

Finding Textures in Sketches using Planar Ising Models

Matthew D. McLure, Subu Kandaswamy, and Kenneth D. Forbus

Northwestern University

Abstract

Creating software that can understand the range of sketches
that people produce is a challenging problem. One source
of difficulty is that people often include textures in their
drawings. This paper shows how to use Ising models, a
technique from computer vision at the level of pixels, for
decomposing digital ink into a hierarchy of edge-based
structures that provide more concise qualitative represen-
tations of textures in hand-drawn sketches. We analyze the
compression efficacy, strengths and weaknesses of this
qualitative representation technique using a subset of a
large-scale sketch corpus.

 Introduction

Sketching is a natural way for people to interact, but auto-

mated sketch understanding is a difficult challenge because

raw ink is noisy. Qualitative, structured representations of

edges and shapes have performed well for learning sketched

concepts from only a handful of examples (Lladós et al.

2001, Lovett et al. 2007, Lee et al. 2007, McLure et al.

2015). However, structured representation schemes can get

bogged down by ink containing textures – regions of repeat-

ing, richly connected visual features. Textures are com-

monly included in drawings of certain categories of

sketched object (e.g. turtle, pumpkin, pizza, feather, from

Eitz et al. (2012) – all examples in this paper are drawn from

this corpus of sketches), presumably because they are salient

1 www.cyc.com/platform/opencyc

features of these concepts, facilitating recognition. To pro-

duce effective qualitative representations of sketched ob-

jects for analogical learning, we need to be able to construct

concise qualitative representations of textured regions, to

take advantage of this information.

 This paper shows how to segment textures in digital ink

using the Ising model, which originated in statistical me-

chanics as a model of ferromagnetic particle interactions. It

became popular in computer vision for segmenting images

into regions based on local features like pixel intensity, in

part because it can be solved efficiently and exactly for cer-

tain classes of graphical models, including planar graphs.

Here, we present methods for producing planar graphs at

multiple levels of granularity for describing ink, so that an

Ising model can be used to group them into qualitative de-

scriptions, within which texture is in some sense uniform.

We analyze the strengths and weaknesses of our approach

to texture detection, as well as its compression efficacy, us-

ing a subset of the Eitz et al. (2012) corpus.

Background & Related Work

CogSketch

CogSketch (Forbus et al. 2011) is an open-domain sketch

understanding system in which users can draw digital ink.

Every pen stroke produces a polyline, a series of points. Sets

of polylines can be manually grouped into conceptually

meaningful objects called glyphs, either on-the-fly or post-

hoc, which may then be assigned conceptual labels from the

Cyc knowledge base1. Performing analogies between per-

ceptual part-models of glyphs has the potential to facilitate

recognition, making sketch interaction more fluid, but how

to best organize the ink into salient, informative parts is an

open problem.

 CogSketch already constructs multiple levels of represen-

tations for digital ink within a glyph, based on a combination

of evidence from studies of human vision and computational

explorations of what information is salient and relevant for

Figure 1: A sketch of a sea turtle, and a texture region

detected by the algorithm (shaded).

multiple tasks. Its lowest level of representation decom-

poses the ink into a network of edges and junctions, and

characterizes the visual attributes of edges (e.g. curvature,

arc length) and their relationships (e.g. acute/obtuse angles,

relative orientation, relative length) with qualitative predi-

cate calculus statements. CogSketch is also capable of de-

scribing ink at the level of cycles of edges, to which it ap-

plies a vocabulary of shape attributes (e.g. major axis orien-

tation) and relationships (e.g. between). Finally, CogSketch

can compute attributes and relations for edge-connected ob-

jects (ECOs); in the graph of edge/junctions, these are the

connected components – the maximal connected subgraphs.

ECOs are described using many of the same descriptors as

edge-cycles (e.g. between), excluding those that character-

ize connectivity. See McLure et al. (2011) for details. Here,

these three levels are used to construct the planar graph em-

beddings in which we define our Ising models.

Analogical Learning

The qualitative representations of ink we generate here are

meant to be input to a suite of analogy models based on

Gentner’s (1983) structure-mapping theory of analogy and

similarity. The Structure-Mapping Engine (SME, Falken-

hainer et al. 1989) takes as input two structured relational

representations (cases), and computes one or more map-

pings in polynomial time, using a greedy algorithm (Forbus

et al. 1994). Analogical retrieval is modeled by MAC/FAC

(Forbus et al. 1995), which uses a two-stage model to pro-

vide scalable similarity-based retrieval. Analogical gener-

alization is modeled by SAGE (McLure et al. 2010), which

can cluster and compress a series of positive examples of a

concept into a set of structured prototypes and outlying ex-

amples. The generalizations are probabilistic, and creating

them does not involve introducing logical variables.

MAC/FAC and SAGE can be used in concert to classify ex-

amples, by retrieving over the union of concept prototypes.

ALIGN (McLure et al. 2015) further extends SAGE by add-

ing automatically constructed near-misses, which help im-

prove discriminability.

 The Goldilocks Hypothesis (Finlayson and Winston

2006) predicts that the most productive representations for

analogical retrieval and matching describe input in terms of

its intermediate properties – not too big, not too small; not

too simple, not too complex. Graph-based approaches to

sketch recognition that describe ink at the level of visual

primitives such as edges or closed regions have been effec-

tive for recognizing relatively simple symbols (each con-

taining on the order of 10 primitives; Lladós et al. 2001, Lee

et al. 2007). But a sketch recognizer in an open domain may

encounter richer stimuli, which, when described at the level

of primitives, can overwhelm an analogical or otherwise

graph-based matcher. Lovett et al. (2007) applied analogical

learning to rich sketch stimuli by using a ranking technique

to prune facts from oversized cases. Our strategy is to com-

press at an earlier stage, when ink is being perceptually or-

ganized into entities.

The Ising Model

In machine learning, undirected graphical models express

energy functions as a sum of individual energy functions

over every edge and every node in a graph. They can be used

to infer labels for the nodes in the graph, where lower-en-

ergy states are more probable and the lowest-energy

(ground) state is the maximum a posteriori (MAP) estimate.

 The Ising model is an undirected graphical model that

makes two assumptions: (1) The node labels are binary, and

(2) every edge energy can be expressed as a disagreement

cost – a fixed energy cost incurred only when the labels for

the two nodes connected by the edge have different labels.

Here we are specifically interested in the zero-field Ising

model, which additionally assumes that (3) there are no node

energies. With these three constraints, the energy function

boils down to

���� = ���� ≠ �
�
{�,
}

��

where �� is the label for node �, �� the label for node �,
and	��
 is the disagreement cost associated with the edge

{�, �}. Because the energy is just a sum of disagreement

costs, and because a binary labeling over nodes is equivalent

to a graph cut, solving for the ground state of the model re-

duces to a min-cut/max-flow problem on a weighted, undi-

rected graph, where the edge weights are the disagreement

costs.

Efficient Solutions: Submodularity vs. Planarity

The minimum-weight cut for an arbitrary undirected

weighted graph can be found in polynomial time if there are

no negative disagreement costs in the graph, as this ensures

submodularity. This approach requires some localized back-

ground knowledge about labels, often in the form of extra

terminal nodes with fixed labels that can be connected to

nodes in the original model to bias them (Boykov and

Veksler 2006). Otherwise, the empty cut (a uniform label-

ing) would always be the lowest energy state.

 However, the Ising model does not need to be submodular

to be solved in polynomial time if it is defined on a graph

that has a planar embedding – informally, a way to lay it out

on a plane such that no two edges cross (Kasteleyn 1961;

Fisher 1961; Globerson and Jaakkola 2007; Schraudolph

and Kamenetsky 2009). In this case the edges in the model

can have real-valued disagreement costs, and the ground

state is computed via the minimum-weight graph cut di-

rectly, with no terminal nodes required.

 The real-weighted (planar) model is more flexible than

the non-negative (submodular) model in that it does not re-

quire any nodes to be biased towards a particular label. On

the other hand, it requires a stronger bias on the edges;

whereas the submodular model just calls for a partial order-

ing over the edges’ individual (quantitative) preferences to

group the nodes that they connect, real-weights additionally

require that we encode whether each edge should have an

affinity – a qualitative preference to group – or an anti-affin-

ity – a preference to separate. This is a trade-off, but the real-

weighted approach has an appealing property for our appli-

cation: It can induce an arbitrary number of connected com-

ponents in the graph quite naturally with a single cut,

whereas the submodular approach requires strategically bi-

asing at least a corresponding number of nodes to do so – a

non-trivial task.

Approach

Here we present methods for finding textures in digital ink

using planar Ising models. We begin with an account of how

CogSketch decomposes a glyph’s ink into a network of

edges/junctions, edge-cycles, and ECOs, and how we use

them to determine the structure of our Ising models. We then

describe the local geometric features used to assign disa-

greement costs to the edges of each model. Next, we discuss

our method for performing a real-weight graph cut to find

the ground state of the model, and explain how we extract

textures from the results of the cut. The final subsection ex-

plains how the texture entities are described qualitatively for

analogy.

Determining Ising Model Structure

In this subsection we explain how CogSketch constructs its

network of edges, junctions, edge-cycles and ECOs, and

how these structures are used to produce planar embeddings

on which we define our Ising models.

Establishing Planarity at the Edge Level

We begin at the lowest level – the placement of edges and

junctions to form a planar embedding, where CogSketch’s

edges correspond to the edges in the embedding and its junc-

tions correspond to the nodes. Planarity is enforced by work-

ing within the following constraints:

 (a) Every edge is a simple curve (no self-intersections).

 (b) No two edges intersect.

 (c) Edges can only intersect junctions at their endpoints.

 (d) Every edge endpoint must intersect the boundary of

exactly one junction.

 (e) No two junctions intersect.

 The goal at this stage is to place junctions and edges in a

way that abides by these constraints while best representing

the geometry of the raw ink. Our strategy is to first place

junctions such that all of the intersections and endpoints of

the raw ink polylines are covered by some junction and no

two junctions intersect. We then construct edges from each

maximal ink segment that isn’t covered by a junction.

 Junction placement begins by finding all polyline inter-

sections (self or mutual) and polyline endpoints in the raw

ink. These points are marked as critical. CogSketch also

Figure 2: (1) A sketch of a pumpkin, overlaid with (2) its raw polylines and primitive junctions, (3) its final edges and junctions, (4) its

edge-cycles, and (5) its ground-state Ising model, with edges colorized to reflect relative disagreement cost (blue = affinity, red = anti-

affinity). In this case, the ground state ends up violating the preference of one of the edges (the short affinity edge in the center); to

allow every edge its preference would not be a legal cut in this case.

Figure 3: (Top) Sketch of a bus overlaid with its edge/junc-

tions embedding, in which the 7 separate ECOs are marked

with different junction colors. (Bottom) A single (shaded)

texture found in the outermost ECO.

finds corners and inflection points in the ink using a modifi-

cation of the Curvature Scale Space (CSS) corner detector

(Lovett et al. 2012; Mohktarian and Suomela 1998), and

marks these points non-critical. For every critical and non-

critical point, a new junction with a starting radius propor-

tional to the size of the glyph is centered on the point. These

primitive junctions are allowed to intersect. Clusters of

overlapping junctions are identified, and junctions in each

cluster either shrink to produce smaller clusters, or merge

such that all critical points overlapping the cluster are still

overlapping the new, merged junction. Our heuristic is to

shrink up to a minimum junction size, at which point we

merge the remaining clusters. Junction placement termi-

nates when no two junctions intersect.

ECOs and their Edge-cycle Embeddings

Recall that the ECOs are the connected components in the

edge/junction graph embedding. In this paper, we assume

that a texture cannot span multiple ECOs, so we create and

solve an Ising model for each ECO in isolation. The algo-

rithms we describe below could, in theory, be applied to one

big Ising model for the entire sketch. Our decision to build

them per ECO primarily affects how disagreement costs are

normalized, which is discussed in the next section. Ideas for

grouping ECOs themselves into more abstract textures are

revisited in the Future Work section.

 To build an Ising model for an ECO, we begin with its

edge/junction embedding. As a subgraph of the overall

edge/junction embedding, it inherits planarity. CogSketch

creates an edge-cycle around each face in the ECO’s

edge/junction embedding, i.e. every region of white space

created by the ink. In Figure 2, the pumpkin is a single ECO

and its edge-cycles are marked with dashed lines. We then

construct a new graph embedding for an ECO at the edge-

cycle level by creating a node for every cycle except the pe-

rimeter cycle, and placing an edge between the nodes for

any pair of cycles that share an edge at the edge level, such

that the new edge intersects the shared edge. In graphical

terms, the ECO’s edge-cycle embedding is the dual of its

edge/junction embedding, excluding the node for the infinite

face – the whitespace outside the perimeter that isn’t

bounded by any ink – along with the edges incident to that

node. As such, the edge-cycle embedding inherits planarity.

This embedding is the structure on which the ECO’s Ising

model is built; every edge between adjacent edge-cycles is

assigned a disagreement cost in the model. The next section

explains how these disagreement costs are computed.

 Determining Disagreement Costs

The disagreement cost between two neighboring edge-cy-

cles is determined by summing measurements of their simi-

larity along 8 dimensions, listed in Table 1. The dimensions

of similarity were chosen to correlate with likely texture

groupings. Dimensions 1-4 are meant to capture size and

Figure 4: The geometry used to compute the disagreement

cost for edge e (yellow) that is shared between edge-cycles A

(green) and B (blue). Edges a1 (red) and b1 (brown) form an

ordered pair of cross edges for e, as do b2 (orange) and a2

(purple). The vector ������� denotes the local orientation at end of

a1 that intersects the shared junction. Note that while the

cross edge polylines are always oriented in the clockwise

direction (for curvature comparisons), the vectors for their

endpoint orientations are always pointing away from the

shared junctions.

Area The areas of the edge-cycles’ polygons

Major-axis

orientation

The orientations of the 3D major axes for the

cycles’ polygons, where roundness is a z axis

Perimeter

complexity

The number of edges in the cycle

Contents The number of ECOs contained by the cycles

(e.g. Six are contained by the cycle surround-

ing the front of the bus in Figure 3)

Cross-edge

orientation

The local orientations of the cross edges in

each pair as they pass through the shared

junctions (e.g. the angular distance between

������������ and �������in Figure 4)

Cross-edge

curvature

The (signed) average curvatures of the cross

edges in each pair

Cross-edge

length

The length of the cross edges in each pair

Adjacent

angles

The adjacent angles created between the

shared edge and each cross edge (e.g. the ab-

solute difference between the angular dis-

tance between ������� and ������� and the angular dis-

tance between ������� and ������� in Figure 4). Im-

portant for radial textures, e.g. wheel.

Table 1: The dimensions of similarity that factor into the dis-

agreement cost, and what exactly each one compares.

shape similarities in the cycles themselves, taken as poly-

gons (e.g. two neighboring edge-cycles with similar areas

are more likely to be intended as part of the same texture,

ceteris paribus). Dimensions 5 and 6 reflect the expectation

that neighboring edge-cycles in a texture are more likely to

have good edge continuity where their boundaries meet, as

is the case along the bottom of the pumpkin in Figure 4 or

amid the cross-hatching in the skyscraper in Figure 5 (left).

Dimensions 7 and 8 are meant to capture radial textures (e.g.

a bicycle wheel), which tend to produce similarly sized ad-

jacent angles and edges at their centers.

 Note that in this paper, the disagreement cost is a sum, not

a weighted sum; all dimensions of similarity are taken to be

equally important. We leave for future work the addition of

parameters corresponding to the dimensions, to make the

model tunable, or better yet, learnable.

 The similarity between two neighboring edge-cycles i and

j along dimension s is computed as the (absolute) difference

between them w.r.t. that dimension, ∆���, ��, inverted and

normalized by some mean (absolute) difference for ele-

ments that dimension, ∆����. Our equation for determining dis-

agreement cost is then

��
 = �∆�����∆���, ��
∆�����∈

So whether neighbors i and j have an affinity/anti-affinity

depends on the extent to which their difference along each

dimension s is less/greater than ∆����, summed across all di-

mensions. We do not compute the mean difference ∆���� over

the neighboring pairs of edge-cycles alone – the same set of

pairs that defines the Ising model edges. While straight-for-

ward, this would constrain the distribution of disagreement

costs to have a mean of zero. This is a problem because

sometimes affinities should be allowed to dominate (e.g. to

determine that the skyscraper in Figure 5 (left) is one whole

texture), and the same goes for anti-affinities (e.g. to deter-

mine that the sea turtle in Figure 5 (right) has no textures).

Instead, we compute the mean difference ∆���� over all pairs of

elements measurable along a similarity dimension. For di-

mensions 1-4, this includes all pairs of edge-cycles in the

ECO – not just neighbors. For dimensions 5-7, the mean is

computed over all pairs of edges in the ECO that share a

junction. For dimension 8, the mean is computed over all

pairs of adjacent angles inside the interior of the ECO. This

allows us to capture, for example, in Figure 5 (right), the fact

that each pair of neighboring edge-cycles is more different

than the average pair.

Computing the Minimum-weight Cut

To find the minimum-weight cut of our planar, real-weight

Ising model, we use the technique of Schraudolph and

Kamenetsky (2009). It finds the minimum-weight cut by

computing an expanded dual graph for the model – like the

dual but with q-cliques in place of nodes, where q is the

number of edges connected to the node – and solving for its

maximum-weight perfect matching using the blossom-

shrinking algorithm. The complement of this perfect match-

ing in the original graph is its minimum-weight cut. We use

the Blossom V implementation for blossom-shrinking (Kol-

mogorov 2009).

Extracting Textures: Measure Once, Cut Twice

Recall that a minimum weight cut on a real-weight graph

can induce an arbitrary number of connected components in

the graph (by removing the edges in the cut). Assuming that

textures are contiguous, we construct a texture object for

every one of these connected components that has grouped

a sufficient number of edge-cycles – we use a minimum of

three. To avoid false positives, we count on our Ising model

to produce many small or singleton connected components

in the non-texture regions of the ink.

 While the graph cut can induce an arbitrary number of

components in the model, it cannot produce them in arbi-

trary configurations, because it is only performing a binary

labeling. The four-color theorem tells us we need four labels

to separate regions in an arbitrary planar map (Appel and

Haken 1977). This problem is exemplified by the sketch of

a bus in Figure 3. The detected texture would not have been

possible to detect with a binary labeling because the front of

the bus needs to disagree with the front-most window as

well as with the side of the bus, the two of which addition-

ally need to disagree with one another. A graph cut ends up

forcing the windows of the bus to group with the side panel.

Figure 5: A skyscraper ECO identified as a single, complete

texture (shaded), and a sea turtle identified as having no tex-

tures. Neither would be possible if we simply normalized us-

ing the mean of differences between neighbors.

 We address this problem by cutting twice in the same

Ising model. The disagreement costs do not update, but be-

fore taking the second cut, we remove all of the cut edges

that resulted from the first cut. We remove the union of both

sets of cut edges from the edge-cycle embedding before

looking for textures among the remaining connected com-

ponents.

Qualitative Representations for Textures

Geometrically, the texture objects extracted are multiple-

connected regions, as opposed to edge-cycles, which are

simply-connected polygons. Informally, the difference is

that the former is allowed to have holes, which allows us to

capture textures like the outer one in Figure 6. To qualita-

tively represent a texture region in CogSketch’s structured

predicate calculus representations, we require an entity to

represent the region itself, an edge-cycle entity to represent

its perimeter, and n additional edge-cycle entities to repre-

sent its n holes. New edge-cycle entities are created when-

ever equivalent edge-cycles do not already exist. These new

edge-cycles are naturally incorporated into CogSketch’s ex-

isting scheme for representing edge-cycle configurations.

We add additional facts to link texture entities to their pe-

rimeter and hole edge-cycles. We also assign attributes to

the texture entities based on the same similarity dimensions

described above. For each dimension, if the mean difference

across all edges in the texture is lower than the overall mean

difference ∆����, then we assign the texture an attribute corre-

sponding to that dimension. These texture-specific repre-

sentations are sampled in Figure 6.

 Our goal is to group CogSketch’s more primitive ele-

ments into texture regions in order to compress qualitative

representations for sketches without losing representative-

ness. Textures provide compression at the edge-cycle level

by grouping entities into more abstract entities, but they also

compress the edge level of description by pruning edges on

the interiors of texture regions and potentially allowing

edges along the their boundaries to be grouped if they have

good continuity. For example, the wheel in Figure 6 goes

from producing 868 facts at the edge-cycle level to produc-

ing 42 facts with texture compression (including texture-

specific facts). At the edge level, the number of facts drops

from 636 to 100.

Analysis

We performed an analysis of texture compression on 10 con-

cepts from the Eitz corpus. We asked a third party – some-

one not familiar with the research or the algorithm – to rank

the 10 concepts by the extent to which they expected

sketches of the concepts to include texture, from most tex-

ture to least. We added that larger, more complex textures

should bear more weight in the ranking. We also encoded

these 10 concepts (80 examples each) using CogSketch,

(hasPerimeterEdgeCycle Texture-16

(PerimeterEdgeCycleFn ECO-173))

(hasHole Texture-16 (HoleFn Texture-16 0))

(isa Texture-16 PerceptualTexture-CycleSize)

…

Figure 6: A sketch of a tire and a sample of facts from the

qualitative representations with textures.

Label Facts Entities Compressed

Facts

Compressed

Entities

Fact

Compression

Entity

Compression

Tire 648 45 275 25 0.58 0.44

Hot Air balloon 649 43 288 25 0.56 0.42

Bicycle 1333 82 633 52 0.53 0.37

Guitar 838 54 433 35 0.48 0.35

Suitcase 459 32 314 25 0.32 0.22

Cell phone 956 67 639 54 0.33 0.19

Carrot 556 41 383 34 0.31 0.17

Bear 586 46 502 43 0.14 0.07

Arm 252 21 224 20 0.11 0.05

Donut 424 29 358 28 0.16 0.03

Table 2: Average compression rates for 10 concepts from the Eitz corpus.

both with and without texture compression. We measured

two types of compression: Fact compression and entity com-

pression. The former is the proportional reduction in facts,

and the latter is the proportional reduction in entities. We

hypothesized that the order of the concepts by compression

rate (decreasing) should correlate with the order predicted

by the human. The data underlying the compression rates is

in Table 2. The predicted (human) ordering and orderings

by compression rates are in Table 3. The compression rank-

ings were both strongly correlated with the human rankings.

This gives us reason to believe that the compression is at

least somewhat effective in targeting regions intended as

textures, but a more rigorous evaluation involving an ana-

logical learning task is necessary.

 A common source of false negatives (textures that are

overly fragmented or incomplete) seems to be errors early

on in the segmentation process that propagate up to the

Predicted Rank Fact compres-

sion rank

Entity compres-

sion rank

Bicycle Tire Tire

Hot air balloon Hot air balloon Hot air balloon

Cell phone Bicycle Bicycle

Tire Guitar Guitar

Guitar Cell phone Suitcase

Carrot Suitcase Cell phone

Suitcase Carrot Carrot

Donut Donut Bear

Bear Bear Arm

Arm Arm Donut

Correlation 0.88 (p<0.01) 0.81 (p<0.01)

Table 3: The predicted rankings in terms of textured content

compared to the ranking in terms of the compression pro-

vided by our algorithm, with Spearman’s rank correlations.

A

B

C

D

E

F

G

H

I

J

K

L

Figure 7: 12 examples from assorted categories in the Eitz corpus, with detected texture regions shaded.

edge-cycle level, making neighboring cycles look decep-

tively different. For example, The sea turtles in Figure 7A

and 7D have edges in their textures that don’t quite reach

their respective perimeters because junctions shrank when

they would have merged, resulting in unexpectedly merged

cycles. The pizza in 7L has one slice excluded from the tex-

ture for the opposite reason; the junctions in the toppings got

too close to the edge of the slice and merged into the ECO,

altering the cycle’s contents, size, and complexity.

 Some textures are not possible to detect using edge-cycles

directly because the regularity that defines the texture is

across open-shaped pieces of ink. Figure 7F is an example

of how an artistic rendering of a 3D texture results in a con-

glomeration of edges and corners whose shapes are similar,

but whose closures (cycles) are unpredictable.

 Other textures involve edge-cycles, but not ones that

neighbor one another according to our strict definition in-

volving shared edges. The tire in Figure 7K has many sim-

ilar edge-cycles that are joined by a common, dissimilar

neighbor cycle, which acts as a kind of “negative space” in

the texture. The spots on the limbs of the sea turtle in 7B

are mostly free-floating. Using connectivity as a proxy for

adjacency seems too rigid in cases such as these.

Future Work

An analogical learning task will be necessary to evaluate the

effectiveness of our texture segmentation/compression tech-

niques. We expect our approach to perform on par with, or

better than CogSketch’s current representations in terms of

accuracy. More importantly, we expect these techniques to

make such an experiment dramatically more tractable on

large, open-domain datasets such as on the entire 20,000-

example Eitz corpus.

 These Ising models are very fast to solve, which points to

opportunities to apply them iteratively. Recall that we have

the added flexibility of real-weighted edges because we are

not constrained by submodularity. One approach for factor-

ing in top-down information is to add a shared constant to

the disagreement costs of all edges in the model – a base

disagreement cost. This component can be seen as the gen-

eral propensity to group elements; If the number of elements

(e.g. edge-cycles) extracted from the Ising model is

more/less than expected, we could increment/decrement the

base cost, respectively.

 All of the dimensions of similarity from which disagree-

ment costs are computed are currently equally important.

We would like to add parameters to weight these dimensions

and explore techniques for adjusting them automatically,

perhaps by performing parameter estimation using labeled

data, or with a model of focus that gets primed in an unla-

beled fashion.

 The techniques used here can be extended with other

methods for producing planar graphs in the ink. For exam-

ple, a Voronoi Diagram (Edwards and Moulin 1998) defines

a planar adjacency graph for any arrangement of discon-

nected shapes, and can therefore be applied to edges, which

are kept disconnected by their junctions, or ECOs, which are

disconnected by definition. The Ising models built at these

alternative levels might help detect the grenade texture in

Figure 7F and the pizza-topping texture in Figure 7L, re-

spectively. We believe that strategies for allowing multiple

layers of planar Ising models to mutually constrain each

other would provide more robust results.

Acknowledgements

This work was funded by the Air Force Office of Scientific

Research.

References

Appel, K., and Haken, W. 1977. Every planar map is four colora-
ble. Part I: Discharging. Illinois Journal of Mathematics 21(3):
429-490.

Boykov, Y., and Veksler, O. 2006. Graph cuts in vision and
graphics: Theories and applications. In Handbook of mathematical
models in computer vision, 79-96. Springer US.

Edwards, G., and Moulin, B. 1998. Toward the simulation of spa-
tial mental images using the Voronoi model. In Representation and
Processing of Spatial Expressions, 163-184. Hillsdale, NJ: LEA
Press.

Eitz, M., Hays, J., and Alexa, M. 2012. How do humans sketch
objects? ACM Transactions on Graphics 31(4).

Falkenhainer, B., Forbus, K., & Gentner, D. 1989. The structure-
mapping engine: Algorithm and examples. Artificial Intelligence
41(1): 1-63.

Finlayson, M. & Winston, P. 2006. Analogical retrieval via inter-
mediate features: The Goldilocks hypothesis. Technical Report
MIT-CSAIL-TR-2006-071, MIT Computer Science and Artificial
Intelligence Laboratory.

Fisher, M. E. 1961. Statistical mechanics of dimers on a plane lat-
tice. Physical Review 124(6): 1664–1672.

Forbus, K., Ferguson, R., and Gentner, D. 1994. Incremental Struc-
ture-Mapping. Proceedings of the Sixteenth Annual Conference of
the Cognitive Science Society, August.

Forbus, K., Gentner, D., and Law, K., 1995. MAC/FAC: A model
of similarity-based retrieval. Cognitive Science 19, 141-205.

Forbus, K. D., Usher, J., Lovett, A., Lockwood, K. and Wetzel, J.
2011. Cogsketch: Sketch understanding for cognitive science re-
search and for education. Topics in Cognitive Science 3, 648-666.

Gentner, D., 1983. Structure-mapping: A theoretical framework
for analogy. Cognitive Science 7(2): 155-170.

Globerson, A., and Jaakkola, T. 2007. Approximate inference us-
ing planar graph decomposition. In Advances in Neural Infor-
mation Processing Systems 19, 473. MIT Press.

Kasteleyn, P. W. 1961. The statistics of dimers on a lattice: I. the
number of dimer arrangements on a quadratic lattice. Physica
27(12): 1209–1225.

Kolmogorov, V. 2009. Blossom V: A new implementation of a
minimum cost perfect matching algorithm. In Mathematical Pro-
gramming Computation (MPC), 1(1): 43-67.

Lee, W., Kara, L.B. and Stahovich, T. 2007. An efficient graph-
based recognizer for hand-drawn symbols. In EUROGRAPHICS
Workshop on Sketch-Based Interfaces and Modeling.

Lladós, J., Martí, E. and Villanueva, J. 2001. Symbol recognition
by error-tolerant subgraph matching between region adjacency
graphs. IEEE Transactions on Pattern Analysis and Machine In-
telligence 23(10): 1137–1143.

Lovett, A., Dehghani, M., and Forbus, K. 2007. Constructing spa-
tial representations of variable detail for sketch recognition. In Pro-
ceedings of AAAI 22. Vancouver.

Lovett, A., Kandaswamy, S., McLure, M., and Forbus, K. 2012.
Evaluating qualitative models of shape representation. In Proceed-
ings of the 26th International Workshop on Qualitative Reasoning.
Los Angeles, CA.

McLure, M., Friedman, S. & Forbus, K. 2010. Learning concepts
from sketches via analogical generalization and near-misses. In
Proceedings of the 32nd Annual Conference of the Cognitive Sci-
ence Society (CogSci).

McLure, M., Friedman, S., & Forbus, K. 2015. Extending Analog-
ical Generalization with Near-Misses. In Proceedings of AAAI 29.
Austin, TX.

McLure, M. D., Friedman, S. E., Lovett, A., and Forbus, K. D.
2011. Edge-cycles: A qualitative sketch representation to support
recognition. In Proceedings of the 25th International Workshop on
Qualitative Reasoning.

Mokhtarian, F., & Suomela, R. (1998). Robust image corner detec-
tion through curvature scale space. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 20(12), 1376-1381

Schraudolph, N. N., and Kamenetsky, D. 2009. Efficient exact in-
ference in planar Ising models. In Advances in Neural Information
Processing Systems 22, 1417-1424.

