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ABSTRACT 

Statistical Relational Learning through  

Structural Analogy and Probabilistic Generalization 
 

Daniel T. Halstead 

 
 

My primary research motivation is the development of a truly 

generic Machine Learning engine.  Towards this, I am exploring 

the interplay between feature-based representations of data, for 

which there are powerful statistical machine learning algorithms, 

and structured representations, which are useful for reasoning and 

are capable of representing a broader spectrum of information.  

This places my work in the emergent field of Statistical Relational 

Learning.  I combine the two approaches to representation by using 

analogy to translate back and forth from a relational space to a 

reduced feature space.  Analogy allows us to narrow the search 

space by singling out structural likenesses in the data (which 

become the features) rather than relations, and also gives us a 

similarity metric for doing unsupervised learning.  In the process, 

we gain several insights about the nature of analogy, and the 

relationship between similarity and probability. 
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1 Introduction 

 

Statistical relational learning has become an important problem in machine learning.  It promises 

the ability to apply sound learning principles to the wide breadth of information that can be 

represented by systems of relations.  We would like to be able to take preconstructed cases of 

arbitrarily structured facts and learn models for prediction from them.  Yet learning from 

relational data has proven to be extremely difficult.  Since relations operate over multiple objects 

at a time, enumerating all of the possible combinations of all of the possible objects quickly leads 

to exploding costs in real-world scenarios. 

 

Hence, until recently, the statistical learning community has not strayed far from feature-based 

representations of data.  A feature-based representation allows many cases to be represented in a 

uniform fashion.  This makes it trivial to compare the different facets of a case set, something 

that is essential for learning.  It also allows more accurate measures of uncertainty, such as 

probability, confidence, and significance.  It also cannot be overlooked that there is a very large 

“toolbox” of algorithms for learning from feature-based representations. 

 

However, structured representations are more useful when dealing with the wide range of 

information that people learn and manipulate.  Plans, explanations, and arguments are among the 

kinds of important information that require explicit representation of relationships.  Since such 

logical relationships are capable of representing these abstract thoughts, they are well-suited for 

reasoning, and for incorporating knowledge from other domains.  Indeed, there is evidence 
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suggesting that the use of language and analogy to accumulate relational knowledge is why 

humans are so smart compared to other animals (Gentner, 2003). 

 

The fundamental trade-off then, is uniformity for flexibility.  This means that either we use some 

other, unknown representation of data which incorporates the best of both forms (the flexibility 

to succinctly represent all forms of knowledge with a guarantee of uniformity), or we use both 

forms simultaneously and have a means of mapping from one to the other.  My proposal 

concerns the second option: designing a mapping. 

 

The question then becomes, how can some uniform framework for learning be derived from a set 

of cases of arbitrary facts?  Facts might link an object to a value, or link five objects together in 

some way; the order of the arguments may or may not matter; they may contain logical 

connectives and quantifiers such as or or even thereExistsAtLeast; they may even refer to an 

object which is completely hypothetical.  Earlier techniques such as propositionalization are just 

not flexible enough to deal with such an array of possibilities. 

 

Furthermore, how can a probability distribution be constructed at all?  Probability requires some 

sense of uniformity: saying that “40% of dogs have fleas” requires recognizing that all dogs are 

equivalent, at least for the purpose of the comparison.  However, few items or scenarios in the 

real world can be said to be equivalent in the perfect, mathematical sense.  Rather, humans seem 

to make deductions from sets of things that are deemed to be "similar enough" for the context of 

the task at hand.  Once these objects are grouped in some way, the individual differences can 
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then be expressed as probabilities.  In contrast, traditional techniques in statistical relational 

learning examine probability distributions over relations.  This requires enumerating every 

possible combination of objects for every relation, which quickly explodes in cost (De Raedt, 

1998).  Even more insidiously, multiple instances of the same relation over the same types of 

objects may play very different roles in their respective contexts.  This makes probability 

distributions over relations expensive and inaccurate portrayals of what is truly going on. 

 

We propose analogy as the solution for both of these problems. Analogy puts no constraints on 

the representation and it provides a means for assessing similarity.  Moreover, analogy does not 

just posit that two cases are similar; it claims that two cases are similar because individual facts 

and objects in each case are analogically equivalent
1
.  That is, there are some elements of a case 

which, although seemingly different, actually indicate the exact same circumstances underlying 

both examples, based on shared structure.  This allows us to generate probability distributions 

over analogous situations / structures in the data rather than individual relations. 

 

For example, consider a simple analogy between a hockey and a baseball player.  On the surface, 

there is no commonality between them.  Yet students can regularly answer standardized 

questions such as: hockey : stick :: baseball : ______.  The answer is found by digging beneath 

the surface, looking for a common relationship which unites them.  A hockey player swings a 

stick (at a puck), while a baseball player swings a bat (at a ball).  The relationship swings is 

                                                
1 A more standard term for this from the literature is a correspondence.  However, I use analogical equivalence here 

because I will also need to refer to when items are analogically different.  I also prefer to emphasize the notion of 

equivalence, since it is so closely tied to why we can compute probabilities. 
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identical in both cases (as well as its many corollaries: who is swinging what at what else and for 

what reason).  Since their respective roles in the cases are identical, we can call the bat and the 

stick analogically equivalent. 

 

This process of detecting analogical equivalence provides just the sort of equivalence notion we 

were looking for in order to achieve a uniform representation that is compact and useful, and to 

generate probabilities.  By making a series of analogies across a sequence of cases, we can find 

the concepts which are common to most of them, even describing them probabilistically because 

of this found equivalence.  Continuing with the example above, a person who had observed 

many different sports might begin to make some generalizations about sporting, such as “In most 

sports, points are scored by directing an object to some goal.  About half the time, this is done by 

swinging another object at it.  Opponents will usually try to prevent this.”  Of course, words like 

“most”, “half the time”, and “usually” are just loose descriptors, which can be characterized 

more precisely by the probability of that particular concept occurring.   

 

In exactly the same way, our system uses a sequence of analogical comparisons to learn 

probabilistic generalizations of a class of items.  In effect, we are deriving probability from 

similarity.  Similarity allows us to collect a certain class of examples, which we can then 

describe probabilistically.  This runs counter to much of the existing literature (e.g. Wellman, 

1994; Blok et al, 2003), in which similarity judgments are rendered based on probabilistic or 

even fuzzy calculations based on whatever dimensions they share.  We claim that appropriate 
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dimensions could not even be found without first making some analogy between the cases to 

determine which concepts they share and which they do not. 

 

Of course, if we want to do learning, we must also be able to do prediction.  A learned model 

that cannot make predictions for novel data is of no use to anyone and cannot be said to have 

learned anything new.  Additionally, prediction provides a criterion for the success of our 

approach.  For evaluation, we examine four different techniques for doing prediction.  Two of 

these serve as controls – one based on exemplar retrieval, and the other on generalization.  The 

other two demonstrate our own contributions – one exploring probabilistic generalization, and 

the other exploring statistical models built from these generalizations.  Crucially, we demonstrate 

that once the generalization has been constructed, any of the traditional feature-based statistical 

learning algorithms from the machine learning community can be applied, despite the relational 

structure of the original data. 

 

The whole approach has been tested on five different domains (not counting others who have 

used probabilistic generalization with success in their own applications).  Of these, the most 

exhaustive experimentation, in which all four techniques were examined, was done on the 

Whodunit Problem.  The Whodunit Problem is to construct plausible hypotheses about the 

perpetrator of a new event (e.g., a terrorist attack), using a library of events where the perpetrator 

is known.  Other domains such as unsupervised classification of animals (Kemp, et al. 2006) and 

modeling student success rates (Pazzani and Brunk 1991) serve to compare our approach to other 
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algorithms.  We demonstrate how our approach can handle more highly structured data than 

other algorithms, thereby often requiring an order of magnitude fewer training examples. 

 

In summary, this thesis demonstrates that analogy is an extremely powerful tool for generalizing, 

learning, and even making probabilistic predictions about the kind of highly structured 

information that the real world entails.  In support of this, I make the following five theoretical 

claims: 

 

§ 1.  We can achieve the benefits of both feature-based and relational representations of data by 

constructing a mapping for transforming logical expressions into features and back again. 

§ 2.  It is more sensible in real-world scenarios to derive probability based on similarity rather 

than the other way around. 

§ 3.  With our techniques, we are able to apply any feature-based learning algorithm, despite the 

relational nature of the original data, without loss of information. 

§ 4.  Our classification algorithms are comparable in performance to existing algorithms, but 

they often
2
 are more efficient and require fewer examples. 

§ 5.  Our approach is the only one we know of that can handle arbitrary relations and that 

requires no relational schema.  This is in direct contrast to currently popular approaches such as 

Infinite Relational Models (Kemp et al, 2006), Probabilistic Relational Models (Getoor et al, 

2001), and Markov Logic Networks (Richardson and Domingos, 2006). 

 

                                                
2 The conditions for this are qualified in section 4.2.2. 
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In the next chapter, I present some important background information to help readers understand 

the rest of the thesis.  Then in Chapter 3, I describe my approach from beginning to end.  After a 

high-level overview of the architecture as a whole, the first section of this chapter describes the 

algorithm for probabilistic generalization.  This is followed by a section on statistical modeling.  

Both of these sections begin with a high-level overview of the technique before delving into 

more detail.  In Chapter 4, I present the experiments we have performed, and discuss their 

results.  Chapter 5 looks at related work and where this thesis fits into the existing literature.  

Finally, Chapter 6 summarizes the findings and the questions raised by this work.   In this 

chapter, I provide support for the above claims, describe any unexpected questions and findings 

that were raised, discuss plans for future work, and summarize the research as a whole. 

 

2 Background 

 

We begin by first reviewing those background concepts which are relevant to a full 

understanding of our own algorithms. 

 

2.1 Knowledge Base and Input Representations 

 

A major goal of this research is to handle complex relational data.  All of the input data is 

therefore represented by predicate calculus statements.  These statements are expressed in LISP 

syntax, with the predicate first, followed by the arguments.  The statements are organized 

topically into cases, and it is these cases which are fed into our learning algorithms.  We do not 
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require any particular method for doing this case construction, as the choice of which facts to 

include in which cases is outside the scope of this research.   

 

The statements can be of arbitrarily high order, with any number of arguments (which may or 

may not be symmetric or commutative), connectives, quantifiers, and hypothetical or functional 

entities.  Furthermore, no relational schema is needed to prescribe the possible arguments of each 

predicate (§5).  For example, the statement below comes directly from one of our experiments, 

and demonstrates the degree of relational complexity that can be handled by our algorithms: 

 

(thereExistAtLeast 2 ?X (and (isa ?X (CitizenFn Israel)) 

                            (injuredIn theAttack ?X))) 

 

Some of our experiments were done without the presence of any knowledge base to draw from.  

These experiments instead used sets of facts provided by others in a test-bed.  This was 

especially done when comparing our performance to other algorithms, in which case it was 

desirable to use the exact same inputs that were given to those other algorithms.  However, the 

fact above comes from an experiment which drew its inputs from a massive, pre-existing 

knowledge base.  The ResearchCyc knowledge base, developed by Cycorp contains over 36,000 

concepts, over 8,000 relationships and over 5,000 functions, all constrained by 1.2 million facts.  

The use of this knowledge base highlights certain problems that would appear in a very long 

running, standalone generic learner.   
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For instance, since this particular knowledge base is so massive, it is useful to partition the facts 

within it by topic.  This makes querying the knowledge base on a known topic much more 

efficient.  It also provides scope for items like names and axioms, reducing contradictions.  In the 

Cyc KB, these partitions are referred to as microtheories.   

 

There are some problems with using microtheories though.  For instance, there is no obvious 

way to generate them automatically.  Furthermore, there is no method for determining where to 

place the partitions so that they would be the most useful, or even what the usefulness of a 

particular partition scheme would be.  In the chapter on Future Work, we describe how 

generalization could provide a reasonable and automatic alternative for this partitioning of 

knowledge. 

 

A second problem with using such a massive knowledge base is the aforementioned issue of case 

construction: how to determine which facts are relevant enough to be included in a given case 

description.  Although we do not require any one method for doing this, we do use the method 

proposed by Mostek et al. (2000) in experiments where the cases were not preconstructed for us.  

I make no claims about the superiority of this approach over any other.  In summary, we first 

restrict each case to be about a particular topic, such as one terrorist incident.  We then include 

any fact from the knowledge base which mentions that topic.  Finally, we also include attribute 

information (facts about collection membership) for any other items which those facts 

mentioned.  This last step provides additional structure for the analogy algorithm to use when 

comparing cases.   
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2.2 Statistical Relational Learning 

 

Statistical Relational Learning is a new subarea of Artificial Intelligence.  It studies the question 

of how to perform machine learning over systems of relations such as those described in the 

previous section.  This section briefly describes the most common techniques for accomplishing 

this and their various trade-offs.  Typical approaches to statistical relational learning can be 

divided into two basic camps: those that take each relation separately, and those that try to model 

the whole system at once. 

 

The first camp focuses on trying to somehow treat each relation as a separate feature that can be 

independently optimized.  This is commonly done either by hill-climbing over the relations, such 

as Inductive Logic Programming (ILP) does, or by transforming the space to a flattened feature 

space, as propositionalization does.  Both approaches have their drawbacks.  ILP constrains the 

learner to a single model of learning: supervised rule-learning.  It also typically relies on 

background knowledge to guide the hill-climber into less of a random walk.  On the other hand, 

in (DeRaedt, 1998) it was shown that spatial transformation approaches suffer from having to 

make an expensive trade-off between either ignoring much of the important information 

contained in the shape of the original data, or requiring an unreasonably large search space to 

represent all of the structural possibilities. 

 

The other and more recent camp tries instead to build a large, statistical, generative model of the 

entire domain at once.  Examples of this approach include Kemp (2006), who tries to build a 
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large Bayesian generative mixture model (GMM) of the domain, Domingos (Richardson and 

Domingos, 2005), who tries to build an even larger Markov Logic Network (MLN), and Getoor 

(et al., 2001), who builds a Probabilistic Relational Model (PRM), which is essentially a more 

aggregative version of a Bayesian Network, specially tailored for relational learning problems.  

These approaches share many of the same limitations.  For instance, they all are limited to doing 

supervised learning, and to using one particular statistical model.  Some of them (MLNs in 

particular) also suffer under the same massive spatial requirements as propositionalization, by 

needing to account for every possible combination of formula groundings.   

 

Furthermore, to our knowledge, none of the algorithms in either camp can be said to truly be able 

to handle all of the complexities that occur when dealing with relational data.  For instance, none 

of them have methods designed for handling skolems (hypothetical entities) or non-atomic terms 

(functional entities).  None of them can handle relations with an arbitrary number of arguments, 

such as characters-in-word, or in which the arguments are known to be symmetric, such as 

sibling.  Domingos is one of the only ones who has attempted to deal with logical connectives 

and quantifiers, although they make the spatial requirements even larger.  Getoor is the only one 

(including ourselves) who has attempted to deal explicitly with aggregate information, such as 

the mean grade in a class or the youngest age of a victim.  And all of them require a relational 

schema to be laid out ahead of time, which means that new relations can never be introduced at 

run-time. 

 



17 

 

 

In contrast, our approach tries to attain the best of both camps.  We retain much of the shape of 

the original data by using analogy to align entities and relations in a structurally optimal way 

(our definition of optimality is described in the next section), creating a single, structurally 

consistent generalization of the domain.  This generalization may be used as a reductive model.  

However, it can also be used as a framework to efficiently propositionalize the domain in a way 

that retains the structural information contained in the generalization.  This way, one can still 

apply any of the powerful statistical machine learning algorithms to the data without losing the 

most important structural information and without succumbing to an explosion in the size of the 

search space.  This trade-off between structural information and search space will be shown in 

detail in the next chapter, when our procedure is described in full. 

 

2.3 Analogy  

 

Analogy forms the cornerstone of this work.  While this thesis recommends several key 

extensions to the analogy process itself (e.g. sections 3.3.1 and 8.2.1), the basic SME algorithm 

(Falkenhainer et al., 1989) that we use to do analogy has existed for many years.  In that time, it 

has been soundly tested for many uses in many domains and by many research groups.  This 

section summarizes the essentials of structure-mapping needed to understand the rest of the 

thesis. 
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Analogy serves us in many ways.  As described above, it finds correspondences which are 

indicative of an underlying structural likeness.  These likenesses can be treated as random 

variables and therefore used to generate joint probabilities and learned from. 

 

This means that analogy makes our relational learner more efficient than many others (§4).  

Relations which can operate over many different types of objects often lead to quickly exploding 

costs, if they can be handled at all.  Other relational learning algorithms, such as those described 

above, therefore require that all of the relations and their possible argument-types be laid out 

ahead of time in a relational schema, making online learning impossible.  Even two groundings 

of the same relation on the same types of objects may play very different roles in their respective 

contexts, making probability distributions over these relations inaccurate portrayals of what is 

truly going on.  Our approach bypasses many of the problems of exhaustive search, since 

analogy succinctly captures the notion of the role that each object plays from the context of the 

facts around it. 

 

Finally, analogy also provides an excellent estimate of similarity, since the more role 

correspondences there are between two sets of facts, the more similar those sets will be.  Thus it 

can be used as a distance metric when doing generalization, particularly in unsupervised 

learning. 

 

To do analogical comparisons between cases, we rely on the Structure-Mapping Engine, or SME 

(Falkenheiner et al., 1989). SME is a computational model of similarity and analogy based on 
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Gentner‟s (1983) structure-mapping theory of analogy in humans.  SME takes as input two 

cases: a base and a target.  It finds all possible local correspondences between the entities, 

attributes, and relations in the two cases.  Each correspondence hypothesizes some analogical 

equivalence.  It then uses a greedy, polynomial-time algorithm (Forbus & Oblinger 1990) to 

combine as many consistent correspondences as possible into approximately optimal mappings 

between the cases. 

 

For a real world example, consider the two cases about terrorist events, shown in Table 2-1.  In 

the first case, the terrorist drives a van containing a bomb into the situation.  In the second case, 

the bomb is planted in the victim‟s car.  Both cases contain the exact same types of entities and 

relations. For instance, they both have a relationship describing a vehicle which contains a bomb, 

and both vehicles have a driver.  However, the roles of the drivers are very different.  A 

structural analogy between the cases captures this difference. 

 

Table 2-1.  A simplified but real-world example of an analogy between two terrorist events.  (a) shows a 

subset of the facts in each case.  In (b), correspondences have been proposed.  Finally, (c) shows the 

maximally consistent set of top-level correspondences 

a) Base Case Target Case 

 (Location bomb1 van) (Location bomb2 car) 

 (Driver van agent1) (Driver car agent3) 

 (Terrorist agent1) (Target agent3) 

 (Target agent2) (Terrorist agent4) 

 (Desires agent1 (Hurt agent2)) (Desires agent4 (Hurt agent3)) 
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c) Analogical Mapping 

 (Location bomb1 van)  (Location bomb2 car) 

 (Terrorist agent1) (Terrorist agent4) 

 (Target agent2) (Target agent3) 

 (Desires agent1 (Hurt agent2)) (Desires agent4 (Hurt agent3)) 

 

 

In the first stage (b), SME gathers all the potential correspondences by looking at pairs of 

statements which share the same predicate.  In the last stage (c), the largest possible number of 

consistent correspondences is brought together into a mapping.  Since items must be matched 

1:1, a correspondence C between relations is consistent with a set of correspondences S as long 

as none of the correspondences between the arguments of C are contradicted by S.  For example,   

the correspondence “(Driver van agent1) : (Driver car agent3)” cannot be added to the 

mapping in (c) because it matches agent1 to agent3. This would contradict the correspondences 

in the mapping which match agent1 to agent4, and agent2 to agent3.  We therefore say that the 

two facts are analogically different.   

 

b) Entity 

correspondences 

bomb1:bomb2,car:van,agent1:agent3,agent1:agent4, 

  agent2:agent3,agent2:agent4 

 Attribute 

correspondences 

(Terrorist agent1) : (Terrorist agent4), 

(Target agent2) : (Target agent3), 

(Hurt agent2) : (Hurt agent3) 

 
Relational 

correspondences 

(Location bomb1 van) : (Location bomb2 car), 

(Driver van agent1) : (Driver car agent3), 

(Desires agent1 (Hurt agent2))  

   : (Desires agent4 (Hurt agent3)) 
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In this way, the underlying concepts are distinguished by separating those facts in which the 

entities play a unique role, given the context of the other facts they appear in. 

 

In addition to creating an analogy between the cases, SME computes the similarity between them 

based on the systematicity of the analogy.  That is, each correspondence in the mapping 

contributes to the similarity score in proportion to the number of higher-level correspondences 

which invoke it: 

 

Let x be any correspondence in the mapping, either of objects or relations, and 

call s(x) the contribution to the overall similarity score that x makes.  The base 

and target of x may appear as an argument in other relations in the mapping, 

which we will call Parents(x) = {Rx
1
,…,Rx

n
}.  Then the equation for computing s 

is: 

s(x) = a + b Ʃi ( s(Rx
i
) ) 

 

where a and b are constants.  The total similarity score for the analogy then is 

simply the sum of s(x) over all correspondences x. 

 

Finally, SME also provides a means for creating candidate inferences.  That is, an 

expression which appears in the base but not in the target, and which is connected to the 

correspondences of the mapping, can be hypothesized to be true for the target as well by 

projecting its form onto the target.  In a sense, it is inferred via analogy that the 
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equivalent of the missing expression is also true for the target.  When using analogy to 

construct a generalization, we do not use candidate inferences at all, since missing 

expressions are abstracted into the generalization with everything else only with a lower 

probability (described in the next chapter).  However, when doing prediction, we are 

simply doing probabilistic inference via analogy.  Thus, candidate inferences can be 

derived from comparing a case to a generalization rather than a single base case, thereby 

incorporating accurate estimates of the probability of the inference. 

 

3 Generalization 

 

This chapter presents the first and most essential step in our overall procedure for doing learning 

and prediction: generalization.  We describe the reasons we think generalization is needed and 

then describe the generalization algorithm itself.  Finally, we will analyze the running time, 

threshold values, and heuristic calculations.  We start with a brief overview of where 

generalization fits in the bigger picture. 

 

As described in Section 2.1, we assume inputs to be descriptions of new situations or concepts, 

expressed by relationships between entities. These cases are fed into SEQL (Kuehne et al, 2000), 

a generalization algorithm which uses analogy to find relevant generalizations to the inputs, and 

builds one if none exist.  In this way, it grows generalizations by progressively incorporating 

new cases into the most similar of them. 
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Figure 3-1.  A simplified diagram of our approach.   SEQL uses analogy to build generalizations of the 

evidence.  A learner may learn a model of each generalization, and this can be used to do prediction for new 

cases. 

 

 

Each generalization consists of three parts: a probabilistic summary of the shared relationships, 

expressed as facts; a joint probability table exploring the possible combinations of these 

relationships, expressed as features; and a mapping for converting from one to the other.  This 

ability to convert freely from one representation to the other using the mapping is one of the 

major benefits of this approach (§1).   
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Optionally, a statistical model of the joint probabilities may then be learned.  The model may be 

as simple as a list of rules, or a Bayesian network.  It is built from a combination of background 

knowledge and statistical learning.   

 

Finally, the generalization and/or model can then be used to do prediction for a new case, either 

by simply comparing the new case with the generalization, or by using the mapping to feed it 

into the statistical model. 

 

3.1 Why Do Generalization? 

 

Our approach to relational learning begins by building generalizations of the inputs.  

Generalization is a process of moving from the specific descriptions of individual cases to an 

abstract description which aptly describes a set of related cases.  Note that this entails three 

essential steps: determining which cases are actually related, determining the elements that those 

cases have in common, and finally abstracting those elements to build a generalized description 

which can be applied to all of the cases. 

 

These three aspects to generalization give rise to the three most important reasons we have for 

doing it.  First, in determining which cases are more related than others, generalization provides 

us with a means of doing unsupervised learning.  This means that, unlike many other relational 

learners (e.g. MLNs, ILP), ours will be able to learn whether it is given labeled examples or not.  
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Secondly, in determining which elements the cases have in common (i.e. which entit ies and 

relations are analogous to which), the generalization process must decide on a single overarching 

set of correspondences to use.  Deciding on a single mapping cuts out a lot of the search space, 

making it more efficient than many similar relational learners (e.g. FOIL and LINUS), and also 

leads to some interestingly human-like effects, such as a bias to the order of the inputs.  Finally, 

the fact that we are able to abstract a common description from the bottom up means that we 

require no prior relational schema. 

 

First, it is important to look at the issue of which cases should be generalized together.  

Philosophically, there are several  possible answers to this.  The first answer, corresponding to a 

supervised learning scenario, is that a generalization should consist of all known instances of a 

given type.  That is, some agent – whether a human advisor or another part of the system – 

assigns a label to a set of examples, and expects the learner to build appropriate generalizations.  

Of course, this is an excellent way of learning to distinguish between examples of one type from 

another.  For example, if the system was instructed to build one generalization about dogs and 

another about cats, then a new animal could be compared to each generalization to see which 

was more similar.  Recall from Section 2.2 that SME allows us to compute an analogical 

similarity score between any two cases.  In the next section, we will show that it can also 

compute the similarity between a case and a generalization of cases.  However, this approach 

would not help in distinguishing along a second dimension, such as gender (Figure 3-2). 
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 Cat 
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Dog 

Male 

 

 Cat 

 Female 

 

Dog 

Female 

Figure 3-2.  It is often not clear which cases a generalization should cover and which it should not. 

 

 

 

 

 

 

 

 

 

 

 

There is a second possible answer to the question of which cases to generalize over.  Since SME 

provides a similarity score, this score could be used as a distance metric in an unsupervised 

learning scenario.  That is, the learner could be left to its own devices to decide whether or not 

two cases belong in the same generalization, using the SME similarity metric.  In fact, this is the 

default behavior of SEQL (Kuehne et al, 2000).  It works by successively merging the cases 

which it deems to be similar enough into a generalization together.  This is done by looking at 

each case in sequence, and merging it with either the first existing generalization or the first 

other case (making a new generalization) with which its similarity exceeds some threshold.  This 

too has its problems.  It is not certain that the generalizations the learner chooses will distinguish 

between male and female either, nor even between cat and dog.  However, it is an excellent 

method for the discovery of new types. 

 

A third idea is to build one larger generalization of all of the cases.  Then, the generalization 

could serve as a unifying framework for statistically modeling all of the different trends that 

happen across those cases.  These trends could then be used to predict any particular dimension 

of that generalization.  Note that this could be done whether the learning was supervised or not.  
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This idea is explored further in the next chapter.  Suffice it to say here that using generalization 

to do relational learning keeps all of these options available to us. 

 

A second reason to use generalization is that in building a generalization, the computer is 

deciding on a single best  way of matching up the entities and relations of one case with those of 

the next.  This decision can dramatically speed up learning by seriously constraining the space of 

possible hypotheses to explore.   For example, in their work on geometric analogy (Tomai et al, 

2005), Tomai and Lovett attempted to use SME to determine the right answer on a series of 

classic Miller Geometric Analogies problems.  These tests involve figuring out the analogical 

difference between diagrams in a series of SAT-like “A is to B as C is to what?” questions.  In 

one such question, two of the diagrams include a basic square:   

 

Figure 3-3.  This simple square causes undue consternation for most relational learners. 

 

It was shown how this square mapped equally well to every 90 degree rotation of itself.  If the 

structure of argument order were ignored, it could match to still other transformations.  Just to 

learn about such squares, a propositionalization algorithm would have to explore 12 different 

possible propositions, e.g. (edge W X), (edge W Y), (edge W Z), (edge X W), etc.  Any corner in 

the first square could correspond with any corner from the second square, creating 12 different 

(edge a b) 

 

 

(edge d a)                       (edge b c) 

 

 

(edge c d) 
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possible propositions.  Of course, this explodes very quickly as the number of entities of a 

particular type increases.  Newer implementations of propositionalization such as LINUS 

(Lavrac, Dzeraski, and Grobelnik, 1991) make it possible to ameliorate some of this overhead, 

but require customized background knowledge to do so.  Other relational learners such as ILP 

and Domingos‟ MLNs suffer from the same problem. 

 

Analogy, however, solves this problem.  As shown in Section 2.2, analogy provides a means of 

choosing the overall best set of correspondences, called a mapping, to use.  The rest of the 

possible correspondences are ignored and so do not consume valuable resources during search.  

In the truck-bomb example given in that section, there was one mapping that was clearly better 

than the other.  As a result, a correspondence between the two drivers was thrown out in favor of 

a mapping which matched the two victims and the two agents.  This mapping had a higher 

degree of shared relational structure, and therefore a higher similarity score.   In the example 

above, where there is no such obvious mapping preference because all of the different rotations 

of the square are basically equivalent, SME returns an equal score for each mapping and so one 

of the mappings is chosen arbitrarily.  This reduces the number of possible propositions from 16 

to the much more sensible 4: one generalized proposition per edge.  A more rigorous analysis of 

this speedup will be given in Section 3.3.   

 

This approach is not without its problems.  Undoubtedly, it is possible for the algorithm to 

simply choose the wrong mapping.  In practice though, this is more often than not the result of 

poor representations in the input cases.  A more interesting problem is that it introduces an order-
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bias to the algorithm.  The generalization algorithm functions by introducing one new case at a 

time, in sequence, to be compared to the whole.  Each time a new case is deemed similar enough 

to be incorporated into the generalization, a best mapping for it is selected.  If the input cases are 

given in an unlucky order, the generalization algorithm could be led astray into choosing a poor 

system of mappings for the generalization.  For example, in the sequence of cases from Figure 3-

4 below, a wolf is chasing a dog which is chasing a cat which is chasing a mouse.  The wolf and 

cat are both predators, while the dog and mouse are both prey.  This means that the roles of 

predator and prey are inverted in the second case.  In the third case, the genders are inverted. 

 

Figure 3-4.  SEQL’s bias for a single mapping can induce an order bias. 

 

 

 

 

   Case 1      Case 2         Case 3 

 

In this example, if SEQL were given all 3 cases in order, it would work out “correctly”.  The 

animals doing the chasing would correspond in every match and the animals being chased would 

correspond in every match.  However, if this sequence were run in reverse, it would go down the 

wrong path.  In the first match, between cases 2 and 3, it finds it can line up four statements if it 

matches by the attributes predator/prey and male/female, and only two statements if it matches 

by chaser/chasee.  Determining the former to lead to a higher similarity score, it chooses this 

mapping instead, and having already done so once, follows suit for the rest of the generalization.  

(chase Wolf Dog) 

(catch Wolf Dog) 

(Predator Wolf) 

(Prey Dog) 

(Male Wolf) 

(Female Dog) 

(chase Dog Cat) 

(catch Dog Cat) 

(Prey Dog) 

(Predator Cat) 

(Male Dog) 

(Female Cat) 

(chase Cat Mouse) 

(catch Cat Mouse) 

(Predator Cat) 

(Prey Mouse) 

(Female Cat) 

(Male Mouse) 
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The result becomes a generalization in which the males always correspond and the females 

always correspond but everything else is arbitrary.  However, it is interesting that even humans 

are biased by such order effects when doing category learning (Elio & Anderson, 1984; 

Wattenmaker, 1993; Medin & Bettger, 1994).  Furthermore, in previous studies it has been 

shown that the order-based effects of SEQL do actually match those of humans (Kuehne et al, 

2000; Skorstad, Gentner, & Medin, 1988).  We feel that a trade-off which yields an increase in 

learning efficiency for an increase in certain human-like biases is worth doing. 

 

Finally, a third reason for using generalization in relational learning is that it works entirely 

bottom up.  In contrast to other relational learning approaches, it does not need a relational 

schema to be laid out in advance in order to determine how to line everything up.  Rather, it 

determines this during run-time by simply observing the structure of one case at a time.  To our 

knowledge, it is the only structural relational learner that is capable of this.  This comparison of 

structure rather than predicates also allows it to accept any kind of relational structure.  This is in 

contrast to algorithms like LINUS and MLNs, which are severely restricted in the representations 

they can handle.  For example, SEQL has no problem dealing with predicates of more than two 

arguments, or even a variable number of arguments, and can handle non-atomic terms and nested 

structure.  One other advantage of this bottom-up approach is that it will never devote resources 

to learning about a combination of entities and relations that never occurs in the data. 

 

Generalization allows us to do learning from structured data by putting the onus of pattern-

finding on comparisons between the shapes of the structures themselves rather than combinations 
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of entity values.  The process allows learning to be done whether in a supervised environment or 

not, from any structure of data, with no need of a relational schema.  It assigns a single mapping 

to everything, which cuts down on both the size of the hypothesis space and the time needed to 

test a hypothesis (the latter will be shown in the next chapter).  In short, structural generalization 

allows us to be both more efficient and more flexible than alternative approaches (§3). 

 

3.2 How to do Generalization 

 

We build generalizations of the input cases while maintaining both their relational structure and 

their probabilistic differences.  In order to understand how this is done, it is useful to first see an 

example of what a generalization actually looks like. 

 

3.2.1 A Generalization of Two Cases 

 

Fundamentally, a generalization is simply a more abstract case description.  In our method, any 

formula whose form appears in any of the member cases of the generalization will appear in the 

generalization
3
.  Furthermore, every analogically different grounding of the formula will appear 

uniquely in the generalization.  Each unique occurrence of each formula is an expression 

grounded with new, generic entities which share the same constraints as their analogical 

counterparts in the original data. 

                                                
3 To save memory, we currently cull the least frequently occurring formulae.  This should eventually be changed to 

something which at least culls only the least significant formulae.  However, this is difficult to calculate on the fly. 
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Figure 3-5.  An example of a generalization. 

Case 1 

(isa agent1 SecretAgent) 

(isa London City) 

(isa gun Weapon) 

(movedFrom agent1 London) 

(possesses agent1 gun) 

 

Generalization 

(isa :genent0 SecretAgent) 

(isa :genent1 City) 

(isa gun Weapon) 

(isa (DollarFn 500) MonetaryValue) 

(movedFrom :genent0 :genent1) 

(movedTo :genent0 :genent1) 

(possesses :genent0 gun) 

(possesses :genent0 (DollarFn 500)) 

 

For example, in the generalization above, the two statements that agent1 and agent2 are secret 

agents gets generalized into a more abstract statement because they are deemed to be 

analogically equivalent.  The original entities are replaced by the more abstract placeholder 

:genent0.  Such placeholders are referred to as generalized entities.  This replacement is done so 

that :genent0 shares the same constraints as before: there are still facts describing that :genent0 

moved and that :genent0 possesses something. 

 

However, the facts about what the agent possesses were deemed to be analogically different.  

Despite appearing to be similar, the system made a distinction between owning $500 and owning 

Case 2 

(isa agent2 SecretAgent) 

(isa Paris City) 

(isa (DollarFn 500) MonetaryValue) 

(movedTo agent2 Paris) 

(possesses agent2 (DollarFn 500)) 
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a gun.  As a result, the facts were not abstracted together: they remain unique expressions in the 

generalization.   

 

It is crucial to understand that each generalized fact actually represents some set of grounded 

facts which were found to be analogically equivalent.  This means that each of the original 

groundings were actually just different instantiations of the same underlying relational structure, 

with each entity playing an identical role in the case.  The corollary of this is that each separate 

generalized fact in the generalization represents a fact which was structurally unique in some 

way, indicating some new role in the context of the case (§1). 

 

3.2.2 Formal Algorithm for Generalization 

 

We use the SEQL algorithm to produce generalizations incrementally from a stream of 

examples.  Given a new example, it uses SME to compare the new example to a pool of prior 

generalizations and examples.  If the new example is sufficiently close to one of the 

generalizations, it is assimilated into that generalization.  Otherwise, if it is sufficiently close to 

one of the prior exemplars, it is combined with it to form a new generalization.  By "sufficiently 

close", we mean that the structural evaluation score4 exceeds a pre-set threshold.  The process of 

assimilating an exemplar into a generalization (or of combining two exemplars into a new 

generalization) consists of taking the overlap between the two descriptions, as found via SME, as 

the new description.  Matching entities that are identical are kept in the generalization, non-

                                                
4 In order to account for differences in the sizes of the descriptions, the score is normalized.  This procedure is 

described below. 
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identical entities are replaced by new entities that are still constrained by all of the statements 

about them in the overlap.  Should no sufficiently close match be found, the exemplar is simply 

added to the pool of exemplars.  This process is shown in Figure 3-6. 

 

Figure 3-6.  A diagram of the SEQL algorithm, which we use to construct generalizations. 

 

 

More formally, given an initially empty set of generalizations G and set of exemplars X, a 

threshold ρ, and a function Score(x,y) which calculates the similarity (i.e. the normalized 

structural evaluation score) between two descriptions, SEQL operates as follows:  

1. Receive an exemplar x. 

2. Look for a generalization yЄG s.t. Score(x,y) > σ.  If one is found, proceed to step 5. 

3. Look for an exemplar  yЄX s.t. Score(x,y) > σ.  If one is found, proceed to step 5. 

4. Add x to X.  Repeat from step 1. 

5. Remove y and add Generalization(x,y) to G.  Repeat from step 1. 
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SEQL provides an interesting tradeoff between traditional symbolic generalization algorithms 

like EBL (Dejong & Mooney, 1986) and statistical generalization algorithms, such as 

connectionist systems (Seidenberg & Elman, 1999; Altmann & Dienes, 1999; Shastri & Chang, 

1999).  Like EBL, it operates with structured, relational descriptions.  Unlike EBL, it does not 

require a complete or correct domain theory, nor does it produce a generalization from only a 

single example.  Like most connectionist learning algorithms, it is conservative, only producing 

generalizations when there is significant overlap.  However, SEQL has been shown to be 

substantially faster than connectionist algorithms when compared head-to-head (Kuehne et al., 

2000).  Moreover, this was done using the same input representations as the connectionist 

models, and the SEQL-based simulation continued to work when given noisy versions of the 

data.   

 

3.3 Details and Analysis of the Generalization Process 

 

The previous section was a high-level view of how generalization is done.  In contrast, this 

section provides a low-level, formal analysis of the technique, including the incorporation and 

effect of probability and similarity, available parameters and their optimal values, and running 

time.  The first subsection on Probability and Similarity is especially important since it relates 

directly to the second claim of this thesis. 
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3.3.1 Probability and Similarity 

 

One contribution of this thesis is the extension of analogical generalization to incorporate 

probabilities.  The original SEQL algorithm made no use of probability at all.  We utilize it to 

make generalizations more accurate.  Previously, SEQL would simply throw away any 

information that did not occur in every member case of the generalization.  While this made it 

very efficient and tolerant to noise, it also meant that any generalizations of more than a few 

cases began to all look the same – it was throwing away useful, discriminating information along 

with the noise.  

 

Furthermore, by keeping records of the joint probabilities of all the evidence used to build a 

generalization, we can build a causal model of the generalization (§3), rather than the reductive 

prototype or exemplar model that is usually built when relying on symbolic representations.  

Such a causal model has allowed us to do things such as improved classification, probabilistic 

inference, and anomaly detection (§4).  It could also provide a deeper understanding of the 

domain by detecting unknown dependencies between expressions. 

 

As argued above, analogy is a natural method to use when trying to calculate probabilities over 

highly structured assertions in order to ensure that the facts going into the probability 

computation correspond to the same concept in every case.  Generalization simply helps us 

define a method for performing analogy over many examples at once.  Therefore, whenever one 
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wants to calculate the probability over multiple cases, it follows that generalization is a useful 

tool. 

 

We calculate the top-level (non-joint) probability of a particular concept occurring in a 

generalization by simply counting the number of times a grounded analog of it occurs in the 

member cases.  For example, given a match between two cases with no probabilities in them, if a 

statement exists in one case but not in the other, then it should have a probability of .5 in the 

ensuing generalization.  A more complex example, from matching a new case to an existing 

generalization, is shown in Figure 3-7 below. 

 

Figure 3-7.  Expanding an existing generalization to encompass a new case. 

 

New Case 

(location Attack23 Baghdad) 

(isa Baghdad CapitalCity) 

(isa Attack23 Bombing) 

(indirectTarget attack23 USA) 

 

 

 New Generalization of 5 Cases 

100% (location :genent0 :genent1) 

60% (perpetrator :genent0 :genent2) 

60% (isa :genent0 Bombing) 

40% (indirectTarget :genent0 USA) 

20% (isa :genent2 SeparatistOrganization) 

20% (isa :genent1 CapitalCity) 

 Existing Generalization of 4 Cases 

100% (location :genent0 :genent1) 

75% (perpetrator :genent0 :genent2) 

50% (isa :genent0 Bombing) 

25% (indirectTarget :genent0 USA) 

25% (isa :genent2           

     SeparatistOrganization) 
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Note that the probability of the Bombing and IndirectTarget facts increased, since they were in 

the match (occurred in both the case and the old generalization), while the probability of the 

perpetrator fact decreased since it was not.  Just like before, many of the entities have been 

replaced by constrained variables labeled :genent, but the USA entity remains intact since so far 

it has been the only value to be in that slot. 

 

Of course, now that probabilities are computed and represented in the descriptions for the 

generalizations, those probabilities must be taken into account when performing analogy 

between two such descriptions, i.e. during SME matches.  Otherwise, SEQL would consider far 

too many things in the mapping and end up not matching strongly to anything (or, if the disjuncts 

are just ignored, it will have the same problem as before, where it will successfully match the 

generalization to everything once most of the facts have fallen out of it). 

 

Since probability doesn‟t affect the structure of the facts, it doesn‟t affect which correspondences 

the analogy will draw.  However it does affect the similarity score calculated for those 

correspondences.  For example, matching to a generalization where the corresponding fact 

occurs in only 1 out of 1000 cases should certainly not be as good as matching it to a 

generalization where it occurs in all 1000 cases. 

 

However, it is not so clear what should happen if the fact occurs in 1 out of 1000 cases in both 

the base and the target.  Should this correspondence be considered a weak one, since their 

probabilities are so low, or a strong one, since their probabilities are matching?   
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To answer this, we tried two different metrics, designed to reflect each hypothesis.  The first 

weighted the contribution of a correspondence to the overall similarity by the average probability 

of the base and target.  The second weighted it by the square of their difference.  After some 

experimentation, we found the second metric to work better:   

 

Score    Score * (1 - | p_base - p_target |)
2
. 

 

We believe this is because the above metric makes a better distinction between the roles of 

similarity and probability.  That is, two descriptions will not be judged similar simply because 

the expressions within them are common, but because the expressions which match also have 

matching probabilitites.  This seems to make better matches and hence clearer generalizations. 

 

Figure 3-8.  Two metrics for weighing similarity by probability produce different degrees of clarity in the 

generalizations. 

 

 

For example, consider the generalizations in Figure 3-8, taken from an experiment on animal 

classification (described in section 5.5).  When the similarity is weighted by average probability, 
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the two types of cat appear in two different generalizations, and the primates appear mixed 

together with bats and wolves.  However, when we use the difference in probabilities instead, the 

classes seem more correct.  A more rigorous analysis can be made by looking at the entropy with 

which each predicate is distributed among the generalization descriptions.  An entropy of 1 for a 

predicate would mean it appears with the same frequency in every generalization, and so a high 

entropy for every predicate would mean that every generalization appears the same.  The 

histogram shows that weighing the similarity by difference in probability provides the lowest 

entropy, and hence clearest differences in generalization descriptions. 

 

There is also an interesting question as to whether this probability-weighting should occur before 

or after the trickle-down takes place.  Trickle-down is how SME implements the structure-

mapping preference for systematicity, i.e., for mappings where larger interconnected systems of 

relations are matched.  Each match hypothesis is given an initial score.  This initial score is then 

augmented by a weighted recursive sum, starting with the highest-level nodes, recursing down to 

the level of correspondences between entities.   

 

If the probability occurs after trickle-down, then the score of no sub-expression would ever be 

different from what it would have been if probability were ignored altogether (since they always 

have a probability of 1).  Therefore the effect of probability would be to only weight the scores 

of the very top-level expression correspondences.  Since the structural evaluation score is 

computed by summing the score of every expression correspondence, even non-top-level ones, 

and since the lower level correspondences will tend to experience the largest scores because of 
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trickle-down, then the effects of having a top-level expression with a probability other than 1 

would be miniscule.   

 

However, if the probability-weighting occurs before trickle-down, then the probability of the 

higher-level correspondences are trickled down as well.  For example, the score of an entity that 

occurred in only one place, two levels down from the top-level expression with probability p 

would look like: 

λ2pt
2
 + λ1t + λ0 

(Here, λi is the local score for the correspondence at level i and t is the trickle-down parameter.) 

 

Note how in this situation, if p drops by 50%, then since t > 1, the drop in the sum of 

correspondence-scores of all sub-expressions will drop by something close to 50% as well.  This 

seems to be a more reasonable behavior, given that the structural evaluation score is computed in 

the end by a simple linear combination of these correspondence scores. 

 

Some others have looked at the problem of assigning probability to structural relations.  They are 

essentially descendants of evidential reasoning (Pearl, 1987).  They require a causal model to 

start with, and then infer probabilities based on observations and simulation from the model.  For 

example, Koller and Pfeiffer (1997) use a maximum-likelihood approach of fitting probabilities 

to rules, given the observed data.  They require “rule skeletons” to be given first.  Only then can 

they do Knowledge-Based Model Construction (KBMC) to build a Bayes net of the causality of 

the domain, and then use that causality to find the set of probabilities which give the greatest 
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likelihood to the observations.  In contrast, our approach learns the prior probabilities of the 

relational structures themselves, and can then learn the appropriate models for those 

probabilities.  That is, we try to both infer the probabilities and induce the model from the 

evidence alone.   

 

There is almost no other literature on deriving probability from similarity assessments.  The 

literature which does look at the problem either looks at it purely theoretically (Wellman, 1994), 

or uses similarity to affect rough estimates of probability only.  For example, Blok et al (2002) 

present a heuristic for estimating the probability that a fox has trichromatic vision, based on the 

probabilities that a dog and a goldfish might have it, and their respective similarities to the fox.  

We would instead build a probabilistic model of our generalization of animals, and use it to 

predict the probability for foxes.  Thus, our probability calculations never use a heuristic, and are 

carefully grounded in the reality of observed commonalities. 

 

In summary, the probabilities in a generalization are based on shared relational structure, 

indicating the roles of the objects being described rather than the relational predicates 

themselves.  This means that the probabilities are less likely to be conflated over multiple real-

world roles (such as the two drivers in Table 2-1), making them much more meaningful.  It also 

means we are deriving probability based on similarity rather than the other way around, an 

approach which is quite novel in the literature.  Yet we believe the only way to go from real-

world relational data, with an arbitrary language describing arbitrary objects, to something 

generalized and probabilistic, is by using similarity to find the commonalities in that data (§2). 
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3.3.2 Threshold Values 

 

Recall that there are two parameters for controlling the behavior of SEQL.  The first is σ, a 

threshold which the similarity between the base and target must surpass in order to be accepted 

and incorporated into a generalization.  It is tempting, given our goals of creating a feature 

description of the whole domain, to set σ to be as low as possible, so that as much of the domain 

as possible will be incorporated into the generalization.  However, in practice, we have found 

that a low σ actually makes the matches so poor that the features constructed from them are 

meaningless.  A value of 0.8 to 0.9 for σ (out of a maximum of 1, since the similarity score is 

normalized) performs much better in this regard.  

 

Figure 3-9.  The effects of the match threshold value on two similar datasets.  (a) Plots the Precision-Recall 

curve over varying threshold values.  (b) Uses these curves to compute the F1 score at every threshold. 

  

 

In general, we find that a value of 0.6 works well in the most situations.  We have never had an 

experiment where the optimal threshold was less then 0.6, nor where the success rate at 0.6 was 
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very far from the optimal rate.  Occasionally, there are domains where the algorithm can perform 

slightly better by moving the threshold slightly higher, as shown in Figure 3-9.   

 

There are factors to indicate when a higher 

threshold is likely to help.  For instance, 

when there is more noise or the differences 

between correct classes are more subtle, 

then a higher threshold may help, since 

more finesse may be needed to distinguish 

between the proper classes.  However, for 

the most part, we have found that the 

greatest factor is simply the size of the correct classes.  When fewer, larger classes are desirable, 

then a threshold of 0.6 is likely to be best.  When more, smaller classes are called for, then a 

higher threshold such as 0.8 may do better.  This was the case in the two datasets above, which 

both consisted of the same type and shape of data from the same domain (described in section 

4.5).  However, one dataset was distributed into larger classes than the other, as shown in Figure 

3-10. 

 

Secondly, when our generalizations grew very large (including many infrequent statements), we 

have found it useful to invoke a probability cutoff ρ.  This means that any statements with 

probability less than ρ are ignored during the primary match process for the sake of speed, 

efficiency, and to reduce the chance of over-fitting.  However, they are kept around for a certain 
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Figure 3-10.  The difference between the datasets is the 

distribution  of sizes for the correct classes. 
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number of rounds, inversely proportional to the cutoff itself, in case they should ever rise above 

the cutoff again.  When ρ is low, a great many expressions are included in the generalization 

which only occur a very few number of times throughout the case descriptions and there is a high 

risk of over-fitting the data; however, when is ρ high, we risk losing the significant low-

frequency information that is crucial for feature discrimination.  

 

We have found a value of 0.2 to behave reasonably in our experiments.  This can be adjusted 

based on how important it is to the user to retain low-frequency information and how much 

memory is available for use. 

 

3.3.3 Normalization and other Distance Metrics 

 

In order to account for cases of different sizes, SEQL performs a normalization operation on the 

similarity scores.  If this was not done, then two large cases which matched perfectly would get a 

higher score than two small cases which matched perfectly, because the two large cases would 

share a greater amount of relational structure.  This in turn would lead to an unfair bias, over-

fitting towards cases that simply contained more information.   

 

The way we usually account for this is to do normalization to one of the two cases.  That is, the 

similarity score between any two cases is divided by the score of matching one of the cases to 

itself (called a self-match score).  The question that remains then is which one of the two cases to 

use.  The default is to always simply use the base case.  One reason for this is that under normal 
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conditions
5
, SEQL never compares two generalizations, and when it does include a 

generalization in the comparison, it is always the base case.  Hence, normalizing to the base 

score ensures that we normalize to the generalization if there is one.  Since the generalization is 

usually the larger of the two cases, it usually has the higher self-match score.  This essentially 

limits the normalized score to a range between 0 and 1, as one would expect. 

 

There is however, one potential problem with this scheme.  As the generalizations grow larger 

and larger from embodying more and more cases, the normalized score will tend to drop.  This 

may artificially constrain the growth of a generalization, since fewer normalized scores would 

then exceed the threshold σ.  In situations like this, one could resort to normalizing to the target 

score instead.  An advantage is that, for the default SEQL algorithm, the target case is always the 

same for a given iteration.  In practice though, the irregularity that stems from often having 

normalized scores greater than 1 leads to poor generalizations.  Furthermore, in domains where 

normalizing to the base did not work, normalizing to the target actually has the opposite 

problem: generalizations become more and more accepting of new cases as they grow larger. 

 

A third option is to have the computer always automatically normalize to whichever case has the 

either the lower or higher self-match score.  The advantage of this is that it will be slightly more 

regular than matching to the base or target, since the normalized score will always be either 

smaller or greater than 1.  The disadvantage though is serious: in a series of tries matching a 

given case to each of a sequence of other cases, the highest score is no longer certain to be the 

                                                
5
 There are some alternative algorithms that SEQL may use to do generalization, described in the Appendix.  

However, the algorithm given in this chapter is far and away the most commonly used. 
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best match.  For example, the scores between matching case A to case B and matching case A to 

case C cannot be compared, since one might be normalized to case A and not the other.  Since 

SEQL‟s default behavior is indeed to match a given case to each of a series of others (although it 

does so greedily), it suffers from this loss of a consistent frame of reference.  Therefore, this is 

only really recommended for alternative generalization algorithms, such as where the 

comparisons are all done at once and globally and so no such frame of reference could be found 

anyway. 

 

There are many other ideas which have not yet been tried.  One could always match to the target, 

since it is constant for a given iteration, and use the inverse of the score to get a normalized score 

less than 1.  Or one could adjust σ through normalization too, to reduce the pull towards larger or 

smaller generalizations.  Unfortunately, there are only so many novel ideas that one can invent 

and try in the timespan of a single thesis. 

 

Similarly, there are actually other choices for a distance metric besides those that account for 

probability in Section 3.2.2.1.  For example, suppose that there is a generalization G of cases 

X1,…,Xn, which we would like to match to a new case Y.  In the above section, we describe how 

one can simply use SME to compare the structure of G to the structure of Y, weighing the 

strength of each correspondence by its probability.  However, one could also use some of the 

more traditional, aggregative methods for clustering on a non-cartesian space.  That is, one could 

compare Y to each of the member cases X1,…,Xn individually, and then report the highest, 

lowest, or mean score.   
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Many of these ideas have been tried, particularly during the citation database experiments 

reported in Chapter 6.  However, the design space is large enough that there is still room for 

plenty of new ideas to come. 

 

4 Learning and Prediction 

 

The generalization process itself is a form of learning.  Many experiments have already 

demonstrated the ability of the SEQL algorithm to do very well at classification problems.  For 

example, Kuehne et al. (2000) showed that SEQL performed at humanlike levels in categorizing 

stories.  More recently, SEQL has also been successful at classifying sketches as well as music, 

which both will be discussed briefly in Chapter 6. 

 

Furthermore, SEQL is flexible in that it can perform either supervised or unsupervised learning.  

Recall from Section 3.1 that a generalization can consist either of all the instances of a given 

type, or only the most similar ones.  In the former case, the learning is supervised: the type is 

assigned, and all cases of that type are formed into the same generalizations.  In the latter case, 

the learning is unsupervised: cases are clustered according to similarity and each cluster may or 

may not correspond to its own novel type. 

 

A common machine learning paradigm is to make observations, and then find a hypothesis 

which explains those observations.  This chapter examines the difference between making 

hypotheses based on whole-case comparisons, as SEQL does, and hypotheses based on 
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individual propositions and entity values.  We explain how our approach is motivated by a 

combination of the two.  The second section describes our technique for propositionalization.  

The third section examines some traditional machine learning techniques we can then invoke on 

our propositionalized relational data. 

 

4.1 Approach to Learning 

 

Our approach to learning is model-based.  That is, we build up an abstraction (i.e., a model) of 

the evidence, and generate predictions about novel/hypothetical instances by comparing them to 

the model.  Although generalization is a model and a means of learning in and of itself, it is a 

form of reductive learning.  That is, the model supports comparison between the cases as a 

whole, but not between individual characteristics of them.  Although it is possible to do 

prediction with a reductive learner, such as by candidate inference, this is always based on a 

comparison between cases (and/or generalizations) as a whole.  This comparison (for which we 

use structural analogy) is essential for relational representations of data, since it is important to 

figure out how the information in the two cases is aligned, and by no means do we wish to 

replace it.  However, once the structure of the data is aligned, it is then possible to do more than 

this first comparison, using some of what has been achieved in the field of proposition-based 

learning where this alignment is taken for granted because it is inherent to the representation of 

the data.  The key ability we will gain is the ability to use not just the structure but also the 

values of some arguments when making predictions. 
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The primary motivation in reductive learning is usually to answer whether or not a novel 

instance is a typical case for the model.  In our implementation this means determining whether 

the similarity score between the new case and the generalization is high enough that the case 

could be included into the generalization.  This focus on typicality of the case for the model 

makes reductive learners excellent at classification.   

 

However, reductive learners are not always so good at making other predictions about the data.  

Recall the example about dogs and cats from Section 3.1.  In that example, the system might 

correctly make a generalization about cats and a generalization about dogs.  These models may 

be very good at answering whether a new instance is a dog or not.  However, any other question 

about the new case, such as its gender, would not be modeled very well. 

 

As a concrete example from our research, consider the following case, taken from the Whodunit 

experiments
6
 (Section 5.2): 

 

Table 4-1.  A difficult example for a reductive learner. 

Case: August 1998 bombing in Omagh, Ireland 

(numberOf person killed omagh-attack 55) 

(minimumNumberOf civilian killed omagh-attack 2) 

(someNumberOf civilian wounded omagh-attack) 

(location omagh-attack ireland) 

(isa omagh-attack (attackUsingFn bomb-roadvehicledelivered)) 

 

                                                
6 Some of the facts have been simplified for presentation, and the insignificant ones have been omitted. 
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The task is for the learner to decide who might have been behind a terrorist attack, given 

information about previous attacks.  Of course, it is possible for the reductive learner to come up 

with an answer to this question.  If it knows that 20% of the terrorist attacks it has seen were 

committed by Al-Qaeda, it could give the reductive answer that there was a 20% chance that the 

attack was done by Al-Qaeda.  However, it will be outperformed by a system that can observe 

that, say, the attack occurred in Ireland, and 90% of terrorist attacks in Ireland are done by the 

IRA.  This requires a higher order of learning, modeling not just the differences across cases as a 

whole, but also between individual characteristics of those cases such as location and perpetrator. 

 

It is still possible for a reductive learner to get around this limitation.  One solution is to generate 

a separate classifier for each question that might be asked.  One could imagine making a separate 

generalization for each perpetrator and relying on the similarity between the novel case and the 

generalization to determine the likelihood it was done by that particular perpetrator.  Of course, 

one problem with this approach is that all of the relevant questions must be known beforehand.  

Another problem is all the extra overhead it would take to make distinct sets of generalizations 

for each possible question.  For this example, one could imagine having to make separate sets of 

generalizations by perpetrator, outcome, method, target, number of casualties, and location, just 

to start with.  Also, suppose that the original set of inputs was simply to be disasters.  It is 

unclear then whether these new generalizations by each characteristic should only be across 

terrorist incidents or across all disasters.  When generalizing by location, it probably makes sense 

to partition by terrorist attacks first, since most terrorist attacks will be in the Middle East.  On 

the other hand, when trying to answer the number of casualties, it might make more sense to 
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generalize by casualties first, since this may be more a function of the type of government and 

quality of health care available than whether the disaster was a terrorist incident vs. a hurricane. 

 

There is yet another possible way for the reductive learner to get around its limitations and be 

successful at answering arbitrary questions.  Instead of organizing everything into predefined 

categories, it could do unsupervised learning, and try to determine the best abstract classes on its 

own.  The problem with this approach is that all the information for answering all the questions 

must then be compressed into a single dimension: the class of the new incident.  Certainly, one 

dimension is not enough.  Even in a perfectly deterministic world with no hidden information, in 

order to make the correct answer to any query from only one input dimension, the system would 

have to assign a different class to every non-identical case, which is over-fitting the problem 

rather than learning.  It is too much to hope then that many questions can reliably be answered by 

a single dimension of classification. 

 

Of course, one could also choose not to frame it as a classification problem at all.  MAC/FAC is 

an approach which our lab has shown works very well under many circumstances (Gentner & 

Forbus, 1991; Law et al., 1994; Forbus et al., 1995).  The idea is to find the most similar cases to 

the test case, and project their values onto it as possible answers via candidate inference 

(described in section 2.2).  The hope would be that the most similar cases to this bombing were 

also carried out by the IRA.  However, this process has problems too.  Here, the most similar 

cases to this one turn out to all be car-bombings from the Middle East.   
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The key to solving this particular problem lies not in the structure of the case as a whole, but in 

one particular fact: that the location was Northern Ireland.  This one slot value alone should set 

off all kinds of bells that the IRA was somehow involved.  The information needed for doing this 

higher-order learning is already present in the generalizations.  It would seem silly not to use it. 

 

4.2 Flattening 

 

Once the facts in the original cases have been uniformly sorted via analogy into sets of 

structurally equivalent facts, they can be treated as propositions and reasoned with 

probabilistically.  Each of the generalized facts can be treated as a unique random variable, since 

it represents some concept that has an analogical equivalent in the input cases and yet is 

analogically different from the other abstract expressions.  Thus, there is a 1:1 mapping between 

the abstracted facts in the generalization and random variables, aka propositions. 

 

The importance of creating this mapping cannot be emphasized enough.  The recognition that 

analogically equivalent facts can be reasoned with probabilistically is the key insight to this 

thesis, from which the others derive (§1). 

 

Although each expression in the generalization can be represented by a single proposition, 

different expressions have different pieces of information that are important to convey.  For this 

reason, we distinguish between two types of propositions, which we refer to as existential 

propositions and characteristic propositions. 
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Figure 4-1.  A mapping is generated which can flatten relational knowledge into  

propositions and probabilities, or unflatten them back again. 

 

 

The fact (isa gun Weapon) is an example of what would become an existential proposition.  In 

this instance, the principal piece of information to convey is simply whether the fact occurred in 

each input case or not.  It is essentially a Boolean proposition, which takes the value True when 

the corresponding fact exists in an input case, or False when it does not.  On the other hand, the 

fact (possesses agent1 (DollarFn 500)) is an example of what would become a 

characteristic proposition,  capable of answering the question “how much money does the agent 

have?”  Here, it is not enough to know that the agent possesses some dollar amount.  Rather, we 

would like to know how much money the agent has.  Thus, the values of a characteristic 

proposition correspond to some particularly interesting slot in the expression.  In this case, the 

value for this proposition is (DollarFn 500). 
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4.2.1 Assigning Values to Propositions 

 

This begs the question of how to determine which slot of a proposition, if any, is interesting 

enough to be the value of the proposition.  For example, in the expression 

(numCasualtiesOfType 4 Engineer attack), the best value to extract is the number 4 from 

the first argument.  Not only are there many possible values for that slot, providing more grist for 

a careful learner, but the other two slots are probably not as important to know.  In the example 

that this is drawn from, the entity attack is the case-entity; since the whole case is a description 

of it, knowing its value provides no new information at all.  The entity Engineer may occur 

elsewhere in the case, or at least have other structural clues pertaining to its value.  However, the 

second argument, containing the value 4, is functional in the other arguments: it has one value, 

which occurs only in relation to the other two arguments. 

 

We currently make the decision on which value to extract with a similar mixture of meta-

knowledge and heuristics.  For example, we call a particular slot the value-slot of a proposition if 

it is known to be functional over the other slots for that predicate.  Unfortunately, the only way 

for the system to know this for certain is with meta-knowledge.  Hence, we check for the Cyc-

specific predicate FunctionalInArg, which is intended to convey when an argument slot never 

has more than one value for any combination of the non-FunctionalInArg slots.  Unfortunately, 

this predicate is not used very often in the Cyc KB, and its equivalent does not always exist in 

other knowledge bases, so it may have to be manually asserted.  Since we would like to rely on 

such manual intervention and background knowledge as little as possible, we also have two other 
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heuristics that can be used: we determine a particular slot to be the value-slot if the only other 

slot contains the case-entity (such as in (eventOccursAt attack Baghdad)), or if the value of 

the slot is always numeric or always non-atomic.  Although this solution works on the domains 

we tried, it may not be a satisfactory solution for a long-running generic agent. 

 

Note that in assigning only one value to each proposition, we are making an implicit assumption 

that either enough information to convey the other slots will appear elsewhere, or else that the 

values of those other slots can be ignored.  We have not found this assumption to be a problem 

for two reasons.  First, every slot does play some role during the generalization process, which in 

turn determines which propositions will be created.  Thus, if two values of a given slot play 

different enough roles across the input cases, then this may be represented automatically by 

splitting the corresponding proposition into two when SME refuses to match them together.  

Then the values of one proposition will correspond to one value of the slot, and the values of the 

other proposition will correspond to the other value of the slot.  In effect, this creates a kind of 

two-dimensional proposition.  A simple example of this is seen in Figure 3-5, where the 

proposition (possesses ?x ?y) is split into two because of a correct failure to match.  

Secondly, if the value really were important enough to warrant recording two different values for 

the proposition, then the input representation can account for this by either representing the value 

in another fact or in combination with the other value in a non-atomic term.  Furthermore, an 

advantage of making this simple assumption is that it does cut out some additional search space, 

as will be shown in the next section.   
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While addressing value assignment, it is also important to address the question of closed world 

assumptions.   That is, when the fact that corresponds to a particular proposition is missing from 

the case, what value should be assigned?  We handle this problem differently for characteristic 

propositions than for existential ones.  When a characteristic proposition‟s value is missing, we 

simply assign it the value :no-value.  In existential features though, the :no-value is 

represented by the value False.  Yet there is a nuance.  We label an existential feature as false 

only if some of the entities that it mentions are also missing from the case.  When all of the 

entities that the feature mentions do appear elsewhere, then we label it as a :missing-value 

instead.  Missing values do not count for or against anything during learning – they are treated 

during counting as if the case didn‟t exist at all.  This reduces non-causal dependencies in the 

data, since otherwise the values of all features containing the same entity would be identical 

whenever that entity was not present. 

 

To continue with the example from Figure 3-5, examine the facts of the form (isa ?x Weapon) 

and (possesses :genent0 ?x).  The latter fact is split into two propositions since they do not 

match each other: (possesses :genent0 gun), an existential features with values of True or 

False, and (possesses :genent0 :genent1), a characteristic feature whose possible values are 

all of the dollar amounts observed for :genent1.  For this generalization, which contains only 

one agent, simply knowing that the proposition (isa :genent1 Weapon) is true means that the 

agent carries a weapon, and hence (possesses :genent0 gun).  It also gives information about 

the proposition (possesses :genent0 :genent1), since it will only have a dollar value if it is 

not a weapon and vice-versa.  This splitting of facts of the form (possesses :genent0 ?x) into 
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two propositions is not arbitrary, but is done because the two usages of the form carry very 

different meanings  – something which SME is able to discern even though their forms are 

identical, because the structure they participate in is not. 

 

Behaviors like missing values and split propositions mean that it is possible to save search space 

even further through dimension reduction.  The three propositions from the example could be 

reduced to a single proposition (possesses :genent0 :genent1) which conveyed the same 

information as the three if it had the value False when the possession was a weapon, or a dollar 

amount when it was not.  This is a simple example and more complicated dimension reduction 

scenarios would not have a single, known propositional form to which they can be reduced.  This 

sort of dimension reduction is not an optimization that we chose to pursue.  However, the 

caching mechanism that we use, described in section 4.2.3, does take advantage of such 

redundancies to reduce the time and space needed to test hypotheses and count joint 

probabilities. 

 

Note also that characteristic propositions could be further subdivided into continuous 

propositions (such as how much money the agent possesses), and discrete propositions (such as 

where the agent is going).  In this work, we handle continuous propositions simply by 

discretizing their range into a set of three buckets using K-Means.  We recognize that there are 

many ways for doing automatic discretization, such as the CARVE system (Paritosh, 2004), and 

would like to employ these at some point.  However, in our work to date, discretization has not 
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been a frequent or severe enough problem to warrant the investment needed to take a more 

rigorous approach. 

 

4.2.2 Efficiency Analysis 

 

We have claimed that doing generalization with SEQL has certain advantages in run-time over 

other relational learners.  In order to quantify this savings, we can make a comparison between 

the number of facts needed for a generalization by SEQL to describe a domain, and the number 

of propositions/terms that a propositional or ILP learner will need.   In both cases, this is directly 

related to the amount of effort needed for a learner to search for a correct hypothesis.  First, we 

must quantify certain parameters of the learning task.  Let r be the number of relations/predicates 

in the domain, and let e be the maximum number of entities in a case. 

 

Each relation will usually correspond to more than one possible proposition.  The number of 

propositions needed will be the number of different combinations of entity assignments that are 

possible for that relation.  We can determine that this will be at most e
k
, where k is the number of 

entity assignments (i.e. joins) that are needed.  This means that the number of possible 

propositions needed to describe a domain is bounded above by r*e
k
. 

 

This can be seen in the example of a square given in section 3.1.  The example had only one 

relation, edge, with an arity of 2.  However, there were 4 possible entities (corners) to choose 

from as the arguments.  This gives an upper bound for the number of propositions as 1*4
2
 = 16, 
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which includes the possibility of having an edge that is reflexive (the two arguments are 

identical).   

 

However, in generalization, all of the variable assignments have already been done.  Each 

generalized entity of each fact corresponds to a set of entities that is predetermined, based on the 

single best mapping that the generalization has found.  Therefore, k = 1 and the generalization 

will need to contain only 1*4
1
 = 4 generalized facts. 

 

What seems like a small savings on a toy problem can grow quickly as the problem grows larger.  

In the next chapter, we will show other savings in efficiency due to using generalization.  In 

particular, the fact that there is a known mapping with all of the generic entities assigned allows 

us to use caching to significantly speed up hypothesis testing. 

 

The term e
k
 then, is the maximum number of “copies” of a proposition needed to represent all the 

possible entity combinations for a given relation.  In general, k is equal to the maximum number 

of joins / variable assignments; however, in our implementation k=1 thanks to the mapping 

between entities that is built up through structural analogy. 

 

From this, we can determine the size of the hypothesis space, i.e. the number of possible 

hypotheses in the domain.  Suppose that we want to count the number of hypotheses which 

contain at most T terms (where each term consists of a proposition and a value).  Each hypothesis 

will then have to cover some choice of up to T of the P possible propositions.  Thus, there are 



61 

 

 

, or O(P
T
) = O((r*e

a
)

T
) possible combinations of propositions.  However, we can bound this 

a little bit more tightly by noting that only one of the e
k
 propositional copies of a relation will 

appear in any case, and so only one is needed in any hypothesis.  This means that the e
k
 can be 

factored out of the exponent, leaving us with O(r
T
e

k
) possible combinations of terms. 

 

In order to generate a hypothesis, each of the (at most) T terms in one of these combinations 

must be assigned a value.  The number of possible hypotheses then becomes the product of the 

number of possible combinations of propositions with the number of possible combinations of 

values.  If we call the maximum number of possible values of a proposition V, then we can 

calculate this second combination the same way as the first.  I.e., there are , or O(V
T
) possible 

combinations of value assignments.  The final equation for the size of the hypothesis space  

becomes: 

O(r
T
V

T
e

k
) 

 

Again, in our implementation, we can substitute k=1.  We can also be a little more precise by 

calling the maximum arity of a proposition a.  Then the number of entities to choose from for a 

hypothesis with T propositions, each of which contains at most a entity slots, is e=aT.  This 

means the number of hypotheses for our implementation is: 

O(r
T
V

T
aT) 

 

Note the similarity between this equation and the equation given by DeRaedt (1998) for the size 

of a hypothesis space needed to do relational learning through propositionalization: 
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O(r
T
V

aT
(aT)

k
) 

 

There are two differences between this equation and our own.  The first is in the value of k.  As 

described above, the construction of a single analogical mapping allows us to make the savings 

in efficiency from setting k=1.  The second difference is that the number of value assignments to 

choose increased by a factor of a.  This corresponds to the space that would be needed to assign a 

value for each of the a entity slots in a term.  Although we make a simplifying assumption in 

assigning only one value per proposition, we describe in the previous section how structural 

analogy makes this a reasonable assumption.  Taking the quotient of the two equations, we see 

that altogether, the use of structural analogy gives us a savings on the order of O(V
T(a-1)

(aT)
k-1

) 

and reduces the hypothesis space by O(r
T
V

aT
(aT)

k
 - O(r

T
V

T
aT)) = O(r

T
V

aT
(aT)

k
). 

 

SME has been shown to run in quadratic time, i.e. O(N
2
) where N is the number of facts in the 

base/target cases (Forbus and Oblinger, 1990).  SEQL on the other hand, needs to find the best 

generalization for each of M cases, and each time the number of generalizations to choose from 

will be less than the time after it. It therefore operates in O(M log M) time.  Although note that if 

it is run with a threshold of 0 to create one large framework for learning, then it runs in O(M) 

time.  At worst then, when taking the time for SME into account, SEQL operates in O(N
2
 M log 

M).  Therefore, given a learner that is linear with respect to the number of hypotheses, we can 

expect to experience savings in run-time when N
2
 M log M << r

T
V

aT
(aT)

k
.  We might therefore 

expect to outperform other algorithms when either the amount of input data (M and N) is smaller, 
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or when the amount of relational structure (a and k) is higher.  This is borne out in the 

experimental results. 

 

In summary, we have found a sensible and concise way to incorporate probabilities into 

relational knowledge through a generalization process.  A smaller number of possible hypotheses 

leads to a savings in the time needed to explore the space of possibilities and select the best 

hypothesis for explaining the observations.  However, this is just one of two very important 

efficiency considerations to make during learning.  The first, described above, is the number of 

hypotheses that need to be tested; and the second, described below, is the time that it takes to test 

them.  We have clearly demonstrated the savings for the first element of this duo.  In the next 

section, we will show how caching saves even more in efficiency on the second element. 

 

Taken together, these algorithms allow us to do learning from relational knowledge in a way that 

handles noise while still being representative and discriminative after a great variety of training 

examples (§1).  The probabilities are based on shared relational structure, indicating the roles of 

the objects being described rather than the relational predicates themselves, which we believe are 

more meaningful dimensions.  The results of our research in chapters 5 and 6 support this belief.  

Moreover, as the analysis in this chapter and the next indicate, finding common structure is both 

more efficient and useful than simply finding common predicates (§3). 

 

 



64 

 

 

4.2.3 Caching 

 

In order to increase efficiency in learning, it is important not only to reduce the number of 

possible hypotheses, but also to reduce the time that it takes to test each one.  There are two basic 

approaches for hypothesis testing.  Algorithms such as ILP which are designed to run on top of a 

large, optimized knowledge base or database will often do this by simply running a separate 

query for each hypothesis.  Other approaches rely on counting and storing the relative frequency 

with which each hypothesis occurs ahead of time.  This can be done either in a very large count 

table or in some other more efficient data structure, and it can be done either partially or 

exhaustively, caching the relative count (i.e. joint probability) for every possible combination of 

terms.  We use the latter technique, exhaustively caching every count in a very efficient data 

structure.  The reduced size of the hypothesis space that structural analogy provides us also 

means that this caching will require much less space, making it more viable. 

 

That is, we build what is effectively one large joint probability table for the set of propositions by 

counting the combination of values present in each case.  This allows us to query for the 

probability in the observed data of any possible combination of analogically different formula 

groundings.  For example, it would allow us to very quickly calculate the percentage of attacks 

that occurred in Ireland, for each possible perpetrator.  This table is all that is needed to invoke 

any statistical model in existence (§1). 
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Since even with analogy and generalization to reduce the size of the problem, a complete joint 

probability table might still be unreasonably large, we also use an AD-Tree (Moore and Lee, 

1998 and Anderson and Moore, 1998) to cache the sufficient statistics in a more efficient way.  

The AD-Tree reduces the needed size immensely by recognizing that many of the combinations 

don‟t need to be stored at all.  It organizes the combinations into a tree of alternating adnodes 

(which vary the attribute/proposition being counted) and vnodes (which vary the value).  Each 

adnode also stores the number of times that the combination of propositions in the beam from the 

root to the node has occurred.   

 

Additionally, the AD-Tree makes the following optimizations to reduce the required space: 

1. Propositions are sorted, and an earlier proposition is never a child of a later proposition.  

This prevents permutations from being stored separately. 

2. Once the count is down to 0, a NIL is stored instead of a subtree. 

3. At points in the tree where it would make more sense to just store the subset of matching 

records (instead of a subtree), it does so. 

4. The biggest space-saver of all is made by recognizing that for any proposition with n 

possible non-zero values, only n-1 of them ever needs to be stored, since the count for the 

other value can be found by subtraction.  E.g. a binary proposition will only ever need to 

store the count for one value.  Furthermore, to reduce the needed space as much as 

possible, the value that isn‟t stored is always the most common value (MCV). 

 

The AD-Tree is a way to accurately count any combination of propositions in the data in 

constant time with respect to the number of cases, and it provides orders of magnitude savings in 
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both time and memory.  Together with analogy and generalization, it makes statistical modeling 

of relational data very easy to do. 

 
Figure 4-2.  An AD-Tree caches the sufficient statistics for calculating joint probabilities.   

Several optimizations can be made to reduce the space needed for the tree from (a) to (b). 

 

a)  

b) 

 

 

 

 

 

 

 

 

 

 

 

4.3 Statistical Modeling and Prediction 

 

Although any statistical model of the generalization could conceivably be used with our 

technique, we tried it with two of them in particular: Bayesian networks, and association rules.  

Of these, we have put the greatest focus on the learning of association rules.  Rules were a little 
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simpler to incorporate into our existing framework, worked fine for the domains we looked at, 

which only required predicting one or two values, and were more straightforward to adapt for 

incremental learning, which was an earlier goal of this work. 

 

4.3.1 Bayesian Networks 

 

A Bayesian network is a probabilistic graphical model that represents a set of propositions and 

their probabilistic dependencies.  Beyond the usefulness of the representation itself, a Bayesian 

network has a variety of applications.  It can be used to induce the probabilistic dependencies of 

a domain in the first place (using algorithms for finding the best fit of a network‟s structure to the 

domain observations), to find cases which are anomalous to the domain as represented by this 

dependency structure, to determine which questions are important to ask next when given partial 

information, and to do probabilistic inference. 

 

Learning the structure (aka shape) of a Bayesian network is an excellent way to do learning on a 

novel domain as a whole.  Rather than be driven by predicting a particular output proposition as 

a goal, it seeks to model the dependencies between all of the propositions of the domain at once
7
. 

 

Our structure learner takes a hill-climbing approach.  To be specific, we compute the shape of a 

Bayes net using simulated annealing with random restarts.  It uses operators such as 

adding/removing a parent of a node, and swapping two nodes, until it finds the optimal shape.  

                                                
7 To be accurate, a Bayesian network actually searches for those propositions which are conditionally independent, 

and hopes to accurately model the dependencies by extension. 
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Optimality is defined by the shape which best fits the data seen so far, as evaluated by a scoring 

heuristic.  The heuristic we used is a Bayes Information Criterion estimate (Friedman and 

Yakhini, 1996). 

 

Once a good shape has been found, the Bayes net can act as a kind of probabilistic reasoner for 

doing probabilistic inference.  For example, consider the following Bayes net:  

 

Figure 4-3.  An example of a Bayes Net. 

 

 

 

 

  

 

 

 

 

The network says that the chance that a student is tardy depends on both the traffic, and whether 

there‟s an exam scheduled for that day.  Traffic also depends on the weather, and affects the 

chance of having an accident.  The lack of an arrow between the traffic and the exam nodes 

means that these two statements are independent: knowing the value of one does not help us in 

determining the value of the other.  Similarly, the lack of an arrow between the tardiness and the 

accident nodes indicate conditional independence: once we know the traffic, it doesn‟t help to 

Weather 

Traffic Exam 

Tardy Accident 

P(Yes) = 10% 

P(Rain) = 20% 

P(Traffic|Rain) = 80% 

P(Traffic|~Rain) = 40% 

P(Accident|Rain) = 5% 

P(Accident|~Rain) = 1% 
P(Tardy|Traffic,Exam) = 10% 

P(Tardy|Traffic,~Exam) = 50% 

P(Tardy|~Traffic,Exam) = 5% 

P(Tardy|~Traffic,~Exam) = 25% 
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know either the tardiness or the chance of an accident to predict the other.  Each node 

summarizes the probability of it taking a certain value, given the possible values of its parents. 

 

To do probabilistic inference, one can tell the network various facts that are known, leaving the 

unknowns unasserted.  Then upon asking for one of the unknowns, the network can simply look 

up the corresponding probabilities.  For example, suppose the user asserted that there was an 

exam on Monday, and then asked for the probability that Eric (a student) would be late on 

Monday.  Despite not knowing anything about the traffic, the machine can still return an answer 

by simply adding the correct probabilities.  Here, it would add up the probabilities for 

P(Tardy|Traffic,Exam) and P(Tardy|~Traffic,Exam), weighted by P(Traffic).  Since it also does 

not know anything about the weather, it would also do a weighted sum to determine P(Traffic).  

That is: 

1. P(Traffic) = P(Traffic|Rain)*P(Rain) + P(Traffic|~Rain)*P(~Rain)  

= .8*.2 + .4*.8 = .48 

2. P(Tardy) = P(Tardy|Traffic,Exam)*P(Traffic) + P(Tardy|~Traffic,Exam)*P(~Traffic)  

= .1*.48 + .05*.52 = .074 

 

Thus, the system would estimate that Eric had a 7.4% chance of being late on Monday.  If we 

then told it that the weather was rainy, then P(Traffic) would rise to 80% (simple lookup), and so 

P(Tardy) would rise to 9%. 
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Note that in our implementation, each node is actually a proposition  that can be expressed as a 

fact about constrained variables.  So the Tardy node actually would correspond to (tardy 

:genent1 :genent2), where :genent1 is whatever matches analogically to the student in the 

generalization.  Also, since our implementation relies on analogy, it takes a case of facts as input 

rather than a set of facts drawn directly from a working memory of assertions (although it is a 

simple enough step to construct a case based on the contents of working memory).  To continue 

with the example above, the arguments to the Bayes Net inference engine might be: 

 Case: ((isa Eric Student) (hasExam Eric Monday) (weather Monday Rainy)). 

 Ask:  ((tardy Eric Monday)). 

 

To answer this, the computer would add the tardy fact into the case, and then flatten it via 

analogy to the generalization.  This would indicate which nodes corresponded to which 

statements.  It would then go through the simple sums above, and unflatten the answer back: 

(withProbability .09 (tardy Eric Monday)).  This prediction is based not just on how 

well the structure matches the generalization (which may be used to choose which generalization 

and model to use in the first place), but also on the values of slots such as Rainy which it 

believes to have some causal relationship to the concept it has been queried about. 

 

4.3.2 Rule Learning 

 

We also have applied association rule learning algorithms to do prediction.  In particular, we 

learn a rule-list for each possible output value of the proposition we are interested in. 
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Our definition of an association rule follows from that of Agrawal, et al. (1996).  That is, we use 

it to mean a conjunction of literals which implies another conjunction of literals.  By literal, we 

mean a proposition-value pair such as (<Proposition 12: (location :attack ?value)> . 

Baghdad).  (Examples in this section are taken directly from the Whodunit experiments 

described in the next chapter, which used rule-learning extensively.)  Thus, given a set of all 

possible literals L and a query Q  L, the goal of the rule learner is to find a hypothesis H  L 

which best fits H  Q.   

 

Example: 

Figure 4-4.  A learned rule 

(implies (and (location ?attack Philippines) (agentCaptured ?attack ?agent)) 

 (perpetrator ?attack MoroIslamicLiberationFront)) 

 

 

As is typical, we define the confidence in a rule as count(H^Q) / count(H).  We also define the 

relative support of a rule as count(H^Q) / count(Q).  This is equivalent to the traditional 

definition of support, since count(Q) does not vary within a single invocation of the rule learner 

on a given query, and it enables us to use the more flexible rule performance metric described 

below. 

 

For this application, since we prefer to be generic to the choice of domain, and since we are 

generating so many rules at once, then rather than use minimal thresholds for support and 

confidence as is customary, we instead prefer the rule which maximizes the minimal value 
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between relative support (reduces false negatives) and confidence (reduces false positives).  Ties 

are broken by the rule with the maximal value between them.  As will be shown in Chapter 6, we 

have found this approach to work the best for the most situations. 

 

Similar to the goal of the single-rule learner, the goal of the rule-list learner is to find a small set 

of hypotheses {H} which, taken disjunctively, provide maximal support for Q with minimal loss 

of confidence. 

 
Figure 4-5.  The Rule Learner 

 

 

 

The actual rule learning is done by starting with a list of candidate hypotheses H, initially empty, 

and performing a breadth-first search with a beam-width of 10 over the space of possible 

hypotheses.  On each iteration of the search, we further specify each hypothesis in H by adding 

literals from the set of possible literals L.  We then re-evaluate each hypothesis, choose the best 
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10 again, and re-iterate until H is empty or the rules are 5 terms long.  The beam-width of 10 was 

chosen simply because it was sufficiently exhaustive, and the rules were capped at 5 terms to 

prevent over-fitting. 

 

The rule-list learner is simply a recursive implementation of the rule learner.  We start by 

learning a single rule for H1  Q.  On the next iteration, we try to learn a rule for H2  Q^ H1.  

This process continues until we reach a maximum of 5 rules (again to prevent over-fitting) or 

until no more rules can be found. 

 

After unflattening the literals found by the rule learner back into their relational structure, the 

result is a set of logical axioms for each generalization which can be reasoned with and used to 

make predictions about any case which sufficiently matches the generalization.  Again, these 

predictions will be based not just on how well the structure matches the generalization, but also 

on the values of certain slots which it believes to have some causal relationship to the concept it 

has been queried about. 

 

5 The Whodunit Experiments 

 

A great deal of the research and analysis found in this dissertation was devoted to experiments in 

counter-terrorism.  These experiments are the only ones in which we tested both probabilistic 

generalization (section 4.1) and statistical modeling (section 4.2) against two controls: non-

probabilistic generalization and simple exemplar retrieval.  They are also the only experiments in 
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which we have a real performance analysis of the statistical modeling step.  In short, these 

experiments are central to the arguments made in this thesis. 

 

The experiments all used data from the Terrorist Knowledge Base, an extension of the Cyc 

Knowledge Base containing terrorist incidents that was provided to us by Cycorp, Inc.  Each 

incident was hand-entered and checked by domain experts.   

 

Basic case construction was performed upon each entity representing a terrorist attack, as laid 

out in section 2.1.  That is, for each attack, facts mentioning the attack as well as attributes of the 

entities from those facts were put together into a single case.  The result was that each case 

provided a relatively informative description of each terrorist attack.  Examples of these cases 

can be seen in Table 5-1. 

 

Some of the facts in the knowledge base contained meta-knowledge, such as the author of an 

incident or a natural language string describing it.  These were filtered out according to 

predicate.  Furthermore, in their original form, some facts contained Rule Macros: predicates 

which Cycorp used to simplify and compress certain relational structures.  These facts were all 

expanded into their full form, in order to provide more structure for the analogical matching 

algorithm to latch onto.  For example, (RelationInstanceExistsCount 3 Person 

organismKilled TerroristAttack-March-1985-Rome-Italy) was expanded into 

(thereExistExactly 3 ?X (and (Person ?X) (organismKilled TerroristAttack-

March-1985-Rome-Italy ?X))). 
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Table 5-1.  Two examples of case representations for terrorist attacks. 

 

TerroristAttack-March-1985- 

Rome-Italy 

 TerroristAttack-March-20-2000-

Basilan-province-Philippines 

(thereExistExactly 3 ?X-7034 (and 

(Person ?X-7034) (animalWoundedIn 

TerroristAttack-March-1985-Rome-

Italy ?X-7034))) 

 (thereExistExactly 22 ?X-7002 (and 

((InstanceNamedFn "school children" 

PersonTypeByOccupation) ?X-7002)         

(agentCaptured TerroristAttack-

March-20-2000-Basilan-province-

Philippines ?X-7002))) 

(thereExistExactly 0 ?X-7033 (and 

(Person ?X-7033) (organismKilled 

TerroristAttack-March-1985-Rome-

Italy ?X-7033))) 

 (thereExistExactly 5 ?X-7001 (and 

((InstanceNamedFn "teacher" 

PersonTypeByOccupation) ?X-7001) 

(agentCaptured TerroristAttack-

March-20-2000-Basilan-province-

Philippines ?X-7001))) 

(intendedAttackTargets 

TerroristAttack-March-1985-Rome-

Italy (InstanceNamedFn “Alia, Royal 

Jordanian Airlines” 

HumanlyOccupiedSpatialObject)) 

 (thereExistExactly 53 ?X-7000 (and 

(Person ?X-7000) (agentCaptured 

TerroristAttack-March-20-2000-

Basilan-province-Philippines ?X-

7000))) 

((CityInCountryFn Italy) 

CityOfRomeItaly)  

 

 (thereExistExactly 1 ?X-6999 (and 

(Priest ?X-6999) (agentCaptured 

TerroristAttack-March-20-2000-

Basilan-province-Philippines ?X-

6999))) 

(CapitalCityOfRegion 

CityOfRomeItaly) 

 

(CalendarMonth March)  (CalendarMonth March) 

(dateOfEvent TerroristAttack-March-

1985-Rome-Italy (MonthFn March 

(YearFn 1985))) 

 (dateOfEvent TerroristAttack-March-

20-2000-Basilan-province-Philippines 

(DayFn 20 (MonthFn March (YearFn 

2000)))) 

(eventOccursAt TerroristAttack-

March-1985-Rome-Italy 

CityOfRomeItaly)  

 (eventOccursAt TerroristAttack-

March-20-2000-Basilan-province-

Philippines (InstanceNamedFn 

“Basilan province, Philippines” 

GeographicalRegion)) 

(PhysicallyAttackingAnAgent 

TerroristAttack-March-1985-Rome-

Italy) 

 (KidnappingSomebody TerroristAttack-

March-20-2000-Basilan-province-

Philippines) 

(TerroristAttack TerroristAttack-

March-1985-Rome-Italy) 

 (TerroristAttack TerroristAttack-

March-20-2000-Basilan-province-

Philippines) 

 

 

In the first section, I describe initial work on this domain.  The second section presents results 

and analysis of the Whodunit experiments.  Finally, in the third section we use this domain to 

examine the question of finding the appropriate level of representation. 
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5.1 Early Whodunit Experiments 

 

Much of the SEQL algorithm itself was written before this thesis work began.  Early experiments 

with this work already showed promise.  For example, in Kuehne et al (2000), it was shown that 

SEQL performed at human-like levels when asked to do categorization on a large set of stories.  

Humans were first given a set of 60 stories by Ramscar and Pain (1996) in order to model human 

category learning.  When SEQL was given the same sets of stories, its behavior mirrored that of 

the human subjects, with a few notable exceptions.  However, these exceptions did cause 

conjecture about some theoretical limitations of this early version of the algorithm, which were 

later found in practice.  Chief among these limitations was that the algorithm had no mechanism 

for preventing successive generalizations from becoming so abstract that they lost any inferential 

power.   

 

This chief limitation was erased when probability was introduced into the SEQL algorithm for 

this research in counter-terrorism. Facts that didn‟t occur in every single case were no longer 

thrown away.  This meant that as many cases could be introduced to the generalization as 

needed, without too much loss of detail through abstraction.   

 

Table 5-2.  In (a), two generalizations made by SEQL without any probabilities are indistinguishable. 

In (b), the probabilistic generalizations contain much more information. 

(a) 

Generalization of 37 attacks by the Popular 

Front for Liberation of Palestine. 

 Generalization of 43 attacks by Sendero 

Luminoso 
(TerroristGroup genent1)  (TerroristGroup genent1) 

(InternationalOrganization genent1)  (TerroristAttack genent2) 

(eventOccursAt genent2 genent3)  (perpetrator genent2 genent1) 
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(b) 

Probabilistic Generalization of 37 attacks by 

the Popular Front for Liberation of Palestine. 

 Probabilistic Generalization of 43 attacks  

by Sendero Luminoso 
100% (TerroristGroup genent1)  100% (TerroristGroup genent1) 

100% (InternationalOrganization 
genent1) 

 100% (TerroristAttack genent2) 

100% (eventOccursAt genent2 genent3)  100% (perpetrator genent2 genent1) 

95% (perpetrator genent2 genent1)  91% (eventOccursAt genent2 genent3) 

89% (TerroristAttack genent2)  70% (CasualtyDesignatingPredicate 

genent4) 

84% (CasualtyDesignatingPredicate 

genent4) 

 67% (relationInstanceExists genent4 

genent2 genent5) 

81% (relationInstanceExists genent4 

genent2 genent5) 

 58% (CasualtyDesignatingPredicate 

genent6) 

78% (relationInstanceExistsCount 

genent4 genent2 genent5 genent6) 

 56% (relationInstanceExistsCount 

genent6 genent2 genent7 

genent8) 

73% (OrganismClassificationType 

genent5) 

 47% (relationInstanceExistsCount 

genent4 genent2 genent5 

genent8) 

51% (KillingByOrganism genent2)  44% (relationInstanceExistsCount 

genent4 genent2 genent7 

genent9) 

43% (relationInstanceExists genent7 

genent2 genent8) 

 44% (CasualtyDesignatingPredicate 

genent10) 

43% (organismKilled genent2 genent9)  42% (CapitalCityOfRegion genent3) 

38% (relationInstanceExists genent4 

genent2 genent10) 

 42% ((CityInCountryFn Peru) 

genent3) 

35% (MiddleEasternCountry genent3)  42% (OrganismClassificationType 

genent11) 

35% (IndependentCountry genent3)  30% (CertainDistantCountriesWithInt

erestsInTheHormuzArea-

HormuzArea-Topic genent12) 

35% (CountriesInTheSurroundingRegion

-HormuzArea-Topic genent3) 

 30% (LatinAmericanCountry genent13) 

27% (eventOccursAt genent2 genent11)  27% ((FoundingMemberFn NATO) 

genent12) 

27% (CasualtyDesignatingPredicate 

genent12) 

 27% (NuclearWeaponStateUnderNNPT 

genent12) 

 

Even the early, unpublished results of running SEQL (match threshold .7) on these cases showed 

a marked difference.  This preliminary test used a series of 3,379 relational descriptions of the 

terrorist attacks provided to us by Cycorp, Inc.  in the 2004 version of their ResearchCyc 

Knowledge Base.  The vocabulary of the knowledge base consisted of over 36,000 concepts,  
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over 8,000 relationships and over 5,000 functions, all constrained by 1.2 million facts.  The case 

descriptions varied widely in size from 6 to 158 propositions, with the average being 20.  The 

results of running SEQL demonstrated that generalizations of 30 cases or more, which all looked 

almost identical in the non-probabilistic version of the algorithm, now could be accurately 

distinguished (Table 5-2). 

 

From this generalization, we were able to build a Bayes Net from all of the cases.  This was 

done, as described in section 3.2.3.1, by using simulated annealing with random restarts to learn 

the optimal shape of the network according to a Bayes Information Criterion (Friedman and 

Yakhini, 1996) heuristic.  The lowest-scoring nodes were culled, and we show the largest subnet 

in Figure 5-1. 

 

 

Casualties 

CasualtyCount 

MidEastCountry 

CityInCountry 

CapitalCity 

Bombing 

Perpetrator 

Building 

IslamicTerrorists 

StateSponsoredGroup 

 

InternationalOrganization 

 

TerroristGroup 

 
Location 

Figure 5-1.  Bayes Net generated by a Whodunit Experiment 
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This probabilistic abstraction was taken to the ultimate level when we tried building a Bayes Net 

of the domain.  Since the procedure requires building a statistical model of a generalization, this 

meant making one large generalization of the entire domain.  That is, we tried running SEQL 

with a match threshold of 0 so that every case would be incorporated into one very large 

generalization. 

 

The resulting Bayes Net was published (Halstead and Forbus, 2005) as a proof of concept.  It 

was encouraging that the features which describe location were all closely connected, as were the 

features which describe the terrorist group.  All things considered, these preliminary results 

demonstrated a clear benefit from using the probabilistic version of SEQL and showed that the 

flattening process really did allow us to do successful statistical modeling of relational data. 

 

5.2 Answering Whodunit 

 

The results in the previous section were encouraging enough to explore further.  An important 

task for analysts in counter-terrorism is to come up with plausible hypotheses about who 

performed an event.  Details of these events often come in pieces at a time, and it is important to 

figure out possible suspects quickly and accurately, as well as to provide explanations for these 

suspicions.   

 

For example, recall the pre-election bombing in Madrid, Spain.  While the Spanish government 

originally claimed that the Basque Separatist group ETA was the most likely suspect, evidence 
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quickly mounted that Al Qaeda was very likely responsible.  Multiple, highly coordinated 

attacks, for example, are more similar to Al Qaeda's modus operandi than previous ETA actions.  

This is an example of what we call the Whodunit problem.   

 

5.2.1 Definition of the Whodunit Problem 

 

Stated more formally, given some event E whose perpetrator is unknown, the Whodunit problem 

is to construct a small set of hypotheses {Hp} about the identity of the perpetrator of E.  These 

hypotheses should include explanations as to why these are the likely ones, and be able to 

explain on demand why others are less likely.   

 

This is a difficult problem, but one which concisely expresses a key task that intelligence 

analysts perform.  We therefore define a more restricted class of Whodunit problems to work 

with: 

 Formal inputs.  We assume that the input information is encoded in the form of 

structured descriptions, including relational information, expressed in a formal 

knowledge representation system.  Note that we do not require uniform representations in 

each input; that is, we treat each case as simply a collection of arbitrary predicate calculus 

statements rather than as an object with predefined slots that may or may not be filled. 

 Accurate inputs.  We assume that the input information is completely accurate, i.e., that 

there is no noise. 



81 

 

 

 One-shot operation.  Once the outputs are produced for a given E, the system can be 

queried for explanations, but it does not automatically update its hypotheses 

incrementally given new information about E. 

 Passive operation.  The hypotheses are not processed to generate differential diagnosis 

information, i.e. “tells” that could be sought in order to discriminate between the small 

set of likely hypotheses. 

 Supervised learning.  We allow the system to train on a set of pre-classified examples.  

For some algorithms, this involves forming non-overlapping generalizations over those 

examples. 

 

The assumption of formal inputs is reasonable, given that producing such representations from 

news sources is the focus of considerable research in the natural language community these days.  

The assumptions of accurate inputs, of one-shot, passive operation, and of supervised learning 

are good starting points, because if we cannot solve this restricted version of the problem, it 

makes no sense to try to solve harder versions.    

 

The Whodunit problem is an excellent domain for exploring relationships between similarity and 

probability.  The input data consists entirely of arbitrarily high order symbolic relations with 

arbitrary structure between them.  This means we will have to pay careful attention to structure 

in order to get probabilities over the correct statements (i.e. those which uniformly correspond to 

the same concept within each case).  There is a very large number of records of terrorist attacks 
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on which to train, but there is also a large number of possible perpetrators to choose from during 

testing.   

 

The Whodunit experiments were designed to analyze how different analogical learning 

algorithms performed on the Whodunit problem, and also to verify whether we could build 

probabilistic generalizations that were accurate enough in their descriptions to produce correct 

results in such a complex, real-world domain.  

 

We used three criteria for bounding the size of the set of hypotheses n.  The most restrictive is 

producing only a single perpetrator, i.e., guessing directly who did it.  The least restrictive is a 

"top 10" list, rank ordered by estimated likelihood (for which we use the SME structural 

similarity score).  The middle ground is the "top 3" list, which has the virtue of providing both 

the best and some hopefully mind-jogging alternatives.  These criteria are motivated by 

discussions with members of the intelligence community. The best answer and top 3 criteria test 

for accuracy and near-misses.  The top 10 list is closer to what is desired by analysts, whose 

subsequent analyses and information collection would be focused by this set. 

 

5.2.2 The First Whodunit Experiment 

 

For the initial experiment, we used the same 3,379 descriptions of terrorist attacks that were 

described in section 5.1 and generated from the ResearchCyc knowledge base for those tests.  

These attacks had 450 different perpetrators between them.  Of these, 98 perpetrators were  
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chosen for the experiment, on the sole basis of having at least 3 attacks performed by them in the 

knowledge base.  The other perpetrators and their corresponding cases were discarded, along 

with any cases for which the perpetrator was unknown.  This left a total of 2,235 cases and 98 

perpetrators to use in the initial experiment. 

 

    Figure 5-2.  Inputs to Whodunit 

 

From each set of attacks by a given perpetrator, we pulled 

one case at random to serve as a test case.  The rest were 

used for training, as shown in Figure 5-2.  Three different 

learning strategies were then employed on the training data.  

This was done to test how probabilistic generalization 

compared to previous structural learning algorithms.   

 

The first strategy, MAC/FAC, was an existing algorithm for doing exemplar-based analogy to 

hypothesize the perpetrator.  It is designed to quickly find the most analogically similar exemplar 

from a large library of possible cases.  This is done by creating a content vector for each case 

describing the frequency of each predicate within it.  A simple dot product with the test case 

(probe) can be used to estimate the most similar cases, and from these SME can be used to do a 

more careful similarity measurement. 
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Figure 5-3.  Whodunit Strategy #1.  MAC/FAC returns the most similar exemplars. 

 
Pre-processing:  Generate a 

content vector based on predicate 

count for each case in the library. 

Step 1:  Retrieve the cases that 

have the highest dot product with 

the probe case. 

Step 2:  Make analogies between 

the probe and the chosen cases to 

find the most similar cases. 

Result:  Return the perpetrators of the most similar cases. 

 

Intuitively, this method corresponds to taking what one is reminded of when hearing about E as 

the most likely suspects.  People can be surprisingly biased about such decisions, e.g. the 

Spanish government stuck with its ETA hypothesis long enough to lose credibility.  People also 

have their own lives, with many other kinds of things in their memories. A cognitive simulation 

need not have either of those limitations.   

 

The second learning strategy focused on using the older, non-probabilistic version of SEQL, and 

the third strategy focused on using the new, probabilistic version proposed in this thesis.  In both 

cases, a generalization is built of the cases for each perpetrator.  Then analogy is used to find the 

generalization that is most similar to the test case. 
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Figure 5-4.  Whodunit Strategies #2 and #3.  SEQL returns the most similar generalizations. 

 

Pre-processing:  

Use analogy to 

build 

generalizations 

about the attacks 

performed by each 

perpetrator. 

Run-time:  

Compare the probe 

case to each generalization and return the most similar. 

Result:  Return the perpetrators of the most similar generalizations. 

 

 

While examples are important, a powerful aspect of human cognition is the ability to make 

generalizations.  These strategies are designed to reflect the use of that ability.  Generalizations 

are important because they strip away what is accidental, and thus highlight what is essential 

about a class of similar examples. 

 

The results of using all three learning strategies are shown as published (Forbus, et al. 2005) in 

Figure 4-5.  In returning only the closest exemplar, MAC/FAC did surprisingly well.  It 

identified the correct perpetrator 29% of the time and included it in its top 3 list 31% of the time.  

However, continuing to construct hypotheses beyond that point proved useless: no additional 

correct identifications were included.  On the other hand, looking for the best generalization did 

not do as well as MAC/FAC at zeroing in on a single best hypothesis, getting it only 18% of the 

time for SEQL without probabilities, and 23% of the time for the probabilistic version.  Both 

versions did slightly better than MAC/FAC on the top 3 list.  However, where generalizations 
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really seem to be adding value is in the top 10 list, where both versions of SEQL included the 

correct perpetrator 53% of the time. 

 

Figure 4-5.  Results of initial Whodunit Experiment. 

 
 

It is interesting that the higher-level abstractions generated by SEQL are simply not as good as 

finding the one most similar example overall in the data.  However, those same abstractions save 

the day in the long run, allowing over-arching patterns in the behavior of a given perpetrator to 

come through.  These patterns of behavior appear to be more similar from one perpetrator to 

another than the individual incidents are.  Hence, the correct pattern is not always found on the 

first attempt.  However, given enough choices, it makes more sense to observe the patterns, since 

paying attention to the most similar examples has a sharp drop-off in usefulness.  Whereas given 

only one choice, it makes sense to find the most similar example as a whole and go with it. 

 

We were surprised that the probabilistic version of SEQL did not perform much better than the 

original version.  Part of this was because, as section 4-1 (esp. Table 4-2) demonstrated, it 
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required approximately 30 cases for the generalizations in the older version of SEQL to really 

become indistinguishable.  In this domain, there was an average of only 22 cases per perpetrator, 

making the generalizations of many of the perpetrators still relatively coherent even without 

probabilities.  However, we hope that probabilistic SEQL allows us to go one large step further: 

to go beyond reductive learning and build statistical models of the values of entities and 

attributes within a generalization.  This was done and evaluated in a second experiment. 

 

5.2.3 The Second Whodunit Experiment 

 

Once the code for doing statistical learning of association rules was in place (section 3.2.3.2), we 

ran the Whodunit experiment a second time.  This time, non-probabilistic SEQL was left out of 

the evaluation and in its place we looked at rule learning as a fourth learning strategy.  Again, 

this required building one large domain-wide generalization.  Using the features extracted from 

this generalization, we learned a set of rules for predicting each possible perpetrator.  All 

possible rules were applied to the probe case, and those which fired were sorted by confidence 

 

Figure 4-6.  Whodunit Strategy #4.  Learn rules for the domain and apply them to the test case. 

 

 

 

Pre-processing:  Build a 

generalization and learn rules. 

Run-time:  Apply each rule to 

the probe case to generate 

hypotheses. 

Result:  Return the hypothesis 

with the highest confidence. 
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Another difference in running the second experiment was that more information had been 

entered about more cases.  In fact, Cycorp, Inc. had split off a separate knowledge base, dubbed 

the Terrorism Knowledge Base (TKB), just to house all the information.  The cases now varied 

even more widely in size, ranging anywhere from 4 to 762 facts, with the average being 24.  

Given the added information, we decided to increase the minimal number of cases per 

perpetrator from 3 to 6.  Every other aspect of the experiment was set up the same way as before.  

This provided us with 67 perpetrators and 2,215 terrorist attacks on which to train.    

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

The results of this second experiment are shown in Figure 4-7.  The rule learner does 

surprisingly well.  It is able to return the correct answer on its first guess more than 50% of the 

time.  SEQL finds as many correct answers in the long run, but is less certain in the beginning, 

providing the correct answer in its first guess only 30% of the time.  Finally, MAC/FAC does a 

little better than SEQL on its first guess.  Interestingly though, continuing to construct 

hypotheses from MAC/FAC beyond that point proved useless: very few additional correct 

identifications were included. 

Figure 4-7.  Performance of three learning strategies 
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The rules generated by the rule learner look appropriate when examined.  Examples of some of 

the rules it generates are in Table 4-3.  As can be seen, many of the rules keyed in to the location 

of the attack.  Nearly 40% of the rules generated refer to a specific location, and many more 

made a more general reference to the location, such as the term (ISA  ?LOCATION  CITY).  These 

location-based rules frequently had the highest confidence.  Despite a maximum length of 5, the 

average rule length needed was only 1.9 terms, with 75% of the rules generated having 2 or less 

terms.  This meant the risk of over-fitting the data with number of parameters was low.  

Similarly, the number of rules needed in a rule list was also low, averaging to 2.7 rules per 

perpetrator.  The average lift8 for rules was very high (131 for first-generation rules), and lifts 

reached high into the hundreds in some cases.  This is due again to a high output arity, causing a 

very high ratio of final to initial confidence.  

 

Table 4-3.  Sample of generated rules.    

A 45% correlation 

between the scores given 

by the rule learner and by 

SEQL indicated some 

similarity between the 

cases on which they 

succeed or fail.  Despite this, the number of input cases had a markedly greater effect on the rule 

learner than on SEQL (40% vs. 17% correlation).  All three algorithms improved with the 

                                                
8 Ratio of confidence to expected/initial confidence, where the latter is confidence of the rule nil => query, which in 

this case is the proportion of cases that were committed by the queried perpetrator. 

Some  Rules  Learned 

(IMPLIES (LOCATION ?ATTACK CAMBODIA)  

    (PERPETRATOR ?ATTACK DEMOCRATICPARTYOFKAMPUCHEA)) 

(IMPLIES (AND (LOCATION ?ATTACK PHILIPPINES) 

    (AGENTCAPTURED ?ATTACK ?AGENT)) 

    (PERPETRATOR ?ATTACK MOROISLAMICLIBERATIONFRONT)) 

(IMPLIES (AND (AGENTCAPTURED ?ATTACK ?AGENT) 

               (ISA  ?ATTACK  AMBUSH)) 

    (PERPETRATOR ?ATTACK REVOLUTIONARYUNITEDFRONT)) 

(IMPLIES (AND (THEREEXISTS ?X  

           (AND  (ISA  ?X  BOMB) (DEVICEUSEDIN  ?X  ?ATTACK))) 

         (ISA  ?LOCATION  CITY)) 

     (PERPETRATOR  ?ATTACK  BASQUEFATHERLANDANDLIBERTY)) 
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number of cases.  However, the first two required only about 15 cases to dramatically improve 

their success rate, whereas the rule learner required 30 cases to really get going.  Likely, this is 

because the rule learner tries to capture relationships between features, whereas the other two 

algorithms only do reductive learning.  All three algorithms are robust to loss of information in 

the training set, degrading reasonably. 

Figure 4-8.  Performance with respect to the number of training examples 

 
 

Overall, we were surprised by how well all three strategies performed, even the non-statistical 

ones, given the difficulty of the problem.  Although each case contained an average of only 24 

facts, there are over 100 features in the dataset.  This meant that for any given record, over 75% 

of the features were missing.  This made for a very sparse dataset.  Fortunately, the closed world 

assumption that was made for existential features seems to have held up.  Yet, when we consider 

that the arity of the output attribute was 67, it seems that those 100 features may not be enough.  

A random algorithm would select the correct perpetrator 1.5% of the time, and would get it right 
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with ten guesses only 15% of the time.  Therefore, we believe that success rates of over 50% on 

the first guess are quite good. 

 

In conclusion, the Whodunit experiments demonstrated marked success for all three strategies on 

a difficult problem.  The rule learner in particular performed well at returning the correct answer 

as its first choice, although it generally required more examples to do so.  More importantly, they 

demonstrated that the method proposed here for converting from relational, predicate calculus 

representations to feature-based representations and back again was viable and allowed us to 

apply statistically sound learning methods to complex, real world domains.   

 

5.3 Reduced Vocabularies 

 

Identifying the appropriate amount of detail in the input data is a problem for nearly every 

application of machine learning.  As tempting as it is to learn from all of the available data, in a 

real-world application most of it will be irrelevant or redundant.  Including such extraneous 

detail in an analysis will not only slow down the process, but may also lead to over-fitting and 

hence learning of an incorrect model.  Clearly though, a balance must be found, since with too 

little data it becomes unlikely that anything can be learned at all. 

 

The problem is perhaps even worse when dealing with relational data.   Since most relational 

learning algorithms operate by comparing across instances of the relation itself, redundant 

relations become particularly dangerous.  The more expressive a vocabulary, the more ways 
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there may be to express the same information.  Unless all such language redundancies are 

detected ahead of time, relational learning algorithms will suffer. 

 

The issue is also particularly relevant whenever a learning system is to be deployed in any sort of 

real-world environment.  Such environments tend to be brimming with unrelated observations.  

Robotic systems for example, will wisely choose to focus on only a few sensory inputs, which 

they can analyze carefully, rather than a cursory analysis of many inputs which would only 

confuse the picture.  A similar application is the automatic extraction of knowledge from text.  

This is becoming more popular as the internet grows, and it is crucial to identify which 

relationships are useful to know, and which convey practically the same information. 

 

In summary, we felt it was important for this research to explore the proper level of abstraction 

for the vocabulary itself.  One reason is to help filter the less relevant information.  A still more 

important reason is to eliminate redundancies.  Since generalization over relations is a key 

component of the algorithm, and since everything relies on the ability to find analogical 

correspondences by comparing predicates, it is important to ensure that those predicates are 

expressed at the proper level of abstraction for the correct correspondences to be found.  That is, 

predicates which are equivalent for the purpose of the domain should be written equivalently. 

 

We therefore examine the contrasting effects between using a large, very detailed but often 

redundant vocabulary, and a small, consistent, but extremely simplified one on the Whodunit 

domain.  To do this, we employ two externally designed reduced relational vocabularies (RRVs).  



93 

 

 

The cases from the previous Whodunit experiment were translated into each of these 

vocabularies, and the experiment was done again using the new representations.  Then each 

vocabulary was evaluated based on both compression and performance.  This research was 

motivated and assisted in large part by Michael Witbrock and Robert Kahlert of Cycorp, Inc., to 

whom we owe special acknowledgement. 

 

Figure 4-9.  Experimental Test Harness for evaluating RRVs 

 

5.3.1 The Vocabularies 

 

The two vocabularies were both chosen for their stated design goals of natural language 

understanding and improving the feasibility of automatic extraction of knowledge from text.  

This in turn was done for the long-term goal of building an intelligence analysis tool which 

would read and track stories such as those in the counter-terrorism domain, as they were 
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published, giving the analysts the ability to model and predict these events in real time while 

freeing them from the constraints on human memory and attention.   

 

Additionally, one of the vocabularies – Polaris  (Bixler, Moldovan and Fowler 2005) – had the 

further design goal of choosing predicates that would have the broadest semantic coverage with 

the least amount of overlap.  As the designers of the vocabulary, Language Computer 

Corporation, put it: “While no list [of predicates] will ever be perfect… this list strikes a good 

balance between being too specific (too many relations making reasoning difficult) and too 

general (not enough information to be useful).”  We shall see that this added goal makes a very 

large difference. 

 

The Polaris vocabulary contains 40 predicates based on semantic relations: abstractions of the 

underlying relations between concepts.  Semantic relations can occur in natural language within 

a word, between words, between phrases, and between sentences.  For a better understanding, 

consider this example given by Bixler, Moldovan, and Fowler:   

An example of semantic relations is the sentence “He carefully disarmed the letter 

bomb.” The compound nominal letter bomb alone contains at least 5 semantic 

relations: letter bomb IS-A bomb, letter bomb IS-A letter, letter is the 

LOCATION of the bomb, bombing is the PURPOSE of letter bomb, and letter is 

the MEANS of bombing. The sentence also includes several other relations: He is 

the AGENT of disarm; carefully is the MANNER of disarmed; and the letter 

bomb is the THEME (or object) of disarmed. Together, these semantic relations 

can give a structured picture of the event: who was involved, what was done, and 

to what; and what was the purpose, etc. of the object involved. 
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Of the 40 predicates found in Polaris, we only required 23 to describe the information present in 

the Whodunit Domain.  Examples of predicates that were not used include kinship, synonym, 

companion, justification, and explanation.  A full list of the predicates that were used is 

given in Table 4-4. 

 

Table 4-4.  Polaris Predicates needed for Whodunit 

Agent Goal Result Theme 

Predicate Purpose Location Time 

Measure Property Part Cause 

Instrument Topic Belief Associated 

Reason Source Experiencer Recipient 

Possible Entails Isa  

 

The original representations of the data consisted of 2,581 predicates.  Discarding facts which 

were not translated9 left a total of 2,113 original predicates.  Therefore the translation into 22 

predicates caused a 99% reduction in vocabulary size and a mean knowledge compression (the 

number of specific relations encompassed by an abstracted relation) of 105.7. 

 

The other reduced vocabulary that we tried – Underspecified-Cyc – was a layer of abstraction 

built into the Cyc knowledge base itself.  This vocabulary also had the goal of simplifying lexical 

semantics and natural language parsing.  Each of the predicates in this vocabulary exists to free 

the NL parser from needing to specify exact semantic relationships when this responsibility 

                                                
9
 Either because they couldn‟t be translated or were irrelevant.  See next section for details.  
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might be better handled post-parse by knowledge-based and contextual reasoning.  Again, 

consider this example given in the Cycorp documentation: 

For instance, (Contains-Underspecified love Siddhartha-Gautama) is an 

underspecified (and conventionally metaphoric) means of stating “Siddhartha is in love.”  

Inference rules which encode the common-sense relationship between abstract states and 

containment are responsible for producing the fully specified assertion (feeling-type-

experienced Siddhartha-Gautama love) from this underspecified form. 

 

Thus, the goal of this vocabulary was to align the predicates to natural human language use in 

order to simplify natural language processing.  However, this vocabulary did not have the 

additional goal stated for Polaris of choosing predicates which had the broadest semantic 

coverage with the least amount of overlap.   

 

The version of the Underspecified-Cyc vocabulary that we used contained 55 predicates.  Again, 

not all of the predicates were needed to describe the information in the Whodunit domain.  

Predicates such as orientation, without, under, off, and along were not needed.  This left us 

with a list of 20 predicates, which are shown in Table 4-5. 

 

Note that unlike the Polaris vocabulary, many of the predicates in this vocabulary do seem to 

have some semantic overlap.  For example, at, on, and in are all various ways of describing 

relative position or containment.  The nuances between these predicates are not very relevant to 

this domain.  Worse still, some of the translations (described in the next section) end up merging 

concepts that really are relevant distinctions.  For example, location and date may both be 

http://www.cycfoundation.org/concepts/contains-Underspecified
http://www.cycfoundation.org/concepts/Love
http://www.cycfoundation.org/concepts/SiddharthaGautama
http://www.cycfoundation.org/concepts/feelingTypeExperienced
http://www.cycfoundation.org/concepts/feelingTypeExperienced
http://www.cycfoundation.org/concepts/SiddharthaGautama
http://www.cycfoundation.org/concepts/Love
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described by the predicate in, since an attack might occur in a given city/country as well as in a 

given month/year.  One would expect that this might actually make the redundancy problem 

worse, and the results do bear this out. 

 

Table 4-5.  Underspecified-Cyc Predicates needed for Whodunit 

Connects Contains AwareOf About 

Possessive By With Measure 

Affects Disconnects Expresses Releases 

Related After At On 

In Location During Isa 

 

Again, some of the original predicates were not translated, leaving a total of 2,198 original 

predicates that were compressed down to 20.  Although this causes the same 99% reduction in 

vocabulary size, it caused a mean knowledge compression of 332.6, three times higher than that 

of Polaris.  This is reflects the fact that the more frequent predicates were often compressed 

more. 

 

5.3.2 Translation 

 

Two methods were used to translate from the original representations into the new vocabularies.  

Both methods take advantage of a hierarchy of predicates that was already built into the Cyc 

Knowledge Base, of which the Terrorist Knowledge Base is a subset.  This hierarchy is 

instantiated by another predicate, genlPred.  For example, the KB assertion (genlPred 
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eventOccursAt situationLocation) indicates that the predicate eventOccursAt is one of a 

set of predicates subsumed by the more generic predicate situationLocation. 

 

For translating Underspecified-Cyc, the new vocabulary was already built directly into this 

hierarchy.  Thus, the translation was mostly a matter of simple lookup.  The only exception is 

that one new predicate, Measure, was introduced to describe the number/amount of something.  

Translation of this new predicate was done manually, following the same conventions that were 

used to translate Polaris. 

 

For Polaris, translation was done by manually encoding a set of translation rules.  Note that each 

new, reduced predicate directly corresponded to any of a set of original predicates.  Furthermore, 

these original predicates usually had some common parentage in the genlPred hierarchy.  

Therefore it was not too difficult to write a handful of rules for each of the new predicates, 

describing under what circumstances it should occur, in terms of hierarchical collections of the 

original predicates. 

 

For example, the following rule handles intentional actions: 

 (TRANSLATE (OR (DONEBY ?EVENT ?AGENT) (EVENTPLANNEDBY ?EVENT ?AGENT)) 

     (AND (AGENT ?EVENT ?AGENT) (GOAL ?AGENT ?EVENT))) 

 

The above rule fires on any facts in the original Cyc representation whose predicates are either 

DONEBY or EVENTPLANNEDBY, or are specializations of DONEBY or EVENTPLANNEDBY.  Each such fact is 
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translated into two new facts: the first describing that the agent played some causal role in the 

event, and the second describing that the event was in fact a goal of the agent. 

Some rules are designed to be chained together.  Thus, some facts are actually translated by the 

successive application of more than one rule.  An example of this can be seen in Table 4-6.  

Some rules also introduce variables.  For example, (NUMBEROFHOSTAGESTAKEN  ATTACK  3) would 

translate as the first row of the table, introducing the variable ?AGENT.  A stranger example 

because it introduces artificial structure is the statement (CLAIMS  ALQAEDA  THREAT23).  This is 

actually translated into the constraints of the Polaris vocabulary as (SOURCE  ?INFO  ALQAEDA) and 

(TOPIC  THREAT23  ?INFO).   

 

Table 4-6.  An example of the translation process 

Cyc (THEREEXISTEXACTLY  3  ?AGENT 
      (AGENTCAPTURED  ATTACK  ?AGENT)) 

Rule 1 
(TRANSLATE 
   (THEREEXISTEXACTLY  ?NUMBER  ?VARIABLE  ?FACT) 
   (AND  (MEASURE  ?VARIABLE  ?NUMBER)  ?FACT)) 

Rule 2 

(TRANSLATE 
   (OBJECTACTEDON  ?EVENT  ?OBJECT) 
   (AND  (THEME  ?EVENT  ?OBJECT) 
            (PREDICATE  ?OBJECT  ?PREDICATE) 
            (RESULT  ?EVENT  ?PREDICATE))) 

Polaris 

(MEASURE  ?AGENT  3) 

(THEME  ATTACK  ?AGENT) 

(PREDICATE  ?AGENT  AGENTCAPTURED) 

(RESULT  ATTACK  AGENTCAPTURED) 

 

A total of 38 translation rules were encoded, which are listed in full in Appendix A. 
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Note that since the original Cyc vocabulary is much richer, many of the facts in the original data 

must be represented by more than one fact upon translation.  Specifically, the average translation 

rule in Polaris turns one fact into 1.3 new facts.  Overall, the number of facts in the domain went 

from 55,816 to 94,880, causing the average number of facts in a case to go up by 70%.  This 

includes 1,967 facts that were not translated, 93% of which were irrelevant.  The translation 

therefore did help to get rid of irrelevant information.  The 135 facts that could not be translated 

but were relevant all used predicates that had not been formally identified and so could not be 

handled by Polaris, such as (PREDICATENAMEDFN "RELEASED UNHARMED" 

CASUALTYDESIGNATINGPREDICATE). 

 

For Underspecified-Cyc, the story was much the same.  The number of facts increased by 86% to 

103,852.  1,871 facts were not translated, only 42 of which were actually relevant.  Thus it 

actually did a slightly better job of filtering out irrelevant information without discarding too 

many of the relevant facts.  This is because even some of the informal predicates still fell into the 

Underspecified-Cyc hierarchy that was established in the KB itself.  All of these statistics are 

summarized in Table 4-7 in the next section. 

 

5.3.3 RRV Results 

 

Once all of the original data was translated into the two new vocabularies, we simply re-ran the 

Whodunit experiment on each of the two new representations.  We performed exactly the same 
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experiment: all of the same assumptions from the previous Whodunit experiment, and the same 

evaluation criteria, were applied again to the new data. 

 

We use a few compression statistics to evaluate each vocabulary.  Recall that knowledge 

compression measures the number of original, specific relations that are covered by a new, 

abstracted relation.  We also look at the increase in the number of facts, which is equal to the 

number of abstracted relations produced by each specific relation present in the data.  To get a 

sense of what the translation does to the data structurally to make learning easier or harder, we 

measure the change in average information gain, i.e. how much knowing one feature helps us to 

know the others.  Finally, we look at how much better or worse the new vocabulary actually 

performed on the Whodunit problem. 

 

The results of the experiment are summarized together with these compression statistics in Table 

4-7.  The table shows that using a reduced vocabulary creates a trade-off: one gives up small 

sizes in exchange for extra conciseness.  The hope is to eliminate redundancy and irrelevant 

information and thus improve learning. 

 

We see that while both vocabularies were good at filtering irrelevant information (especially 

Underspecified-Cyc, as described in section 4.3.2), only one of them actually improved learning 

performance.  This is undoubtedly because the Underspecified-Cyc vocabulary actually made the 

redundancy problem worse, as described in section 4.3.1. 
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Table 4-7.  Side-by-Side Comparison of Polaris and Underspecified-Cyc 

Originally: 55,816 total facts 

Polaris Underspecified Cyc 

94,880 total facts (70% increase) 

1,832 irrelevant facts were filtered 

135 facts could not be translated 

23 predicates abstracted from 2,113 

Mean knowledge compression: 105.7 

Mean information gain: +23% 

Mean performance gain: +6% 

103,852 total facts (86% increase) 

1,829 irrelevant facts were filtered 

42 facts could not be translated 

20 predicates abstracted from 2,198  

Mean knowledge compression: 332.6 

Mean information gain: -17% 

Mean performance gain: -29% 

 

 

We should note here that neither of these two vocabularies were designed with this experiment in 

mind.  This experiment has no relation to how the two might perform on their stated goals of 

doing natural language processing.  However, it does seem clear that the additional goal of 

Polaris to choose predicates which would have the broadest semantic coverage with the least 

amount of overlap is very important to doing successful learning. 

 

A more detailed investigation of the performance on each of the three learning strategies can be 

seen in Figure 4-10.  Unfortunately, Underspecified-Cyc made the results worse for all three 

learners.  However, the Polaris vocabulary improved two out of the three learners tested.  

MAC/FAC improved by 20% (p-value .045), and the Rule-Learner improved by 13% (p-value 

.015).  Only SEQL suffered, worsening by 10% (p-value .004). 
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Figure 4-10.  Results of running Whodunit on the reduced vocabularies 

a) Polaris b) Underspecified-Cyc 

 
 

Closer examination reveals that the SEQL algorithm was hard-pressed.  In the original 

vocabulary, SEQL generalized from case descriptions which contained an average of 24 facts 

each.  However, 16% of those facts had to be discarded to preserve memory as dimensionality 

(case description size) increased with abstraction.  Under the reduced vocabulary, which is 

already an abstraction of the original data, this information loss is compounded.  When the 

average description size increases by 70%, so does the number of facts discarded by SEQL 

during generalization, which rises to 28%. Furthermore, the facts which remain carry less 

information than they did under the original vocabulary (the average reduced predicate 

corresponds to 106 different predicates from the original vocabulary). 

 

However, it is interesting that the Rule Learner outperformed SEQL, despite relying on SEQL to 

create features from a generalization.  This is because of the advantage that the rule-learner gets 

from higher-order learning.  The added conciseness of the reduced vocabulary makes it easier for 

the rule-learner to select arguments that should serve as the values of a feature.  A much higher 

proportion of the features become characteristic features, and the average arity increases by 
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250%.  This plethora of feature values gives the rule learner more grist by having more relevant 

options to consider than before.  Further analysis shows that when features are treated as 

existential and allowed only two values again (as 84% of them had under the original 

vocabulary), the rule-learner reverts to almost SEQL-like levels of performance. 

 

We therefore conclude that reduced vocabularies may not be advisable to use in an algorithm 

which already relies heavily on abstraction (e.g. learning by generalization alone), but that a 

well-chosen reduced vocabulary is likely to improve those learning algorithms which are known 

to do well with large amounts of data (i.e. high dimensionality) and which can take advantage of 

the extra conciseness that it provides. 

 

In summary, we find that rerepresentation can help to simplify and produce better results.  It 

certainly makes it easier to filter irrelevant information.  And a carefully chosen representation 

can go a long way towards improving learning by reducing redundancies.  However, a reduced 

vocabulary also increases the amount of data and abstraction, which can hurt learners which do 

not handle these things well.  All in all though, the correct choice of representation is a very big 

factor in determining the success in learning.  Ideally, predicates should be simple and few, 

encompassing all of the relevant ideas with minimal amount of overlap. 

 

Note that Jin Yan et al. (2003) proposed a theory of rerepresentation in analogical matching 

which could potentially be useful for this scenario.  Their work might be extended into an 
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automated rerepresentation technique that would be useful for the generalizations produced by 

this research. 

 

6 Comparison to other Algorithms 

 

In addition to the Whodunit experiments, we also tested the performance of SEQL against 

several other popular techniques for doing statistical relational learning.   

 

The first stage of the learning algorithm, generalization, was compared to other algorithms by 

several researchers other than myself.  For instance, in (Lockwood et al, 2006), it was shown that 

SEQL could be used to learn human linguistic prepositions (e.g. “in”, “on”, “above”) from 

automatically analyzed sketches.  Lovett (Lovett et al, 2006) and Deghani (Deghani and Lovett, 

2006) also used SEQL to do category learning in the domains of sketching and music, 

respectively.  Furthermore, they each demonstrated that SEQL could learn these categories from 

at least an order of magnitude (and often two) fewer training cases than other learning algorithms 

had required.   

 

Some researchers have also tried alternative means of solving the Whodunit problem addressed 

in Chapter 5.  It was described in that chapter how both the generalization and model-learning 

stages of our algorithm were tested on the Whodunit domain with impressive results.  Others 

who have tried to implement Domingos‟ relational Markov Logic Networks (Richardson and 

Domingos, 2005) -- a popular alternative discussed in the Background and Related Work 
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chapters -- to solve this domain found that the explosive search space of the MLN required too 

much memory to even finish the problem
10

. 

 

However, in all of these scenarios, SEQL was used to do supervised learning only.  In this 

chapter, we compare the unsupervised learning aspects of our approach to three state-of-the-art 

alternative algorithms for relational clustering.  We compare our performance to a Bayesian 

modeling approach called Infinite Relational Models (IRMs) developed by Kemp and 

Tennenbaum (Kemp and Tenenbaum, 2006) on three domains, and also to Markov Logic 

Networks (MLNs) (Singla and Domingos, 2006) and Probabilistic Relational Models (PRMs)  

(Bhattacarya and Getoor, 2005) on four datasets from a popular citation matching domain. 

 

6.1 Comparing Generalization to IRMs 

 

In their paper on Infinite Relational Models (Kemp and Tenenbaum, 2006), Kemp and 

Tenenbaum introduce IRMs as a means of clustering relational data.  It works by treating each 

cluster as a generative model of each relation; i.e., the probability that a relation will be true for a 

given sequence of arguments/entities is determined by which cluster the sequence falls into.  

While this means that the IRM actually clusters permutations of entities rather than individual 

entities, clusters of the latter can still be obtained by analysis of the composition of the former.   

 

                                                
10

 Michael Witbrock, personal correspondence 
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A key feature of the IRM is that despite using the simple potency of Bayesian modeling, it is 

able to determine for itself the number of clusters by using a prior induced by a Chinese 

Restaurant Process (Pitman 2002).  However, we believe IRMs to have serious drawbacks in 

relation to generalization via SEQL in that IRMs are forced to search over every permutation of 

entities, and also that the data must be transformed into a "flattened", functional space which, 

without SEQL, requires an explicit relational schema and limits the expressiveness of the 

representations. 

 

6.1.1  The IRM Experiments 

 

The comparison to Kemp‟s work was done across three different domains, all of which were 

presented in Kemp's original paper.  The first and simplest domain involved clustering 50 

animals based on 85 binary attributes used to describe them.  The attributes were collected in a 

psychological experiment (Osherson et al., 1991).  In the second domain, we looked at clustering 

members of the Alyawarra tribe of Central Australia, based on the highly complex relationships 

they use in their own kinship system (Denham, 1973).  Thus, this domain examined the 

clustering of relations (26 of them) rather than attributes.  In the final domain, we examined a 

medical ontology (McCray, 2003), containing 135 entities representing concepts in biomedicine, 

described by 46 attributes and 49 binary relationships.  All three domains are described in more 

detail in the original paper by Kemp. 

 

On all three domains, clustering was done using SEQL, wherein as described in Chapter 3, the 

distance metric for finding the clusters is the analogical similarity score returned by SME, with 
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modifications as given in 3.3 for calculating the similarity between two generalizations (i.e. 

clusters).  However, note that since the cases do not occupy a continuous metric space, the 

clustering algorithm must rely on the distance between cases and/or clusters alone.  This rules 

out algorithms such as K-means, which would require a Cartesian space in order to explicitly 

represent the points between cases.  Beyond this constraint, any agglomerative clustering 

algorithm can be used. 

 

For purpose of comparison in this experiment, we demonstrated three such algorithms.  The first, 

the psychologically plausible GEL, was presented in section 3.2.2 and used in the Whodunit 

experiments of Chapter 5.  It is a greedy algorithm which operates in O(n*log(n)) time, where n 

is the number of cases.  It tries to merge each successive case with the clusters (i.e. 

generalizations) generated before it, from largest to smallest, until it finds one that exceeds the 

given similarity threshold; or if it doesn‟t find one, it simply becomes a cluster of one, and goes 

on to the next case. 

 

The other two algorithms that we used were the standard and well-accepted Nearest-Neighbor 

and Quality Threshold (QT) clustering algorithms.  In contrast with GEL, nearest-neighbor 

ignores the order of the cases and simply merges the two closest clusters and/or cases until there 

are no pairs left that match better than the given threshold.  QT builds a hypothetical "ideal" 

generalization of each case by incorporating every case which is more similar than the given 

threshold.  It then accepts the largest of these generalizations as truth, removes those cases from 

further consideration, and repeats until no more matches better than the threshold can be found. 
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6.1.2  Results of comparison to IRM 

 

The first domain, describing binary attributes of animals, did not have a known ground truth.  

Therefore, we have only the IRM results for a basis of comparison.  However, it is not a difficult 

domain and so easy to inspect visually.  Of the three clustering algorithms (GEL, nearest-

neighbor, and QT), nearest neighbor performed the best here.   

 

Table 6-1.  Some clusters learned from animal feature data (a), and a comparison to the IRM model for 

clustering (b). 

a)         b) 

  

  

 

 

 

 

Some of the clusters that nearest-neighbor returned are shown in Table 6-1(a).  In comparison to 

the infinite relational model, it performed nearly identically, with a 0.81 Adjusted Rand Index 

(Hubert and Arabie, 1985) between them.  An example of the kind of difference between them is 

that, whereas the IRM grouped all of the aquatic animals together, our analogy-based nearest-

neighbor algorithm split them into two groups: one for blue whales, humpbacks, and walruses, 

and the other for killer whales (a type of dolphin), dolphins, and seals.  The IRM and nearest 

neighbor algorithms also both settled on a count of 12 clusters.  (In addition, Kemp reported that 

siamese cat, persian cat, chihuahua, 

collie, german shepherd, dalmation 

antelope, deer, giraffe, zebra, horse 

gorilla, monkey, chimpanzee 

blue whale, humpback, walrus 

killer whale, dolphin, seal 

 Adj. Rand Index 

(to IRM results) 

Number 

of clusters 

GEL 0.66 17 

NN 0.81 12 

QT 0.61 21 
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two surveys of human subjects produced 10 and 13 clusters).  Table 6-1(b) shows how closely 

each of the three algorithms matched the IRM. 

 

In the Alyawarra kinship domain, just as Kemp did, we created a “ground truth” partition of 16 

clusters based on demographic data, against which to compare the learned partitions.  Each 

person was assigned to one of these clusters based on their gender, their age (older than 45), and 

their kinship section. 

 

The results for this domain can be seen in Table 6-2.  Again, the nearest neighbor algorithm 

outperformed the other two, with a 0.46 Adjusted Rand Index to the ground partition.  However, 

the IRM approach managed to do better than all three on this domain.  Still, it is interesting that 

each cluster generated by the nearest neighbor algorithm was almost entirely exclusive to a 

single kinship section: the average kinship section consistency within a cluster was 92%. 

 

For the final, medical ontology domain, we again compare the results to the same ground 

partition used by Kemp: a 15-cluster partition of the concepts, created by domain experts 

Table 6-2. Comparison of algorithms for learning from binary kinship relationships. 

 

 Adj. Rand Index 

(to ground truth) 

Number 

of clusters 

GEL 0.28 32 

NN 0.46 32 

QT 0.44 17 

IRM 0.59 15 
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(McCray et al. 2001).  Again, we find that nearest neighbor did the best, but this time the QT 

algorithm managed to tie it.  Also, both algorithms performed better than the IRM on this more 

complex dataset. 

 

 

 

 

 

 

 

 

In summary, on all three domains, we compared our results to those of Kemp, and found them to 

be very similar.  Using an adjusted rand index to measure the difference from the “correct” 

clustering, we found that we did almost identically in the animal domain, slightly worse in the 

Alyawarra domain, and slightly better in the medical ontology domain.  This third domain was 

the most complex of the three, providing the greatest relational structure, from which we feel our 

analogy-based algorithm was able to obtain an advantage.   

 

Of the three clustering algorithms that we employed, Nearest-Neighbor performed the best.  

However, we should note that the GEL algorithm, in its reliance on the order of the inputs, is 

designed more to simulate human learning than to produce optimal results.  Nonetheless, the 

SEQL system can utilize whichever algorithm is more appropriate for the task at hand. 

Table  6-3.  Comparing the analogical algorithms to IRM on a more complex domain. 

 

 Adj. Rand Index 

(to ground truth) 

Number 

of clusters 

GEL 0.49 23 

NN 0.69 22 

QT 0.69 30 

IRM 0.53 14 
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Finally, by using SEQL, we were also able to go a step further and use analogical flattening to 

learn rules for the clusters -- something which the IRM model cannot do.  For example, we 

learned that the animal cluster containing antelope, deer, giraffe, zebra, and horse could be best 

distinguished by the antecedent (and (hooved ?animal) (fast ?animal)).   

 

6.2 Comparing Generalization to MLNs and PRMs 

 

We also compared the results of our approach on the popular citation matching problem to those 

produced by MLNs and PRMs.  More structure, and especially more complex, higher-order 

relational structure, tends to improve SME‟s performance rather than degrading it (although the 

worst-case is still O(N
3
log(N))).  However, SME has rarely been studied in domains like citation 

matching, where the amount of structure is minimal, which makes this problem particularly 

interesting. 

 

We experimented on four databases, two of which were tried by Singla and Domingos (2006) 

using MLNs and two of which were tried by Bhattacarya and Getoor (2005) using PRMs.  Each 

record of each database represents a document from technical research literature.  Each 

document also has a title and an author and, in some of the databases, a venue, all represented by 

other entities in the form of strings.  The goal then is simply to determine which entities actually 

refer to the same document.  In our implementation, this means ending up with one 
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generalization per document, after clustering.  We also perform the same entity resolution task 

on authors. 

 

6.2.1  The entity resolution procedure 

 

The strings representing the document titles are all normalized during pre-processing using the 

Porter stemmer (1980) together with a stop-list.  For example, the words "computer," 

"computing," and "computation" all become "comput" in order to facilitate comparison.  Singla 

uses the same pre-processing steps as well in his experiments. 

 

However, the real task is to match strings despite missing or rearranged letters or words.  To do 

this, we add a little more structure to the domain by adding relations to further describe the 

author, title, and venue strings.  In order to precisely replicate the pre-processing of Singla‟s 

work, we would like to use the exact same relations as they did.  That is, there is a relation 

hasWord tying word entities to the strings, and also a relation hasTrigram tying every 3-letter 

substring within a word to that word.   

For example, if the word "least" is in the title of a citation, then Singla would include the 

following facts in its case description: 

(hasTitle document7 title7) 

(hasWord title7 "least") 

(hasTrigram "least" "lea") 

(hasTrigram "least" "eas") 

(hasTrigram "least" "ast") 
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The only change that we make is to transpose the second argument into the predicate.  We do 

this because the SME matcher only pays attention to the relational structure of facts that refer to 

an argument, not to the argument's name or spelling.  Since we would like the trigram "lea" in 

one case to only match to the trigram "lea" in other cases, we need to make sure that SME 

notices the spelling.   

 

We do this by rerepresenting the facts as shown in (a) below.  Since these facts concern 

collection membership, and SME treats collections as predicates, it in turn sees the facts as 

shown in (b).  Since SME only matches predicates which are identical, and since the syntax of 

the arguments that we care about now appear in those predicates, we expect SME to only match 

those facts which contain identical trigrams to each other. 

 
Table 6-4.  Examples of facts used for citation-matching 

   a)   Standard Representation                   b)  Transposed for better structure-matching 

(hasTitle document7 title7)  (hasTitle document7 title7) 

(isa title7 (PhraseWithWordFn "least"))  ((PhraseWithWordFn "least") title7) 

(isa "least" (WordWithTrigramFn "lea"))  ((WordWithTrigramFn "lea") "least") 

(isa "least" (WordWithTrigramFn "eas"))  ((WordWithTrigramFn "eas") "least") 

(isa "least" (WordWithTrigramFn "ast"))  ((WordWithTrigramFn "ast") "least") 

 

For the primary goal of the experiment, determining which document citations refer to the same 

document, we construct a single case for each citation.  This case consists of the facts describing 

the title, venue, and primary author, like those shown above.  Note that in other scenarios, where 
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we would also like to test how well it does at determining which strings refer to the same author, 

title, or venue, we simply include only the facts referring to that field. 

 

Once all of this pre-processing is done, then it is simple enough to run SEQL on the cases we 

have created.  It will merge those citations that it believes to be most similar into generalizations.  

At the end, we can label each generalization to be a hypothetical document entity, which all of 

the members of the generalization cite. 

 

6.2.2  The citation resolution experiments 

 

For each of the four databases, we ran the clustering algorithm on up to seven different tasks.  

The primary task was to correctly identify which document citations were actually referring to 

the same document.  We also tried the algorithm on the secondary tasks of doing the same kind 

of cluster identification for the author, title, and venue fields.  That is, determining which 

different spellings of an author actually referred to the same person, etc.  Finally, we also tried 

each of these last three tasks with the added information gained from the hypotheses it had 

already formed about the document matches.  This was to test whether the algorithm was making 

an accurate hypothesis set right away, or whether bootstrapping it with supplemental case facts 

gleaned from earlier hypotheses would provide any additional benefit.   

 

As shown in the previous section, case construction for the primary task entails generating facts 

which describe the words and trigrams present in each of the author, title, and venue fields for 
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each document, as well as a fact that links the field to the document via the hasAuthor, hasTitle, 

or hasVenue predicate.  For the secondary task of resolving these individual fields, we include 

only the facts for the words and trigrams of the given field.  For the final task, we add a single 

fact to each of these latter cases that describes to which document generalization the citation was 

hypothesized to belong.  For example, we would use (isa title23 (ElementOfFn generalization4)) 

to mean that SEQL had put the 23rd document citation into the 4th generalization.  This gives 

SEQL an incentive to match title23 with the title of other documents put into the same 

generalization. 

 

Not every database contained fields for all three of author, title, and venue.  On these databases, 

we ran only those tasks for which the corresponding field was present.   

 

We compare SEQL to PRMs on the Cora and Bibserv databases.  The Cora database is a 

collection of citations to computer science research papers from the Cora Computer Science 

Research Paper Engine.  We used the version of the database that had been processed and 

segmented by Bilenko and Mooney (2003) and then cleaned up by Singla and Domingos (2006), 

since we compare to their results.  This version contains 1,295 citations to 132 unique 

documents, and includes author, title, and venue fields.  The Bibserv database is a random subset 

of 10,000 records from the public repository of about half a million pre-segmented citations 

available at Bibserv.org.  This subset contains 21,805 citations, and also includes all three 

subfields. 
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We compare SEQL to MLNs on the Citeseer and arXiv databases.  The Citeseer database was 

originally created by Giles et al. (Giles, Bollacker, and Lawrence 1998) and contains citations to 

papers from four different areas of machine learning.  It has 2,892 citations to 1,504 documents 

and 1,165 authors.  The arXiv database was the largest of the four.  It contains references to 

papers on high-energy physics used in KDD Cup 2003.  This last database had 58,515 citations 

to 29,555 papers written by 9,200 authors. 

 

For each of the seven tasks, we ran four different variations of the algorithm.  We tried it both 

with and without probability information, and using each of two different normalization 

techniques.  Variations that did not use probability were therefore equivalent to the original 

version of SEQL, in which any facts that did not appear in all of the member cases were dropped 

entirely from a generalization.  For normalization techniques, we tried normalizing by the size of 

the base as well as by the mean of the target and base sizes together.  For more information on 

this difference in normalization, please see Section 3.3 

 

Finally, for every database, task, and variation, we ran the algorithm 20 different times under 

increasing similarity thresholds to discover which threshold was ideal.  A higher threshold would 

mean greater precision and lower recall, whereas a lower threshold would mean greater recall but 

lower precision.  For each threshold value, we computed the mean precision and mean recall, 

generating an overall precision-recall curve.  We report on both the area under this curve (AUC), 

and also the best and mean F1 score for the curve. 
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It must be noted that our experiment design is completely unsupervised.  Unlike the MLNs and 

PRMs of Singla and Bhattacarya, which required training on 1/3 of the cases prior to testing, 

SEQL uses no training period in this experiment.  Training on classes that did not appear in 

testing would provide no benefit to our algorithm.  We would therefore expect SEQL to be less 

successful, but wanted to be able to quantize the difference. 

 

Furthermore, it is important to remember that SME and SEQL are designed to take advantage of 

relational structure in the domain.  Since this is a domain with little to no relational structure, 

something which SME had never been tested upon, we were curious to see how well it 

performed. 

 

6.2.3  The citation experiment results 

 

We found that of the four variations, the algorithm performed best when incorporating 

probability, as expected, and when normalizing to the mean size of both target and base.  

However, the results across all four variations were remarkably similar.  Figure 6-1 shows the 

area under the precision-recall curve (AUC), and the mean and max F1 scores along that curve 

for each variation.  This chart shows the results for the primary task on the CORA database.  

Results on the other three databases were similar and can be seen in Appendix B. 
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Figure 6-1.  The relative performance of four SEQL variations on the Cora database. 

 

 

It does in fact make sense that the difference between variations with probability and those 

without would be greater in domains with more structure than in a domain like this one.  As the 

amount of structure increases, so too does the amount of information lost increase when a fact is 

dropped.  In domains with high relational structure, dropping a fact that does not occur in all the 

cases means also dropping all of the structural information that was tied to that fact.  This 

structural information in turn describes how the dropped fact related to other facts, so that we are 

losing information about those facts too.  The more relational structure in the domain, the more 

information we lose about more facts when we do not use probabilities.   

 

It is also interesting that the first variation had such a low Mean F1 score.  A look at the 

precision-recall curves themselves in Figure 6-2 demonstrates why this is so.   
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Figure 6-2.  Plotting the precision-recall curve for document identification on the Cora database. 

 

 

The precision-recall curve for the first variation contains many points in the region of high recall, 

low precision -- enough to significantly lower the mean F1 score.  This occurs when SEQL 

produces one large generalization, which matches (i.e. recalls) all of the cases.  When probability 

is not used, so that facts not occurring in all of the generalizations are dropped, then the 

generalizations are left with very few facts.  They therefore become quite vague and able to 

match with anything.   

 

In the second variation, the use of a more complex normalization metric ameliorates the problem 

of over-vague generalizations.  But it seems to come at the cost of a precision-recall curve that is 
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non-convex -- an irregularity which makes it difficult to predict optimal values and to work with 

in general.  As described in Section 3.3, the normalization metric used here is intended to deal 

with generalizations that increase in size (number of facts) with the number of cases.  When not 

using probability, we in fact have the opposite effect: generalizations shrink in size with the 

number of cases.  This will sometimes make the match score higher than it should be, making the 

generalization merge with cases that it should not and sending it down the wrong direction.  

Proceeding counter-clockwise along the curve, as the match threshold increases, the threshold 

soon becomes high enough that these false positives disappear and things are restored to normal.  

And in the other direction of lower match thresholds, it is also not a problem since the 

generalization is expected to match to everything at those levels anyway.  For this reason, when 

selecting a match threshold, it is probably advisable to err on the side of too high a threshold than 

too low. 

 

From the points at the top-right of the chart, it is quite apparent where the final variation 

significantly surpasses the others in maximum F1 score.  This occurred at a match threshold of 

0.65.  Although this was the best-performing variation on all four databases, the optimal 

threshold value varied between 0.65 and 0.85. 

 

Figure 6-3 demonstrates how the SEQL algorithm compared to both MLNs and PRMs.  We find 

that in this case, the lack of structure does seem to hurt SEQL.  It does not outperform either of 

the state-of-the-art algorithms on any of the four datasets.  We ran Monte Carlo simulations on 

each database to characterize the degree of the difference between our results and the state-of-the 
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art.  For each database, we did 100 simulations of the clustering algorithm at each of the 20 

different similarity threshold levels.  The similarity score was sampled randomly from its real 

distribution.  This provides a distribution of results to expect under the null hypothesis.  From 

this, we found that our results are indeed statistically significant, with a p-value of essentially 0.   

 

Figure 6-3.  A comparison to the state-of-the-art algorithms in citation matching. 

  

 

Finally, we also tested the algorithm on its ability to match identical authors, titles, and venues.  

This was done both with and without the help of the results from the primary task of matching 

identical documents.  The results of matching without any help are shown in Figure 6-4 below. 

 

 

 

0.75 

0.8 

0.85 

0.9 

0.95 

1 

A
re

a 
U

n
d

er
 C

u
rv

e 
(A

U
C

) 

Comparison To MLNs 

SEQL 

MLN 

0.75 

0.8 

0.85 

0.9 

0.95 

1 

F1
  S

co
re

 

Comparison to 
PRMs 

SEQL 

PRM 



123 

 

 

Figure 6-4.  Matching the subfields in the citation-matching problem. 

 

 

From the above, we can see that the author and title fields behaved much like the primary 

document-matching task did.  A look at their precision-recall curves in the Appendix also shows 

the same behavior for these fields, even down to the irregular non-convexity in the curve for the 

second variation around a threshold of 0.4.   

 

However, SEQL struggled greatly with the task of matching venues.  A look at the distribution of 

the data in Figure 6-5 quickly demonstrates why.  The venue field contained many more repeat 

occurrences of the same word than the other fields.  Furthermore, the venue field had 67% as 

many unique words as the title field, and the average venue string was 1.5 words shorter than the 

average title string.  All of this taken together means that the venue field had less variety and so 

was much harder to distinguish between than the other two fields. 
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Figure 6-5.  Frequency distribution of the top ten words of each field. 

 

 

 

 

 

 

 

 

 

The problem is great enough to have hurt SEQL in its 

primary document-matching task more than any other 

factor.  It does beg the question of how the other state-

of-the-art algorithms were able to handle the problem so 

gracefully.  One answer is that during training, they 

would have learned to give the venue field and the most 

common words in it significantly less weight.  Without 

such a training period, SEQL had no option but to weigh every field and every word the same. 

 

Finally, we also tested whether taking into account SEQL's hypotheses about document matches 

would help it in matching the other fields.  As shown below, the difference was negligible.  In 

fact, sometimes the added information helped and sometimes it hurt, but always by an 

insignificant amount.  This is a good indication that the naive assumption that the fields are 
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conditionally independent is valid here, and that performance is not expected to improve with 

successive iterations. 

 

Figure 6-6.  Whether performance can be improved with successive iterations. 

 

 

6.2.4  Summary 

 

Although SEQL did not perform as well as the state-of-the-art algorithms on this domain, it is 

important to remember that this is a domain without any of the relational structure of which 

SEQL was built to take advantage and with which other algorithms typically struggle.  

Furthermore, SEQL did comparably, averaging only 6% less success while going completely 

unsupervised. 

 

Not only is our approach still very statistically significant and within range of the performance of 

state-of-the-art algorithms, it is cognitively motivated and highly scalable.  Furthermore, our 

algorithm handles any kind of relation, does not require any kind of relational schema to be laid 
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out beforehand, does not require supervision, and there is evidence and good reason to believe 

that it performs better rather than worse as the amount of relational structure increases.  Perhaps 

most importantly, by relying on a simple polynomial-time distance metric, we can tackle much 

larger and more complicated domains such as Whodunit, which other algorithms fail to even 

complete on.  We believe that this makes SEQL a good choice as a general statistical relational 

learning mechanism. 

 

7 Literature Review 

 

7.1 Analogy and Similarity 

 

We use structural analogy as a core component of our systems: it provides a means of aligning 

concepts from the data into unique features, and also provides a distance metric.  A number of 

alternative cognitive simulations of analogical mapping have been developed.  Some are domain-

specific (Mitchell, 1993).  Others are based on connectionist architectures (Hummel & Holyoak, 

1997; Eliasmith & Thagard, 2001), and are known to not be able to scale up to the size of 

examples used in these experiments.  While CBR systems have been used to tackle similar 

structured representation problems (Leake, 1996), they also tend to be built as special-purpose 

systems for each domain and task.  By contrast, the simulations used here are applicable to a 

broad variety of representations and tasks. 
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There are also a few other known similarity metrics.  Most are graphical in nature and derived 

from ideas in collaborative filtering (Jeh and Widom 2002; Yin et al. 2006).  Bohnebeck (1998) 

proposed a similarity metric for ILPs based on recursive comparisons of first-order terms.  In 

contrast, our metric uses SME (Falkenheiner et al. 1986) to compute the analogical similarity, 

which takes into account not only the type of each object and relation but also the role that they 

play in the context of the case. 

 

7.1.1 Similarity and Probability 

 

We use similarity to derive the probability that a relation is true within the context of a 

generalization.  Some others have looked at the problem of assigning probability to structural 

relations.  They are essentially descendants of evidential reasoning (Pearl, 1987).  They require a 

causal model to start with, and then infer probabilities based on observations and simulation 

from the model.  For example, Koller and Pfeiffer (1997) use a maximum-likelihood approach of 

fitting probabilities to rules, given the observed data.  They require “rule skeletons” to be given 

first.  Only then can they do Knowledge-Based Model Construction (KBMC) to build a Bayes 

net of the causality of the domain, and then use that causality to find the set of probabilities 

which give the greatest likelihood to the observations.  In contrast, our approach learns the prior 

probabilities of the relations themselves, and can then learn the appropriate models for those 

probabilities.  That is, we try to both infer the probabilities and induce the model from the 

evidence alone.  We also differ in that we set no preconditions about either the uniformity of 

input representations, or the order of the expressions in those representations.   
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There is almost no other literature on deriving probability from similarity assessments.  The 

literature which does look at the problem either looks at it purely theoretically (Wellman, 1994), 

or uses similarity to affect rough estimates of probability only.  For example, Blok et al (2003) 

present a heuristic for estimating the probability that a fox has trichromatic vision, based on the 

probabilities that a dog and a goldfish might have it, and their respective similarities to the fox.  

We would instead build a probabilistic model of our generalization of animals, and use it to 

predict the probability for foxes.  Thus, our probability calculations never use a heuristic, and are 

carefully grounded in the reality of observed commonalities. 

 

7.2 Relational Clustering 

 

We use SEQL to construct generalizations based on our analogy-driven distance metric.  SEQL 

can be used in either an unsupervised scenario, in which case it clusters the observed cases into 

generalizations, or a supervised one, in which case it constructs generalizations and/or statistical 

models of each class to make predictions.  Although data clustering is an old and well-studied 

field, clustering of relational data is relatively new.  Most of the literature on relational clustering 

involves clustering objects of only one or two types.   

 

Homogeneous clustering involves the clustering of objects of the same type.  One common way 

to do this is to use statistically generative models.  A currently popular approach is the generative 

Bayesian  mixture model, such as that described by Kemp and Tennenbauam (2006), to which 

we have made a direct comparison.  The stochastic block model is a typical older choice 
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(Feinberg et al. 1985; Hoff et al. 2002).  Besides generative models, another common approach 

is to do graph partitioning, usually either with a spectral algorithm (Chan et al. 1993) or a 

multilevel approach (Hendrickson and Leland 1995).   

 

By contrast, co-clustering algorithms are able to cluster two types at once.  This is often done to 

cluster both a set of objects and their properties simultaneously.  Equivalently, it can also be used 

to cluster two types of objects which all share a single binary relation.  Again, there are model-

based approaches (Hofmann 1999), and bipartite graph-based approaches (Zha et al. 2001; 

Ganter and Wille 1998; Dayanik and Nevill-Manning, 2004).  More recently, there are also 

approaches driven by information theory.  For example, Dhillon et al.  (2003) tries to maximize 

the mutual information subject to constraints on the number of clusters.  Another recent 

technique (Long et al. 2005) uses an EM algorithm to do matrix factorization based on 

multiplicative updating rules. 

 

A lot of literature has also been published on link analysis.  For example, Kubica et al. (2002) 

look at the problem of clustering airplane passengers based on demographics and the flights that 

they take together. Similarly, Cohn and Hofmann (2001) actually create joint probability tables 

of terms and citations in document analysis through a probabilistic decomposition process related 

to LSA, and then use it to perform classification. 

 

However, none of these algorithms can claim to handle any number of different relations.  There 

are recent attempts to do more generic relational clustering though.  For example, Long et al. 
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(2006) formulate the relational data as K-partite graphs and then present a set of algorithms for 

distorting it into a simplified network to identify the hidden structures.  Others use mutual 

reinforcement clustering (Zeng, Chen and Ma 2002), although to our knowledge, there is no 

sound objective function for it nor a proof of convergence.   

 

7.3 Model-Based Relational Learning 

 

There is also a great deal of recent literature on taking model-based approaches to learn, 

supervised or otherwise, from more generic relational data; that is, over any number of objects 

and relations.  Of these, perhaps the approach most similar to our own is that of Richardson and 

Domingos (2005).  They introduce relational data into a Markov Logic Network by treating each 

possible grounding of each possible relation as a node in the network.  However, the 

combinatorics of exploring every possible combination of groundings explodes very quickly.  In 

fact, other researchers who have tried applying this MLN-based approach to the Whodunit 

problem have, so far, found it to be unable to scale to the size of the problem. 

 

Another popular model-based approach is Probabilistic Relational Models, or PRMs (Getoor et 

al., 2001).  A PRM is a Bayesian dependence model of the uncertainty across properties of 

objects of certain classes and the relations between those objects.  It extends traditional Bayesian 

networks to incorporate a much richer relational structure.  It can also handle information 

aggregated across several members of a class within the same case (for example, a student‟s 

highest grade or the lowest age among the victims of an attack).  However, the PRM approach is 
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limited in two ways: first, it can only model first-order relations; and second, it has trouble when 

there is no prior knowledge of a relational schema or uniform representation of each case.  

Although several papers have been published to try to overcome this second limitation (the 

modeling of existence variables (Getoor, et al., 2002) is particularly similar to our approach), 

none seems to present a uniform syntax for overcoming all forms of structural uncertainty, and 

none includes a method for modeling higher order relations.  By contrast, our approach uses 

independently validated cognitive models of analogical matching to build such a unifying 

relational schema, from arbitrary predicate calculus descriptions of arbitrarily high order.  A 

hybrid approach might be promising, using a PRM built upon the probabilistic generalizations 

we construct to provide the necessary schema. 

 

Other approaches to doing relational learning via model induction all suffer from the same 

problems.  For example, Blockeel and Uwents (2004) present a method for building a neural 

network from relational data.  Long, et al (2007) use EM to optimize a generative mixed 

membership model called MMRC, and Kemp (2006) uses hill-climbing to optimize a Gaussian 

mixture model derived from the earlier stochastic block models.  However, all of these models 

require prior knowledge of the relational schema, i.e. which relations operate over which types of 

entities.  This is problematic if an argument of a relation can hold for multiple types, or if 

incremental learning is desired, whereby new types could be introduced at any time.  Finally, our 

approach is also novel in that it can handle higher-order relations between relations, and flexible 

enough to allow other, simpler learning models to be applied (§5). 
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7.4 Induction-Based Learning 

 

Finally, there are also approaches to learning based purely on induction.  One example of this 

which we have provided a direct comparison to is FOIL (First Order Induction Learner) 

(Quinlan, 1990).  FOIL learns rules by adding the grounded clauses one at a time which provide 

the greatest information gain.  ILP‟s (Inductive Logic Programs) probably present the most 

generic of the existing solutions to relational induction.  It can actually handle any number of 

different relations.  (Raedt and Blockeel 2007; Kirsten and Wrobel 1998) extend the use of ILPs 

in various ways to do clustering.  Further variants on ILPs such as Bayesian logic programs 

(BLPs) (Kersting, de Raedt, & Kramer, 2000) have also been suggested to do probabilistic 

induction.  However, to our knowledge, there is not yet any approach which can fully satisfy the 

two conditions we have stated: learning relations of arbitrarily high order, and learning without 

any knowledge of prior relational schema (§5). 

 

7.5 Other Works of Interest 

 

Other works of interest include Keppens and Shen (2004), who demonstrate a way to build a 

Bayesian network from process knowledge such as that expressed by qualitative process theory 

(Forbus, 1984).  And Tenenbaum & Griffiths (2001) provide a very well conceived and 

conveyed description of alternative models for generalization, all derived from Bayesian 

hypothesis formulation. 
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8 Summary of Questions and Findings 

 

8.1 Support for Claims 

 

This research supports five claims: 

 

§ 1.  We can achieve the benefits of both feature-based and relational representations of data by 

constructing a mapping for transforming logical expressions into features and back again 

§ 2.  It is more sensible in real-world scenarios to derive probability based on similarity rather 

than the other way around. 

§ 3.  With our techniques, we are able to apply any feature-based learning algorithm, despite the 

relational nature of the original data, without loss of information. 

§ 4.  Our classification algorithms are comparable in performance to existing algorithms, but 

they often are more efficient and require fewer examples. 

§ 5.  Our approach is the only one we know of that can handle arbitrary relations and that 

requires no relational schema. 

 

Regarding the first claim, the creation of a mapping from relations to features and back again is 

key to this thesis.  This mapping allows us to gain a little of the benefits of both feature-based 

and relational representations of the data.  To demonstrate this, we first list some of these 

benefits.  The inherent uniformity of feature-based representations opens us up to a wide variety 

of probabilistic learning algorithms.  It also provides us with useful statistical metrics of 
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everything from the probability of an event and its significance to the relative amount of 

information gained from knowing any particular facet of a case.  On the other hand, relational 

representations are more useful when dealing with the variety of structured information that 

people use and manipulate every day.  Indeed, there is evidence that the use of structured 

language to accumulate relational knowledge is why humans are so smart compared to animals 

(Gentner, 2003).  Relational representations also make it easier to perform certain human-like 

tasks such as inference, planning, and exploration of background knowledge. 

 

Our system demonstrates many of these properties of both forms of representation.  We showed 

the ability to handle a wide variety of structured inputs in the Whodunit domain, whose inputs 

incorporated many facts with a high order of structural complexity as well as complications like 

variables, logical operators, and logical quantifiers.  It is also easy to imagine extending the reach 

of the architecture given here to perform inference or planning or to test against background 

knowledge on these cases.  On the other hand, we also showed how feature-based probabilistic 

models such as association rules and Bayes nets could be generated, and how useful they could 

be on domains that are originally expressed in relational terms.  It is clear (see §3) that the same 

principle can be extended to anything from decision trees to Gaussian mixture models or neural 

networks.  Although many of these algorithms use feature-based metrics like information gain 

inherently, we showed in section 5.3 how they could be used to choose a more relevant 

vocabulary, enabling a re-representation of the cases and producing better results.  The use of 

statistical significance to do anomaly detection or experiment design is easy to hypothesize as 

well. 
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The second claim concerns the very nature of how similarity and probability are related, and 

what contributions each can make to the determination of the other.  Analogical generalization 

via similarity assessment guarantees that each generalized fact represents some analogically 

unique structure in the data.  This in turn allows us to treat each generalized fact as a 

meaningfully unique random variable, creating a mapping between facts and features.  In other 

words, it provides a meaningful, uniform framework across which we can compute probabilit ies.  

At the most abstract level, uniformity is the connection between similarity and probability. 

 

We have demonstrated initial evidence that the two are intertwined, since similarity estimation 

allows us to compute meaningful probabilities (section 3.3.1), leading to better results overall in 

our experiments.  Vice-versa, the probabilities of different relations within the cases affect 

similarity judgments in interesting ways (again, section 3.3.1).  More importantly, we have 

shown rhetorically that similarity estimation (and by extension, analogy) is not just sufficient but 

necessary for the calculation of probability, and for learning itself.  Similarity is required in order 

to find which items can reasonably be compared and their probability computed.  It makes no 

sense to talk about the probability of X unless all the instances of X are of the same nature, or at 

least similar enough for the context at hand.  This is true for both finding which cases can be 

compared (generalized from) in a domain, and for finding which roles within those cases are the 

same (structural alignment).  If we weren‟t able to find these role correspondences, then different 

roles which shared the same predicate (such as the two drivers from Table 2-1) would be 

artificially conflated, and so the probability of any random variable related to it would no longer 
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be meaningful.  This sets us apart from other approaches such as MLNs (Richardson and 

Domingos, 2005) which calculate the probabilities over predicates alone.  Feature-based learning 

is only able to bypass this similarity requirement because the structural alignment is already 

assumed to be inherent in the representation itself.  Only once this similarity estimation and 

structural alignment is complete can these probabilities then be taken into account in turn for 

making other similarity assessments. 

 

The third claim stems from the fact that we are able to create a fully specified joint probability 

table.  This is all that is needed to apply any feature-based learning algorithm there is, whether 

simple or complex.  We have given examples of how useful rule-learners and Bayes nets can be 

in this relational environment, and we expect other learning algorithms to prove equally useful. 

 

The fourth claim is supported by our experimental results from chapters 4 and 5.  Both stages 

(probabilistic generalization and statistical learning) of the system are fully implemented, with 

accompanying statistical models.  The first stage has undergone testing on a wide variety of 

domains by multiple persons, and has been shown to be successful in reputable publications, 

requiring orders of magnitude fewer examples than other algorithms.  The second stage, 

completed more recently, has been tested only by myself.  Nonetheless, it has also proven 

successful in several domains, three of which provided a comparison to competing algorithms.  

 

To be specific about when our approach becomes more efficient than others, we refer to section 

4.2.2.  There, it is explained that we run SEQL, with a complexity of O(N
2 
M log(M)) where N is 
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the number of facts per case and M the number of cases, in order to reduce the number of 

possible hypotheses by O(r
T
V

aT
(aT)

k
) where r is the number of unique relations (indirectly 

related to N), T the maximum number of terms in a hypothesis, V the number of values that could 

be assigned to any one slot, and a the maximum number of slots, i.e. arity.  Therefore, we will 

always use less hypothesis space, and for a learner that is linear with respect to the number of 

hypotheses, we will require less time when N
2 

M log(M) << r
T
V

aT
(aT)

k
. 

 

The fifth claim is supported directly by our survey of related work from chapter 7. 

 

8.2 Other Conceptual Questions Raised 

 

This research has also raised several interesting questions that we did not anticipate.  Some of 

these questions were resolved in the process of the research, but a there are a couple others which 

were not. 

 

8.2.1 Generalization Questions 

 

It is still unclear exactly which concepts a generalization should cover.  It could include only the 

most similar cases without regard to type, or all of the cases in a collection, or the cases sharing 

some other significant property.  This question has an impact not only on artificial intelligence, 

but also on cognitive science, and its effect trickles down to touch everything else in this thesis.  

For example, it affects whether learning will be done under supervision, which statistical model 
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to choose, and how the generalizations should be organized.  Some of the tradeoffs involved in 

this decision were addressed in detail in section 3.1.1 on the goal of generalization. 

 

Other questions are more technical than conceptual.  In the generalization stage, one such 

technical question concerns how to implement a cutoff based on significance rather than 

probability.  Since the number of facts in a generalization can grow quickly with the number of 

cases, it is important to have a means for culling out the less significant information.  However, it 

is not possible to determine how significant some concept is to the rest of the generalization 

without first completing the generalization and the corresponding statistical model.  Therefore 

we currently use probability as a poor substitute for significance as a threshold for culling facts.  

Although this helps reduce the chance of over-fitting, it certainly may be true that some fact 

which doesn‟t occur very frequently is very meaningful when it does occur.  We lose the ability 

to use this in learning when we cull facts based on probability. 

 

Finally, a key issue also required us to re-examine how analogy itself was handled by SME.  The 

problem was that there are some "entities", such as numbers, other quantitative terms, colors, and 

some functions, which aren't really entities in the sense that they describe one individual thing in 

the world.  In the example below, the pairs of statements won't line up properly in the match, 

because NegativeChange has additional structure in the second case that it doesn't have in the 

first.  The problem is that a fact mentioning NegativeChange isn't describing something about 

NegativeChange, the entity.  Instead, they are properties themselves, and every mention of 
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NegativeChange is a unique invocation.  It shouldn't be inheriting structure from other 

invocations of it.   

 

Table 8-1.  Dealing with attribute-values 

Case 1 Case 2 

(directionOfChange (DistanceFn 

mummy explorer) NegativeChange) 

(directionOfChange (DistanceFn mummy 

explorer) NegativeChange) 

(directionOfChange (HealthFn 

mummy) NoChange) 

(directionOfChange (HealthFn mummy) 

NegativeChange) 

 

8.2.2 Feature Value Questions 

 

The novel flattening process that we introduce raised many interesting questions.  A number of 

these questions concern which values a feature should take.  For instance, the vital benefit of a 

propositional representation is its flexibility.  When cases are flattened under generalization, 

some of this flexibility is lost.  It becomes difficult to represent certain scenarios under a feature-

and-value scheme.  Dealing with hierarchical values and multiple values are noteworthy 

examples. 

 

An example of the hierarchical values problem is when one instance of an attack is expressed as 

occurring in Baghdad, while another instance is stated to have occurred in Iraq.  Of course, the 

first instance also occurred in Iraq, but it is up to the system to determine that.  Furthermore, 

when comparing nations, these two instances should match, but when comparing cities they 

should not.  The solution to this problem has been to treat this as two features, one for the city 
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and one for the country.  The system must use background knowledge to detect when this 

hierarchy of entities is occurring and split the features accordingly.  It does this by pulling in 

attribute (collection membership) information on each entity and expressing the largest observed 

collection that it is a member of.  For instance, in the Baghdad case, it would make sense to 

express that the attack also occurred in Iraq but not that it occurred on Earth, presuming that Iraq 

was seen elsewhere in the cases but Earth was not. 

 

Table 8-2.  Handling hierarchical values 

Case 1 Case 2 

(eventOccursAt-1 . Baghdad) (eventOccursAt-1 . :missing) 

(eventOccursAt-2 . Iraq) (eventOccursAt-2 . Iraq) 

 

The multiple values problem occurs when a single concept such as location literally has more 

than one legitimate and equal (one is not contained by another) value. An example of this 

problem is the September 11
th
 attacks, which occurred in New York City, Pennsylvania, and 

Washington D.C.  Although we have several ideas on how to address this problem, the correct 

way to do it is still unclear.  One possible solution is to represent each value in a separate attack, 

perhaps even as separate cases.  However, this answer loses the significant information that they 

were really all part of the same event.  Less crucially, it also would lead to more overhead.  

Another possibility is to represent each as a separate sub-event, constructing some main event 

that they are a part of for other incidents to match to.  This would mean that it retained the 

knowledge that the events were related.  However, the main event will be missing lots of 

information that is specific to the sub-events, and so concepts such as “target” from other 
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incidents will not find any matches here.  There might be a way to allow it to match to any of the 

targets in the sub-events, but this could also cause various other problems elsewhere and has not 

yet been explored.  A third possibility is to find a way to allow a feature to have multiple values 

at once, but this would require a significant of work that would probably warrant a thesis of its 

own if it were even plausible to do. 

 

Another question that is raised during flattening concerns closed world assumptions.   That is, 

what should be done when the fact that corresponds to a particular feature is missing from the 

case, what value should be assigned?  We handle this problem differently for characteristic 

features than for existential ones.  When a characteristic feature value is missing, we simply 

assign it the value :no-value.  In existential features though, the :no-value is represented by the 

value False.  Yet there is a nuance.  We label an existential feature as false only if some of the 

entities that it mentions are also missing from the case.  When all of the entities that the feature 

mentions do appear elsewhere, then we label is at a :missing-value instead.  Missing values do 

not count for or against anything during learning – they are treated during counting as if the case 

didn‟t exist at all.  This reduces non-causal dependencies in the data, since otherwise the values 

of all features containing the same entity would be identical whenever that entity was not 

present. 

 

Perhaps the first question that would need to be addressed for a truly generic learning agent 

though is how to determine which argument (if any) to treat as a feature value at all.  For 

example, in the expression (numCasualtiesOfType 4 Engineer attack), the best value to 
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extract is the number 4 from the second argument.  We currently do this with a mixture of meta-

knowledge and heuristic.  We call a particular slot the value-slot of a feature if the predicate is 

known to be FunctionalInArg11 for that slot, if the only other slot contains the case-entity (such 

as in (eventOccursAt attack Baghdad)), or if the value of the slot is always numeric or 

always non-atomic.  This solution works on the domains we tried but is probably not a 

satisfactory solution for a long-running generic agent. 

 

8.3 Future Work 

 

We can now build probabilistic models from arbitrary relational data.  However, a great deal can 

still be done.  

 

Regarding the questions raised in the previous section, probably the most crucial to address first 

are how to implement a significance cutoff and how to best deal with multiple values.  These are 

issues for which we have no real answers yet, though they appear in many of the experiments we 

do.  

 

Outside of improving the process itself, there are two directions that would be nice to explore in 

the future.  The first of these concerns putting this all together into a standalone generic learning 

                                                
11

 Unfortunately, this is Cyc-specific meta-knowledge.  It is intended to convey when an 

argument slot never has more than one value for any combination of the non-FunctionalInArg 

slots.  Unfortunately, it is not used very often in the KB. 
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system.  In other words, we would like to do incremental, arbitrary concept learning in real time.  

Among other things, this would require autonomously determining what and when to generalize, 

and when to revise a learned model.  For example, learned conjectures which are consistent with 

the KB would provide validation.  Those that are inconsistent would indicate either an error in 

the inputs or a poor model.  And those which are neither would represent new ideas which might 

be beneficially explored in order to learn more about the domain. 

 

Also, it would be highly interesting to further explore how the tools of probability can help in 

symbolic reasoning, and vice-versa.  For example, there are many roles that statistical measures 

such as information gain and significance might play in symbolic inference.  In the other 

direction, propositional background knowledge might help us to determine when assumptions 

about independence are being violated, so that learning efforts can be adjusted accordingly. 

 

8.4 Conclusion 

 

I have tested this approach to learning on 5 different domains: Terrorism research (The 

Whodunit problem), animal classification, tribal kinship terms, medical ontologies, and citation 

matching.  It was compared to other algorithms, and used with success by researchers other than 

myself.  We evaluated our success based on the results of clustering and/or prediction in these 

domains. 
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Similarity and analogy allow us to do this prediction despite the complex relational nature of the 

inputs by defining which items should be compared with which, through analogical equivalence.  

It is only this structural alignment of similar cases that allows us to describe the probabilities of 

their various aspects.  We have therefore shown that the key to combining the power for learning 

provided by feature-based representation, with the flexibility that comes from structured 

representations, lies in recognizing that once the structures have been aligned using measures of 

similarity, only then can probabilities be computed and learning be done. 

 

We hope that this research lays the groundwork for more efforts to combine the approaches used 

for each of these very different representations, and that ultimately, it may lead to the 

development of a truly generic machine learning agent. 
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APPENDICES 

Appendix A.  Translation Rules for Reduced Relational 
Vocabularies 

 

The tables below summarize the rules used to translate cases from their original representation, 

using a very large vocabulary provided by the ResearchCyc knowledge base, to a reduced 

vocabulary so that learning might be made simpler.  These experiments and results are discussed 

in section 5.3. 

 

The first table presents the rules for the Polaris vocabulary.  Each rule is fired when both of two 

conditions are met.  These conditions are shown in the first two fields of each row, after the rule 

number.   

 

The first field is a list of possible predicates, any one of which must match the predicate of the 

candidate fact.  In order to match, the candidate fact‟s predicate must either be identical to one of 

these predicates or a more specific version of one of them.  For example, (performedBy event1 

Bob) would be translated by Rule 1, since performedBy is a more specialized version of the 

predicate doneBy, according to the predicate hierarchy of the Cyc knowledge base that we used. 

 

The second field contains a list of bindings for the candidate fact.  This field performs two 

functions.  First, it provides a second necessary condition for the rule to be fired, since candidate 
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facts must match it exactly (more specific forms will not do).  Second, it binds those items that 

may vary in a candidate fact to a variable (marked by a preceding „?‟) for the translation step.   

 

When both conditions are met, the rule is fired, invoking a translation.  A candidate fact may be 

translated into multiple new facts, listed in the final field of each row.  For example, Rule 2 

would translate (eventPlannedBy ChessMatch BobbyFischer) into (agent BobbyFischer 

ChessMatch) and (goal ChessMatch BobbyFischer), based on the translated forms from the 

third field and the bindings from the second. 

 

Table A-1.  Translation rules for Polaris vocabulary 

1 
doneBy (?pred ?action ?actor) 

(agent ?actor ?action) 

2 

deliberateActors eventPlannedBy 

plannerOfEvent 

(?pred ?action ?actor) 

(agent ?actor ?action), (goal ?action ?actor) 

3 
Nil (likelySuspects ?action ?actor) 

(possible (agent ?actor ?action)) 

4 

objectActedOn (?action ?event ?obj) 

(cause ?event ??state), (result ??state ?action), (theme ?obj ?action), 

(predicate ??state ?obj) 

5 

Nil (objectContaminatedInAttack 

?attack ?obj) 

(cause ?attack ??objectContaminated), (result ??objectContaminated 

contamination), (theme ?obj contamination) (predicate 

??objectContaminated ?obj) 

6 

intendedAttackTargets (?pred ?event ?obj) 

(purpose ??state ?event), (possible (result ??state attack)), (possible 

(theme ?obj attack)), (possible (predicate ??state ?obj)) 

7 

intendedMaleficiary (?pred ?event ?obj) 

(purpose ??state ?event), (possible (result ??state thingHarmed)), 

(possible (theme ?obj thingHarmed)), (possible (predicate ??state ?obj)) 

8 

possibleIntendedAttackTargets (?pred ?event ?obj) 

(possible (purpose ??state ?event)), (possible (result ??state attack)) 

(possible (theme ?obj attack)), (possible (predicate ??state ?obj)) 
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9 
situationLocation eventPartiallyOccursAt (?location ?event ?place) 

(location ?place ?event) 

10 
startingDate endingDate duration (?when ?event ?time) 

(time ?time ?event) 

11 
thereExistExactly thereExistRange (?pred ?num ?var ?fact) 

(measure ?num ?var), ?fact 

12 

Nil (deathToll ?event ?type ?num) 

(measure ?num ??var), (?type ??var), (result ??death organismKilled), 

(cause ?event ??death), (theme ??var organismKilled), (predicate ??death 

??var)) 

13 

Nil (injuryCount ?event ?type ?num) 

(measure ?num ??var), (?type ??var), (result ??wound animalInjuredIn), 

(cause ?event ??wound), (theme ??var animalInjuredIn),(predicate ??wound 

??var)) 

14 

Nil (numberOfHostagesTaken ?event 

?type ?num) 

(measure ?num ??var), (?type ??var), (result ??taken agentCaptured), 

(cause ?event ??taken), (theme ??var agentCaptured), (predicate ??taken 

??var)) 

15 

Nil (casualtyCount ?event ?type 

?num) 

(measure ?num ??var), (?type ??var), (predicate ??state ??var)), (cause 

?event ??state),  

(or (and (result ??state agentCaptured) (theme ??var agentCaptured)) 

 (and (result ??state animalInjuredIn) (theme ??var animalInjuredIn)) 

 (and (result ??state organismKilled) (theme ??var organismKilled))) 

16 
topicOfInfoTransfer infoTransferred (?pred ?x ?y) 

(topic ?y ?x) 

17 
claims (?pred ?agent ?claim) 

(source ?agent ??info), (topic ?claim ??info) 

18 
accusedOf (?pred ?info ?agent) 

(topic (agent ?agent ??event) ?info) 

19 
actAttributed (?pred ?info ?event) 

(topic (agent ??agent ?event) ?info) 

20 
Nil (mostNotableIsa ?x ?y) 

(isa ?x ?y) 

21 

causes-SitSit causes-SitProp  

eventResults eventOutcomes 

(?pred ?x ?y) 

(cause ?x ?y) 

22 
inReactionTo (?pred ?x ?y) 

(cause ?x ?y) 
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23 
parts (?pred ?x ?y) 

(part ?y ?x) 

24 
instrumentalRole (?pred ?x ?y) 

(instrument ?y ?x) 

25 

positiveInterest-Prop 

positiveVestedInterest 

(?pred ?agent ?thing) 

(experiencer ?agent ??emotion), (PositiveFeeling ??emotion) 

(topic ?thing ??emotion) 

26 
goals (?pred ?x ?y) 

(goal ?y ?x) 

27 
thinksProbable (?pred ?x ?y) 

(belief ?y ?x) 

28 
linked conceptuallyRelated (?pred ?x ?y) 

(associated ?y ?x) 

29 

reasonsForAction (?pred ?act ?thinks ?agent 

?why) 

(reason (?thinks ?agent ?why) ?act), (agent ?agent ?act) 

30 

undamagedActors (?pred ?event ?actor) 

(not (and (theme ?actor damages) (predicate ??damaged ?actor) (result 

??damaged damages) (cause ?event ??damaged))) 

31 

unharmedActors (?pred ?event ?actor) 

(not (and (theme ?actor thingHarmed) (predicate ??harmed ?actor) (result 

??harmed thingHarmed) (cause ?event ??harmed))) 

32 

actionExpressesFeelingToward (?pred ?act ?feeling ?toward) 

(agent ??agent ?act) (experiencer ??agent ?feeling) (recipient ?toward 

?feeling) 

33 
actionExpressesFeeling (?pred ?act ?feeling) 

(agent ??agent ?act) (experiencer ??agent ?feeling) 

34 
sponsorsAgentInAction (?pred ?sponsor ?agent ?act) 

(goal (agent ?agent ?act) ?sponsor) 

35 

obligationsViolated (?pred ?event ?obligation) 

(result ??violation obligationsViolated), (predicate ??violation 

?obligation), 

(theme ?obligation obligationsViolated), (cause ?event ??violation) 

36 

extraditionFor (?pred ?extradition ?event) 

(isa ?event CriminalAct), (cause ?event ?extradition), 

(topic (agent ??agent ?event) ?extradition) 
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The second reduced vocabulary consisted of simply taking advantage of the predicate hierarchy 

that was already built in to the Cyc knowledge base.  For this reason, the vast majority of 

complicated rules that were needed for the first vocabulary were not needed for the second.  

Instead, each predicate was simply made as generic as possible.  Although it is possible to write 

out every translation rule needed to do this for every generalized predicate, they would all be 

virtually identical.  Hence, it is much simpler to simply list the predicates.  These are given 

below in Table A-2, followed by a very small number of supplemental rules that are still needed 

in Table A-3. 

 

Table A-2.  Translated predicates for Underspecified-Cyc vocabulary 

awareOf, affects-Underspecified, conceptuallyRelated,  

during-Underspecified, instantiationOf-Underspecified, 

underspecifiedLocation, without-Underspecified,  

ahead-underspecifiedRelation, around-UnderspecifiedRegion,  

before-Underspecified, outOf-UnderspecifiedContainer, 

underspecifiedTypeExpressionOf, by-Underspecified,  

inside-UnderspecifiedRegion, at-UnderspecifiedLandmark,  

from-UnderspecifiedLocation, under-UnderspecifiedLocation,  

outside-UnderspecifiedRegion, is-Underspecified,  

about-UnderspecifiedRegion, causes-Underspecified,  

in-UnderspecifiedContainer, along-UnderspecifiedPath,  

orientation-Underspecified, with-UnderspecifiedAgent,  

up-UnderspecifiedPath, contains-Underspecified, holds-Underspecified,  

down-UnderspecifiedPath, for-UnderspecifiedLocation,  

agentSupportsAgent-Generic, sizeOfObject-Underspecified,  

through-UnderspecifiedPortal, possessiveRelation,  

on-UnderspecifiedSurface, dependsOn-Underspecified,  

releases-Underspecified, expresses-Underspecified,  

over-UnderspecifiedLocation, across-UnderspecifiedRegion, 

into-UnderspecifiedContainer, determination-UnderspecifiedRelation,  

supports-Underspecified, underspecifiedExpressionOf,  

connects-Underspecified, relativeOrientation-Underspecified, 

speedOfObject-Underspecified, generalizations, disconnects-Underspecified, 

after-Underspecified, to-UnderspecifiedLocation,  

off-UnderspecifiedSurface, unknownReln-BBNRelnType 
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Table A-3.  Supplemental translation rules for Underspecified-Cyc vocabulary 

1 

injuryCount (?pred ?atk ?coln ?count) 

(measure ?count ??var), (isa ??var ?coln), (animalWoundedIn ?atk ??var), 

(affects-Underspecified ?atk ??var), (during-Underspecified ?atk ??var), 

(after-Underspecified ?atk ??var) 

2 

deathToll casualtyCount (?pred ?atk ?coln ?count) 

(measure ?count ??var), (isa ??var ?coln), (organismKilled ?atk ??var), 

(affects-Underspecified ?atk ??var), (during-Underspecified ?atk ??var), 

(after-Underspecified ?atk ??var) 

3 

numberOfHostagesTaken (?pred ?atk ?count) 

(measure ?count ??var), (isa ??var Person), (agentCaptured ?atk ??var), 

(affects-Underspecified ?atk ??var), (during-Underspecified ?atk ??var), 

(after-Underspecified ?atk ??var) 

4 

thereExistExactly thereExistRange 

thereExistAtLeast 

(?pred ?num ?var ?fact) 

(measure ?num ?var), ?fact 
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Appendix B.  Results of Citation-Matching on other Databases 
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