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Abstract 

People often use instructional analogies to introduce new 
concepts or explanations.  Examples of these analogies can 
be found in instructional science texts and guides for in-
service teachers.  Building software that can understand in-
structional analogies has two potential benefits.  First, it 
would enable an individual to convey new or existing quali-
tative concepts to a machine using analogies, thereby allow-
ing them to explain ideas that may be cumbersome to de-
scribe otherwise.  Second, a computational model of inter-
preting multimodal instructional analogies can be used as 
the basis of intelligent educational software, given that the 
use of analogies to teach science is a common and recom-
mended practice for teachers.  In this paper, we describe 
work in progress on techniques using qualitative spatial rep-
resentations for interpreting analogies that are composed of 
simplified English text and sketches, illustrated by a running 
example.  

Introduction 

A common strategy for conveying new information is to 

provide it in contrast to something more familiar.  In an 

educational setting, this is achieved through the use of in-

structional analogies, which are comparisons between 

something familiar and something unfamiliar with the in-

tent of building up knowledge about the unfamiliar thing. 

Instructional analogies are common tools for explanation 

in science textbooks and in-class activities.  As a result, 

several guidelines and best practices have been developed 

for teachers so that they can use analogies effectively 

(Zeitoun 1984, Harrison & Coll 2007, Glynn 2008, 

Holyoak & Richland 2014).  Psychological evidence sug-

gests that analogies can be beneficial for students because 

they enable students to make inferences that persist into 

novel situations (i.e. far transfer) (Loewenstein et al. 1999, 

Gentner et al. 2009, Gadgil et al. 2012).  For teachers (or 

any individual explaining something), analogies can be 

useful for providing explanations for things that cannot 

readily be observed (e.g. atomic structure).  This is espe-

cially true for analogies that are presented through visual 

representations.  For example, electrical currents are often 

taught by analogy to water, using pictures or physical 

models.  By comparing electricity to water, students can 

draw on their everyday experiences with fluids to conceive 

of electrical currents flowing from one place to another, 

even though they cannot literally see it happening.  For 

novices, this qualitative knowledge is very flexible and can 

be used to solve problems and explain new phenomena.  

 Given the importance of analogies in explanation, there 

are two benefits of building software that can understand 

them.  First, the ability to interpret instructional analogies 

opens up the range of data that may be used for knowledge 

capture. For example, much of the foundation for scientific 

and engineering domains rests on qualitative, conceptual 

models based on everyday experience.  Acquiring such 

models via natural interaction (including the use of multi-

modal analogies) can help provide the knowledge endow-

ment needed for conceptual and qualitative problem solv-

ing.  The other potential benefit is in education.  A model 

of instructional analogy understanding can potentially be 

used as the basis of intelligent tutoring systems that help 

students understand new topics in terms of more familiar 

ones.  Such tutoring systems have been proposed and im-

plemented (Murray et al. 1990, Clement 1993, Lulis et al. 

2004), but none have approached the problem of instruc-

tional analogy understanding from a domain general and 

multimodal perspective.    

Related Work 

Analogical reasoning has been used for learning and prob-

lem solving in many domains (e.g. computer programming 

(Burstein 1985) and planning (Carbonell 1983)).  In addi-

tion to within-domain reasoning, cross-domain analogies 

between observed behaviors (Falkenhainer 1990) and 

worked solutions (Klenk & Forbus 2013) have been used 

to transfer information to novel problems.  Cross-domain 

analogies between conceptual domains have been used to 

repair knowledge and generate explanations (Friedman et 

al. 2012).  Analogical reasoning has also been used to align 



and merge multimodal information, i.e. text and sketches 

(Lockwood & Forbus 2009), which we build on below.    

 This work focuses on instructional analogies, rather than 

information transfer between prior worked solutions and 

novel problems.  The goal of these analogies is to build up 

qualitative conceptual knowledge that can be used for fu-

ture reasoning or question answering.  Our goal is to build 

on previous work on cross-domain instructional analogies 

and multimodal integration to interpret analogies using 

automatic, multimodal semantic interpretation of texts with 

sketches. 

Background 

Our approach for interpreting multimodal instructional 

analogies makes use of existing models of analogical rea-

soning, natural language understanding, and sketch under-

standing, and is built on the companions cognitive archi-

tecture.  We briefly summarize them here. 

Structure Mapping 

Structure mapping is a theory of analogy and similarity 

that is based on the idea that people prefer comparisons 

that have shared relational structure as opposed to shallow 

or superficial comparisons (Gentner 1983).  In this work, 

we use the Structure Mapping Engine (SME) 

(Falkenhainer et al. 1989), which is a computational model 

of analogy based on structure-mapping theory.  SME takes 

two structured, relational descriptions, called a base and a 

target, as input.  SME constructs a mapping between the 

base and the target, consisting of correspondences, which 

indicate how entities and expressions align to each other, 

and candidate inferences, which are things that are true in 

one description and hypothesized to be true in the other.  

SME is able to model a wide range of comparisons and has 

been used for spatial problem solving (Lovett et al. 2009), 

sketch-based educational software (Yin et al. 2010), and 

category learning (McLure et al. 2015).  SME provides 

optional match constraints that operate as advice, which 

are automatically computed by systems using it to encode 

task demands.  Partition constraints require that items of 

the same type correspond to each other (e.g. apples to ap-

ples and oranges to oranges).  These are useful for literal 

matches where types or surface attributes matter.  Required 

correspondences are constraints on individual items (e.g. 

apple1 must correspond to apple2).  These are useful in 

situations where correspondences are given explicitly, as is 

often the case in instructional analogies.  Partition con-

straints and required correspondences are used in our inter-

pretation of instructional analogies. 

Explanation Agent NLU 

The Explanation Agent Natural Language Understanding 

system (EANLU) (Tomai & Forbus 2009) automatically 

produces semantic representations for simplified natural 

language text.  EANLU takes a pragmatic approach to nat-

ural language understanding.  Semantic interpretation of 

text is made tractable by using sentences with simplified 

syntax.  In other words, the goal is not have complete cov-

erage of natural language inputs, but rather to have very 

broad coverage of the knowledge that can be expressed to 

the system using simple sentences.   

 EANLU uses three sources of knowledge that guide the 

interpretation process.  First, abduction over narrative 

functions (McFate et al. 2014) provides a means to resolve 

ambiguities via task-relevant information.  Second, analog-

ical word sense disambiguation (Barbella & Forbus 2013) 

uses analogies between the current and prior syntactic and 

semantic analyses to suggest how to resolve ambiguities.  

Third, a simple set of heuristics is invoked for remaining 

ambiguities. These heuristics can be extended, and we de-

scribe one such extension below. The semantic representa-

tions are taken from ResearchCyc
1
 and an implementation 

of Discourse Representation Theory (Kamp & Reyle 1993) 

is used to build sentence and discourse representations.  

EANLU supports identifying analogical dialogue acts 

(Barbella & Forbus 2011).   

 For multimodal instructional analogies, we use EANLU 

to automatically build semantic representations of the text 

portion of the analogy. 

CogSketch 

CogSketch is a domain-independent sketch understanding 

system (Forbus et al. 2011). The basic building blocks of a 

sketch are called glyphs.  To draw a glyph, the user draws 

ink using a mouse or stylus and tells the software when the 

glyph is done.  This means that ink is manually segmented 

into conceptually coherent collections of ink.  Ink editing 

tools allow the user to merge and re-segment ink as they 

draw.  Grouping tools also allow the user to group concep-

tual items together (e.g. two wheels and a frame can be 

grouped together to represent a bicycle).  The user also 

provides conceptual labels for glyphs so that the software 

has an accurate model of the user’s intent.  This approach 

has two main advantages over recognition of raw ink.  The 

first is that it avoids segmentation and recognition errors 

because the user explicitly tells the software how to group 

ink and what they want the ink to represent.  The second is 

that this draw-and-label interface is amenable to educa-

tional settings because students are required to label 

sketches and explicitly provide their (possibly incorrect) 

                                                 
1 http://www.cyc.com/ 



interpretation of what they have drawn.  Also, ink recogni-

tion without labeling would not work across multiple do-

mains, since the mapping from shapes to concepts is many 

to many.  It is especially problematic when a new domain 

is being introduced, since training recognizers requires 

many examples.   

 CogSketch automatically generates qualitative spatial 

representations for what is drawn in a sketch.  Topological 

relations (e.g. intersection, containment) and positional 

relations (e.g. above, right of) are automatically computed 

between adjacent glyphs.  Spatial relations between non-

adjacent glyphs can be computed on-demand.  The concep-

tual labels provided by the user are also used by CogSketch 

so that spatial and conceptual information exist in the same 

reasoning environment.   

 For interpreting the visual portion of instructional analo-

gies, we create sketches using CogSketch.  The spatial and 

conceptual representations generated by CogSketch are 

then used for further reasoning.    

Companion Cognitive Systems 

The Companion Cognitive Architecture (Forbus et al. 

2009) is based on the idea that intelligent systems are so-

cial organisms that collaborate with others and learn over 

extended periods of time (e.g. from experience).  In a 

Companion, analogy is a central reasoning mechanism.  

Each Companion is capable of using multiple modes of 

interaction.  It has a natural language interface that is built 

upon EANLU and a sketching interface that uses Cog-

Sketch.  We use the Companion cognitive architecture to 

model the interpretation of multimodal instructional analo-

gies. 

Approach 

The interpretation process takes as input a sketch of the 

base and target and a text passage describing the analogy.  

It produces a model of the target concept, based on the 

analogy. There are three major challenges in this task.  The 

first is how to interpret the text and visual representations 

in a way that is coherent and sensitive to the instructional 

analogy.  Each modality provides unique information that 

should be shared, requiring that the sketch and text must be 

aligned and merged into a more general description.  The 

second challenge is determining how to extract information 

about two separate domains from one source of input.  The 

instructional analogy requires the comparison of a base 

domain and a target domain, yet information about each 

description is not necessarily packaged separately.  Instruc-

tional analogies used in textbooks often interleave infor-

mation about the different descriptions.  If new information 

is being introduced, the reader cannot be expected to have 

a full vocabulary of the target domain, and must therefore 

use linguistic cues or visual information to make sense of 

it.  The third challenge is how to construct the instructional 

analogy itself.  This involves adhering to the constraints 

implied by the description of the analogy, e.g. that particu-

lar things correspond.     

 We explored methods for addressing these challenges 

with respect to three classic analogies that are used to teach 

novices about cell parts and function (Table 1), adapted 

from a teaching guide for instructors (Harrison & Coll 

2007).  In the following sections, we describe the inputs to 

our system and our current interpretation strategies. 

Sketch and Text Interpretation 

The Companion takes as input a text file with a simplified 

natural language description of the analogy and a Cog-

Sketch sketch file with a drawing of the base and the target 

of the analogy.  The input to EANLU is as seen in Figure 

1.  The input to CogSketch is the ink seen in Figure 2, 

along with the conceptual information entered by the user 

and the spatial relations automatically computed by Cog-

Sketch.  The conceptual information includes labels for 

each individual glyph (e.g. that a glyph depicts a cell nu-

cleus or a wind power plant) and labels for each grouped 

glyph (e.g. that all the cell parts grouped together make up 

a cell).  

Semantic Interpretation of Text 

The text portion of the analogy is processed using the ex-

isting approaches in EANLU.  Natural language is inher-

ently ambiguous.  Words have multiple senses and sen-

tences have possible parses.  Each of these alternatives is 

formally represented as a choice set (Forbus & de Kleer 

1993), and a semantic interpretation of a text is a logically 

consistent selection of choices from each choice set.  There 

can be subtle dependencies between them, e.g. a parsing 

choice might require a particular part of speech for one of 

the words in the phrase, and the choice of verb meaning 

can constrain what participates in its roles.  Once EANLU 

has generated choice sets, the Companion automatically 

constructs interpretations by using two heuristics.  The first 

Base Target Example Inference 

City Cell Mitochondria provide energy 

Earth Cell DNA fragments have many codons 

Battery ATP ATP can be reused 

   Table 1: Three analogies used to teach novices about the 

cell.  Each analogy is intended to lead to many inferences, 

but key examples are shown here for illustration. 



heuristic gives preference to semantic choices that involve 

things mentioned in the sketch.  For example, the word 

“cell” may be interpreted as being an instance of one of 

three collections (i.e. concepts): an animal cell, a battery 

cell, or a prison cell.  The Companion chooses the animal 

cell interpretation because there is a glyph labeled animal 

cell in the sketch.  That is, because there is an instance of 

animal cell in the sketch, the interpretation that the entity 

mentioned in the text is also an instance of the animal cell 

collection is preferred.  The second heuristic gives prefer-

ence to choices that lead to the greatest information gain.  

That is, if two interpretations have equal preference, but 

one of the interpretations involves more facts than the oth-

er, then the one with more facts will be preferred. 

 After an initial semantic interpretation is constructed, 

analogical dialogue acts (Barbella & Forbus 2011) are 

found via abduction to make hypotheses about what enti-

ties belong in the base and target and detect any explicit 

statements about how entities should correspond.  Six dif-

ferent types of dialogue acts are detected by EANLU: (1) 

introduce a comparison, (2) extend the base or target, (3) 

introduce a correspondence, (4) block a correspondence, 

(5) introduce a candidate inference, and (6) block a candi-

date inference.  Using the text in Figure 1 as an example, 

the first sentence captures a dialogue act that introduces a 

comparison, where the cell is the target and the city is the 

base.  The second sentence extends the base (by providing 

additional information about the city).  The rest of the sen-

tences provide additional information about the base and 

target and introduce a specific correspondence (the power 

station and mitochondrion).     

Sketch and Text Alignment 

At a very general level, the sketch and text both describe 

the same thing.  However, there is conceptual information 

in the text that does not exist in the sketch and spatial in-

formation in the sketch that does not exist in the text.  It is 

therefore necessary to merge sketch and text representa-

tions in a way that preserves meaning across the two repre-

sentations. 

 Following Lockwood & Forbus (2009), we use SME to 

align sketch and text information and impose constraints 

on the matching process to reflect the literal nature of the 

mapping.  However, we go beyond that work in several 

ways.  First, they used semi-automatic interpretation of the 

text, i.e. when there were ambiguities that the system could 

not resolve, those ambiguities were presented to the trainer 

to select the appropriate choice.  By contrast, we use a 

combination of cues from the sketch, analogical dialogue 

acts, and heuristics to interpret text automatically.  Second, 

our system automatically generates partition constraints 

(described above) to help align the sketch and the text.  For 

example, since there is a cell nucleus in both the sketch and 

text, a partition constraint on that concept ensures that the 

nucleus introduced in the text aligns with the nucleus in-

troduced in the sketch.   

 When the collections in both sketch and text are identi-

cal, this method works well.  But this is not always the 

case.  For instance, a text may refer to a power station, 

while the sketch may refer to something more specific or 

more general, like a wind power plant. In such cases, the 

system relies on relational information to make the appro-

priate matches.  There are two reasons why collections 

might be different across modalities.  First, they can use 

subordinate/superordinate concepts, e.g. power station ver-

sus wind power plant above.  This condition is partially 

addressed by generic event interpretation, described be-

low. The second reason is that one modality may describe 

a concept in general terms by using a plural form to denote 

a set of instances, while another modality may only refer to 

an instance.  To address this, we introduce object groups in 

both modalities so that, for example, a concept that repre-

sents a group (e.g. “houses”) can match to a set of similar 

entities (e.g. house1, house2, house3).   

 Potentially there are multiple instances of the same con-

cept in both the sketch and the text that should remain dis-

tinct.  For example, if our analogy distinguished between 

ribosomes that float freely in cytoplasm and ribosomes that 

are bound to the endoplasmic reticulum, then the sketch 

and text could be aligned in different ways.  We have not 

yet observed this issue, but additional conceptual or spatial 

information would be needed to arrive at the correct 

sketch-text alignment in such cases. 

A cell is like a city. The city government controls the city. 

The nucleus controls all the cell’s activities. A power station 

provides electricity. A mitochondrion is like the power sta-

tion. Construction companies build houses. The ribosomes 

make proteins. Roads, cars, buses and trucks provide trans-

portation. The endoplasmic reticulum transports materials. 

The city government changes direction after elections and is 

very adaptable. The nucleus always controls the cell. 

Figure 1: Text representation for the analogy: a cell is like a 

city. 

 

 

 

 

 

 

 

Figure 2: Sketch representation for the analogy: a cell is 

like a city. 



 The alignment between the sketch and text is used to 

create a generalization, where items that correspond to 

each other in a mapping are merged together to create a 

coherent representation that integrates both modalities. 

Generic Event Interpretation 

Generic event interpretation is an elaboration technique 

that enables structural matches between entities that do not 

belong to identical collections.  It assumes that descriptions 

of functions and events are generic statements about col-

lections as a whole.  For language understanding in gen-

eral, detecting generic statements is a hard problem.  How-

ever, in an instructional context, it is often reasonable to 

assume that most statements are generic assertions.  For 

each event or function that is detected in the text modality, 

we detect the main participants of the event and assume 

that participation in the event type is a property of all enti-

ties of the same type.  For instance, the statement “Con-

struction companies build houses” is interpreted as a prop-

erty of all construction companies.  These general proper-

ties are then projected onto the visual modality, to specu-

late about events, roles, and entities in the sketch that are 

not explicitly drawn.  The event structure in both modali-

ties can then be used to support matches between entities 

that may not have other relations or attributes in common.  

For example, the statement about power stations providing 

electricity tells us that power stations, in general, provide 

electricity.  By projecting this information to the sketch, 

we can speculate about wind power plants also providing 

electricity because wind power plants are a subset of power 

stations.  This shared structure is used as support to put 

wind power plants and power stations into correspondence, 

despite their non-identical collection membership (Figure 

3).  In addition to encouraging accurate matches, generic 

event interpretation provides the type of general facts that 

are often needed to answer questions about a domain. 

Base and Target Extraction 

Once a multimodal description of the analogy is created 

(e.g. multimodal facts about the cell and the city) the base 

and target must be extracted so that the analogy can be 

constructed.  We use information gained from analogical 

dialogue act detection, event interpretation, and glyph 

grouping to extract base and target information.  Analogi-

cal dialogue acts indicate that the city is part of the base 

domain and the cell is part of the target domain.  This sug-

gests that items in the sketch that are grouped with the city 

are part of the base domain and that items in the sketch that 

are grouped with the cell are part of the target domain.  

This step is important for capturing the relationships be-

tween entities that are from the same domain but not men-

tioned in the same sentence.  From these seed entities, we 

detect events that they participate in, and include those in 

the description as well.  This approach is not complete, but 

it will capture entities that are directly related to seed base 

and target entities via text-based or visual relations. 

Instructional Analogy Interpretation 

Once the base and target have been extracted, the instruc-

tional analogical mapping can be constructed.  Unlike the 

text-sketch alignment technique described above, this is a 

cross-domain analogy.  Match constraints that require in-

stances of the same collection to correspond to each other 

are too literal.  We have observed, however, that events are 

a special case.  Instructional analogies are often intended to 

convey the importance of functional relationships, which 

are often conveyed in terms of events.  In our cell-city 

analogy, the important functions are described as control-

ling, providing, and making.  By requiring that events and 

their primary participants correspond to each other, we 

encourage mappings that are more likely to transfer func-

tional information between domains.   

Biology Analogies 

We applied our interpretation strategies to three analogies 

adapted from (Harrison & Coll 2007): a cell is like a city, a 

cell is like the earth, and ATP is like a battery.  For each 

analogy, we used the approach described above to interpret 

and merge sketch and text representations and to build the 

analogical mapping.  Table 2 shows the number of facts 

that were used for each analogy at each stage of interpreta-

tion before constructing the mapping.  The total numbers 

of facts for the text and sketch descriptions include only 

information that is conveyed in their respective modalities.  

Because sketch and text representations are interpreted 

independently at the beginning, the total number of facts 

 

 

 

 

 

 

 

 

 

Figure 3: An illustration of how generic event interpretation 

suggests a correspondence between power stations and wind 

power plants. Italicized items in the middle right cell are 

speculative items that are not explicitly drawn in the sketch.   



for each modality is different.  The process of merging 

sketch and text representations is not just a union of the 

facts in each modality since entities are merged together 

based on how well they align with each other.  Since some 

information is redundant, the total number of combined 

facts is less than the sum of sketch and text facts.  Lastly, 

the totals for base and target descriptions illustrate that 

some of the facts in the combined description don’t make it 

into either the base or target descriptions, highlighting one 

of the challenges to automatic case extraction.   Table 3 

summarizes the size of each mapping along with the accu-

racy of correspondences and candidate inferences.  As the 

totals for correspondences indicate, the three analogies 

varied in size.  The cell/city analogy was the most detailed, 

yielding the most number of correspondences and candi-

date inferences.  The analogies also varied in their capacity 

for generating inferences.  The accuracy of those infer-

ences is noticeably lower than that of the correspondences 

because candidate inferences represent hypotheses about 

what might be true in the target domain.  Some of those 

hypotheses are expected to be false.   It is also possible for 

important inferences to be overlooked.  For example, while 

our interpretation of the ATP/Battery analogy finds that 

ATP is used it currently fails to capture the notion that 

ATP can be reused.   

 To illustrate the interpretation and matching process in 

greater detail, we walk through one analogy in the next 

section. 

Example: A Cell is like a City 

Table 4 shows the entity correspondences in our cell-city 

analogy.  Correspondences are guided by linguistic cues, 

conceptual information, and spatial information.  The cor-

respondence between the cell (Gen-Cell) and the city (Gen-

City) is required by the analogical dialogue act in the first 

sentence of the text (for a detailed description on detection 

of analogical dialogue acts, please see Barbella & Forbus, 

2011).  Other entities, like the cell nucleus and city gov-

ernment, correspond to each other because of their partici-

pation in similar events (i.e. they control the cell and city 

respectively).  In contrast, the city limits and cell mem-

brane correspond to each other based on qualitative spatial 

information alone, since neither one is mentioned in the 

text description.    

 This mapping has a few inaccurate matches as well.  

One of the house entities and the library (a distractor in the 

sketch) correspond to another mitochondrion instance and 

the full set of mitochondria.  In this case, irrelevant spatial 

information negatively influences the match.  These unex-

pected correspondences are supported by the entities’ spa-

tial relationship (i.e. containment) to the city limits and cell 

membrane.   

 This analogy has over 40 candidate inferences, many 

having to do with spatial information and conceptual at-

tributes.  For instance, one inference suggests that the mi-

tochondrion is a wind power plant.  This comes from their 

correspondence but is of course not literally true.  Howev-

er, that correspondence also supports a reasonable infer-

ence, which states that there is an energy providing event 

that is performed by the mitochondrion.  This information, 

 ATP /  

Battery 

Cell /  

City 

Cell /  

Earth 

Text 82 106 56 

Sketch 48 169 120 

Combined 114 213 160 

Base 27 97 74 

Target 31 84 19 

Table 2: Total number of facts for each analogy at each 

stage of interpretation.  Combined facts are those that are 

found from merging sketch and text representations. 

 

 

 

 

 

 

 

 

Base Item Target Item 

city-limits membrane 

Gen-CityGovernment Gen-CellNucleus 

Gen-Roadway Gen-

EndoplasmicReticulum 

Gen-SetOfTypeFn-

House-Modern 

Gen-SetOfTypeFn-

ProteinMoleculeType 

factory golgi-bodies 

Gen-City Gen-Cell 

group-of-election Gen-SetOfTypeFn-

Action 

Gen-WindPowerPlant Gen-Mitochondrion 

house-3 mitochondrion2 

library Gen-SetOfTypeFn-

Mitochondrion 

Gen-

ConstructionCompany 

Gen-Ribosome 

Table 4: Entity correspondences in cell-city analogy. Prefix 

“Gen-” indicates entities that have been merged between text 

and sketch representations. 

 

 

 

 

 

 

 Correspondences  

(% correct) 

Candidate 

 Inferences  

(% correct) 

ATP/Battery 15 (67%) 12 (25%) 

Cell/City 50 (80%) 49 (39%) 

Cell/Earth 10 (60%) 44 (11%) 

Table 3: Summary of correspondences and candidate infer-

ences for each analogy. 

 

 

 

 

 

 

 

 



while not explicitly stated in the text, is useful for under-

standing the functional role of the mitochondria.  Another 

inference suggests that the cell membrane is a border.  

While not literally true, an elaboration of the city domain 

may lead to a better understanding of the cell membrane’s 

function.   

Discussion & Future Work 

By examining commonly used analogies for teaching about 

cell structure and function, we have identified an initial set 

of strategies for interpreting multimodal instructional anal-

ogies.  First, we use information from both modalities to 

guide the semantic interpretation of the texts.  Where there 

are multiple possible interpretations, the contents of the 

sketches are used as a heuristic for resolving ambiguities.  

Second, we developed generic event interpretation, which 

we use to elaborate on the functional properties of the 

things mentioned in the texts and to speculate about func-

tional properties of things in the sketches.  By interpreting 

events as generic statements, we are able to infer type level 

properties that are often needed to answer questions about 

a domain.  Third, we use information from both modalities 

(dialogue acts and event structure found in the text as well 

as conceptual groupings found in the sketch) to automati-

cally extract information about the base and target domain.   

 Our approach uses analogical reasoning in two ways.  

The first is for aligning sketch and text representations and 

merging them into an integrated interpretation.  The second 

is for creating a cross-domain instructional analogy that 

can be used for building a new target domain.  The degree 

to which conceptual information constrains these analogies 

depends on the purpose of the analogy.  In aligning and 

merging, literal matches are enforced.  For the cross-

domain instructional analogy, events and role relations 

drive the mapping to support correspondences and infer-

ences that highlight functional relationships.      

 A major challenge to address is how to evaluate candi-

date inferences.  Inferences have varying degrees of struc-

tural support, but the utility of that support depends on the 

quality of the original representations.  As seen in our cell-

city analogy, many inferences are not useful for developing 

accurate target knowledge.  On the one hand, correspond-

ences like the one between cell activities and city elections 

might not lead to useful inferences.  On the other, conceiv-

ing of a membrane as a border, which follows from the 

membrane corresponding to city limits, seems potentially 

useful if base domain knowledge were recruited and gener-

alized appropriately.  A related issue arises when candidate 

inferences introduce new entities.  These new entities are 

called analogy skolems and they represent things in the 

base domain that do not exist (but are suggested to exist) in 

the target domain.  For example, one of the inferences from 

the city cell analogy is that the mitochondrion does some-

thing like making electricity available.  The energy provid-

ing event doesn’t explicitly exist in the target domain but it 

is suggested by the analogy.  Since there is nothing in the 

mapping that corresponds to providing electricity, a skolem 

is created.  To solve this issue, the presence of skolems in 

inferences may be used as triggers for rerepresentation, 

where alternative mappings are explored so that a target 

item can be found as a potential match.  If no potential 

matches can be found, more general terms for the skolem 

could be explored to see if there is some parent concept 

that can be relevant to both the base and target domain.  In 

this case, a more general concept than electricity is needed 

in the target domain to support the existence of a biological 

energy production event.  In most cases, it seems that eval-

uating candidate inferences (and any skolems they intro-

duce) requires a great deal of common sense knowledge.  

An important next step will involve exploring domain-

general strategies for filtering candidate inferences. 

 To concretely evaluate the knowledge that can be cap-

tured through multimodal instructional analogies, we are 

expanding the current approach to cover a set of twelve 

recommended biology analogies from an instructional 

guide for teachers (Harrison & Coll 2007).  As of this writ-

ing, we have interpreted three out of twelve.  We are also 

developing question answering strategies so that the target 

knowledge from these analogies may be used to answer 

questions on standardized assessments
2,3

.  We do not ex-

pect that instructional analogies will be able to cover the 

full range of questions asked on those assessments.  But, 

we do expect that they will provide a broad set of qualita-

tive knowledge that, when paired with question answering 

heuristics, can model the type of qualitative knowledge 

that novices often use to solve novel problems.      
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