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Abstract 
One of the original motivations for qualitative reasoning 

was to capture the informal, intuitive notions about the con-
tinuous world that we all share, learned via a combination of 
experience and culture.  For example, prior research suggests 
that qualitative dynamics can play an important role in natu-
ral language semantics. However, the constraints of everyday 
qualitative reasoning are different from more technical pro-
fessional reasoning contexts, such as engineering.  This paper 
examines qualitative reasoning in the context of learning 
qualitative dynamics for domains via reading texts.  Based on 
experience with generating qualitative models from texts, we 
argue that qualitative reasoning for such everyday models 
raises new problems for qualitative reasoning, which opens 
up new research frontiers. 

 Introduction   

Qualitative reasoning was intended to capture both the in-
tuitive, everyday models of the person on the street and the 
more rigorous models that underlie scientific and engineer-
ing knowledge about the continuous world.  As a field, we 
have had great success with modeling professional qualita-
tive reasoning (e.g. de Kleer, 1984; Bredeweg et al. 2009), 
but much less energy has been put into investigating every-
day qualitative reasoning. There are good reasons to believe 
that the requirements of everyday QR differ from the re-
quirements of capturing expert scientific and engineering 
qualitative reasoning. The traditional model of doing quali-
tative reasoning involves domain theories that are complete 
relative to the phenomena to be modeled, often incorporat-
ing multiple levels of granularity and multiple perspectives.  
Reasoning is performed via automatic model formulation, 
using first-principles knowledge combined with modeling 
assumptions based on domain principles and experience.  
Qualitative simulation over complete qualitative states pro-
vides a mechanism for ensuring that all important categories 
of possible behaviors are generated, constructing possibili-
ties which can then be explored via more detailed 
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knowledge as necessary (de Kleer & Brown, 1984; Kuipers 
1994, Bredeweg et al. 2009).  People just learning a domain 
are different.  Their knowledge is partial, both in terms of 
what processes and phenomena are relevant in a domain, but 
also what they know about the phenomena that they have 
learned about.  Despite this, they are still able to reason 
through quite complex situations, often extending their 
knowledge as they do so.   

This paper is a theoretical investigation on what is re-
quired to extract useful qualitative representations by read-
ing text.  It brings together two lines of QR research.  The 
first is examining the role that QR plays in natural language 
semantics (Kuehne 2004; McFate et al. 2014).  As outlined 
below, this has led to the ability to extract most constructs 
of QP theory from simplified English text.  What it does not 
do is provide an account of how such fragmentary, partial 
knowledge can be used subsequently to do qualitative rea-
soning, including looking for misconceptions of the type 
that are inevitable given the nature of natural language as a 
communication channel.  The second line of QR research 
has examined how analogy and similarity provide a family 
of alternate methods for performing qualitative reasoning 
(Forbus & Gentner, 1997; Yan & Forbus, 2004; Friedman, 
2012).    As outlined below, these techniques rely on having 
a library of previous experiences, which can be used by anal-
ogy to explain new situations, but also to produce more rule-
like knowledge as experience accumulates.  These lines of 
investigation provide some, but not all, of what is needed to 
learn useful qualitative knowledge via reading. This paper 
walks through the entire process of learning by reading and 
using the learned knowledge, to identify the gaps and open 
problems that need to be addressed. 

We begin by providing some brief relevant background 
about prior work, to set the stage. Then we walk through five 
tasks involved in learning and using qualitative knowledge 
from reading, to see where existing ideas probably suffice 
and where new ideas will be needed.  We close with some 
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conclusions and a discussion of future work. 
 

Background 
We start by summarizing the models of analogical pro-
cessing we build upon, then discuss Friedman’s model of 
conceptual change, which provides an excellent starting 
point for modeling everyday qualitative reasoning. 

We build on Gentner’s (1983) structure-mapping theory 
of analogy, which describes analogy and similarity in terms 
of computing comparisons between structured, relational 
representations.  Our work on learning by reading uses mod-
els of three analogical processes.  SME (Falkenhainer et al. 
1989) models analogical matching.  In learning by reading, 
for example, SME is used to process instructional analogies 
and to construct suggestions for word sense disambiguation 
by analogy with previous choices.  MAC/FAC (Forbus et al. 
1995) models similarity-based retrieval.  In learning by 
reading, it is used to retrieve potentially relevant cases for 
generating questions about new material and to retrieve 
cases for word sense disambiguation.  SAGE (McLure et al. 
2010) models analogical generalization.  In learning by 
reading, SAGE is used to construct more portable 
knowledge about disambiguation choices and to build up 
models about concepts described in texts. 

Friedman’s (2012) assembled coherence theory, and the 
TIMBER implementation of it, uses these three analogical 
processes and QP theory to model human conceptual 
change.  Friedman proposes that people store local explana-
tions of phenomena, either acquired experientially or cultur-
ally, where the reasons for behavior are ultimately grounded 
out in first-principles model fragments.  Explaining a new 
behavior involves using MAC/FAC to retrieve a prior ex-
planation, and then applying the model fragments from that 
explanation to the new situation, using an abductive process 
to make missing assumptions as needed.  Preference criteria 
take the cost of an explanation into account, i.e. assuming 
an unknown condition is far less costly than living with a 
contradiction.  Finding lower-cost models drives the process 
of conceptual change.  Implicit in this model is the idea that 
a process like this forms the basis for everyday qualitative 
reasoning, and we agree that this is very plausible, especially 
with two extensions proposed below. 

Five Tasks in Learning by Reading 

We include using learned knowledge as part of the process 
of learning by reading, since a reader’s understanding is 
never completely accurate, and hence trying out what was 
gleaned is an essential part of refining the knowledge into 
something useful.  We will use examples drawn from two 
chapters from a book on solar energy, Sun Up to Sun Down 
(Buckley 1979), intended for non-specialists.  Chapter 2 

concerns the difference between heat and temperature and 
the basics of heat flow, which are explained using an anal-
ogy between water and heat.  Chapter 16 concerns the oper-
ation of a solar hot water heating system, part of an extended 
multi-chapter example that tracks the operation of the sys-
tem through a typical day.  The five tasks we use in this 
analysis are (1) achieving initial understanding, (2) 
knowledge integration, (3) question-answering from partial 
models, (4) similarity-based qualitative simulation, and (5) 
detecting, diagnosing, and repairing misconceptions. We 
discuss each in turn. 

 
Achieving Initial Understanding This involves building 
up a semantic interpretation of the text. The EA NLU system 
(Tomai & Forbus, 2009) uses a chart parser and custom 
grammar, combined with ResearchCyc knowledge base 
contents.  The semantic interpretation system is organized 
around Discourse Representation Theory (Kamp & Reyle, 
1993), which provides methods for handling logical and nu-
merical quantification, counterfactuals, and other useful se-
mantic distinctions.  The recognition of QP theory con-
structs is performed via narrative functions (McFate at el 
2014), i.e. extracting the functional role of each sentence in 
the ongoing discourse.  The semantic interpretation process 
is abductive, with the system preferring explanations of the 
text that justify consistent higher-order narrative functions. 
 Consider for example the sentence whose (partial) seman-
tic interpretation is shown in Figure 1. The prepositional 
phrases (e.g. “to” and “from”) in the context of a motion 
verb like flow provides the participants needed to support a 
direct influence reading. Getting to this interpretation is 
complex, because natural language is inherently ambiguous: 
It relies on context and on the prior knowledge of smart be-
ings to interpret what is being said.  Ambiguities arise in 
several ways.  First, there can be multiple parses, involving 
different types of attachment. For example, in “The man saw 
a dog with binoculars,” it is ambiguous whether the man or 
the dog has the binoculars.  Second, there are typically mul-
tiple word senses for each word, e.g. “hot” can mean high in 
temperature, sexy, or spicy.  The analysis constructed by the 
language system contains all of these possibilities and axi-
oms linking their entailments together, so that the abductive 
process can make choices that lead to producing QP 

(isa FluidFlow-Translation15256 QPProcessType)  
(mfTypeParticipant FluidFlow-Translation15256 ?pan 
  CookingVessel to-UnderspecifiedLocation)  
(mfTypeParticipant FluidFlow-Translation15256 ?stove 
  CookingRange from-UnderspecifiedLocation)  
(mfTypeConsequence FluidFlow-Translation15256 
  (i+ ((QPQuantityFn ThermalEnergy) ?pan) 
   (RateFn ?self)))  
(mfTypeConsequence FluidFlow-Translation15256 
 (i- ((QPQuantityFn ThermalEnergy) ?stove) 
  (RateFn ?self)))  

Figure 1: Semantic interpretation for the sentence "Heat flows 
from the hot stove to the cool pan" 



knowledge.  However, there can be multiple sets of choices 
that produce QP knowledge, and not all choice sets are con-
strained by abduction.  Other methods the system uses for 
resolving ambiguities include experience (i.e. analogical 
word sense disambiguation (Barbella & Forbus, 2013)) and 
domain-independent heuristics (e.g. prefer the interpretation 
that provides the most information). 
 One subtlety in this interpretation process is that some 
language statements are about things in general (i.e. gener-
ics) versus specific situations.  Recognizing generics cor-
rectly is itself a difficult problem.  Here the sentence is in-
terpreted as a generic, because the system introduced logical 
variables for the participant roles. 

People are somewhat capable of keeping track of the 
sources of their knowledge, more so if it is something that 
was recently learned.  In Companions (Forbus et al. 2009), 
the knowledge gleaned from a particular reading of a text is 
stored in a set of linked cases, i.e. Cyc-style microtheories.  
This enables the knowledge to be easily used in subsequent 
reasoning, by including those microtheories in the logical 
environment of the reasoning, and to compare/contrast what 
is obtained from different sources, or the same source read 
at different times with different states of prior knowledge.   

Since semantic interpretation is not deductively valid, 
mistakes can be made.  This makes the next task tricky.   

Integrating Newly Learned Knowledge 
Few of us start from nothing when reading, which 

means that what one reads must be integrated with what one 
already knows.  In people, there are strong individual differ-
ences in how much this happens.  Some appear to passively 
store the information from a text in a manner where it gets 
regurgitated on tests, but has minimal interaction with any-
thing else that they know.  Others appear to aggressively 
look for incompatibilities between the new and the old, and 
ask themselves how they can use the new knowledge. The 
process of rumination in Learning Reader (Forbus et al. 
2007) provides one model of more aggressive processing.  
In rumination, the system asks itself questions.  Learning 
Reader was focused on learning about world history, so it 
asked itself two kinds of questions.  The first were basically 
forms of the Journalist’s Questions about events (i.e. who, 
what, when, where, why, how), fleshing out what one typi-
cally knows about events.  The second were generated via 
analogy with similar types of entities, e.g. if what was read 
about was a military operation, it used MAC/FAC to retrieve 
the most similar prior operations it already knew about, and 
used the candidate inferences generated from the map-
ping(s) as queries about the new information.   

Different question generation strategies are needed for 
QR knowledge.  For elaboration of knowledge, questions 
aimed at filling out what is typically known about model 
fragments seem important. Processes can be introduced in 
text without describing their conditions or consequences, for 

example.  Similarly, if a process has been introduced, but no 
constraints have been put on its rate, asking what it depends 
upon is a useful question.  Moreover, processes are often in-
troduced via concrete examples, e.g. “Heat flows from the 
Sun to the Earth.” 

This leads to an interesting question: What are the partic-
ipants for this process, in general? Aside from idealizations 
explicitly introduced to help guide the application of ideas 
(e.g. point mass, infinite sink), such information is often left 
implicit in texts.  This is not unreasonable, since it is far 
from clear that the upper levels of human ontologies are uni-
form across people.  For example, Chapter 2 also communi-
cates the relative nature of heat flow by using the example 
of a frozen bird in an oven.  Here is the simplified English 
form that our system can process: 

 Consider a situation. A frozen chicken leaves a 
freezer. The frozen chicken is placed into a refriger-
ator. The chicken warms. The chicken is in the cold 
refrigerator, but the heat flows into the chicken. 
Because the chicken is colder than the refrigerator, 
the heat flows into the chicken. This causes the 
chicken to warm. 

One possible way to proceed is to look at the superordi-
nate concepts of all of the concrete concepts mentioned, to 
see if there are pre-existing concepts that capture what is rel-
evant about participating in heat flows.  This does not al-
ways work.  Consider for example the various concepts that 
are used in Chapter 2 as sources and destinations for heat 
flow.  Using the ResearchCyc knowledge base and starting 
from Oven, Brick, Chicken, and Ground, there are 
twenty-three superordinate concepts shared between them.  
Unfortunately, they are all very generic, e.g. Thing, Par-
tiallyTangible, SpatialThing-Localized.  None of 
them are plausible candidates, since they don’t capture what 
is key about the participants: That they are the kind of thing 
that can be modeled as having heat and temperature.   

There are at least two strategies for handling participant 
constraints more generally, and especially in the case where 
there isn’t a natural superordinate.  The first is to use anal-
ogy in modeling, checking to see if a potential participant is 
sufficiently similar to one of the prior known occurrences of 
that process, especially by using analogical generalization 
(Klenk et al. 2008). The second is to introduce a specific 
concept to be the constraint used on each type of participant, 
and install inheritance links from concepts observed to be 
participants to that superordinate.  Thus over time, the con-
cept will become elaborated as the set of inheritance links 
grows. 

Consistency checking is more open-ended. Additional 
knowledge about a process or a phenomena captured by a 
model fragment needs to be checked to see if they can be 
combined together.  (Unlike the usual human-readable syn-



tax for QP models, model fragments are represented by col-
lections of individual assertions, making their dynamic com-
bination feasible.)  Non-local constraints (e.g. that a quantity 
can never be both directly and indirectly influenced, for ex-
ample) could either be tested via a static analysis or by look-
ing for such problems when doing future modeling tasks. 

Question answering by reasoning over partial models 
In our experience, the vast majority of questions that arise 

in popular science books concern within-state qualitative 
reasoning, so we begin with that, and treat prediction and 
postdiction (i.e. explaining how a state might have come 
about) separately below.  Suppose we have a problem from 
a science test, such as  

 When a person’s sweat evaporates, the person feels 
cooler. Which of the following statements best describes 
why sweating helps the person feel cool? 

A. Heat is absorbed by sweat when it evaporates. 
B. Heat is absorbed by the body when sweat evapo-
rates. 
C. The temperature of the water in sweat goes down 
when it evaporates. 
D. The temperature of the water in the body goes up 
when sweat evaporates. 

Such problems typically include a scenario, introducing 
entities and relationships among them to be reasoned about 
using a combination of text and diagrams (here, a person 
sweating), and one or more questions about them.  Extract-
ing the meaning of the scenario involves the same reading 
process as reading the main text, except that the question 
about whether something is a generic versus specific state-
ment is much more likely to be resolved in favor of interpre-
tations involving specific entities.  Questions must be trans-
lated into queries that can be operationalized in terms of 
qualitative reasoning operations (or other operations – most 
books involve multiple types of knowledge and intermingle 
them as needed).  We view the division of labor involved in 
question understanding to be more a matter of reasoning 
than of language understanding.  That is, the language sys-
tem produces expressions involving verbs and other reason-
ably abstract relationships, which are then decoded into a 
sequence of QR operations by problem-solving methods op-
erating over the output of the language analysis.   

Unfortunately, the partial nature of the models con-
structed by language means that there often isn’t enough in-
formation to conduct first-principles reasoning.  Take the 
way heat flow is described in Chapter 2.  It is described en-
tirely of specific, concrete situations.  The text provides the 
specific types of participants for particular instances of this 
process, but it does not provide information about process 
types directly.  This is where similarity-based qualitative 
reasoning becomes crucial.  Explanations of physical phe-
nomena read in the text provide analogs that can be used to 
construct qualitative models for new situations, by mapping 
qualitative representations onto the new situation.  Often not 

all of this knowledge can be mapped to the new problem: If 
the analog involves a situation where an object is getting 
colder, but there are other processes involved in the new sit-
uation (e.g. one or more inflows as well as outflow), the 
causal laws should transfer intact, but their conclusions, 
which are based on closed world assumptions that do not 
hold in the target situation, should not be. 

How should relevant analogs be found?  TIMBER uses a 
case library of prior explanations with MAC/FAC to retrieve 
explanations, but it also includes pointers between cases to 
indicate when an explanation has been superseded by a bet-
ter one.   This seems like a psychologically plausible ap-
proach.  It captures the fragmentary nature of most human 
mental models (e.g. Collins & Gentner, 1987), since differ-
ent explanations for the same phenomena can be retrieved if 
the situations are dissimilar on the surface.  Whether this 
will scale computationally is an open question at this time, 
given the difficulty of accumulating large-scale libraries of 
formally represented explanations.  (This is one reason why 
we are researching learning by reading, because potentially 
a system can build up large bodies of knowledge by reading 
books and web pages.)  But there is one problem with TIM-
BER for this task: It assumes that model fragments are fully 
specified in logically quantified terms.  Model formulation, 
in TIMBER, is accomplished by retrieving a prior explana-
tion and using the set of model fragments found in it as the 
domain theory for model formulation in the new situation.  
While the model formulation process was abductive, in that 
it would conjecture missing participants and preconditions 
(albeit at increasing cost to the explanation it was construct-
ing), it still required first-principles model fragments.  A dif-
ferent approach would be mapping model fragment in-
stances via analogy, i.e. they would be candidate inferences 
from the retrieved situation.  This has the advantage of not 
requiring the early introduction of logical variables, but the 
cost of having to do multiple mappings and/or rerepresenta-
tion if the number of entities is different.  To see this, con-
sider trying to explain a three container situation in terms of 
prior experience with a two-container situation (Figure 2).  
The prior experience (base) must be mapped twice, giving 
rise to conflicting predictions about the direction of change 
in the level of G.  Re-running influence resolution on just 
the subset of the situation where the analogies cannot pro-
vide predictions seems like the most sensible approach, but 
this requires refactoring limit analysis to work in a more fo-
cused, local manner. 

Prediction and postdiction via analogy 
Generating multistate descriptions of behavior via anal-

ogy has been explored previously (Yan & Forbus, 2004).  
That model mostly used envisionments generated by a first-
principles qualitative simulator (Gizmo), although one ex-
ample was shown where a partial, hand-generated explana-



tion was mapped to provide predictions about a new situa-
tion via analogy, which is encouraging.  But is this the best 
that can be done?  People are capable of estimating that 
some state transitions are more likely than others, for exam-
ple, and that cannot be extracted from a purely first princi-
ples qualitative model.   

Here is a proposal for a method of similarity-based qual-
itative simulation that provides estimates of likelihoods for 
transitions.  Suppose incoming experience – and we include 
situations that the system reads about, as well as any physi-
cal experiences that it might have – is carved up into triples 
of the form 

 <Before State, Transition, After State> 
That is, the propositional content of both the before and 

after state are part of the same case, and statements linking 
the particular cause of the transition (either a limit hypothe-
sis occurring or a discrete action taken that changes a pre-
condition) are also part of the same case.  Suppose further 
that these triples are assimilated by SAGE into a generaliza-

tion context.  Then predictions for what happens next in a 
new situation can be made by (a) retrieving triples from 
SAGE, restricting the before state to match the before state 
in anything retrieved1, and (b) using the frequency infor-
mation associated with each transition (i.e., the frequency 
information that SAGE tracks for every statement in a case) 
to compute an estimated probability for each transition. 
There are a number of subtleties to be worked out, e.g. mul-
tiple generalizations could be formed that have analogous 
transitions, and these would have to be merged to maximize 
the accuracy of the computed probabilities.  But this tech-
nique does have the potential advantage of maximizing the 
reuse of each experienced transitions. 

                                                        
1 This can be done via partition constraints provided as part of the pro-

cess.  These essentially forbid matches between objects of different types. 

Detecting, diagnosing, and repairing misconceptions 
Errors in learned knowledge are inevitable.  Such mis-

takes can be detected in several ways: A person might pro-
vide feedback about particular conclusions and/or reasoning 
steps, and the system itself might re-try prior problems in 
light of new knowledge to see if it now computes different 
answers than what was previously viewed as correct an-
swers.  Ideally, learned knowledge is used soon after ac-
quired, to simplify the diagnosis process.  We believe the 
approach of de Koning et al. (2000) for diagnosing problems 
in student models could be adapted for self-modeling in 
Companions in order to debug learned knowledge.  They re-
ified the reasoning done by a qualitative reasoner as a “de-
vice”, whose components were mental operations (e.g. com-
bining effects, retrieving specific facts) with information de-
pendence between computations being represented as 
“wires” connecting the components.  Given a discrepancy 
between a students’ prediction for a situation and the value 
computed by this “device”, they used the GDE algorithm (de 
KIeer & Williams, 1987) to diagnose possible reasons for 
the failure.  For self-modeling in Companions, we think the 
following adaptation will enable this method to be used as-
is: Track the frequency with which a particular fact, and/or 
the microtheory containing that fact, contribute to correct 
versus incorrect reasoning.  This provides the probability in-
formation needed to rank candidate hypotheses.  (One heu-
ristic might be to assume that knowledge that has been 
around longer is more likely to be correct, assuming testing 
of it is reasonable uniform.) Another opportunity to detect 
problematic knowledge is to compare cases of learned 
knowledge about the same processes, either from the same 
source or from multiple texts, to look for discrepancies and 
opportunities to merge partial models. 

Conclusions and Future Work 

We have argued that qualitative representations learned 
by reading place different demands on qualitative reasoning.  
Learned models are more fragmentary and more likely to 
have errors than hand-generated models. In some cases ge-
neric model fragments can be directly extracted from text, 
but even then, the information about participants supplied 
via language is more concrete than it should be for such 
model fragments to be widely applied.   

 Nevertheless, we believe that an important direction for 
qualitative modeling is to learn to work with such represen-
tations, generated by text, by dialogue, by experimentation 
in the physical world, and other sources of experience as AI 
systems become more connected to the world via high-band-
width sensors (e.g. Kinect 2).  Such reasoning, we have ar-
gued, needs to rely more heavily on analogy and be more 

 
 

Figure 2: Explaining liquid flow in three containers in terms of prior 
experience with two containers requires multiple mappings (shown 

in red versus blue) and recomputing influence resolution for the 
properties of the liquid in G 

HF G



local than traditional QR, which requires complete qualita-
tive states.  The TIMBER model, expanded with analogical 
model formulation and triple-based transition state general-
ization contexts, seems like a very promising approach. 

Our next goal is to build up our techniques to the point 
where a Companion can read all of Sun up to sun down, and 
answer questions that we would reasonably expect people to 
answer after they had worked through that book.  This is a 
difficult goal, but as the analysis here indicates, a novel 
combination of prior research results with a few extensions 
may indeed be enough to achieve this. 
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