fying the bounding edges of a glyph, that is, those which touch the area outside the glyph.

(If a glyph is not closed, then all edges are bounding edges.) Identifying outlines as a

starting point was suggested by Hoffman and Richards (1984). SME is used to compare the

representations of the bounding edges: If the mapping it produces does not contain

correspondences for every edge, the shapes are marked as different. To determine possible

rotation ⁄ reflection relationships, quantitative comparisons are performed for each pair of

corresponding edges. Rotation requires that every pair of corresponding edges should have

the same difference in their orientations. Reflection requires that every pair of corresponding

edges should be reflected about the same axis. Since SME can produce multiple mappings,

it is possible to find multiple possible rotations or reflections between two shapes. Our

default is to prefer the smallest possible rotation, based on evidence from mental rotation

tasks (Shepard & Cooper, 1982). When the rotation is zero degrees, the two shapes are taken

to be identical.

3.2.3. Additional on-demand encoding
CogSketch’s default processing computes a variety of relationships at the scene level, but

shape representations are currently only computed on demand. When they are computed,

additional scene-level attributes and relationships become possible to compute. For exam-

ple, CogSketch computes equivalence classes of shapes, within which all glyphs are related

via rotation or reflection, and assigns them an arbitrary attribute name. Thus, while it does

not try to identify shapes as exemplifying particular known types (e.g., squares), it does

recognize that shapes are the same. Within each equivalence class, one glyph is picked as a

reference for size and orientation, and CogSketch assigns attributes based on whether other

glyphs are reflected or rotated versions of the reference.
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Also computed on demand are attributes for border and fill colors, based on the bounding

edge representation. When one glyph is inside another, the quadrant of the larger object in

which the smaller object is located is encoded via a relationship, based on psychological

evidence of qualitative and metric encoding in simple figures (Huttenlocher et al., 1991).

3.2.4. Interactions with conceptual knowledge
As described above, conceptual labelling of glyphs, relation glyphs, and annotation

glyphs represent links between visual and conceptual knowledge. In addition, the visual

relationships between glyphs often suggest conceptual relationships between the objects

they depict. For example, two glyphs that visually contact one another might suggest that

the depicted objects are in physical contact (i.e., connected, hinged, etc.). CogSketch can,

on demand, create a list of potential conceptual relationships for pairs of entities that are

suggested by the visual relationships between their glyphs and the concepts that they repre-

sent. Users can choose which relationship holds in order to further inform CogSketch of

their intended meaning (Forbus et al., 2005).

3.3. Bringing it all together

The symbolic information computed by CogSketch’s visual processing is stored in a work-

ing memory, organized by subsketch and layer. This working memory is also connected to

the knowledge base, which can store sketches both propositionally and with ink as required.

The reasoning engine used provides basic propositional inference and forward-chaining rules

used in bookkeeping (Forbus & de Kleer, 1993). Access to visual operations is provided

through the reasoning engine via procedural attachment, enabling queries and results to flu-

idly combine visual and conceptual terms. Analogical mapping, retrieval, and generalization

are built into CogSketch, operating over the working memory and knowledge base represen-

tations. For example, retrieving sketches using MAC ⁄ FAC to then reason analogically with

them using SME has been the core operation in AI systems that solve everyday physical rea-

soning problems from a human-normed test (Klenk et al., 2005) and generate plausible con-

ceptual interpretations of visual relationships in sketches (Forbus et al., 2005).

4. CogSketch as cognitive simulation

We have used CogSketch to simulate a variety of visual and spatial reasoning tasks.

These simulations provide evidence that our hypotheses in Section 2 are correct. This sec-

tion summarizes some of our simulation experiments, pointing to relevant publications for

further details. Note that the representations and processing in CogSketch are still evolving,

as we learn how to improve its cognitive fidelity with each new experiment. This means that

some of the simulation studies below use slightly different versions of the representations

described above. We are now using this body of simulation results to perform a kind of

tomography, using the multitude of constraints they provide to develop a single reference

set of representations and processes.
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4.1. Geometric analogies

In his seminal work, Evans (1968) wrote a program to solve geometric analogy problems

(see Fig. 4), the first program to do any kind of analogy. Surprisingly, although some

researchers have discussed other potential models for this task (e.g., Bohan & O’Donoghue,

2000; Schwering, Krumnack, Kuehneberger, & Gust, 2007), we are unaware of any simula-

tion since then that can perform this task over the range of problems that Evans used, with

automatically encoded stimuli. Consequently, we have used CogSketch to develop a new

model of this task (Lovett et al., 2009b). Its key insight is that these problems can be solved

through a process of two-stage structure mapping. In the first stage, the model compares

image A to image B to compute D(A,B), a representation of the differences between images

A and B. Ds are based on candidate inferences, part of the mapping produced by SME when

it compares two cases.5 Similarly, the model compares image C to each of the five possible

answers to produce a D(C,x) for each answer. In the second stage, the Ds produced by SME

in the first stage are fed back through SME for a second comparison. In this stage, D(A,B) is

compared to the D’s for each of the five possible answers, and the description with the most

similar D is chosen as the answer. By contrast, Evans’ ANALOGY system casts the problem

as finding transformations between figures. There are many transformations that could

account for each D, making transformation-based approaches more difficult. Our model uses

CogSketch to encode the stimuli. Because there are several different strategies that can be

used for encoding (e.g., preferring rotation vs. reflection) and mapping (e.g., whether or not

to examine alternate interpretations), our model predicts that some problems will involve

more comparisons, and hence longer reaction times, in people. These predictions were sub-

sequently borne out in an experiment (Lovett et al., 2009b).

4.2. Raven’s progressive matrices

This test is a widely used test of general intelligence (Raven, Raven, & Court, 1998).

A slight variation of the two-stage structure mapping model used for geometric analogies

can be used directly with CogSketch’s current visual representations to achieve the same

A B C

1 2 3 4 5

Fig. 4. A sample geometric analogy problem.
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level of performance as adult Americans on two sections out of five on the test (Lovett, For-

bus, & Usher, 2007). We are currently extending the model so that it can handle the entire

test. The best prior model (Carpenter, Just, & Shell, 1990) used hand-coded representations

of the stimuli.

4.3. Oddity task

In oddity tasks, participants are shown an array of images and asked to pick the one that

does not belong. For example, in Dehaene, Izard, Pica, and Spelke (2006) an oddity task

was used to look at geometric reasoning in Americans and Mundurukú, an indigenous South

American group. Our model of this task uses SEQL to produce generalizations from subsets

of the array and to look for elements that are substantially lower in similarity to these

generalizations (Lovett, Lockwood, & Forbus, 2008). The inputs for the simulation were

copy-and-pasted versions of the Power Point stimuli used in the original experiment. The

model performs as well as most human subjects and shows an error pattern similar to

humans. In addition, an ablation experiment (on the model) suggests why certain kinds of

problems are hard for people.

4.4. Spatial language learning

While spatial prepositions make up a relatively small set of the words in any given

language, the process of assigning them to a given visual scene is actually quite complex.

Psychological studies have shown that a variety of factors, including geometry, functional

roles of the objects, whether those roles are being fulfilled, and naive physics, can all play

a role in how people assign prepositions to scenes (Coventry, Prat-Sala, & Richards, 2001;

Feist & Gentner, 1998). The combination of visual and conceptual relationships available

in CogSketch has enabled us to model how spatial prepositions involving containment and

support are learned in both English and Dutch (Lockwood, Lovett, & Forbus, 2008). Using

the stimuli from Gentner and Bowerman (2009), equivalent sketches were drawn with

CogSketch, containing both geometric information and conceptual information (e.g., that

the small round things in the left of Fig. 5 are raindrops and the entity enclosing them is a

Fig. 5. Sample stimuli for the spatial language category learning experiments.
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window, while the right stimulus involves a cookie and a bowl). Each training example

was labelled with the appropriate spatial preposition: in and on when learning English, and

in, op, aan, and om when learning Dutch. There were 32 examples in all, with 8 for in and

24 for on in English, and 8 each for in, op, aan, and om in Dutch. For each preposition,

SEQL was given the exemplars for it and produced a set of probabilistic generalizations

and unassimilated exemplars representing its understanding of that preposition. SEQL’s

ability to produce multiple generalizations enables it to handle disjunctive concepts. Unas-

similated exemplars allow it to represent outliers, which may remain outliers, or become

assimilated into some future generalization as the distribution of exemplars it receives

changes. To test the models it learned, we used leave-one-out cross-validation, taking the

model containing the most similar generalization or unassimilated exemplar to the new

exemplar (as computed via SME) to be the system’s labeling. The model was able to suc-

cessfully learn these prepositions with only 8–24 sketches per preposition, which is several

orders of magnitude fewer training examples than prior cognitive models (e.g., Regier,

1996).

5. CogSketch as educational software platform

A platform, in computing terms, is capable of supporting multiple types of systems.

Consequently, we are exploring two distinct models of educational software using

CogSketch: Sketch Worksheets and the Design Buddy. Each is discussed in turn.

5.1. Sketch worksheets

Paper-based worksheets are a staple in many classrooms. For example, in a geology class,

students might be asked to highlight a fault on a photograph or draw the layers of the Earth.

Sketching is a valuable way of learning spatial relationships. With pencil-and-paper sketch-

ing, feedback is delayed, and assessment is time-consuming and difficult. Experience with

intelligent tutoring systems indicates that immediate feedback leads to better student learn-

ing (Corbett & Anderson, 2001). With CogSketch, we can provide rapid feedback to stu-

dents, and hopefully make assessment simpler and more efficient, thereby improving

learning.

Fig. 6 shows a sketch worksheet for a physical geology class, where the ink illustrates a

typical student response. Students outline the geological features by creating glyphs,

labelled with the appropriate concept, over the photograph. Coaching is provided by using

SME to compare the student’s sketch with the instructor’s sketch. (Internally, the student’s

sketch is a subsketch, and the instructor’s sketch is another subsketch which is kept hidden

from the student.) Potential problems with the student sketch are found by analyzing the cor-

respondences and candidate inferences of the mapping that SME produces for this compari-

son. For example, when a worksheet is developed, the instructor marks which facts are

important and what advice to provide if they are not in the student’s sketch (e.g., ‘‘Is this

really the location of the hanging wall?’’), as indicated by a candidate inference from the
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teacher’s sketch to the student sketch involving that fact. The student can then move and ⁄ or

redraw their glyphs to improve their sketch, and ask for more help. Worksheets are devel-

oped through an authoring environment provided by CogSketch. Authors choose what con-

cepts to include as possible conceptual labels, whether numerical values should be entered

for some properties (e.g., the radius of the Earth’s core, in a worksheet on the layers of the

Earth) via annotation glyphs, and names and commentary on each concept and relationship,

if the defaults are not suitable.

The sketch worksheet model is designed to be simple and general-purpose: If the appro-

priate KB concepts (or close stand-ins) can be found, a worksheet for that problem can be

created. The current version of the authoring environment requires some understanding of

the OpenCyc KB conventions and contents, which is daunting for most instructors without

help. Most ITS authoring environments do not use independently developed off-the-shelf

knowledge bases (e.g., Aleven, Sewall, McLaren, & Koedinger, 2006), requiring them to

start from scratch (or from previously constructed systems with the same environment),

which is more work but does ensure that whatever linguistic information the environment

needs is entered along with new knowledge. We plan to use and expand natural language

resources in the KB to make authoring easier. The first classroom use of worksheets was

Fall 2009, in a physical geology course at Northwestern University taught by Prof. Brad

Sageman. The first assignment involved four sketch worksheets and was quite successful,

based on instructor and student feedback. Consequently, the instructor added a second

sketch worksheet assignment, where students drew the constituents of the carbon cycle, was

added (Yin, Forbus, Usher, Sageman, & Jee, 2010).

There is already some evidence from a laboratory experiment that CogSketch could be

useful in automated assessments. Jee, Gentner, Forbus, Sageman, and Uttal (2009) found

that when experts versus novices drew geological processes, or marked up images with

Fig. 6. A CogSketch worksheet with student response. Students were asked to draw the fault, the marker beds

and which way they moved, and identify the hanging wall and foot wall.
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geological features, there were distinct and easily recognizable differences between the

two groups. In process diagrams, experts tended to include more arrows, which in such

diagrams indicate the processes that are occurring and relate different aspects of the cycle

to one another, and they tend to begin their diagram with such information. In marking

up photographs of geological formations, the experts tend to draw more geologically rele-

vant features, often in an idealized manner. This cannot be attributed to differences in

drawing skill, since drawings of control photographs (e.g., fruit, lasagna) were indistin-

guishable. Importantly, the same pattern of results hold for sketching from memory, for

copying, and for tracing. This suggests that comparisons of student sketches in a very

simple copying task could be diagnostic of their mental models of the domain, analogous

to the use of a sorting task to ascertain expertise (Chi, Feltovich, & Glaser, 1981).

As other researchers have noted (Cheng & Rojas-Anaya, 2008), timing information can

provide another implicit measure of expertise. CogSketch records timestamps for each ink

point drawn and other interface events, which we are using to investigate other possible

assessment measures.

5.2. Design Buddy

Engineers must communicate with their teammates and with clients in developing and

refining designs. Using sketches to communicate is an essential part of the process. CAD

software is only used in later stages of design, called detailed design. The early stages

(conceptual design) are where the key ideas are worked out, to see if a design might be suit-

able before doing detailed designs. At Northwestern, first- and second-year students learn

design and communications in an integrated manner, creating designs and prototypes

that address real-world problems for external clients. Examples include patients at the

Rehabilitation Institute of Chicago, whose physical handicaps require new tools to help

them accomplish everyday tasks, such as chopping vegetables or trimming their nails. The

instructors find that one of their hardest pedagogical problems is teaching students to use

sketches to communicate their designs. Consequently, we are creating a CogSketch applica-

tion, the Design Buddy, to tackle this problem.

The Design Buddy is a form of teachable agent (Blair, Schwartz, Biswas, & Leelawong,

2006) that gives students practice in explaining designs. Students explain their design by

drawing a set of subsketches indicating the distinct intended behaviors of their design (see

Fig. 2). Transitions on the metalayer indicate how one behavior leads to another. This is an

example of a comic graph, which can be viewed as a form of comic strip, although there can

be branches (representing different possible outcomes) and cycles (representing repetitive

behaviors). In addition, they can make certain kinds of simple English statements about par-

ticular states, transitions between them, and purposes using a form-based interface. The

Design Buddy critiques their description of intended behaviors, providing feedback to the

student. It does this by qualitatively reasoning about the behaviors it believes are possible in

the system as sketched and comparing them to the behaviors described by the student to

look for mismatches. It also looks at each transition in the student’s sketch, analyzing it to

see if it is physically possible, given what it knows. Discrepancies between the student’s
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explanation of the intended behavior and the Design Buddy’s understanding of the possible

behaviors are used to provide feedback (Wetzel & Forbus, 2009).

This application is significantly more difficult than worksheets for four reasons. First, it

involves more substantial domain reasoning, rather than just matching. Design Buddy uses a

qualitative model of mechanics (Kim, 1993; Nielsen, 1988) for causal reasoning about sur-

faces, forces, and motion. Qualitative mechanics is a natural fit for conceptual design: Most

of the parameters needed for numerical simulation simply do not exist at this stage of

design, and qualitative models capture the kinds of causal explanations that designers pro-

duce when talking about their designs. Second, the interface must be sufficiently natural to

communicate complex behaviors without distracting the student too much. Third, we must

develop coaching strategies that help students learn to explain designs in terms that practic-

ing engineers would use. Finally, the assigned projects change every quarter, and a wide

variety of design problems arise. We have started to tackle the last problem, of ensuring

broad coverage, by analyzing a corpus of student designs from previous years. Out of 39

projects, 19 did not involve mechanics or motion of solid objects (e.g., electrical circuit

problems, fluid flow problems), and hence CogSketch could not handle them. Of the remain-

ing 20, four required 3D reasoning beyond what CogSketch can currently do, four required

reasoning about gears, but the final 12 designs could be handled by CogSketch in its current

form. Currently we are extending CogSketch to handle all of the motion-oriented designs,

and doing pull-out studies with Northwestern students to refine the interface and coaching

strategies.

6. Other related work

We are inspired in part by Saund and Mahoney’s perceptual organization approach to

sketching (Saund, Mahoney, Fleet, Larner, & Lank, 2002), which shows how human-

like understanding of ink can lead to more natural editing interactions. We differ from

them in our addition of conceptual understanding to the software, and in our collabora-

tion with psychologists to calibrate our visual processing with human data as much as

possible. The SketchIt system of Stahovich, Davis, and Shrobe (2000) shares our con-

cern with carrying out qualitative mechanics analyses of sketched devices, but it

requires users to hand-segment surfaces. That may be reasonable for a professional

design tool, but for an educational setting we must do this automatically. The Electronic

Cocktail Napkin (Gross & Do, 1996) was an earlier sketch understanding system meant

to facilitate design. Like our system, it was able to decompose glyphs into their compo-

nent edges. However, it was focused more on learning to recognize the objects repre-

sented by glyphs and less on determining how different glyphs relate to each other.

Adler and Davis (2004) describes their ASSIST system, which allows users to sketch a

physical system while verbally describing it. A speech recognition system parsed the

description and used the information to refine the sketch (e.g., positioning objects such

that they are equally spaced in a row). This type of system requires the designer to

specify the meaning of the words that are of interest in sketching, thus limiting the
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system’s breadth. In contrast, our system ties conceptual labels to a large, preexisting

knowledge base.

7. Discussion and future work

CogSketch is an ambitious project, and we are far from achieving our vision. Neverthe-

less, we are encouraged by our results so far. As Section 4 indicates, we have already suc-

cessfully simulated a number of psychological findings, which lays some of the groundwork

for our education experiments. The first version of CogSketch is already publicly available.6

We are eager for feedback that helps us make CogSketch more usable by the research and

education communities. To support AI researchers, for example, CogSketch has an interface

that gives other programs access to all of its visual processing and reasoning capabilities.

Included in the distribution are sample sketch worksheets, the sketch worksheet authoring

environment, and a sketch with all of Evans’ geometric analogy problems and the ability

to run our model on them, to support experimentation. Community feedback is helping

guide us in CogSketch’s future development, so we can realize our vision and help make

sketch-based intelligent systems commonplace in education.

Notes

1. For this paper, we take visual computations to be processing that occurs without

regard for the relationship between the sketch and the external environment, and

spatial computations to be processing that takes that relationship into account. When

someone is looking at a U.S. map as a visual display, California is to the left of

Illinois, but spatially it is to the west.

2. SME stands for ‘‘Structure-Mapping Engine,’’ MAC ⁄ FAC stands for ‘‘Many are

called, few are chosen,’’ and SEQL stands for ‘‘Sequential Learning.’’

3. http://www.opencyc.org

4. RCC-8 stands for ‘‘Region Connection Calculus.’’ Different calculi have different

numbers of mutually exclusive and collectively exhaustive relationships; this version

has eight.

5. SME can compute candidate inferences in both directions, that is, from base to target

and from target to base.

6. The phrase ‘‘CogSketch’’ to any reasonable search engine will yield the current URL.
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